Note on purity of bi-ideals on semigroups

by

Nobuaki KUROKI

(Received on November 15, 1974)

1. A subsemigroup A of a semigroup S is called a bi-ideal of S if $ASA \subseteq A$. The notion of bi-ideal was introduced by R. A. Good and D. Hughes [2]. It was also a special case of the (m, n)-ideal introduced by S. Lajos [5]. Let $B(S)$ be the set of all bi-ideals of a semigroup S. We define a binary operation on $B(S)$ as follows: For $X, Y \in B(S)$,

$$XY = \{xy : x \in X \text{ and } y \in Y\}.$$

Then the product XY is a bi-ideal of S ([6] Theorem 8), and $B(S)$ is a semigroup.

A semigroup S is called regular if, for any element a of S, there exists an element x in S such that $a = axa$.

J. Luh has given in [8] the following:

Proposition 1. For a semigroup S the following conditions are equivalent:

1. S is regular;
2. $B(S)$ is regular.

The following is evident:

Proposition 2. If $B(S)$ is idempotent, then it is regular.

The present note is concerned with the problem: For what kind of semigroups does the converse of Proposition 2 hold?

A semigroup S is called intra-regular if, for any element a of S, there exist x and y in S such that $a = xa^2y$. S. Lajos proved that, for an intra-regular semigroup S, $B(S)$ is idempotent if and only if $B(S)$ is regular ([7] Theorem 36), and gave an example of a semigroup S such that $B(S)$ is regular but not idempotent ([7] Example 4). A semigroup S is called normal if $aS = Sa$ for all elements a of S ([9]). The author proved that, for a normal semigroup S, $B(S)$ is idempotent if and only if $B(S)$ is regular ([4]).

In discussing the above problem we shall introduce the notion of purity of bi-ideals of a semigroup, which is called the T-purity. It is an analogous notion of I-pure ideal of a semigroup introduced by the author [3]. In this note we shall give some properties of T-pure bi-
ideals and prove that, for a semigroup S such that every bi-ideal of it is T-pure, $B(S)$ is idempotent if and only if $B(S)$ is regular. For the terminology not defined here we refer to the book by A. H. Clifford and G. B. Preston [1].

2. A bi-ideal A of a semigroup S is called T-pure if

$$A \cap xSy = xAy$$

for all elements x and y of S. A semigroup S is called T^*-pure if every bi-ideal of it is T-pure. The semigroup S itself is a trivial example of a T-pure bi-ideal of S. It is clear that a group is a T^*-pure semigroup (see, [1] p. 84).

We denote by $[a]$ the principal bi-ideal of a semigroup S generated by a in S. Then, by S. Lajos [5],

$$[a] = a \cup a^2 \cup aSa.$$

Lemma 3. For any bi-ideal A of a semigroup S, the following conditions are equivalent:

1. $A \cap XSY = XAY$ for all $X, Y \in B(S)$;
2. $A \cap [x]S[y] = [x]A[y]$ for all $x, y \in S$.

Proof. It is clear that (1) implies (2). Assume that (2) holds. Let X and Y be any bi-ideals of S and $a = xsy(a \in A, x \in X, s \in S, y \in Y)$ any element of $A \cap XSY$. Then we have

$$a = xsy \in A \cap [x]S[y] = [x]A[y] \subseteq XAY.$$

Thus we have

$$A \cap XSY \subseteq XAY$$

for all $X, Y \in B(S)$. We note that (2) implies that

$$[x]A[y] \subseteq A$$

for all $x, y \in S$. Then in order to prove that

$$XAY \subseteq A$$

for all $X, Y \in B(S)$, let $xay(x \in X, a \in A, y \in Y)$ be any element of XAY. Then we have

$$xay \in [x]A[y] \subseteq A$$

and so we have

$$XAY \subseteq A.$$

Since the inclusion

$$XAY \subseteq XSY$$

always holds, we have
\[XAY \subseteq A \cap XSY\]
for all \(X, Y \in B(S)\). Therefore we have
\[A \cap XSY = XAY\]
for all \(X, Y \in B(S)\). Thus we obtain that (2) implies (1).

The proof is complete.

Lemma 4. Let \(A\) be any \(T^*\)-pure bi-ideal of a smigroup \(S\). Then any one of the conditions (1), (2) of Lemma 3 holds.

Proof. It suffices to prove that (1) of Lemma 3 holds. Let \(X\) and \(Y\) be any bi-ideals of \(S\), and \(a = xsy(a \in A, x \in X, s \in S, y \in Y)\) any element of \(A \cap XSY\). Then we have
\[a = xsy \in A \cap xSY = xAy \subseteq XAY\]
and so we have
\[A \subseteq XSY \subseteq XAY.\]
Let \(xay(x \in X, a \in A, y \in Y)\) be any element of \(XAY\). Then we have
\[xay \in xAy = A \cap xsy \subseteq A \cap XSY\]
and so we have
\[XAY \subseteq A \cap XSY.\]
Thus we obtain that
\[A \cap XSY = XAY\]
for all \(X, Y \in B(S)\), and that the \(T^*\)-purity of the bi-ideal \(A\) implies that (1) of Lemma 3 holds.

Theorem 5. For a smigroup \(S\) the following conditions are equivalent:

1. \(S\) is \(T^*\)-pure.
2. Every principal bi-ideal of \(S\) is \(T^*\)-pure.

Proof. It is clear that (1) implies (2). Assume that (2) holds. Let \(A\) be any bi-ideal of \(S\), and \(x\) and \(y\) any elements of \(S\). Let \(a = xsy\) \((a \in A, s \in S)\) be an element of \(A \cap xSy\). Then we have
\[a = xsy \in [a] \cap xSy = x[a]y \subseteq xAy\]
and so we have
\[A \cap xSy \subseteq xAy\]
for all \(x, y \in S\). We note that (2) implies
\[x[a]y \subseteq [a]\]
for all \(x, y \in S \). In order to prove that
\[
xAy \subseteq A
\]
for all \(x, y \in S \), let \(xay (a \in A) \) be any element of \(xAy \). Then we have
\[
xay \in x[a]y \subseteq [a] \subseteq A
\]
and so we have
\[
xAy \subseteq A
\]
for all \(x, y \in S \). Since the inclusion
\[
xAy \subseteq xSy
\]
always holds, we have
\[
xAy \subseteq A \cap xSy
\]
for all \(x, y \in S \). Thus we obtain that
\[
A \cap xSy = xAy
\]
for all \(x, y \in S \). Therefore we obtain that (2) implies (1).
This complete the proof of the theorem.

3. In this section we consider some properties of minimal \(T \)-pure bi-ideals of a semigroup.

Theorem 6. For any minimal bi-ideal \(A \) of a semigroup \(S \), the following conditions are equivalent:

1. \(A \) is \(T \)-pure:
2. \(A = xAy \) for all \(x, y \in S \).

Proof. Assume that \(A \) is \(T \)-pure. Then, for all \(x, y \in S \), we have
\[
xAy = A \cap xSy \subseteq A.
\]
Since \(xAy \) is a bi-ideal of \(S \) by Theorem 8 of [6], it follows from the minimality of \(A \) that
\[
xAy = A.
\]
Thus we obtain that (1) implies (2).

Conversely we assume that (2) holds. Then, for all \(x, y \in S \), we have
\[
A \cap xSy = xAy \cap xSy = xAy.
\]
This means that \(A \) is \(T \)-pure. Therefore we obtain that (2) implies (1).

Corollary 7. The minimal \(T \)-pure bi-ideal of a semigroup is regular.

Proof. Let \(A \) be the minimal \(T \)-pure bi-ideal of a semigroup \(S \), and \(a \) any element of \(A \). Then by Theorem 6 we have
This means that A is regular.

Lemma 8. For any bi-ideal A of a semigroup S, the following conditions are equivalent:

1. $A = XAY$ for all $X, Y \in B(S)$;

Proof. It is clear that (1) implies (2). Assume that (2) holds. Let X and Y be any bi-ideals of S, and x and y respectively elements of X and Y. Then we have

$$A = [x]A[y] \subseteq XAY.$$

Let xay $(x \in X, a \in A, y \in Y)$ be any element of XAY. Then we have

$$xay \in [x]A[y] = A$$

and so we have

$$XAY \subseteq A.$$

Thus we have

$$A = XAY$$

for all $X, Y \in B(S)$. Therefore we obtain that (2) implies (1).

Theorem 9. Let A be any minimal T-pure bi-ideal of a semigroup S. Then any one of the conditions (1), (2) of Lemma 8 holds.

Proof. It suffices to prove that (1) of Lemma 8 holds. Let X and Y be any bi-ideals of S. Then, since A is T-pure, it follows from Lemma 4 that

$$XAY = A \cap XSY \subseteq A.$$

Since XAY is a bi-ideal of S, it follows from the minimality of A that

$$XAY = A.$$

Therefore we obtain that (1) of Lemma 8 holds.

4. A semigroup S is called T-pure-free if it does not properly contain any T-pure bi-ideal. In this section we give a class of a T-pure-free semigroup.

A semigroup S is called archimedean if, for any elements a and b of S, there exists a positive integer n for which

$$a^n \in SbS.$$

Theorem 10. A cancellative archimedean semigroup without idempotent is T-pure-free.

Proof. Let A be any T-pure bi-ideal of a cancellative archimedean semigroup S without idempotent, and a and s respectively any elements
of A and S. Since S is archimedean, there exist elements x and y in S and a positive integer n such that
\[a^n = xsy. \]
Since A is T-pure, we have
\[a^n = xsy \in A \cap xSy = xAy. \]
This implies that there exists an element b in A such that
\[xsy = xby. \]
Since S is cancellative, we have
\[s = b \in A \]
and so we have
\[S \subseteq A. \]
This we obtain that
\[A = S. \]
Since A is any T-pure bi-ideal of S, this means that S is T-pure-free. This completes the proof of the theorem.

5. In this section we give our main result.

Theorem 11. For a T^*-pure semigroup S the following conditions are equivalent:

1. S is regular;
2. $B(S)$ is regular;
3. $B(S)$ is idempotent.

Proof. By Propositions 1 and 2, it suffices to prove that (2) implies (3). We assume that $B(S)$ is regular. Let A be and bi-ideal of S. Then for some $X \in B(S)$ we have
\[A = AXA \subseteq ASA \subseteq A \]
and so we have
\[A = ASA. \]
Since A is T-pure, it follows from Lemma 4 that
\[XAY = A \cap XSY \]
for all $X, Y \in B(S)$. This holds for $X = Y = A$. Then we have
\[A^3 = A \cap ASA = A \cap A = A \]
and so we have
\[A = A^3 \subseteq A^4 \subseteq A. \]
Thus we have

\[A = A^2. \]

Therefore we obtain that \(B(S) \) is idempotent. This completes the proof of the theorem.

References

College of Science and Technology
Nihon University
Narashinodai, Funabashi-shi,
Chiba-ken, Japan.