Quartic Residuacity and Cusp Forms
of Weight One

by

Toyokazu Hiramatsu and Noburo Ishii

(Received November 19, 1984)

§ 1. Introduction

Let m be a positive square free integer and ε_m denote the fundamental unit of $\mathbb{Q}(\sqrt{m})$. We consider only those m for which ε_m has norm $+1$. If l is an odd prime such that $(m/l)= (\varepsilon_m/l) = 1$, we can ask for the value of the quartic residue symbol $(\varepsilon_m/l)_4$ (cf. [1], [5]). Let K be the Galois extension of degree 16 over the rational number field \mathbb{Q} generated by $\sqrt{-1}$ and $\sqrt[4]{\varepsilon_m}$. Then its Galois group $G(K/\mathbb{Q})$ has just two irreducible representations of degree 2. We can define a cusp form of weight one by these representations, which will be denoted by $\Theta(\tau; K)$. In this paper, we shall show that $\Theta(\tau; K)$ has three expressions by definite or indefinite theta series and that the value of the symbol $(\varepsilon_m/l)_4$ is expressed by the lth Fourier coefficient of $\Theta(\tau; K)$. These results offer us new criterions for ε_m to be a quartic residue modulo l.

§ 2. Cusp forms of weight one

We put $G = G(K/\mathbb{Q})$. Then the group G is generated by three elements σ, φ and ρ in such way that

$$
\begin{align*}
\sigma(\sqrt[4]{\varepsilon_m}) &= \sqrt{-1} \sqrt[4]{\varepsilon_m}, \\
\varphi(\sqrt[4]{\varepsilon_m}) &= \sqrt[4]{\varepsilon_m}^{-1}, \\
\rho(\sqrt{-1}) &= -\sqrt{-1},
\end{align*}
$$

and has defining relations:

$$
\begin{align*}
\sigma^4 &= \varphi^2 = \rho^2 = 1, \\
\varphi \sigma \rho &= \sigma \varphi = \rho \varphi,
\end{align*}
$$

$$
\rho \sigma \rho = \varphi \sigma \rho = \sigma^3.
$$

The group G has three abelian subgroups of index 2 in G, which are the following:

$$
\begin{align*}
H_k &= \langle \sigma, \varphi \rho \rangle \longleftrightarrow k = \mathbb{Q}(\sqrt{-m}), \\
H_F &= \langle \sigma^2, \varphi, \rho \rangle \longleftrightarrow F = \mathbb{Q}(\sqrt{t+2}), \\
H_E &= \langle \sigma^2, \varphi, \sigma \rho \rangle \longleftrightarrow E = \mathbb{Q}(\sqrt{-m(t+2)}),
\end{align*}
$$
where \(t = \text{tr}(\varepsilon_m) \). Let \(f \) and \(e \) be the square free part of \(t + 2 \) and \(m(t + 2) \), respectively, and put

\[
K' = \mathbb{Q}(\sqrt{-1}, \sqrt{e_m}), \\
L = \mathbb{Q}(\sqrt{-1}, \sqrt{-m}), \\
L' = \mathbb{Q}(\sqrt{-m}, \sqrt{f}), \\
L'' = \mathbb{Q}(\sqrt{-m}, \sqrt{-f}).
\]

Then we have the following diagram:

\[
\begin{array}{c}
\text{\(K \)} \\
\text{\(K' \)} \\
\text{\(L' \)} \\
\text{\(L \)} \\
\text{\(L'' \)} \\
\text{\(F = \mathbb{Q}(\sqrt{f}) \)} \\
\text{\(E = \mathbb{Q}(\sqrt{-e}) \)} \\
\text{\(Q(\sqrt{-m}) \)} \\
\text{\(Q(\sqrt{e}) \)} \\
\text{\(Q(\sqrt{-f}) \)}
\end{array}
\]

By this diagram, we have the following equivalence for any odd prime \(l \):

(1) \quad l \text{ splits completely in } K' \iff (-1/l) = (f/l) = (e/l) = 1,

where \((*/l)\) denotes the Legendre symbol.

The group \(G \) has the following eight representations \(\gamma_j \) of degree 1, where \(j = 1, \cdots, 8 \).

<table>
<thead>
<tr>
<th>(\gamma_1)</th>
<th>(\gamma_2)</th>
<th>(\gamma_3)</th>
<th>(\gamma_4)</th>
<th>(\gamma_5)</th>
<th>(\gamma_6)</th>
<th>(\gamma_7)</th>
<th>(\gamma_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(\rho)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

The group \(G \) has just two irreducible representations of degree 2, which have determinant \(\gamma_4 \). If we denote by \(\psi_0 \) the one of these, then the other is \(\psi_0 \otimes \gamma_3 \). Let \(\sigma_l \) denote the Frobenius substitution associated with \(l \) in \(K \). Then we have the following table which gives the correspondence between quadratic subfields of \(K \) and \(\gamma_j \) (\(2 \leq j \leq 8 \)).

<table>
<thead>
<tr>
<th>(\gamma_2)</th>
<th>(\gamma_3)</th>
<th>(\gamma_4)</th>
<th>(\gamma_5)</th>
<th>(\gamma_6)</th>
<th>(\gamma_7)</th>
<th>(\gamma_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma(\sigma_l))</td>
<td>(\mathbb{Q}(\sqrt{-1}))</td>
<td>(\mathbb{Q}(\sqrt{m}))</td>
<td>(k)</td>
<td>(F)</td>
<td>(\mathbb{Q}(\sqrt{-f}))</td>
<td>(\mathbb{Q}(\sqrt{e}))</td>
</tr>
<tr>
<td>(\text{(-1/l)})</td>
<td>(\text{(-m/l)})</td>
<td>(\text{(f/l)})</td>
<td>(\text{(-f/l)})</td>
<td>(\text{(e/l)})</td>
<td>((-e/l))</td>
<td></td>
</tr>
</tbody>
</table>

Put \(\psi_1 = \psi_0 \otimes \gamma_3 \). Let \(L(s; K/Q, \psi_0) \) (resp. \(L(s; K/Q, \psi_1) \)) denote the Artin \(L \)-function associated with \(\psi_0 \) (resp. \(\psi_1 \)), and let \(\Theta(\tau; \psi_0) \) (resp. \(\Theta(\tau; \psi_1) \)) denote the Mellin transformation of \(L(s; K/Q, \psi_0) \) (resp. \(L(s; K/Q, \psi_1) \)). Then we can define the following function which appeared in §1:
\[\Theta(\tau; K) = \frac{1}{2} \{ \Theta(\tau; \psi_0) + \Theta(\tau; \psi_1) \} . \]

Let \(N \) denote the L.C.M. of the conductor of \(\psi_0 \) and that of \(\psi_1 \). Then the function \(\Theta(\tau; K) \) is a cusp form of weight 1 on the congruence subgroup \(\Gamma_0(N) \) with the character \((-m/l)\). This result is essentially based upon the work of Hecke.

Let \(M \) be one of the three quadratic fields \(k, E \) and \(F \). Then \(K \) is abelian over \(M \). Let \(\mathfrak{Q}_M \) be the ring of integers of \(M \) and \(a \) an ideal of \(\mathfrak{Q}_M \). If \(M \) is imaginary (resp. real), then \(H_M(a) \) denotes the group of ray classes (resp. narrow ray classes) modulo \(a \) of \(M \). Let \(b \) be an ideal of \(M \) prime to \(a \) and \([b]\) the class in \(H_M(a) \) represented by \(b \). If in particular \(b \) is an element of \(M \), then the ideal class \([b]\) represented by the principal ideal \((b)\) is abbreviated as \([b]\). Let \(\widehat{\mathfrak{f}}(K/M) \) (resp. \(\widehat{\mathfrak{f}}((K/M)) \)) be the conductor (resp. the finite part of conductor) of \(K \) over \(M \). Furthermore we denote by \(C_M(K) \) (resp. \(C_M(K') \)) the subgroup of \(H_M(\widehat{\mathfrak{f}}((K/M))) \) corresponding to \(K \) (resp. \(K' \)). The restriction \(\psi_0 \) (resp. \(\psi_1 \)) to the abelian Galois group \(G(K/M) \) decomposes into two distinct linear representations \(\xi_M \) and \(\xi'_M \) (resp. \(\xi_M \otimes \gamma_3 \) and \(\xi'_M \otimes \gamma_3 \)) of \(G(K/M) \):

\[\psi_i \big| G(K/M) = \xi_M \otimes \gamma_3 + \xi'_M \otimes \gamma_3, \quad (i = 0, 1). \]

By Artin reciprocity law, we can identify \(\xi_M \) and \(\xi'_M \) with characters of \(H_M(\widehat{\mathfrak{f}}((K/M))) \) trivial on \(C_M(K) \) and so we denote these characters by the same notation. Let \(c_M \) be the finite part of conductor of \(\xi_M \). We assume that the finite part of conductor of \(\xi_M \otimes \gamma_3 \) is equal to \(c_M \). Let \(\widehat{C}_M(K) \) (resp. \(\widehat{C}_M(K') \)) be the image of \(C_M(K) \) (resp. \(C_M(K') \)) by the canonical homomorphism of \(H_M(\widehat{\mathfrak{f}}((K/M))) \) to \(H_M(c_M) \). Since \(K \) is the class field over \(M \) with conductor \(\widehat{\mathfrak{f}}((K/M)) \), the Artin L-function \(L(s; K/Q, \psi_0) \) (resp. \(L(s; K/Q, \psi_1) \)) is coincident with the L-function \(L_M(s; \xi_M) \) (resp. \(L_M(s; \xi'_M \otimes \gamma_3) \)) of \(M \) associated with the character \(\xi_M \) (resp. \(\xi'_M \otimes \gamma_3 \)), where \(\xi_M \) (resp. \(\xi'_M \otimes \gamma_3 \)) denotes the primitive character corresponding to \(\xi_M \) (resp. \(\xi'_M \otimes \gamma_3 \)). Therefore we have three expressions of \(\Theta(\tau; K) \).

Proposition 1. The notation and the assumption being as above, we have

(2) \[\Theta(\tau; K) = \sum_{a \in \mathfrak{Q}_M} \chi_M(a)q^{N_M(a)} \quad (q = \exp(2\pi i \tau)), \]

where

\[\chi_M(a) = \begin{cases}
1 & \text{if } [a] \in \widehat{C}_M(K), \\
-1 & \text{otherwise};
\end{cases} \]

and \(N_M(a) \) denotes the norm of \(a \) with respect to \(M/Q \).

The proof of Proposition 1 is quite similar to that appeared in §3 of [3]. Therefore we omit it.

Let \(f(\alpha) \) be a defining polynomial of \(\sqrt[4]{\xi_m} \) over \(Q \). Then it is easy to see that
\[f(x) = (x^4 - \varepsilon_m)(x^4 - \varepsilon_m^{-1}) = x^8 - tx^4 + 1. \]

Let \(a(n) \) be the \(n \)th Fourier coefficient of the expansion

\[\Theta(r; K) = \sum_{n=1}^{\infty} a(n)q^n. \]

Then we have the following relation:

Proposition 2. Let \(p \) be any prime not dividing the discriminant \(\Delta_f \) of \(f(x) \) and \(\mathbf{F}_p \) the \(p \) element field. Then we have

\[\# \{ x \in \mathbf{F}_p \mid \tilde{f}(x) = 0 \} = 1 + (m/p) + (f/p) + (e/p) + 2a(p). \]

Proof. Let \(H \) be a group generated by \(\rho \), say \(H = \langle \rho \rangle \). Then \(H \) is the subgroup of \(G \) corresponding to \(\mathbb{Q}(\sqrt{\varepsilon_m}) \). We denote by \(1^G_H \) the character of \(G \) induced by the identity character of \(H \). Then we have the following scalar product formulas.

\[(1^G_H \mid \chi_0) = \begin{cases} 1 & \text{if } i = 1, 3, 5, 7, \\ 0 & \text{otherwise}; \end{cases} \]

\[(1^G_H \mid \chi_i) = 1 \quad (i = 0, 1), \]

where \(\chi_0 \) (resp. \(\chi_1 \)) denotes the character of \(\psi_0 \) (resp. \(\psi_1 \)). Therefore, we have

\[1^G_H(\sigma_p) = \sum_{\substack{1 \leq l \leq 7 \\text{odd}}} \gamma_l(\sigma_p) + \chi_0(\sigma_p) + \chi_1(\sigma_p) = 1 + (m/p) + (f/p) + (e/p) + 2a(p). \]

On the other hand, it is easy to see that the left hand side of (3) is equal to \(1^G_H(\sigma_p) \). This proves our proposition.

Let \(\text{Spl}(f(x)) \) be the set of all primes such that \(f(x) \mod p \) factors into a product of distinct linear polynomials over \(\mathbf{F}_p \). We call a rule to determine the primes belonging to \(\text{Spl}(f(x)) \) a higher reciprocity law for \(f(x) \) (cf. [2]). Then we have the following

Corollary. \(\text{Spl}(f(x)) = \{ p : p \nmid \Delta_f, \ a(p) = 2 \} \).

Proof. By Proposition 1, we have

\[|a(p)| \leq 2. \]

Hence our assertion is a direct consequence of Proposition 2.

q.e.d.

§ 3. Fundamental lemmas

In this section, we shall determine the conductors \((K/M), (K'/M), (L'/M) \)
and \(f(L/M) \). Let \(\mathcal{R}, \mathcal{L} \) and \(\mathfrak{K} \) be fields such that \(\mathcal{R} \supset \mathcal{L} \supset \mathfrak{K} \) and \([\mathcal{L} : \mathfrak{K}] = 2\). Assume that \(\mathcal{R} \) is abelian over \(\mathfrak{K} \). We denote by \(\mathfrak{D}(\mathcal{L}/\mathfrak{K}) \) the different of \(\mathcal{L} \) over \(\mathfrak{K} \). For a prime ideal \(q \) of \(\mathcal{L} \), let \(f(q) \) (resp. \(g(q) \)) denote the \(q \)-exponent of \(f(\mathcal{R}/\mathcal{L}) \) (resp. \(\mathfrak{D}(\mathcal{L}/\mathfrak{K}) \)) and put
\[
e(q) = \max \{ 0, g(q) - f(q) \}.
\]
Then we have the following

Lemma 1.

\[
f(\mathcal{R}/\mathfrak{K}) = f(\mathcal{R}/\mathcal{L}) \mathfrak{D}(\mathcal{L}/\mathfrak{K}) \prod q^{e(q)}.
\]

Proof. This is deduced from the proof of Lemma 1 in [3].

We assume that \(\mathcal{L} \) is a Galois extension over \(\mathbb{Q} \). Let \(\mathbb{Q}_e \) be the ring of integers of \(\mathcal{L} \) and let \(p \) be a prime ideal of \(\mathbb{Q}_e \) dividing 2. We denote by \(e_p \) the ramification exponent of \(p \). Let \(\mathbb{Q}_e \) denote the completion of \(\mathbb{Q}_e \) with respect to \(p \) and \(\Pi_p \) a prime element of \(\mathbb{Q}_e \). Furthermore, for \(\xi \in \mathbb{Q}_e^\times \), we put
\[
S_p(\xi) = \max \{ t \in \mathbb{Z}^+ \mid \xi \equiv \text{square mod } \Pi_p^t \}.
\]

Lemma 2. If \(S_p(\xi) < 2e_p \), then there exists uniquely the odd integer \(t < 2e_p \) such that
\[
\xi = \eta^2 + \delta \Pi_p^t \quad (\eta, \delta \in \mathbb{Q}_e^\times);
\]
and this uniquely determined \(t \) is equal to \(S_p(\xi) \).

Proof. The assertion is clear.

Lemma 3. Put
\[
t_p(\xi) = \min \{ n \in \mathbb{Z} \mid \xi \Pi_p^{2n} = \text{square mod } \Pi_p^{2e_p}, 0 \leq n \leq e_p \}.
\]
If \(S_p(\xi) < 2e_p \), then we have
\[
S_p(\xi) = 2e_p + 1 - 2t_p(\xi).
\]

Proof. This follows immediately from the definition.

Let \(\alpha \) be an element of \(\mathbb{Q}_e \) such that \((\alpha) \) is a square-free ideal with \(((\alpha), 2) = 1 \) and put \(\mathcal{R} = \mathbb{Q}(\sqrt{\alpha}) \). We assume that \(\mathcal{R} \) is a Galois extension over \(\mathbb{Q} \). Then \(S_p(\alpha) \) is independent of \(p \) chosen. Since \(\mathcal{R} \) and \(\mathcal{L} \) are the Galois extensions over \(\mathbb{Q} \), the \(p \)-exponent \(f(p) \) of \(f(\mathcal{R}/\mathcal{L}) \) does not depend on \(p \) chosen. Thus we can put \(S_e(\alpha) = S_e(\alpha) \) and \(f(2) = f(p) \).

Lemma 4. (i) The prime ideal \(p \) is ramified for \(\mathcal{R}/\mathcal{L} \) if and only if \(S_p(\alpha) < 2e_p \).
(ii) If \(S_e(\alpha) < 2e_p \), then \(S_e(\alpha) \) is equal to the odd number \(t \) \((\alpha < 2e_p) \) determined by
\[
\alpha = \eta^2 + \delta \Pi_p^t \quad (\eta, \delta \in \mathbb{Q}_e^\times);
\]
and moreover
\[
f(2) = 2e_p + 1 - S_e(\alpha).
Proof. By the assumption on \(\alpha \), we have

\[\mathfrak{Q}_o = \left\{ \frac{1}{2}(a + b \sqrt{\alpha}) \mid a, b \in \mathfrak{Q}_o, a^2 - 2b^2 \equiv 0 \mod 4 \right\}. \]

Denote by \(\mathfrak{P} \) a prime ideal of \(\mathfrak{K} \) dividing \(p \). Let \(a \) be an ideal of \(\mathfrak{K} \) and denote by \(v_{\mathfrak{P}}(a) \) the \(\mathfrak{P} \)-exponent of \(a \), and let \(\varepsilon \) be a generator of \(G(\mathfrak{K}/\mathfrak{L}) \). Then, by the definition of \(f(p) \),

\[f(2) = \min_{\xi \in \mathfrak{Q}_o} v_{\mathfrak{P}}(\xi - \varepsilon^2). \]

Denote by \(X \) (resp. \(X_p \)) the group of all elements \(b \) of \(\mathfrak{Q}_o \) satisfying the condition

\[ab^2 \equiv \text{square mod } 4 \] (resp. \(\mod p^{2e_\varepsilon} \)).

Let \(v_p(b) \) denote the \(p \)-exponent of \(b \). Then, by (4), we have

\[f(2) = \min_{b \in X} v_p(b) = 2 \min_{b \in X_p} v_p(b). \]

Therefore,

\[p \text{ is unramified for } \mathfrak{K}/\mathfrak{L} \iff f(2) = 0 \]

\[\iff \alpha \text{ is square mod } p^{2e_\varepsilon} \iff S_\varepsilon(\alpha) \geq 2e_\varepsilon. \]

If \(p \) is ramified for \(\mathfrak{K}/\mathfrak{L} \), then

\[\min_{b \in X_p} v_p(b) = t_\varepsilon(\alpha). \]

By Lemma 3, \(S_\varepsilon(\alpha) = 2e_\varepsilon + 1 - f(2) \). Hence by Lemma 2 the assertion (ii) is proved. q.e.d.

Now we assume that \(\mathfrak{L}(\sqrt{\alpha}) \) is a Galois extension over \(\mathbb{Q} \). It is easy to see that there exists a subgroup \(R \) of \(\mathfrak{Q}_o^* \) with order \(|\mathfrak{Q}_o/\mathfrak{P}| - 1 \) such that \(R^* = R \cup \{0\} \) is a complete system of coset representatives of \(\mathfrak{Q}_o \mod \mathfrak{P} \). Put

\[t = \min\{2e_\varepsilon, S_\varepsilon(\alpha)\} \text{ and } u = \left\lfloor \frac{1}{2}(t + 1) \right\rfloor. \]

Then there exist elements \(a_0, a_1, \cdots, a_{u-1} \) of \(R^* \) such that

\[\alpha \equiv (a_0 + a_1 \Pi_\varepsilon + \cdots + a_{u-1} \Pi_{p}^{u-1})^2 \mod \Pi_{p}^t. \]

Lemma 5. (i) If \(p \) is unramified for \(\mathfrak{K}/\mathfrak{L} \) and there exists a non-zero element in \(\{a_i : \varepsilon \text{ odd}\} \), then

\[S_{\mathfrak{L}}(\sqrt{\alpha}) = \min \{i : \varepsilon \text{ odd} \mid a_i \neq 0\}. \]

(ii) If \(p \) is ramified for \(\mathfrak{K}/\mathfrak{L} \) and there exists a prime element \(\Pi_{\mathfrak{P}} \) of \(\mathfrak{Q}_o \) such that

\[\Pi_{\mathfrak{P}} = \Pi_{\mathfrak{P}}^2 \mod \Pi_{\mathfrak{P}}^{u+1}, \text{ then} \]
Quartic Residuacity and Cusp Forms of Weight One

\[S_{\mathfrak{a}}(\sqrt{2}) = S_{\mathfrak{a}}(\alpha). \]

Proof. Put

\[A = a_0 + a_1 \Pi_\mathfrak{p} + \cdots + a_{u-1} \Pi_\mathfrak{p}^{u-1}. \]

If \(p \) is unramified for \(\mathfrak{R}/\mathfrak{L} \), then we put \(\Pi_{\mathfrak{p}} = \Pi_\mathfrak{p} \). It is easy to see that

\[\sqrt{\alpha} = A + \varepsilon_1 \Pi_{\mathfrak{p}}^{\varepsilon_0} \quad (\varepsilon_1 \in \mathcal{Q}_{\mathfrak{p}}). \]

Therefore the assertion (i) is an immediate consequence of Lemma 4. On the other hand, if \(p \) is ramified for \(\mathfrak{R}/\mathfrak{L} \), then we take \(\Pi_{\mathfrak{p}} \) which satisfies the condition in (ii). We can take the elements \(b_i \in \mathbb{R}^* \) with \(a_i = b_i^2 \) \((i = 0, 1, \cdots, u - 1) \). Therefore,

\[\sqrt{\alpha} = (b_0 + b_1 \Pi_\mathfrak{p} + \cdots + b_{u-1} \Pi_\mathfrak{p}^{u-1})^2 + \varepsilon_2 \Pi_{\mathfrak{p}}^{\varepsilon_0} \quad (\varepsilon_2 \in \mathcal{Q}_{\mathfrak{p}}). \]

Hence we obtain the assertion (ii) by Lemma 4. q.e.d.

Now we put

\[\mathfrak{L} = L \quad \text{or} \quad K', \alpha = \varepsilon_m. \]

From now on we assume that \(m \) is prime number \(p \) with \(p \equiv 3 \mod 4 \). We put

\[\varepsilon_p = \varepsilon = A + B\sqrt{p}. \]

Then it is easy to verify that \(A \) is an even number. Since \(A^2 - pB^2 = 1 \), we have \((A+1)(A-1) = pB^2 \). Therefore we can put

\[\begin{cases} A - 1 = r^2u, \\ A + 1 = s^2v, \end{cases} \]

with \((ru, sv) = 1, rs = B \) and \(uv = p \) \((r, s, u, v \in \mathbb{Z}^+) \). Hence,

\[2 = s^2v - r^2u. \]

By considering the above relation mod 8, we have

\[(u, v) = \begin{cases} (1, p) & \text{if } p \equiv 3 \mod 8, \\ (p, 1) & \text{if } p \equiv 7 \mod 8. \end{cases} \]

Since \(t = \text{tr} (\varepsilon) = 2A \), we have \(t + 2 = 2s^2v \). Hence

\[(f, e) = \begin{cases} (2p, 2) & \text{if } p \equiv 3 \mod 8, \\ (2, 2p) & \text{if } p \equiv 7 \mod 8. \end{cases} \]

Therefore we have the following lemma.

Lemma 6. With \(F \) and \(E \) as in §1, we have

\[(F, E) = \begin{cases} (\mathbb{Q}(\sqrt{2p}), \mathbb{Q}(\sqrt{-2})) & \text{if } p \equiv 3 \mod 8, \\ (\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{-2p})) & \text{if } p \equiv 7 \mod 8. \end{cases} \]
Now we shall calculate the conductors \(\mathfrak{f}(K/M) \), \(\mathfrak{f}(K'/M) \), \(\mathfrak{f}(L/M) \) and \(\mathfrak{f}(L'/M) \). Because the method of calculation is very similar for each of three cases, we shall give the details only for the case of \(M = k \). If we put \(\varOmega = L \), then \(K' = L(\sqrt{e}) \). We can take \(e_L = 2 \) and \(\Pi_p = 1 - \sqrt{p} \). Therefore,

\[
\epsilon \equiv 1 - \Pi_p \mod 2.
\]

By Lemma 4, \(S_L(e) = 1 \) and hence \(S_K(\sqrt{e}) = 1 \) by (ii) of Lemma 5. Therefore, again by Lemma 4, we have \(f_K(2) = 5 - 1 = 4 \). Since prime factors of 2 are only ramified for \(K'/L \), we have \(\mathfrak{f}(K'/L) = (4) \), and hence \(\mathfrak{D}(K'/L) = (2) \). By \(e_{K'} = 4 \), \(f_K(2) = 9 - 1 = 8 \). Therefore \(\mathfrak{f}(K/K') = (4) \). Consequently, by Lemma 1, we have

\[
\mathfrak{f}(K/L) = \mathfrak{f}(K/K') \mathfrak{D}(K'/L) = (4) \times (2) = (8).
\]

Thus, we obtain the following:

\[
\begin{align*}
\mathfrak{f}(K/k) &= \mathfrak{f}(K/L) \mathfrak{D}(L/k) = (16), \\
\mathfrak{f}(K'/k) &= \mathfrak{f}(K'/L) \mathfrak{D}(L/k) = (8), \\
\mathfrak{f}(L/k) &= \mathfrak{D}(L/k)^2 = (4).
\end{align*}
\]

Therefore our required conductors are as follows.

<table>
<thead>
<tr>
<th>(M)</th>
<th>(\mathfrak{f}(K/M))</th>
<th>(\mathfrak{f}(K'/M))</th>
<th>(\mathfrak{f}(L'/M))</th>
<th>(\mathfrak{f}(L/M))</th>
<th>(c_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>(F)</td>
<td>(p \equiv 3 \mod 8)</td>
<td>(4p \alpha_1 \alpha_2)</td>
<td>((2) \alpha_1 \alpha_2)</td>
<td>(\infty_1 \alpha_2)</td>
<td>(4p)</td>
</tr>
<tr>
<td></td>
<td>(p \equiv 7 \mod 8)</td>
<td>((4\sqrt{2}p) \alpha_1 \alpha_2)</td>
<td>((2p) \alpha_1 \alpha_2)</td>
<td>((p) \alpha_1 \alpha_2)</td>
<td>(4p)</td>
</tr>
<tr>
<td>(E)</td>
<td>(p \equiv 3 \mod 8)</td>
<td>(4\sqrt{-2p})</td>
<td>(2p)</td>
<td>(p)</td>
<td>(4p)</td>
</tr>
<tr>
<td></td>
<td>(p \equiv 7 \mod 8)</td>
<td>(4p)</td>
<td>(2)</td>
<td>(1)</td>
<td>(4p)</td>
</tr>
</tbody>
</table>

In the above table, \(\varpi \) denotes a prime ideal of \(M \) dividing \(p \), and \(p_2 \) denotes a prime ideal of \(M \) dividing 2. Further \(\infty_i \) \((i = 1, 2) \) denote two infinite places of \(F \).

§ 4. Three expressions of \(\Theta(\tau; K) \)

For an integral ideal \(a \) of \(M \), if \(M \) is imaginary (resp. real), then \(P_M(a) \) denotes the subgroup of \(H_M(a) \) generated by principal classes (resp. principal classes represented by totally positive elements). We write simply \(H_M \) and \(P_M \) in place of \(H_M(\mathfrak{f}(K/M)) \) and \(P_M(\mathfrak{f}(K/M)) \) respectively. Suppose that \(a \) divides \(\mathfrak{f}(K/M) \). Then we denote by \(K(a) \) the kernel of the canonical homomorphism: \(P_M \to P_M(a) \). Moreover we put \(C_M^*(\cdot) = P_M \cap C_M(\cdot) \). In the following, we shall obtain \(C_M(K) \) and \(C_M(K') \) under the assumption \(p \equiv 7 \mod 8 \).
Case 1. $M = k \ (= \mathbb{Q}(\sqrt{-p}))$.

By the assumption, we have $2 = p_2 \bar{p}_2$ in k, where \bar{p}_2 denotes the conjugate of p_2. Take the two elements μ and v of \mathbb{Q}_k such that

\[
\begin{align*}
\mu & \equiv 5 \mod p_2^4, \\
v & \equiv -1 \mod p_2^4, \\
\mu & \equiv 1 \mod \bar{p}_2^4, \\
v & \equiv 1 \mod \bar{p}_2^4.
\end{align*}
\]

Then we have the following relations: $[\mu][\bar{\mu}] = 5$, $[\mu]^4 = [\bar{\mu}]^4 = 1$, $[v] = [\bar{v}]$ and $[v]^2 = 1$. We also have

\[P_k = \langle [\mu], [\bar{\mu}], [v] \rangle, \quad K((4)) = \langle [\mu], [\bar{\mu}] \rangle,\]

\[K((8)) = \langle [\mu]^2, [\bar{\mu}]^2 \rangle.\]

By the above table, we see that

\[[P_k : C_k(L)^*] = [C_k(L)^* : C_k(K)^*] = [C_k(K')^* : C_k(K)^*] = 2.\]

Furthermore,

\[C_k(L)^* \supset K((4)), \quad C_k(K')^* \supset K((8)), \quad \not\supset K((4)), \quad C_k(K)^* \not\supset K((8)).\]

Hence

\[C_k(L)^* = K((4)) = \langle [\mu], [\bar{\mu}] \rangle,\]

\[C_k(K')^* = \langle [\mu]^2, [\bar{\mu}]^2, [\mu][\bar{\mu}] \rangle,\]

\[C_k(K)^* \not\supset [\mu]^2, [\bar{\mu}]^2.\]

Since $G(K/\mathbb{Q})$ is non-abelian and $G(K/k) \cong P_k/C_k(K)^*$, we see $[\mu]^{-1}[\bar{\mu}] \notin C_k(K)^*$. Therefore, $[\mu][\bar{\mu}] \in C_k(K)^*$. Hence we have

\[C_k(K)^* = \langle [\mu][\bar{\mu}] \rangle = \langle [5] \rangle.\]

We put

\[H_k = \sum_{b \in S} [b]P_k,\]

where S denotes the index set of integral ideals b. Then

\[C_k(K') = C_k(K) + C_k[K][\mu]^2,\]

\[C_k(K) = \sum_{b \in S} [b]^{-4}C_k(K)^*.\]

Put $\omega = (1 + \sqrt{-p})/2$ and let a be an ideal of \mathbb{Q}_k with $(a, (2)) = 1$. Then, by the above relations, we have $[a] \in C_k(K')$ if and only if there exist $b \in S$ and $\eta = x + y\omega \in b^4$ such that $x \equiv 1 \mod 2$, $y \equiv 0 \mod 8$ and $a = b^{-4}(\eta)$. Moreover
\[[a] \in C_k(K) \iff y \equiv 0 \mod 16. \]

Therefore, if \(M = k \), then the right hand side of (2) is as follows:

\[
\Theta(\tau; K) = \sum_{b \in \mathfrak{S}} \sum_{4x+1+4y \sqrt{-p} = b^4} (-1)^y \cdot q^{(4x+1+y)^2 + 16py^2/N_kq(b)^4}.
\]

Case 2. \(M = F (= \mathbb{Q}(\sqrt{2})) \).

Let \(\alpha \) be an element of \(\mathfrak{Q}_F \). Then there exists an element \(\alpha^* \) of \(\mathfrak{Q}_F \) such that

\[
\begin{aligned}
\alpha^* & \text{ is totally positive,} \\
\alpha^* & \equiv \alpha \mod 4\sqrt{2}, \\
\alpha^* & \equiv 1 \mod p.
\end{aligned}
\]

Let \(p = p_\alpha \) in \(F \), and \(r(p) \) denote a generator of the multiplicative group \((\mathfrak{Q}_F/p)^* \). Take a totally positive element \(\lambda \) of \(\mathfrak{Q}_F \) such that

\[
\begin{aligned}
\lambda & \equiv 1 \mod 4\sqrt{2}, \\
\lambda & \equiv r(p) \mod p, \\
\lambda & \equiv 1 \mod p_\alpha.
\end{aligned}
\]

Then

\[
H_F = P_F = \langle [e_2^*], [3^*], [5^*], [\lambda], [\lambda] \rangle;
\]

and

\[
[e_2^*]^4 = [3^*]^2 = [5^*]^2 = [\lambda]^{p-1} = 1,
\]

\[
[\sqrt{e_2^*}] = [3^*][5^*][e_2^*]^3.
\]

Furthermore,

\[
\begin{aligned}
K_F(p) = & \langle [e_2^*], [3^*], [5^*], [\lambda] \rangle, \\
K_F((p)) = & \langle [e_2^*], [3^*], [5^*] \rangle, \\
K_F(2p) = & \langle [3^*], [5^*], [e_2^*]^2 \rangle, \\
K_F(4p) = & \langle [5^*] \rangle.
\end{aligned}
\]

Therefore, by the above table of conductors, we see that

\[
[P_F : C_F(L')] = [C_F(L') : C_F(K')] = [C_F(K') : C_F(K)] = 2;
\]

\[
C_F(L') \supseteq K_F((p)), \quad \# F(p),
\]

\[
C_F(K') \supseteq K_F((2p)), \quad \# K_F((p)),
\]

\[
C_F(K) \supsetneq K_F((4p)).
\]
Hence we obtain
\[C_f(L') = \langle [e_2^*], [3^*], [5^*], [\lambda]; [\lambda], [\lambda] \rangle. \]

Since the Galois group \(G(K'/\mathbb{Q}) \) is isomorphic to \(P_f/C_f(K') \), we have
\[C_f(K') \equiv [\lambda]^2, [\lambda]^2, [\lambda]^{-1}[\lambda]. \]

Hence
\[C_f(K') = \langle [\lambda]^2, [\lambda]^2, [\lambda]^2, [\lambda][\lambda] \rangle. \]

Next we shall calculate \(C_f(K) \). First we notice that
\[\begin{cases} C_f(K) \equiv [\lambda]^2, [\lambda]^2, [e_2^*]^2, \\ C_f(K) \not\equiv [5^*]. \end{cases} \]

Take a prime \(q \) such that \(q \equiv 3 \mod 8 \) and \((q/p) = -1 \). Then \(q \) remains prime in \(F \) and \([q] = [3^*][[\lambda][\lambda]] \) (\(a : \text{odd} \)). Since \((-p/q) = -1 \), \(q \) remains prime in \(k \) also. Hence, by the result of Case 1, \(q \) splits completely for \(K/k \). Therefore \([q] \in C_f(K)\), i.e.,
\[C_f(K) \equiv [3^*][[\lambda][\lambda]]. \]

Similarly, \([5^*][[\lambda][\lambda]] \in C_f(K)\). Therefore we obtain
\[C_f(K) = \langle [e_2^*]^2, [\lambda]^2, [\lambda]^2, [3^*][\lambda][\lambda], [5^*][\lambda][\lambda] \rangle. \]

Let \(r \) be a rational integer with \(r^2 \equiv 2 \mod p \) and \(\mu = x + y\sqrt{2} \) be a totally positive element of \(\mathcal{O}_F \) such that \((2p, \mu) = 1 \). Then we have
\[[\mu] \in C_f(K') \iff x: \text{odd}, y: \text{even}, ((x^2 - 2y^2)/p) = 1. \]

Further
\[[\mu] \in C_f(K) \iff (\text{sgn}x)((ry - x)/p)(2/x) = 1. \]

We put
\[\begin{cases} E^+ = \{ e \in \mathcal{O}_F^\times \mid e: \text{totally positive} \}, \\ E^0 = \{ e \in E^+ \mid e - 1 \in \mathfrak{f}(K/F) \}, \end{cases} \]
and \(e = [E^+: E^0] \). Then, the right hand side of (2) has the following expression for \(M = F \).

(6)
\[\Theta(\tau; K) = e^{-1} \sum_{x^2 + 2y^2 = 2, x \equiv 1 \mod 4, N_\mathbb{Q}(\mu) > 0, \mu \mod E^0} \text{sgn}(x)((2ry - x)/p)(2/x)q^{x^2 - 8y^2}. \]

Case 3. \(M = E (= \mathcal{O}(\sqrt{-2p})) \).

By a similar calculation of Case 2, we have the following:
\[\Theta(\tau; K) = \sum_{a} \sum_{4x + 1 + 2y \sqrt{-2p} e} (-1)^{x+y} \cdot q^{[(4x+1)^2 + 8py^2]/N_{E/Q}(a)}, \]

where \(\{a\} \) denotes the set of integral ideals of \(E \) which are representatives of all square classes in \(H_E/P_E \).

Summing up (5), (6) and (7), we obtain the following theorem which is our main purpose.

THEOREM. Let \(p \) be any prime with \(p \equiv 7 \mod 8 \). Then, the notation and the assumption being kept as above, we have the three expressions of \(\Theta(\tau; K) \):

\[\Theta(\tau; K) = \sum_{a} \sum_{4x + 1 + 2y \sqrt{-2p} e} (-1)^{x+y} \cdot q^{[(4x+1)^2 + 8py^2]/N_{E/Q}(a)} \] (via \(E \))

\[= \sum_{b} \sum_{4x + 1 + 4y \sqrt{-p} b t} (-1)^{y} \cdot q^{[(4x+1)^2 + 16py^2]/N_{E/Q}(b)} \] (via \(k \))

\[= e^{-1} \sum_{\mu=1+2x'} \frac{(\text{sgn} \mu(2ry-x)/p)(2/x)q^{x^2-8y^2}}{\mu \mod E} \] (via \(F \))

Let \(l \) be an odd prime number satisfying the conditions \((p/l) = 1 \) and \(l \equiv 1 \mod 8 \). Then we have \((\varepsilon_p/l) = 1 \) by (1), and we have also the following from the theorem above:

\[l = ((4a+1)^2 + 8pb^2)/N_{E/Q}(a), \]

\[l = ((4x+1)^2 + 16p\beta^2)/N_{E/Q}(b), \]

\[l = x^2 - 8y^2, \quad x \equiv 1 \mod 4, \quad ((x^2 - 8y^2)/p) = 1; \]

\[a(l) = \pm 2. \]

Moreover, we have the following criterions for \(\varepsilon_p \) to be a quartic residue modulo \(l \) which are our conclusion.

\[(\varepsilon_p/l)_4 = 1 \iff a + b: \text{even} \]

\[\iff \beta: \text{even} \]

\[\iff (\text{sgn} x)(2ry - x)/p(2/x) = 1 \]

\[\iff a(l) = 2. \]

For prime \(p \) with \(p \equiv 3 \mod 8 \), we shall only state the result as a remark.

Remark 1. Let \(p \equiv 3 \mod 8 \) and \(p \neq 3 \). Then, the following may be obtained in a way similar to the proof of the above theorem.
Quartic Residuacity and Cusp Forms of Weight One

\[\Theta(\tau; K) = \sum_{x, y \in \mathbb{Z}} \frac{(-1)^{(x-1)/4}((x-2ry)/p)}{q^{x^2 + 8y^2}} \]

[\text{mod 4}]

[\text{mod 8}]

[\text{mod 4}]

Remark 2. A similar problem for the rational case was discussed in [4].

References

Department of Mathematics
Kobe University
Rokko, Kobe 657
Japan

Department of Mathematics
University of Osaka Prefecture
Sakai, Osaka 591
Japan