Definability in L^p-Spaces

by

Mariko Yasugi

(Received September 13, 1982)

This is a sequel to the author’s previous paper [9], in which we developed the “definable” theory of Daniell integration. As an application of it, we here present the definable theory of L^p-spaces, including the Radon-Nikodym theorem, the Riesz representation theorem and a theorem on the derivatives of bounded linear functionals.

The acquaintance with [5]–[9] is assumed, and the definitions and the propositions in [9] will be quoted with the asterisk affixed. Thus, for example, “Proposition 4.1*” stands for “Proposition 4.1 in [9].”

Mathematically we have followed [1], [3] and [4]. [2] is quoted as a reference, since it deals with the Randon-Nikodym theorem within the framework of Bishop’s constructive mathematics.

§ 1. L^p-spaces

[Assumption] 1) Throughout this paper the definitions in Section 1* will be assumed. They include in particular the axioms on the integration space $\mathcal{X} = (X, L, J)$.

2) The letters p and q will stand for the parameters ranging over the “extended reals” which are no less than 1; $1 \leq p, q \leq \infty$.

DEFINITION 1.1.

$$\exp (|f|, p) : \{ x \} \exp (|f(x)|, p),$$

where $\exp (a, b) = a^b$.

$$L(p; f, W_1, W_2) : \text{mbl} (f, W_2) \wedge [(1 \leq p < \infty \wedge \text{itg} (\exp (|f|, p), W_1))$$

$$\lor (p = \infty \wedge \exists r \ \text{ae} (x, |f(x)| \leq r, W_1))],$$

where W_1 and W_2 stand for finite sequences of parameters and W_1' is a subset of W_1. See Definitions 6.2*, 3.1* and 2.2* for mbl, itg and ae.

$$\text{esssup} (f, W_1) : \inf \{r : \text{ae} (x, |f(x)| \leq r, W_1')\}$$

$$\text{norm} (p, f, W_1, t) : [1 \leq p < \infty \wedge t < \exp (J^1(\exp (|f|, p), W_1), 1/p)]$$
\[\forall [p = \infty \wedge t < \text{esssup} \, (f, W_1)], \]

where \(J^1 \) is defined in Definition 3.1*. The 1 in \(J^1 \) may be omitted.

We write \(\text{norm} \, (p; f, W_1) \) or, for short, \(\text{norm} \, (p; f) \) for \(\{t\} \text{norm} \, (p; f, W_1, t) \). We may even omit \(p \) when it is fixed. Notice that \(\text{norm} \, (p; f, W_1) \) is definable.

\[\mathcal{B}(f, W_1) : \exists r \, \forall x \, (|f(x)| \leq r, W_1) \]

\[\text{Note.} \] Let \(\mathcal{J} \) be the theory defined in the Theorem in Section 1*. In the following the propositions are meant to be provable in \(\mathcal{J} \).

Proposition 1.1.
1. \(L(p; f, W_1, W_2) \to 0 \leq \text{norm} \, (p; f) < \infty \).
2. \(\text{itg} \, (f, W_1), \mathcal{B}(f, W_1) \to L(p; f, W_1, W_2^*) \)
 for a definable \(W_2^* \).
3. \(L(p): \{f, W_1, W_2\} \subseteq \text{L}(p; f, W_1, W_2) \) is a linear space. The precise meaning of this will become clear in the course of the proof.
4. \(L(p; f, W_1, W_2), L(p; f, U_1, U_2) \to \text{norm} \, (p; f, W_1) = \text{norm} \, (p; f, U_1) \).
5. \(L(p) \) is closed with respect to \(f^+ \) and \(f^- \).
6. \(L(p; f, W_1, W_2), a \in R \to \text{norm} \, (p; af, W^*) = |a| \text{norm} \, (p; f, W_1) \)
 for some definable \(W^* \).

Proof of 3) where \(p < \infty \). Suppose

\[\forall i \leq k L(p; F(i), V_1(i), V_2(i)). \]

Then \(\text{mbl} \, (\Sigma[F(i); i \leq k], V^*) \) for a \(V^* \) by 4) of Proposition 6.2*.

\[\exp \,(|\Sigma[F(i); i \leq k]|, p) \leq \exp \,(k, p) \Sigma[\exp \,(|F(i)|, p); i \leq k] \]

and \(\text{itg} \, (\Sigma[\exp \,(|F(i)|, p); i \leq k], W_2^*) \) by Proposition 4.1*, and hence Proposition 6.5* implies that \(\exp \,(|\Sigma[F(i); i \leq k]|, p) \) is integrable. From this follows that \(L(p) \) is closed under the finite sum. Other conditions can be proved in a similar manner.

Definition 1.2.

\[\text{cnjg} \, (p, q): (p = 1 \wedge q = \infty) \vee (p = \infty \wedge q = 1) \vee (1 < p, q < \infty \wedge (1/p) + (1/q) = 1) \]

[Assumption] We shall henceforth assume \(\text{cnjg} \, (p, q) \).

Proposition 1.2 (Hölder’s inequality).

\[L(p; f, W_1, W_2), L(q; g, U_1, U_2) \]
\[\to \text{itg} \, (fg, W^*) \wedge (|J(fg, W^*)| \leq \text{norm} \, (p; f) \text{norm} \, (q; g)). \]

The mathematical proof goes through. One has only to note that Proposition 4.1* applies (for the functions \(|f|, g \), \(\exp \,(|f|, p) \) and \(\exp \,(|g|, q) \).

Proposition 1.3 (Minkowski’s inequality).

\[\forall k \leq n \text{L}(p; F(k), V_1(k), V_2(k)) \]
Definability in L^p-Spaces

\[\text{norm}(p; \Sigma[F(k); k \leq n], W^*) \leq \Sigma\{\text{norm}(p; F(k), V_1(k)); k \leq n\}. \]

Proof. $\forall m \leq n L(p; \Sigma[F(k); k \leq m], U_1(m), U_2(m))$ for some U_1 and U_2 (by Proposition 1.1).

\[\forall m \leq n (\text{norm}(\Sigma[F(k); k \leq m], U_1(m)) \leq \Sigma\{\text{norm}(F(k), W_1(k)); k \leq m\} \]

is a definable formula, and is provable by induction on m. Put $W^* \equiv U_1(n)$.

PROPOSITION 1.4. $\forall k L(p; F(k), V_1(k), V_2(k))$,

\[\Sigma\{\text{norm}(p; F(k)); k \} < \infty \rightarrow \exists (x, \Sigma|F(k, x)| < \infty, U^*) \]

\[\land [\exists (x, f(x) = \Sigma F(k, x), U^*) \land L(p; f, W_1^*, W_2^*)] \]

\[\land \text{norm}(p; f) \leq \Sigma \text{norm}(p; F(k))]. \]

Proof. The necessary parameters can be constructed as applications of Proposition 1.3 above and Propositions 4.5* and 4.8*.

PROPOSITION 1.5 (Riesz-Fischer). $\forall k L(p; F(k), V_1(k), V_2(k))$,

\[\lim \{\text{norm}(p; F(k) - F(l)); k, l\} = 0 \]

\[\rightarrow L(p; f^*, W_1^*, W_2^*) \land \lim \text{norm}(p; f^* - F(k)) = 0, \]

for a definable f^*.

Proof. As applications of DDI (See Definition 1.3* and Definition 1.6 of [8].), we define ν and G as follows.

\[\nu(1) = \min (l, \forall m \geq l (\text{norm}(F(m) - F(l)) \leq \exp(2, -1))), \]

\[\nu(n + 1) = \min (l, l > \nu(n) \land \forall m \geq l (\text{norm}(F(m) - F(l)) \leq \exp(2, -(n + 1)))), \]

\[G(1) = F(\nu(1)), \]

\[G(n + 1) = F(\nu(n + 1)) - F(\nu(n)). \]

Then $\{\nu(n)\}_n$ is increasing,

\[\text{norm}(F(m) - F(\nu(n))) \leq \exp(2, -n) \]

if $m \geq \nu(n), G(n) \in L(p)$ for each n and

\[\Sigma \text{norm}(G(n)) \leq \text{norm}(F(\nu(1))) + \Sigma \exp(2, -(n - 1)) \]

\[= \text{norm}(F(\nu(1))) + 1. \]

Thus, by virtue of Proposition 1.4, $\Sigma G(n)$ is absolutely convergent "almost everywhere." Now define f^* by
\[f^*(x) = \begin{cases} \Sigma G(n, x) = \lim F(n, x) & \text{if } \Sigma |G(n, x)| < \infty, \\ 0 & \text{otherwise}. \end{cases} \]

The properties required of \(f^* \) follow from Proposition 1.4 if the \(f \) there is taken to be this \(f^* \).

Proposition 1.6. \(1 \leq p < \infty, \epsilon > 0, \)

\[L(p; f, W_1, W_2) \rightarrow \phi^* \in L \wedge L(p; \phi^*, W_1^*, W_2^*) \wedge \text{norm } (f - \phi^*) \leq \epsilon \]

for a definable \(\phi^* \), where \(\epsilon \) stands for a rational number.

Proof. It suffices to prove for the case \(f \geq 0 \). Define

\[H(n) \equiv \min (n, n \exp (f, p), f), \]

and

\[n_0 = \min (n, \text{norm } (f - H(n)) \leq \epsilon). \]

Then \(H(n) \in L(p) \wedge \text{itg} \), and \(n_0 \) is meaningful. By virtue of Proposition 4.2*, there is a \(\psi \in L \) (in fact \(\psi = \Psi(1) \)) such that

\[J(|H(n_0) - \psi|) \leq \exp (\epsilon, p)/\exp (2n, p - 1). \]

Define \(\phi^* \equiv \min (n_0, \psi^+) \). This will do.

Proposition 1.7. The following are mutually definably interpretable for any \(p, 1 \leq p < \infty \).

(5) \[L(p; f, W_1, W_2). \]

(6) \[\forall n(F(n) \in L \wedge L(p; F(n), V_1(n), V_2(n)) \wedge \text{ae } (x, f(x) = \Sigma F(n, x), U) \wedge \Sigma \text{ norm } (F(n)) < \infty. \]

Proof. (1) follows from (2) by Proposition 1.4. (2) follows from (1) by Proposition 1.6. Notice that the \(\phi^* \) above is defined uniformly in \(\epsilon \).

§ 2. Linear functionals on \(L^p \)

Definition 2.1. \(\text{Inf}l (p; T); \forall f \forall W_1 \forall W_2 \)

\[(L(p; f, W_1, W_2) \vdash T(f) \in R) \wedge \forall k \forall F \forall V_1 \forall V_2 \forall a(\forall i \leq k L(p; F(i), V_1(i), V_2(i)) \wedge a \in R \vdash [T(aF(1)) = aT(F(1)) \wedge T(\Sigma F(i); i \leq k)] = \Sigma \{T(F(i); i \leq k)\}) \]

\(\text{Bdf} (p; T, a); a > 0 \wedge \forall f \forall W_1 \forall W_2 \)

\[(L(p; f, W_1, W_2) \vdash |T(f)| \leq a \text{ norm } (f)) \]
Definability in L^p-Spaces

$$
\text{blf}(p; T, a) : \text{lnfl}(p; T) \land \text{bdf}(p; T, a)
$$

$$
\text{cntf}(p; T, \delta) : \forall f \forall W_1 \forall W_2 \forall \varepsilon > 0
\quad \left[\delta(\varepsilon) > 0 \land (L(p; f, W_1, W_2) \land \text{norm}(f) < \delta(\varepsilon) \implies |T(f)| < \varepsilon) \right]
$$

Proposition 2.1.
1) $\text{lnfl}(p; T) \implies T(0) = 0$.
2) $\text{blf}(p; T, a)$, $\forall n L(p; F(n), V_1(n), V_2(n))$,
 $$
 L(p; f, W_1, W_2), \lim \text{norm}(F(n) - f) = 0
 \implies \lim T(F(n)) = T(f).
 $$

Proposition 2.2. Under the assumption of $\text{lnfl}(p; T)$, $\text{bdf}(p; T, a)$ and
$\text{cntf}(p; T, \delta)$ are mutually definably interpretable.

Proof. Suppose $\text{bdf}(p; T, a)$. Then $\text{cntf}(p; T, \{\varepsilon/2a\})$. Suppose next $\text{cntf}(p; T, \delta)$. Then $\text{bdf}(p; T, 2/\delta(1))$.

As an application of Hölder's inequality (Proposition 1.2) we have

Proposition 2.3. $L(q; g, U_1, U_2)$

$$
\rightarrow \text{blf}(p; f) J(fg, W^*), \text{norm}(q; g))
$$

for a definable W^*. (Recall that $\text{norm}(q; g)$ is definable.)

Definition 2.2. $\text{nrm}(p; T, b) : \text{bdf}(p; T, b)$

$$
\land \forall a (\text{bdf}(p; T, a) \implies b \leq a)
$$

Proposition 2.4.
1) $\text{blf}(p; T, a) \land \text{nrm}(p; T, b), \text{nrm}(p; T, c)$

$$
\rightarrow b = c \geq 0.
$$

2) $\text{blf}(p; T, a) \land \text{nrm}(p; T, b)$

$$
\rightarrow H(b) \land \forall c (H(c) \implies b \leq c),
$$

where $H(b)$ abbreviates

$$
\forall f \forall W_1 \forall W_2 (L(p; f, W_1, W_2) \land \text{norm}(f) \neq 0 \implies |T(f)|/\text{norm}(f) \leq b).
$$

Notice that, although the notions such as $\text{blf}(p; T, a)$ and $\text{nrm}(p; T, b)$ are not definable, the basic properties concerning them can be proved in our theory.

In the next two propositions, we deal with the case where $p = q = 2$.

Proposition 2.5.
1) $L(2; g, U_1, U_2)$

$$
\rightarrow \text{nrm}(2; f) J(fg, \text{norm}(2; g)).
$$

2) Let $H(f, W_1, W_2)$ denote

$$
L(2; f, W_1, W_2) \land J(fg) = \exp(\text{norm}(2; g), 2).
$$
Then

\[L(2; g, U_1, U_2) \rightarrow H(g, U_1, U_2) \]

\[\land \forall f \forall W_1 \forall W_2 (H(f, W_1, W_2) \vdash [\text{norm} (2; g) \leq \text{norm} (2; f)] \]

\[\land (\text{norm} (g) = \text{norm} (f) \vdash \text{ae} (x, f(x) = g(x), E^*, \chi^*)) \] for some \(E^* \) and \(\chi^* \).

Proof. First notice that \(L(2; f, W_1, W_2) \) and \(L(2; g, U_1, U_2) \) imply its \((fg, W^*)\) and \(\text{blf}(2; \{f\} J(fg, W^*), a^*)\) for some \(W^* \) and \(a^* \) (Proposition 1.2 and 2.3), and hence the statements above make sense. The required properties then follow as consequences of Proposition 1.2 where \(p = q = 2 \), or Schwarz inequality.

The representation theorem for the bounded linear functional on \(L^2 \) assumes the following form.

PROPOSITION 2.6. \(\text{blf}(2; T, a), L(2; h, Z_1, Z_2), T(h) \neq 0, \)

\[\text{norm} (2; T, b), \quad \forall n (L(2; G(n), V_1(n), V_2(n)) \]

\[\land T(G(n)) = \exp (b, 2) \]

\[\land \text{norm} (G(n + 1)) \leq \text{norm} (G(n)) \]

\[\forall f \forall W_1 \forall W_2 (L(2; f, W_1, W_2) \land T(f) = \exp (b, 2) \]

\[\vdash \exists n (\text{norm} (G(n)) \leq \text{norm} (f)) \]

\[\rightarrow L(2; g^*, U_1^*, U_2^*) \land T(g^*) = \exp (b, 2) \]

\[\land \forall f \forall W_1 \forall W_2 (L(2; f, W_1, W_2) \land T(f) = \exp (b, 2) \]

\[\vdash [\text{norm} (g^*) \leq \text{norm} (f)] \]

\[\land (\text{norm} (g^*) = \text{norm} (f) \]

\[\vdash \text{ae} (x, f(x) = g^*(x), E^*, \chi^*)) \]

\[\land \forall f \forall W_1 \forall W_2 (L(2; f, W_1, W_2) \vdash T(f) = J(fg^*, W^*) \] for some definable \(g^*, U_1^*, U_2^*, E^*, \chi^* \) and \(W^* \).

Proof. Put \(c = \lim \text{norm} G(n) \). Then \(c \geq 0 \) and \(c \) satisfies that

\[c = \inf \{ \text{norm} (f) ; L(2; f, W_1, W_2) \} . \]

Also, \(0 < b \leq c \), and hence \(c > 0. \)

\[\lim \{ \text{norm} (G(k) - G(l)); k, l \} = 0 , \]

and hence, by virtue of the Riesz-Fischer theorem (Proposition 1.5), there are \(g^*, U_1^* \) and \(U_2^* \) such that \(L(2; g^*, U_1^*, U_2^*) \) and
Definability in L^p-Spaces

(*) \[\lim \text{norm } (g^* - G(k)) = 0. \]

As a corollary of (*)& and Proposition 2.2, we have

\[T(g^*) = \lim T(G(k)) = \exp(b, 2). \]

Other properties which are required of g^* can be proved in a similar manner, by

following the mathematical proof and by using the facts claimed above and

Proposition 2.5.

§ 3. Integration of complex-valued functions

Definition 3.1. $C(a)$: "a is a complex number."

- $\text{Re}(a)$: the real part of a
- $\text{Im}(a)$: the imaginary part of a
- $\text{mp}(f, X, C)$: "f is a map from X to the complex numbers."
- $\text{Re}(f): \{x\} \text{re}(f(x))$
- $\text{Im}(f): \{x\} \text{Im}(f(x))$

Note. The theory of complex numbers can be developed in a conservative

Proposition 3.1.

1) $\text{Re}(f)$ and $\text{Im}(f)$ are definable.

2) $\text{mp}(f, X, C) \rightarrow f = \text{Re}(f) + i \text{Im}(f)$, where i denotes the pure imaginary

number.

Definition 3.2. $\text{citg}(f, W)$: $\text{mp}(f, X, C)$

\[\land \text{itg}(\text{Re}(f), W) \land \text{itg}(\text{Im}(f), W) \]

$\text{cJ}(f, W)$: $J(\text{Re}(f), W) + iJ(\text{Im}(f), W)$

$\text{cmbl}(f, U)$: $\text{mp}(f, X, C)$

\[\land \text{mbl}(\text{Re}(f), U) \land \text{mbl}(\text{Im}(f), U) \]

Note. Due to the definitions, most of the properties concerning integration

and measurability of complex-valued functions are definable consequences of the

counterparts of real-valued functions.

Proposition 3.2.

1) $\text{cJ}(f)$ is independent of the parameters.

2) citg is a linear space over the complex numbers, and cJ is a linear functional

on citg.

3) cmbl forms an algebra.

These are immediate consequences of Propositions 3.1*, 4.1* and 6.6*.

Proposition 3.3. Under the assumption of $\text{cmbl}(f)$, $\text{citg}(f)$ and $\text{itg}(|f|)$ are

mutually definably interpretable, and, if either holds, then
\begin{align*}
|cJ(f)| & \leq J(|f|) . \\
\text{Proof.} & \quad \text{Mutual interpretability is a consequence of Proposition 6.5*}, \text{ since} \\
|\text{Re}(f)|, |\text{Im}(f)| & \leq |f| \leq |\text{Re}(f)| + |\text{Im}(f)| .
\end{align*}

To prove (1), first suppose that
\begin{equation}
\exists m = (r_1, \cdots, r_n) \forall x \exists k \leq n (f(x) = r_k) ,
\end{equation}
where each r_k denotes a rational complex. Put
\begin{align*}
D(k) &= \{ x; \ f(x) = r_k \} \\
&= \{ x; \ \text{Re}(f(x)) = \text{Re}(r_k) \} \cap \{ x; \ \text{Im}(f(x)) = \text{Im}(r_k) \} .
\end{align*}
Then $|f| = \Sigma \{ |r_k| \chi_{D(k)} ; \ k \leq n \}$. (See Definition 7.1* for χ_D, the characteristic function of D.) From this follows (1) when (2) is assumed.

Next consider f any complex-valued integrable function. Then there are definable x^* and Φ^* such that
\begin{equation}
\forall n (\text{citg} (\Phi^*(n)) \land x^*(n) = (r(n, 1), \cdots, r(n, l(n))) \\
\land \forall x \exists i \leq l(n) (\Phi^*(n, x) = r(n, i)) \\
\land \text{ae} (x, f(x) = \lim \Phi^*(n, x)) \\
\land \lim J(|\Phi^*(n) - \Phi^*(m)|) = 0 \\
\land cJ(f) = \lim J(\Phi^*(n)) ,
\end{equation}
where $l(n)$ represents a natural number depending on n and $r(n, i)$ denotes a rational complex for each $i \leq l(n)$. (3) is a consequence of Section 9*, and (1) follows from (3).

\textbf{Note.} The L^p-theory for the complex-valued functions can be developed similarly to Sections 1 and 2.

\section*{§ 4. Radon-Nikodym theorem}

\textbf{Definition 4.1.} Let $\mathcal{X} = (X, L, J)$ denote a (real) integration space satisfying 1° to 5° (Definitions 1.3* and 6.1*). We place further conditions on (X, L) as listed below.

6°. \quad \eta \subset L(+) \land X = \bigcup X_n ,

where $X_n = \{ x; \eta(n, x) > 0 \}$, and η is a parameter.

7°. \quad \forall \phi , \ \psi \in L (\phi \psi \in L \land (\psi \neq 0 \lor \phi / \psi \in L)) ,

where $\psi \neq 0$ means $\forall x (\psi(x) \neq 0)$.

\textbf{Note.} 1) The assumptions 6° and 7° are not essential restrictions, for they are
satisfied by the class of integrable, simple functions in most of the interesting spaces.

2) For any notion \(\mathcal{N} \) which depends on the integrals, we distinguish it for
different integrals by affixing their names to \(\mathcal{N} \). Thus, for example, if a function \(f \) is
integrable with respect to \(J \), then we write \(\text{itg} (J; f, W) \) (for some \(W \)).

Proposition 4.1. 1) For each pair of \(m \) and \(n \), \(\{ x; \eta(n, x) \geq 1/m \} \) is \(J \)-
integrable (for any \(J \) satisfying \(1^\circ - 5^\circ \)), hence \(X \) is the union of a sequence of \(J \)-integrable
sets.

2) If \(h \) is integrable and \(\phi \in L \), then \(\phi h \) is also integrable.

Proof. 1) is an immediate consequence of Proposition 6.5*. 2) is a consequence
of \(7^\circ \) in Definition 4.1.

Definition 4.2. absent \((J, I; \Omega) \): \(\forall E \forall \chi (\text{nls} (I; E, \chi) \vdash \text{nls} (J; E, \Omega(\chi))) \)

\[\text{litg} (I; h, \Xi) \equiv \text{mp} (h, X, R) \wedge \forall \phi \in L \text{itg} (I; h \phi, \Xi (\phi)) \]

(See Definition 2.1* for nls. litg abbreviates "locally integrable.")

\[\Gamma (J, I, h, \Xi) : h \geq 0 \wedge \text{litg} (I; h, \Xi) \wedge \forall \phi \in L (J(\phi) = I(\phi h)) \]

[Assumption] We shall henceforth assume that \(I \) and \(J \) are integrals on \((X, L) \),
so that \(\Xi_I = (X, L, I) \) and \(\Xi_J = (X, L, J) \) satisfy \(1^\circ \) to \(7^\circ \).

Lemma. mbl is closed with respect to the quotient, where mbl is understood to be
relative to \(I \).

Proof. It suffices to show that for any measurable function \(f \) for which
\(\forall x (f(x) \neq 0) \), \(1/f \) is also measurable. This is a consequence of the definable theory of
reals and various properties of measurable functions which were obtained in Section
6*. We list some of these.

1) The constant functions are measurable.

2) mbl is closed with respect to \(\wedge, (\)^* \), the linear combination and the limit.

3) If \(\pi_n (a) = n/[na] \), where \([c] \) represents the Gaussian of \(c \), then \(\pi_n (f) \) is a linear
combination of functions of the form \(K \circ f \), where \(K \) is the characteristic function of a
closed interval, and hence is measurable.

4) \(1/f = \lim \pi_n (f) \); so \(1/f \) is measurable.

Proposition 4.2. 1) \(\text{litg} (I; h, \Xi) \rightarrow \text{mbl} (I; h, W_1^*, W_2^*) \) for some \(W_1^* \) and
\(W_2^* \).

2) \(\text{itg} (I; h, A) \rightarrow \text{litg} (I; h, \{ \phi \} A) \).

Proof. 1) If \(\text{litg} (I; h, \Xi) \), then \(6^\circ \) and \(5^\circ \) imply that

\[\text{litg} (I; h(\eta(n) \wedge 1), \Xi (\eta(n) \wedge 1)) \].

Define \(g \) to be \(\Sigma \exp (2, -n)h(\eta(n) \wedge 1) \). \(g \) is well-defined and positive. By virtue of 1)
and 5) of Proposition 6.2*, \(g \) is "\(I \)-measurable." Since

\[h = (\Sigma \exp (2, -n)h(\eta(n) \wedge 1))/g \],
the lemma above and Proposition 6.2 ensure that h is "I-integrable."

2) This is an immediate consequence of 2) of Proposition 4.1.

PROPOSITION 4.3. $\text{nls}(I; E, \chi)$ and the following are mutually definably interpretable:

$$\Psi \in L(+) \land \forall n(0 \leq \Psi(n) \leq 1 \text{ on } E) \land \Sigma I(\Psi(n)) < \infty.$$

Proof. Assuming $\text{nls}(I; E, \chi)$, define $\Psi(n)$ to be $|\chi(n) \land 1|$. The converse is trivial.

PROPOSITION 4.4. $\Gamma(J, I; h, \Xi) \rightarrow \text{absent } (J, I; \Omega^*)$ for a definable Ω^*.

Proof. Assume $\Gamma(J, I; h, \Xi)$ and $\text{nls}(I; E, \chi)$, and show $\text{nls}(J; E, \chi^*)$ for some χ^*. By virtue of Proposition 4.3, we may assume that every function on L is bounded. By 6, it suffices to consider the case where E is contained in an X_m, which we shall call S. (See Propositions 4.1 and 2.2.) Let ξ denote $\eta(n) \land 1$. Then $\xi \in L$, and hence $\text{itg}(I; \xi h, \Psi, W)$ for some Ψ and W.

Define

$$g(x) = \begin{cases} \xi(x) + \Sigma |\Psi(m, x)| & \text{if } \Sigma |\Psi(m, x)| < \infty, \\ \xi(x) & \text{otherwise}. \end{cases}$$

$\xi h \leq g$ "almost everywhere" with respect to I, and g is "I-integrable," and hence is "locally integrable" due to 2) of Proposition 4.2. $K \equiv \{\phi\} I(\phi g)$ therefore defines an integral on (X, L). (The mathematical proof goes through for these claims.)

Suppose $\text{nls}(K; E, \Theta)$ for some Θ. Then $\Sigma \Theta(m)$ is divergent on E and $\Sigma I(|\Theta(m)| g < \infty$, and hence $\Sigma I(\xi h |\Theta(m)|) < \infty$. Define $\chi^*(m) = \xi \Theta(m)$. Then $\text{nls}(J; E, \chi^*)$. We shall therefore establish $\text{nls}(K; E, \Theta)$.

Suppose $\Phi \subset L(+)$. $\Sigma \Phi(i)$ is divergent on E and $\Sigma I(\Phi(i)) < \infty$. Define

$$\omega(m) = \xi + \Sigma [|\Psi(k)|; k \leq m].$$

$\omega(m) \in L$ and $\omega(m) > 0$ on S.

$$v(i) = \min (m, g \Phi(i)/\omega(m) < I(\Phi(i)) + \exp (2, -m))$$

is meaningful, and $\Sigma I(g \Phi(i)/\omega(v(i)) < \infty$. If $D = \{x; \omega(m, x) \text{ diverges}\}$, then $\Sigma \Phi(i)/\omega(v(i))$ is divergent on $E-D$. $\Phi(i)/\omega(v(i)) \in L$ by the condition 7 in Definition 4.1, and

$$\text{nls}(K; E-D, \{i\} (\Phi(i)/\omega(v(i)))) .$$

If we can show that D is "K-null," then we are done. Let $\zeta(m)$ be the characteristic function of $\{x; g(x) < m\}$. Then $\zeta(m)g$ is I-integrable and $I(\zeta(m)g)$ increases to $I(g)$, and so one can define an increasing sequence of natural numbers σ so that, if $\theta(m)$ is the characteristic function of $\{x; g(x) \geq \sigma(m)\}$, then $I(\theta(m)G) \leq \exp (2, -m)$.

Define a function u on the reals by
Definability in L^p-Spaces

$$u(b) = \begin{cases} m & \text{if } \sigma(m) \leq b < \sigma(m+1), \\ 0 & \text{if } b < \sigma(1), \end{cases}$$

and let $\gamma(m)$ be the characteristic function of $\{x; \sigma(m, x) \leq g(x) < \sigma(m+1, x)\}$. As an application of Fatou's lemma, the "I-integrability" of $(u \circ g)g$ can be derived, and

$$I((u \circ g)g) = \Sigma I(\gamma(m)(u \circ g)g) \leq 2.$$

$u \circ \omega(m)$ is a "simple" function in the sense of Definition 9.1*, and hence the conclusion in Section 9* ensures that $(u \circ \omega(m))g$ is I-integrable, and

$$I((u \circ \omega(m))g) \leq I((u \circ g)g) \leq 2$$

for every m. On the other hand $u \circ \omega(m)$ diverges on D. Thus we have obtained that $\text{nls}(K; D, u \circ \omega)$.

As a consequence of Proposition 4.4 and Lebesgue's dominated convergence theorem we have

Proposition 4.5. Every I-measurable function is J-measurable, provided that $\Gamma(J, I; h, \Xi)$ holds for some h and Ξ.

Proposition 4.6. Under the assumption of $\Gamma(J, I; h, \Xi)$ and mp (f, X, R), "f is J-integrable" and "fh is I-integrable" are mutually definably interpretable, and, if either condition holds, then $J(f) = I(fh)$.

This is a consequence of Proposition 4.4 as well as other preceding results. The mathematical proof goes through.

Proposition 4.7. If we define K to be $J + I$, then K is an integral on (X, L). If f is K-integrable, then f is integrable for J and I also, and in that case $K(f) = J(f) + I(f)$.

Let $L(2; K)$ denote the L^2-space with respect to K. Then $1 \in L(2; K)$ and, if $f \in L(2; K)$, then f is K-integrable, and hence is J-integrable.

Definition 4.3.

$$\text{nrm}(I; J, a): \text{nrm}(2; J, a),$$

where J is regarded as a linear functional on $L(2; K)$ and nrm (2) is taken with respect to K, K being $J + I$. See Definition 2.2 for nrm (2).

Proposition 4.8 (Radon-Nikodym). Let J and I be as in our [Assumption]. Then (a) and (b) below are mutually definably interpretable, provided that $\text{nrm}(I; J, a_0)$ is assumed.

(a) $\Gamma(J, I; h, \Xi)$.

(b) absct (J, I; Ω).

The h in (a) is unique up to the addition of an I-null function.

Proof. (a) implies (b) by virtue of Proposition 4.4 above. nrm $(I; J, a_0)$ is not necessary for this direction.
Assume (b).

Case 1. 1 is integrable both for J and I. Define K to be $J + I$. Due to the assumption nrm $(I; J, a_0)$ and Proposition 2.6, there is a definable g^* such that $J(f) = K(fg^*)$ for $f \in L(2; K)$. Define $D = \{ x; g^*(x) \geq 1 \}$, and

$$h(x) = \begin{cases} \Sigma \exp (g^*(x), k) & \text{if } x \notin D, \\ 0 & \text{if } x \in D. \end{cases}$$

For an $f \geq 0$, K-integrable,

$$J(f) = I(fh) + J(\chi_D f)$$

by the monotone convergence theorem, where χ_D represents the characteristic function of D. The result can be extended to all K-integrable functions. (b) then implies $J(\chi_D f) = 0$, since D is J-null and $\chi_D f$ is J-integrable. Thus, $J(f) = I(fh)$, and hence in particular $J(\phi) = I(\phi h)$ for $\phi \in L$.

Case 2. When we do not have the condition in Case 1, consider

$$\pi = \Sigma \exp (2, -n) \exp (1 + K(\eta(n)), -1)(\eta(n) \land 1).$$

$0 < \pi \leq 1$, and π is K-integrable, hence is integrable both for J and I; also, π is locally J-integrable. Define

$$J'(\phi) = I(\phi \pi), \quad I'(\phi) = I(\phi \pi), \quad K'(\phi) = K(\phi \pi).$$

1 is J', I', K'-integrable, and J' is "absolutely continuous" with respect to J (by Proposition 4.4 applied to J and J'). I is "absolutely continuous" with respect to I'.

(b) then implies that J' is "absolutely continuous" with respect to I', and nrm $(I'; J', a^*)$ for a definable real a^*. Thus, Case 1 holds for I' and J', and so there is an $h^* \geq 0$, which is I'-measurable and which satisfies

$$J(f \pi) = J'(f) = I'(fh^*) = I(f \pi h^*)$$

for every $f K'$-integrable. In particular, $\phi \in L$ implies that ϕ / π is K'-integrable. So $J(\phi) = I(\phi h^*)$. This means that h^* is "locally I-integrable."

The uniqueness proof is straightforward.

§ 5. Applications of Radon-Nikodym theorem

In this section we work under the same assumptions as in Section 4 for \mathcal{X}_I and \mathcal{X}_J.

DEFINITION 5.1. $\text{sglr}(I; T, E, \theta)$:

$$\text{nls}(I; E, \theta) \land \forall \phi \in L(T(\phi) = T(\chi_E \phi)), $$

where χ_E represents the characteristic function of E.

$$\text{sglr}(I; T, \chi_0): I(\chi_0) = 0 \land \forall \phi \in L(T(\phi) = T(\chi_0 \phi))$$
Proposition 5.1 (Lebesgue's decomposition theorem). There are definable h, \mathcal{E}, χ_0 and J_s such that

$$
\begin{align*}
h \geq 0 \land \text{litg} \left(I; h, \mathcal{E} \right) \\
\land \text{"J_s is an integral on (X, L)"} \\
\land \text{sglr} \left(J_s; \{\phi \} I(\phi h), \chi_0 \right) \\
\land \forall \phi \in L, J(\phi) = I(\phi h) + J_s(\phi) \).
\end{align*}
$$

Proof. By reviewing the proof of Proposition 4.8, we can define a g^* and $D = \{x; g^*(x) \geq 1\}$ as we did there. Let χ_0 be χ_D and define J_s to be $\{\phi \} J(\chi_0 \phi)$.

Definition 5.2. $\Delta(p; T, \alpha, H, \Phi, \Psi)$:

$$
\forall f \geq 0 \forall W_1 \forall W_2 (L(p; f, W_1, W_2) \\
\vdash \alpha(f) \in R \land \forall h \forall U_1 \forall U_2 (L(p; h, U_1, U_2) \\
\land 0 \leq h \leq f + T(h) \leq \alpha(f)) \\
\land \forall \varepsilon > 0 (L(p; H(\varepsilon, f), \Phi(\varepsilon, f), \Psi(\varepsilon, f)) \\
\land 0 \leq H(\varepsilon, f) \leq f \land \alpha(f) - \varepsilon < T(H(\varepsilon, f))))]
$$

Proposition 5.2. 1) $\text{blf} (p; T, a), \Delta(p; T, \alpha, H, \Phi, \Psi)$,

$$
\begin{align*}
b \geq 0, f, g \geq 0, L(p; f, W_1, W_2), L(p; g, V_1, V_2) \\
\rightarrow \alpha(bf) = b\alpha(f) \land \alpha(f + g) = \alpha(f) + \alpha(g).
\end{align*}
$$

2) $\text{blf} (p; T, a), \Delta(p; T, \alpha, H, \Phi, \Psi)$

$$
\begin{align*}
\rightarrow \text{blf} (p; \alpha^*, \alpha^*) \land \alpha^* \upharpoonright L(p; +) \equiv \alpha \\
\land \forall \beta \forall b (\text{blf} (p; \beta, b) \land \beta \upharpoonright L(p; +) \equiv \alpha + \beta \equiv \alpha^*)
\end{align*}
$$

For definable α^* and α^*, where $\alpha^* \upharpoonright L(p; +)$ represents the restriction of α^* to $L(p; +)$ and $L(p; +)$ abbreviates $\{f, W_1, W_2\}(f \geq 0 \land L(p; f, W_1, W_2))$.

Proof. 1) We work $f + g$ as an example. Suppose $0 \leq h \leq f + g$. Put $d \equiv h \land f$ and $e \equiv (h - f)$. $h \equiv d + e$, $0 \leq d \leq f$, $0 \leq e \leq g$ and $d, e \in L(p)$ (with appropriate parameters). So $T(h) = T(d) + T(e) \leq \alpha(f) + \alpha(g)$ and $T(h) \leq \alpha(f + g)$. $\alpha(f + g) - \varepsilon < T(H(\varepsilon, f + g))$ implies

$$
\alpha(f + g) - \varepsilon \leq \alpha(f) + \alpha(g),
$$

and hence $\alpha(f + g) \leq \alpha(f) + \alpha(g)$. On the other hand,

$$
0 \leq H(\varepsilon, f) + H(\varepsilon, g) \leq f + g
$$

and

$$
H(\varepsilon, f) + H(\varepsilon, g) \in L(p)
$$
The condition on H implies that
\[\alpha(f) + \alpha(g) - 2\varepsilon < T(H(e, f)) + T(H(e, g)) = T(H(e, f) + H(e, g)) \leq \alpha(f + g), \]
and hence $\alpha(f) + \alpha(g) \leq \alpha(f + g)$.

2) Define $\alpha^* \equiv (\alpha(f^+) - \alpha(f^-))$ and $a^* = 2a$.

Proposition 5.3. $\text{blf} (p; T, a), \Delta(p; T, \alpha, H, \Phi, \Psi)$
\[\rightarrow \text{blf} (p; \alpha^*, a^*) \land \text{blf} (p; \beta^*, b^*) \]
\[\land \forall f \in L(p)(T(f) = \alpha^*(f) - \beta^*(f)) \]
\[\land \forall f \in L(p; +) (\alpha^*(f) \geq 0 \land \beta^*(f) \geq 0) \]

for some definable α^* and β^*.

Proof. Let α^* and a^* be as in Proposition 5.2 and let β^* be defined by
\[\beta^*(f) \equiv \alpha^*(f) - T(f), \]
and let b^* be 3a.

Proposition 5.4 (Riesz representation theorem; general cases). Under the assumptions for \mathcal{X}_f, p and q,
\[1 \leq p < \infty, \ \text{blf} (p; T, a), \ \Delta(p; T, \alpha, H, \Phi, \Psi) \]
\[\rightarrow g^* \in L(q) \land \forall f \in L(p)(T(f) = J(fg^*)) \]
\[\land "g^* is unique up to the addition of a null function" \]
\[\land \text{nrm} (p; T, \text{norm} (q; g^*)) \]
for a definable g^*.

Note. As is remarked in the mathematical proof, the condition 6^c is necessary only for $p=1$; see [1].

Proof. According to Proposition 5.3, it suffices to deal with the case where T is positive: $\forall f \in L(p; +) (T(f) \geq 0)$.

Define $L(0; f, W_1, W_2)$ to be
\[L(1; f, W_1, W_2) \land \exists r \forall x (|f(x)| < r). \]
$L(0) \subset L(1)$ and $L(0)$ satisfies 1^c to 5^c, and hence we may assume $L(0)$ as the class of elementary functions. (See Corollary of Theorem 5.1.*) 6^c is also satisfied by $L(0)$ by $\{\eta(n) \land 1\}$. By Proposition 1.1 $L(0) \subset L(p)$, and hence T is a positive linear functional on $L(0)$, which can be regarded as an integral on $L(0)$. Rewriting T as I, we can easily see that I is "absolutely continuous" with respect to J. By the Radon-Nikodym theorem, there is a $g^* \geq 0$, locally J-integrable, such that
\[I(f) = T(f) = J(fg^*) \]
for any $f \in L(0)$. Claim $g^* \in L(q)$. If $p > 1$, define
Definability in L^p-Spaces

$E(n) = \{x; \max \{\eta(i, x); i \leq n\} > 1/n\}$,

and put $H(n) = \chi_{E(n)} (g^* \land n)$. Then $X = \bigcup E(n)$, $H(n) \in L(0)$, $H(n)$ increases to h, $\exp (H(n), q)$ is J-integrable (by the monotone convergence theorem). If $p = 1$, then notice that

$$\forall f \in L(0)(|J(fg^*)| = |T(f)| aJ(|f|)).$$

Define $E' = \{x; g^*(x) > a + 1\}$. Then

$$J(\chi_{E'} E(n)) \leq (a/(a + 1)) J(\chi_{E} E(n)),$$

so $J(\chi_{E} E(n)) = 0$ for every n. Thus, E is a J-null set, and $g^*(x) \leq a + 1$ "almost everywhere" with respect to J; this implies $g^* \in L(\infty) = L(q)$. Hölder's inequality, that is,

$$\forall f \in L(p)(|J(fg^*)| \leq \text{norm} (p; f) \text{ norm} (q; g^*)),$$

implies $\text{blf} (p; \{f\} J(fg^*))$, $\text{norm} (q; g^*)$). $T(f) = J(fg^*)$ on $L(0)$. Suppose $f \in L(p)$. According to Proposition 1.6, we can construct a sequence $\psi^* \in L(0)$ such that $\lim \text{norm} (f - \psi^*(n)) = 0$, and then Proposition 2.1 ensures

$$T(f) = \lim T(\psi^*(n)) = \lim J(\psi^*(n)g^*) = J(fg^*).$$

The uniqueness easily follows.

§ 6. Derivatives of linear functionals

In this section, we shall present a sufficient condition for the differentiability of linear functionals of a certain kind. It is a modified version of the implication "$B \rightarrow C$" in [3]. As in Definition 4.1, we assume that the integration space $\mathcal{X} = (X, L, J)$ satisfies $1^\circ \sim 7^\circ$. Recall that 6° claims the σ-finiteness of \mathcal{X}.

DEFINITION 6.1. $\mathcal{R}(h, U, V)$: $\text{itg} (h, U) \land \text{ae} (x, 0 \leq h(x) \leq 1, V)$

$$\text{dsj} (F): \forall x \forall i \forall j(i \neq j \vdash F(i, x)F(i, y) = 0)$$

$$\text{cad} (T): \forall F \forall U \forall W(\forall i (\text{itg} (F(i), W(i))))$$

$$\land \text{dsj} (F) \land \text{itg} (\{x\} \Sigma \{F(i, x); i = 1, 2, \ldots\}, U)$$

$$\vdash T(\{x\} \Sigma \{F(i, x); i = 1, 2, \ldots\})$$

$$= \Sigma \{T(F(i)); i = 1, 2, \ldots\}$$

[Assumption] In the following, we assume

$$\text{blf} (1; T, K) \land \text{cad} (T).$$

Recall that $\text{norm} (1; f) = J(|f|)$. See Definitions 1.1 and 2.1.
Definition 6.2. \(\Lambda(\rho, \sigma): \forall n, \forall (\sigma_1(n), \sigma_2(n), \sigma_3(n)) \)
\(\land \forall n(\rho(\sigma_1(n)) > 0) \)
\(\land \forall x \forall \varepsilon > 0 \exists m(\sigma_1(n, x) \neq 0 \land \rho(\sigma_1(n)) < \varepsilon) \)

\(SSTM(h, \rho, \sigma, v): "\nu(h) is a sequence of natural numbers" \)
\(\land \nu \forall \varepsilon > 0 (h(x) \neq 0 \lor \exists m(\sigma_1(v(h, m), x) \neq 0) \land \rho(\sigma_1(v(h, m))) < \varepsilon) \)

\(B(\rho, \sigma, \tau): \forall h \forall U \forall V \forall r > 0 (\forall x, U, V) \)
\(\land J(h) > 0 \land SSTM(h, \rho, \sigma, v) \)
\(\lor \forall \exists m(\tau(h, r, i) = v(h, m)) \land dsj([i] \sigma_1(\tau(h, r, i))) \land J(h) \)
\(= J(h \{x \sum_i \{\sigma_1(\tau(h, r, i), x); i = 1, 2, \ldots\}) \land \sum_i \{J(\sigma_1(\tau(h, r, i))); i = 1, 2, \ldots\} < J(h) + r \}

As a consequence of the definition and Proposition 4.3* we have

Proposition 6.1.
1) If \(h \in \mathcal{X} \), then norm \((1; k) = J(h) \geq 0\), and hence the boundedness of \(T \) is reduced to \(|T(h)| \leq KJ(h)\).
2) Let us abbreviate \(\{x \sum_i \{\sigma_1(\tau(h, r, i), x); i = 1, 2, \ldots\} \to \Sigma \omega(i) \text{. Then, in } B, f_0 = \Sigma \omega(i) \in \mathcal{X}, J(f_0) = \Sigma J(\omega(i)) \text{ and } J(h) \leq J(f_0), \text{ presuming that } \Lambda(\rho, \sigma) \text{ holds.} \)

Definition 6.3.
\(uA(T, \rho, \sigma; x, l): \)
\(\limzup \{T(\sigma_1(n))/J(\sigma_1(n)); n = 1, 2, \ldots, \sigma_1(n, x) \neq 0, \rho(\sigma_1(n)) < 1/l\} \)
\(lA(T, \rho, \sigma; x, l): \)
\(\limzinf \{T(\sigma_1(n))/J(\sigma_1(n)); n = 1, 2, \ldots, \sigma_1(n, x) \neq 0, \rho(\sigma_1(n)) < 1/l\} \)
\(Ud(T, \rho, \sigma; x): \lim \{uA(T, \rho, \sigma; x, l); l = 1, 2, \ldots\} \)
\(Id(T, \rho, \sigma; x): \lim \{lA(T, \rho, \sigma; x, l); l = 1, 2, \ldots\} \)

We shall abbreviate \(\{x \} Ud(T, \rho, \sigma; x) \) to \(Ud \). Similarly for \(Id \).

\(C(T, \rho, \sigma, W_1, W_2, W, \theta, g): \mbi (uD, W_1) \land \mbi (Id, W_2) \)
\(\land L(\infty; g, W) \land ae (x, uD(x) = Id(x) = g(x), \theta) \)
\(\land \forall f \forall U(itg(f, U) + T(f) = J(f(uD))) \)
\(= J(f(Id)) = J(fg)) \)

Proposition 6.2. If \(\Lambda(\rho, \sigma) \) is assumed, then \(J(\sigma_1(n)) \geq 0 \) in the definitions of \(uA \) and \(lA \).
Definability in L^p-Spaces

[Assumption] In the subsequent discussion, we assume $A(r, o)$ and $B(r, o, w, W)$, and thus the propositions which follow are understood to "definably interpretable from A and B.''

Proposition 6.3. $b \in R, h \in X$,

$$\forall x(h(x) \neq 0 \iff \text{uD}(x) \geq b) \rightarrow T(h) \geq bJ(h).$$

The mathematical proofs of this proposition and the next one are more or less due to [4]. The author also owes to Mamoru Kanda for his comments in this regard.

Proof. It suffices to consider the case where $J(h) > 0$. (See 1) of Proposition 6.1.) Since $\text{uD}(x, l)$ is decreasing with respect to l, $\text{uD}(x) \geq b$ (where $h(x) \neq 0$) implies

$$h(x) > 0 \rightarrow \forall \varepsilon \exists n(\sigma_1(n, x) > 0 \land \rho(\sigma_1(n)) < 1/l \land T(\sigma_1(n)) \geq bJ(\sigma_1(n))).$$

Define v^* by:

$$v^*(1) = \min(n, G(n)),$$

$$v^*(m + 1) = \min(n, n > v^*(m) \land G(n)),$$

where $G(n)$ stands for

$$\exists x \exists y(h(x) \neq 0 \land \sigma_1(n, x) > 0 \land \rho(\sigma_1(n)) < 1/l \land T(\sigma_1(n)) \leq bJ(\sigma_1(n))).$$

Then $s \in (h, r, o, w^*)$ follows. The condition B applied to this h and v: v^* yields

$$\forall r > 0(\forall \varepsilon \exists n(\tau(h, r, v^* \land \text{dsj}(\langle i \rangle \sigma_1(\tau(h, r, i)))) \land J(h)) = J(h \Sigma \sigma(i) \land \Sigma J(\sigma(i)) < J(h) + r).$$

Proposition 6.1 assures us that $f_0 = \Sigma \sigma(i) \in X$, $J(f_0) = \Sigma J(\sigma(i))$ and $J(h) \leq J(f_0)$. "$h, f_0 \in X"$ implies that $h f_0, h - f_0, f_0 - h f_0 \in X$. From these facts and the complete additivity of T, we can easily obtain, successively,

$$T(h) = T(h f_0) > T(f_0) - Kr$$

$$= \Sigma T(\sigma(i)) - Kr \geq b \Sigma J(\sigma(i)) - Kr$$

$$= bJ(f_0) \geq bJ(h) - Kr;$$

that is, $\forall r > 0(T(h) \geq bJ(h) - Kr)$, from which follows $T(h) \geq bJ(h)$.

Proposition 6.4. $C(T, r, o, w_1, w_2, w, \theta, g)$.

Proof. $\{x\} \cup A(x, l)$ is measurable if and only if $A(s) = \{x; u A(x, l) > s\}$ for every rational s. But

$$A(s) = \bigcup \{\{x; \sigma_1(n, x) \neq 0\}; \rho(\sigma_1(n)) < 1/l \land T(\sigma_1(n))/J(\sigma_1(n)) > s\}$$

and $\sigma_1(n)$ is measurable.

By Proposition 5.4 (the Riesz-representation theorem) for $L(1)$, there is a definable $g^* \in L(\infty)$ such that
\[T(f) = J(fg^*) \text{ for every } f \in L(1). \]
So, it suffices to show \(g^* = uD = 1D \) almost everywhere. For this it suffices to establish \(uD \leq g^* \) almost everywhere. Define, for \(n \geq 1 \) and \(k \geq 0 \),
\[D(n, k) = \{ x ; uD(x) \geq (k+1)/n > k/n \geq g^*(x) \}, \]
and let \(\chi(n, k) \) denote the characteristic function of \(D(n, k) \). \(\chi(n, k) \) is measurable. By \(\sigma \)-finiteness (6°), \(\chi(n, k) = \Sigma \pi(j) \) for some \(\pi \), where \(0 \leq \pi(j) \leq 1 \) and \(\pi(j) \) is integrable, and hence \(\pi(j) \in K \). \(\forall j(J(\pi(j)) = 0) \) will imply \(J(\chi(n, k)) = 0 \) for every \((n, k) \), from which follows \(uD \leq g^* \) almost everywhere. \(J(\pi(i)) = 0 \) is a consequence of Proposition 6.3 where \(b = (k+1)/n \) and \(h = \pi(j) \).

References

Institute of Information Science
University of Tsukuba
Sakura-mura
Ibaraki 305, Japan