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1. Introduction

Denote by d(n) the number of divisors of the positive integer #n. Then the classical
Dirichlet’s divisor problem is the question for the infimum 6-of all real numbers 4 for
which (as x— o0)

Y d(n)=xlogx+(2y—1)x+ O0(x*) (1)
where 7 is the Euler-Mascheroni constant (cf. e.g. the monograph of Fricker [1], p.
67). It is known that 1/4 <6<35/108, the upper bound having been established rather
recently by Kolesnik [3] (cf. also Hafner [2] for the best Q-result to date).

Ramanujan [8] was the first to consider the analogue of this problem which
arises when 7 is restricted to a given residue class n, modulo a fixed integer k. He gave
the estimate

D(ng,k;x):= Y d(n)=any, k)xlog x+ B(ny, k)x+ O(x'?log x) ()
n= n':)(§n-fod k)

(cf. also Theorem 12 on page 86 and the notes on page 93 of Fricker [1]). This was
improved by Walfisz [9] who obtained the error term O(x*"#2(log x)!'*!) via a
representation for [¥ D(ny, k; x)dx, apparently the best result on this problem to
date. Evaluations of the constants o(ny, k) and f(n,, k) were given recently by
Kopetzky [4].

2. Statement of our result

It is the objective of the present paper to improve the O-term in (2) as far as
Kolesnik succeeded in improving the estimate for the original Dirichlet’s divisor
problem; i.e. we prove the following '

THEOREM. For arbitrary fixed integers k=1 and 1 <ny <k, arbitrary >0 and
x— 00 we have
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D(ng,k;x)= Y. d(n)=a(ng, k)xlogx+ B(ng, k)x + O(x35/18*¢) (3)
nzn':)(énfodk)

Here the constant implied in the O-term may depend on #,, k£ and e—this will be the
case for all O-constants throughout the whole paper. We remark parenthetically that
the problem becomes much harder and leads to considerably weaker results if one
allows k to grow with x (cf. e.g. PetecCuk [6]).

Our proof combines classical methods and results due to Walfisz [9] and Landau
[5] with Kolesnik’s recent estimate for double exponential sums [3].

3. Proof of our theorem

3.1. Preliminaries. Throughout the whole paper, we denote by C any ab-
solute numerical constant, not necessarily the same at each occurrence; ¢ and o are
suitable small positive real numbers, a and b equal 0 or 1. P(x) denotes any expression
of the form ax log x + fx where the coefficients o« and § depend on n,, k, a and b and
are not necessarily the same at each occurrence.

We note first that it is sufficient to prove that

D*(ug, v, k; x):= y 1= P(x)+ O(x33/108+¢) @)

uwsx
U= ug, v = vo(mod k)

holds for any uy, vye {1, - - -, k} because, summing over all pairs (4, vo) € {1, - - -, k}?
with uyv, =ng(mod k), we immediately infer (3) from (4).

3.2. For complex s=o+it and real w, 0 <w =<1 we define the functions (s, w)
and ¢&,(s, w) for 6>1 by the absolutely convergent series

oo 1 29
Lo =g T 0T+ Y 0o et O
n= n=1

and for ¢ <1 by the corresponding analytic continuations. It is known (cf. Landau
[5], p. 58) that &,(s) is an entire function, while £,(s) is meromorphic with exactly one
pole, namely at s=1 of order 1 with residue 1. Moreover, in any strip ¢, <0=o0,
one has ¢,(c+it, w)=0(e!"!) uniformly for | |00 (a€{0, 1}).

For given u,, v, and k we further put

Zo () =Z,,(5; o, Vo, k) :=k T2 (s, o [K)E (s, vo/K) . (6)

Let d,(a, b) denote the coefficients in the Dirichlet series

0

Z, )= Y dfa,bn™* (6>1) 7

n=1

then it is seen by an easy combinatorial argument that
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1 1
D*(ug,vo,k; )=} Y dJa,b)=: Y S(a,b) (say) (8)

a,b=0n=<x a,b=0

where d (a, b) <d(n) <n°.

3.3. We now suppose (as we obviously may w.l.o.g.) that x=1/2(mod 1) and
obtain by a well-known theorem (cf. e.g. Prachar [7], p. 376, Theorem 3.1.)

1+e+iT
S(a,b)= Y d,(a, b)=(21ti)_lf Z,()x°s " ds+O(x1T* T~ 1Y), )

nsx 1+&e—iT

where 7> 0 rests at our disposition. In order to replace the line of integration of this
integral by the line segment from —¢—iT to —¢&+iT, we first need some information
about the order of the integrand for large ¢: From the relation
Cdssw)=T((1+a—s)/2(T(a+s5)/2) " *ns" Y2 Y u=1*5cos Qnuw —an/2)  (10)
u=1
(which is valid for 6 <0 and a € {0, 1}; cf. [5], p. 58, formulae (67) and (69)) we obtain
(in view of (6))

9}

Z, (s)=k~G(s)m? ! 21 cn” s (6<0), (11)
where
G(5) =G p()=T((1+a—9)/2I (1 +b—9)/2)/[(a+s)/DT(b+9)/2), (12)
=y, cos(nuugk ™! —amn/2)cos (2mvvok ! —bm/2). (13)
Hence, by the u;sz;mptotic formula for the I'-function
[0 % if)=itxo = 1/2/2 +10g1=0 e =mi2g0 = 112(1 1. O~ 1)) (14)
(for t>0; see [5], p. 227; c=log (2n)/2), we have
Z(—e+it) < |G(—e+it)| <t T2 (15)

and, since Z(1+¢e+it) <1, by the Phragmén-Lindeldf principle ([S], p. 229)
Z(o+it)<titee (16)

uniformly in the strip —e<o=<1+¢. Therefore

1+e+iT 1+e
j Z(s)xss“lds<J x'T* " do<x'**T"1, 17
—e+iT —&

if we suppose that T'<x for large x (in fact, 7 will be chosen to be of the order x73/18);
the integral from —&—iT to 14+¢—iT can be estimated in a completely analogous
way. We observe finally that the integrand in (9) is everywhere regular with the
possible exception of the point s=1 where it may have a pole of order at most 2 with

residue P(x), and of the point s=0 where it may have a simple pole with residue
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Z(0)=0(1). So the residue theorem yields (because of (9) and (17))

—e+iT
S(a, b)=P(x)+(2ni)_1j Z(s)x’s " ds+O(x*teT Y. (18)
—&e—iT
3.4. Now we can use the representation (11) for Z(s) and obtain
. © —e+iT .
S(a,b)=P(x)+(@2n%)"* ) cnn‘lj G(s)s 1z272ds+O(x* T~ (19)
n=1 —&—iT

where z=z,: =4n’nx/k* for short. Writing 4 =(a+b+1)/2 and ¥(s)=I'(4—s)/I'(1+
A+s), we infer from (12) and (14) by a short computation that

G(s)=2""1s(s+ D¥(s)+0(|1|*) (20)

for s= —e+ it and large | ¢|. Denoting the union of the two segments from —¢—iT to
—e—iand from —e+ito —e+iT by y(—¢), we observe that

T
f ltlzes_lzf,ds<z,,_ej 12t < Tz, 0 <x*n" ¢, 21
y(—¢)

1

so the contribution of the O-term in (20) to the sum in (19) is O(x®) (since, by (13),
¢, <d(n)<n’) and therefore contained in the O-term of (19). Moreover,

—e+i
j G(s)s 'z52 ds <z, ® max |G(—e+it)(—e+it)|<x *n"¢, (22)

i -15151

so that we may simplify (19) to

S(a,b)=P(x)+ (@4n?)~* i c,,n‘ll,,(T)+0(x1+8T“‘1), (23)

n=1

1(T):= J (s+1)¥(s)zds . (24)
y(—¢)

3.5. We now define N by the relation k*T*(4n*x)"'=N+1/2 and assume
w.l.o.g. that T'is chosen in such a way that N is an integer. Denoting the integrand of
this last integral by H,(s) and approximating ¥(s) by (14) we get

H(—e+in)=iz, ¢ +00Y)  (t21) 25)

where
F()= —An—2tlog t+2t+t log (4n*nx/k?) (26)

hence
F)(1)= —2log t+log (4n*nx/k*)=log (4n’nx/k*1*) . 27

We now estimate the integral corresponding to the main term of (25) in the usual way
using the second mean-value theorem: For n> N we get
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T
2,8 | t2eF0dt <z max | t2F (1)1 |
1 1=t=T

<x™*n"*T*(log (4nnx/k*T2))~ !

-1
<n”ex* <log n—Ilog (N +—%—)> . (28)

For n=2N this contributes to the sum in (23) obviously O(x®) and for N<n <2N we
have

1 -1
xt Y cnn‘l_e<logn—log<N+—>> <x* Y ¢n {(n—N)!
N<n<2N 2

N<n<2N
<x’N "?log N <x°. (29)

Noting that the contribution of the O-term in (25) to I(T') is O(x*n~%) (cf. (21)) we
finally obtain

S(a, b)= P(x)+ (4n%)~ ! % ch U (T)+0(xt T ™Y, (30)

n=1

3.6. Next we replace the way of integration y(—¢) in (24) by y(¢) which we
define as the union of the segments from ¢—i7 to ¢—i and from ¢+i to e+iT. Using
(25) (with ¢ instead of —¢) we infer that

H(o+iN<z°t]72  (t|=1) €2))
uniformly in any strip o, <0 <0,, hence (for n<N)
e+ it
f H,(s)ds <zit**<x® (t=1or T). (32)
—e+tit

Since the argument also applies to the lower half plane and since H,(s) is regular in
each of the rectangles involved we get by Cauchy’s theorem

I(T)=| H,s)ds+O0(x“). (33)

V()

Now we want to replace y(¢) by the line from e —ico to ¢+ico. To this end we make
again use of (25) (with ¢ instead of —¢) and obtain for the contribution of the main
term

o0
z¢ J eFrOt =204t < 78 max (t 2t~ |log (4n2nx/k*t2)| ™ Y)
t=T

T
1 -1 1 -1
log (n/(N +?>> <x%nt <log (N +7> —log n>

(34)

<zflT-25
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(provided that n< N). The contribution of the O-term in (25) is easily seen to be also
<x°, and the same error term arises by adding the segment from e —i to ¢+i to our
path of integration (cf. (22)). Altogether we arrive at

L(T) =L+ OGN(N—n+1)"1),  I,:= f " Hsyds, (35)

—iw
where the convergence of I, follows from the above arguments.

3.7. We are now going to evaluate I, by means of the residue theorem. To this
end we notice first that the singularities of

H,(s)=(s+ 1)z (A—s)/[(1+A+s) (36)
are exactly the (simple) poles of I'(4—s) at s=A+p, peN,, with residue
(A+A+p)z2*?(—=D)P(p!'T(1+24+p))~".

We put U,,=m+ ¢ for me N and consider the rectangle with vertices ¢ + i, U,, + it for
some fixed m. By virtue of (31), we have

U, t+it
f H(s)ds < 0me =2 ()
e+it

and this tends to 0 as — co0. Treating the integral from ¢—it to U, —it in the same
way, we get (for arbitrary meN)

Uyptioo

IL=-2n ) (1+A+p)z,’,‘+"(—1)"(p!(2A+p)!)_1+J H,(s)ds. (38)

0=p<Um—4 Up—io

In order to show that this last integral tends to 0 for m— oo, we deduce from the
functional equation of the I'-function that

H (U, +i)=1+U,+it)zi " "I(A—e—m—it)/[(1+A+e+m+it)
=(1+e+m+it)zs™ " W1 +e+it)

m m—1
x[[A-e—j—it)" ' [] A+ A+e+j+ir)~?
ji=2 ji=1

and note that the moduli of the factors in the first product are all <¢~! and that the
modulus of the j-th factor in the second product is <(j+1) . Hence

H,(U,+ity<m+|t))| P\ +e+it)|zE ™ "(m!)"1. (39)

Denoting the maximum of |¥(1+e+if)| for —1<t<1 by u and estimating
| P (1+e+it)| for |¢|=1 by (14), we obtain

J H,(U,,+it)dt <me™"z; ™(m!)~ ‘(J tT27 2%+ u) , (40)

—» 1

where the right-hand side tends to 0 (for m— o0) as asserted. Thus (38) yields
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I,= —27ti< i (=1)PzA*2(p!(2A+p)) " 11+ A)

p=0

- i (—1)"2,{+A+"(p!(1+2A+p)!)'1>

p=0

= —27i((1 + AW 3 42/ 20) =/ 20 2.4+ 12/ 21)) @41)

where J are the usual Bessel functions (of the first kind) of order K (cf. e.g. Fricker
[1], p. 195). Using their asymptotic expansions ([5], p. 244) we get

1,=2/ 7 iz}/* cos (2/z, — An—3m/4)+ O(z, /%)
=2327j(x/k2)4n'/* cos (dn(nx/k?) 2 — An—3n/4) + O(x ™ 14n~ V4. (42)
Entering this (together with (35)) into (30) we finally arrive at

N
S(a,b)=P(x)+2"12n~ 1k~ 12x14 Y ¢,n™ 3% cos (dn(nx/k?)"/?

— An—371/4)+ 0(x* T*T 1)+ O(x“?) (43)

which is a generalization of the corresponding well-known formula for D(x) in the
case of the classical Dirichlet’s divisor problem.

3.8. The last step of our proof is to apply a deep theorem recently established
by Kolesnik [3] to the trigonometric sum in (43). Recalling the definition (13) of ¢, we
have to estimate

Y. (uv)~¥*cos (2muuy/k — na/2) cos (2mvve/k — mb/2)

uwsN
x cos (4m(x/k?) 2 (uv)'/? — An— 37/4)
which is
<Y | X )~ elflw,v) |+0(1), (44)
uw <N
where e(f)=e*"" as usual, R:=x/k* for short,
f(u, v):=2RY?(uv)*”* + uuy/k + vuy/k 45)

and the first sum in (44) is to be taken over all possible choices of the +-sign in
f(u, v). We put U;=2/3, V;=2//3, N;=U,V; and

D;:={(u,v)eZ?: U;su=s2U, V;Sv=2V;, uzv, w<N} (46)
and infer from Kolesnik’s Lemma 3 ([3], p. 108) that

2 elflu, v)) (47)

B
Djj

. (uv) > e(f(u, v)

Dy

<Ni;3/4
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where D ¥ is a certain subset of D,; determined by additional restrictions of the form
U/susU/!’, V;<Sv=Vj" Then crucial point in the application of Kolesnik’s
theorem ([3], p. 112) is to verify that, for (u, v)e D

0P 4f(u, v)
ouPov?

ijs
=C,oflu,0lu ™0™+ O(N ; PF U PV 9 (48)

where the constants C, , have to satisfy a rather long list of very specific conditions
and Fj; is the maximum of | f(u, v)| on D;;, so (xN;)'”? <F;;<(xN;)"”>. We now
choose T (occurring in (43)) exactly of the order x73/1%8, thus N (defined in 3.5.) is of
the order x*%/1%% By (45) we have for p? +¢*>1

07" %(u, v) 12
“Guragt = 2CnaRI Ul Rl (49)
(which defines the constants C, ). Therefore, by (45),
07" Uf{u, v) ' o
g~ Coal WO IUA VU PV (50)

for (u, v)e D;j, and this is less than the O-term in (48), since
UV, <UV;=N;<x'?N[* < N;'PF;

because of NV;; < N <x?*/1°® The cases p=1, ¢g=0 and p=0, g=1 can be dealt with in
a completely analogous way. We now further note that our constants C,,, obviously
are the same as those occurring in connection with Dirichlet’s divisor problem (where
S (u, v) is defined without the terms + uu,/k + vv,/k) — and for this case Kolesnik has
already verified his numerous conditions on the C, ;- Therefore, we may apply his
estimate ([3], p. 113) to the exponential sum over D and infer from (47) that

Z (uv)'3/4e(f(u, U))<N1/4+6(N61/38Fi;1 +FijNi;85/38)1/8

ij ij
1/4+6(,.—1/27A721/19 1/2 —33/19\1/8
<X—1/16N,~5jg/152+6+x1/16Ni5j/152+6<x2/27+6.

Summing over all D;; which are non-empty (their number being O(x°)) and going
back to (44) and finally to (43) we complete the proof of the theorem.

4. A corollary concerning the circle problem
As an easy consequence of our formula (4) we obtain the following result for the
classical circle problem:

COROLLARY. Let r(n) denote the number of integer pairs (u,v) for which
u?+v*=n, then (for x— )



On the Divisor Problem in an Arithmetic Progression 217

Y rn)=nx+0(x>19%*%)  (¢>0). (51)

Proof. Denote by d,(n) the number of (positive) divisors of n which are

congruent to j modulo 4. Then, by a classical elementary relation (see Fricker [1], p.
16) and our formula (4), we get

Yrm=4 Y 1-4 Y 1

n<x uwx u=sx
u=1(mod4) u=3(mod4)

4
=4 ) (D*(1,r,4;x)—D*(3,1,4; X)) = P(x)+ O(x35/108*¢)
r=1

Comparing this with an elementary version of (51) (with O(x'/?), say) we conclude
that necessarily P(x)=nx in this case.

Remark. This result apparently improves upon all previously known O-
estimates for the circle problem, the former “record” being due to J. R. Chen from
the year 1963 (see the historical and bibliographic remarks in Fricker [1], p. 87).

A self-contained proof of the above corollary (somewhat simpler.in technical
details than the general case considered here) is also given in another paper by the
author which is in course of publication elsewhere.
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