A note on nearly C-compact spaces

by

P. L. Sharma and R. K. Namdeo

(Received September 19, 1977)

Abstract

A topological space is said to be nearly C-compact if every open cover of every regularly closed set of it has a finite subfamily whose union is dense in the set. The object of the present note is to obtain the various results including the related results of nearly C-compact spaces with almost regular and almost completely regular spaces.

Introduction

In 1969, G. Viglino [8] has introduced a new class of topological spaces which properly contains the class of compact spaces, called C-compact spaces. A space is said to be C-compact if every open cover of every closed set has a finite subfamily, the closures of whose members cover the set. In [4] we have introduced the concept of nearly C-compact spaces as a generalization of C-compact spaces where various results including filter characterization of nearly C-compact spaces together with the concept of nearly C-compact spaces coincides with almost compact spaces, have been obtained.

Throughout this note X and Y will always mean topological spaces. The interior of the set U in X and the closure of the set U in X will be denoted by \(U^o \) and \(U \) respectively. A set U in X is said to be regularly open if \(\overline{U^o} = U \) and regularly closed if \(\overline{U} = U \). A set regularly open iff its complement is regularly closed.

Definition 1. [Sharma and Namdeo, 4]. A space X is said to be nearly C-compact if given a regularly closed set A and an open cover \(\mathcal{U} \) of A there exists a finite subfamily \(\{O_i: i = 1, 2, \ldots, n\} \) of \(\mathcal{U} \) such that \(A \subseteq \bigcup \{\overline{O_i}: i = 1, 2, \ldots, n\} \).

Theorem 1. In a space X, the following are equivalent:

(a) X is nearly C-compact.

(b) For each regularly closed set A of X and each regular open cover \(\mathcal{U} \) of A there exists a finite subfamily \(\{O_i: i = 1, 2, \ldots, n\} \) of \(\mathcal{U} \) such that

\[
A \subseteq \bigcup \{\overline{O_i}: i = 1, 2, \ldots, n\}.
\]
(c) For each regularly closed set A of X and for each family $\mathcal{F} = \{F_i\}$ of non empty regularly closed sets such that $\cap \mathcal{F} \cap A = \emptyset$, there exists a finite sub-family $\{F_i: i=1, 2, \ldots, n\}$ of \mathcal{F} such that $\cap \{F_i: i=1, 2, \ldots, n\} \cap A = \emptyset$.

(d) For each regularly closed set A of X and each family $\mathcal{F} = \{F_i\}$ of regularly closed sets, if each finite subfamily $\{F_i: i=1, 2, \ldots, n\}$ of \mathcal{F} we have $\cap \{F_i: i=1, 2, \ldots, n\} \cap A \neq \emptyset$ then $\cap \mathcal{F} \cap A \neq \emptyset$.

Proof. (a)\Rightarrow(b). If X is nearly C-compact then the condition (b) is obviously follows. Suppose the condition (b) holds. Let $\mathcal{U} = \{O_i\}$ be an open cover of A then $\overline{O_i}$ will be a regular open cover of A and therefore there exists a finite subfamily $\{\overline{O_i: i=1, 2, \ldots, n}\}$ such that $A \subset \cap \{\overline{O_i: i=1, 2, \ldots, n}\}$. For each i, $\overline{O_i} = \overline{O_i}$, therefore we have $A \subset \cap \{\overline{O_i: i=1, 2, \ldots, n}\}$ and hence X is nearly C-compact.

(b)\Rightarrow(c). Let $\mathcal{F} = \{F_i\}$ be a family of regularly closed sets of the space X such that $\cap \mathcal{F} \cap A = \emptyset$ for each regularly closed set A of X. Then $\mathcal{U} = \{X - F_i: F_i \in \mathcal{F}\}$ will be a family of regularly open sets of X covering the regularly closed set A. Therefore there exists a finite subfamily $\{O_i = X - F_i: i=1, 2, \ldots, n\}$ of \mathcal{U} such that $A \subset \cap \{O_i: i=1, 2, \ldots, n\}$. Now for each i, $F_i^\circ = (X - O_i)^\circ = X - (X - (X - O_i)) = X - \overline{O_i}$. Therefore $\cap \{F_i^\circ: i=1, 2, \ldots, n\} = X - \cap \{O_i: i=1, 2, \ldots, n\} \subset X - A$. This shows that $\cap \{F_i^\circ: i=1, 2, \ldots, n\} \cap A = \emptyset$.

(c)\Rightarrow(b). Let $\mathcal{U} = \{O_i\}$ be a regular open cover of the regularly closed set A of the space X. $A \subset \cup O_i$ shows that $\cap (X - O_i) \cap A = \emptyset$. $(X - O_i)$ is a family of regularly closed sets satisfying (c) then there exists a finite subfamily $\{X - O_i: i=1, 2, \ldots, n\}$ such that $\cap \{X - O_i^\circ: i=1, 2, \ldots, n\} \cap A = \emptyset$. This gives $A \subset \cup \{X - (X - O_i^\circ): i=1, 2, \ldots, n\}$. Now for each i, $(X - O_i^\circ) = X - (X - (X - O_i)) = X - \overline{O_i}$. Therefore it follows that $A \subset \cup \{\overline{O_i: i=1, 2, \ldots, n}\}$.

(c)\Rightarrow(d). Obviously follows.

Theorem 2. Every regularly closed subset of a nearly C-compact space X is nearly C-compact.

Proof. It follows easily in view of the fact that if B is a regularly closed subset of a regularly closed subset A of X, then B is also a regularly closed subset of X.

Definition 2. [Singal and Singal, 5] A mapping is said to be almost continuous if the inverse image of every regularly open (closed) set is open (closed). A mapping is said to be almost open (closed) if the image of every regularly open (closed) set is open (closed).

Lemma 1. Let $f: X \to Y$ be an almost continuous almost open map. Then the inverse image of every regularly open (regularly
closed) set in \(Y \) is a regularly open (regularly closed) set, respectively in \(X \) [2, Theorem 1.2].

Theorem 3. The image of a nearly \(C \)-compact space under an almost continuous almost open mapping is nearly \(C \)-compact.

Proof. Let \(f : X \to Y \) be an almost continuous almost open mapping from a nearly \(C \)-compact space \(X \) onto \(Y \). Let \(B \) be any regularly closed subset of \(Y \) and let \(\mathcal{U} = \{ O_i \} \) be a regular open covering of \(B \). Since \(f \) is almost continuous almost open therefore by the Lemma 1, \(f^{-1}(B) \) is a regularly closed set of \(X \) and \(\{ f^{-1}(O_i) \} \) a regular open covering of \(f^{-1}(B) \). Since \(X \) is nearly \(C \)-compact therefore there exists a finite subfamily \(\{ f^{-1}(O_{i,j}) : j=1, 2, \ldots, n \} \) such that \(f^{-1}(B) \subseteq \bigcup \{ f^{-1}(O_{i,j}) : j=1, 2, \ldots, n \} \) and consequently \(B \subseteq \bigcup \{ O_{i,j} : j=1, 2, \ldots, n \} \). Therefore \(Y \) is nearly \(C \)-compact.

Theorem 4. Almost continuous image of a \(C \)-compact space is nearly \(C \)-compact.

Proof. Let \(f : X \to Y \) be an almost continuous mapping from the \(C \)-compact space onto \(Y \). Let \(\mathcal{U} = \{ O_i \} \) be any regular open cover of a regularly closed set \(A \) of \(Y \). Since \(f \) is almost continuous therefore \(\{ f^{-1}(O_i) \} \) is an open cover of the closed set \(f^{-1}(A) \). Now, since \(X \) is \(C \)-compact therefore there exists a finite subfamily \(\{ f^{-1}(O_{i,j}) : j=1, 2, \ldots, n \} \) such that \(f^{-1}(A) \subseteq \bigcup \{ f^{-1}(O_{i,j}) : j=1, 2, \ldots, n \} \) and therefore \(A \subseteq \bigcup \{ O_{i,j} : j=1, 2, \ldots, n \} \). Hence the result.

Definition 3. [Singal and Arya, 6]. A space \(X \) is said to be almost regular if for every regularly closed set \(A \) and a point \(x \in A \), there exist open sets \(U \) and \(V \) such that \(A \subseteq U \), \(x \in V \) and \(U \cap V = \emptyset \). Or equivalently, for every regularly closed set \(A \) and each point \(x \) not belonging to \(A \), there exist open sets \(U \) and \(V \) such that \(x \in U \), \(A \subseteq V \) and \(U \cap V = \emptyset \).

Definition 4. A space \(X \) is said to be mildly normal if for every pair of disjoint regularly closed sets \(F_1 \) and \(F_2 \) of \(X \), there exist disjoint open sets \(U \) and \(V \) such that \(F_1 \subseteq U \), \(F_2 \subseteq V \).

Theorem 5. Every almost regular, nearly \(C \)-compact space is mildly normal.

Proof. Let \(A \) and \(B \) be disjoint regularly closed subsets of an almost regular, nearly \(C \)-compact space \(X \). Since \(X \) is almost regular therefore for each \(x \in A \) there exist open sets \(U_{(x)} \) and \(V_{(x)} \) such that \(x \in U_{(x)} \), \(B \subseteq V_{(x)} \) and \(\bar{U}_{(x)} \cap \bar{V}_{(x)} = \emptyset \). The collection \(\{ U_{(x)} : x \in A \} \) is therefore an open covering of the regularly closed set \(A \). Since \(X \) is nearly \(C \)-compact, there exists a finite subfamily \(\{ U_{(i)} : i=1, 2, \ldots, n \} \)
such that $A \subseteq \bigcup_{i=1}^{n} U_{(x_i)}$. Suppose $M = \cap_{i=1}^{n} V_{B(x_i)}$ and $N = X - \cap_{i=1}^{n} \bar{V}_{B(x_i)}$. Then, $A \subseteq \bigcup_{i=1}^{n} \bar{U}_{(x_i)} \subseteq X - \cap_{i=1}^{n} \bar{V}_{B(x_i)} = N$, $B \subseteq M$ and $M \cap N = \emptyset$. Therefore X is mildly normal.

Corollary 1. If A is a regularly closed subset of an almost regular, nearly C-compact spaces X and B is a regularly open set containing A. Then there exists a regular open set V such that $A \subseteq V \subseteq \bar{V} \subseteq B$.

Proof. $X - B$ is a regularly closed set and $A \cap (X - B) = \emptyset$. Then by the Theorem 5 there exist open sets U_1, U_2 such that $A \subseteq U_1$, $X - B \subseteq U_2$ and $U_1 \cap U_2 = \emptyset$. Also, $\bar{U}_1 \cap U_2 = \emptyset$ and hence $\bar{U}_1 \subseteq X - U_2 \subseteq B$. Therefore $A \subseteq U_1 \subseteq \bar{U}_1 \subseteq B$. Thus $A \subseteq U_1 \subseteq \bar{U}_1 \subseteq \bar{U}_1 \subseteq B$. Suppose $\bar{U}_1 = V$. Then V is regularly open and $\bar{\bar{U}}_1 = \bar{U}_1 = \bar{V}$. Thus $A \subseteq V \subseteq \bar{V} \subseteq B$.

Corollary 2. Let A and B be two disjoint regularly closed subsets of an almost regular, nearly C-compact space X. Then there exist open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $\bar{U} \cap \bar{V} = \emptyset$.

Proof. Clearly, $X - B$ is a regularly open set containing the regularly closed set A. Then by the Corollary 1, there exists a regularly open set M such that $A \subseteq M \subseteq \bar{M} \subseteq X - B$. Also, since M is a regularly open set containing the regularly closed set A, again there exists a regularly open set N such that $A \subseteq N \subseteq \bar{N} \subseteq M$. Suppose $N = U$ and $X - \bar{M} = V$. Then clearly $A \subseteq U$, $B \subseteq V$ and $\bar{U} \cap \bar{V} = \emptyset$.

Definition 5. A space X is said to be almost completely regular if for every regularly closed set A and a point $x \notin A$, there is a continuous function f on X into the closed interval $[0, 1]$ such that $f(x) = 1$ and $f(A) = 0$ or equivalently $f(x) = 0$ and $f(A) = 1$.

Definition 6. [Gillman and Jerison, 1]. If f is a real valued continuous mapping on a topological space X then the set $f^{-1}(0)$ is said to be zero set of f. Clearly, every zero set is a closed set and every set of the form $\{ x : f(x) \geq 0 \}$ or $\{ x : f(x) \leq 0 \}$ is a zero set in X.

The complement of a zero set is said to be a cozero set. Clearly, every cozero set is an open set and every set of the form $\{ x : f(x) > 0 \}$ or $\{ x : f(x) < 0 \}$ is a cozero set.

Definition 7. If a zero set B is a neighbourhood of a set A then B is said to be a zero set neighbourhood of A.

Theorem 6. Let X be a nearly C-compact almost completely regular space. If A and B be two disjoint regularly closed sets of X, then there exists a continuous function f on X into $[0, 1]$ such that $f(A) = 0$ and $f(B) = 1$.
Proof. Since X is almost completely regular therefore for each $x \in A$ there exists a continuous function f_x on X into $[0, 1]$ such that $f_x(x) = 0$ and $f_x(B) = 1$. Let $F_{\alpha}(x) = \{x : f_x(x) \leq 1/3\}$ and $F_{\beta}(x) = \{x : f_x(x) \geq 2/3\}$. Then $F_{\alpha}(x)$ and $F_{\beta}(x)$ are therefore disjoint zero set neighborhoods of x and B respectively. Therefore, there exist open sets $U_{\alpha}(x)$ and $V_{\beta}(x)$ such that $x \in U_{\alpha}(x) \subset F_{\alpha}(x)$ and $B \subset V_{\beta}(x) \subset F_{\beta}(x)$. The collection $\{U_{\alpha}(x) : x \in A\}$ is therefore an open covering of the regularly closed set A. Since X is nearly C-compact therefore there exists a finite subfamily $\{U_{\alpha}(x_i) : i = 1, 2, \ldots, n\}$ such that $A \subset \bigcup_{i=1}^{n} U_{\alpha}(x_i)$. Clearly, $B \subset \bigcap_{i=1}^{n} V_{\beta}(x_i)$. Then $A \subset \bigcap_{i=1}^{n} F_{\alpha}(x_i) = F_1$ (say) and $B \subset \bigcap_{i=1}^{n} F_{\beta}(x_i) = F_2$ (say).

Therefore F_1 and F_2 are disjoint zero sets containing A and B respectively. Suppose F_1 and F_2 be zero sets of mappings f_1 and f_2 respectively. $|f_1| + |f_2|$ has no zeros since $F_1 \cap F_2 = \emptyset$. Now we define a mapping $f = f_1/(|f_1| + |f_2|)$. Therefore f is a continuous function on X into $[0, 1]$ such that $f(A) = 0$ and $f(B) = 1$.

Corollary 3. Let X be a nearly C-compact almost completely regular space. Let A be a regularly closed set contained in a regular open set B. Then B contains a zero set and a cozero set containing A.

Proof. B is regularly open therefore $X - B$ is regularly closed and $A \cap (X - B) = \emptyset$. As in the proof of Theorem 6 we can prove that there exist disjoint zero sets F_1 and F_2 such that $A \subset F_1$ and $X - B \subset F_2$. Therefore $A \subset F_1 \subset X - F_2 \subset X - (X - B) = B$. Hence it follows that F_1 is a zero set and $X - F_2$ is a cozero set containing A and contained in B.

Corollary 4. Let X be a nearly C-compact almost completely regular space. Every set which is a countable intersection of regularly open sets and which contains a regularly closed set A contains a zero set containing A.

Proof. Let $O = \bigcap_{n \in \mathbb{N}} O_n$ where each O_n is regularly open. If A is a regularly closed set contained in O, then A is also contained in a regularly open set O_n for each n. By the Corollary 3 there exists a zero set F_n for each n such that $A \subset F_n \subset O_n$. Therefore $A \subset \bigcap_{n \in \mathbb{N}} F_n \subset \bigcap_{n \in \mathbb{N}} O_n$. Thus $F = \bigcap_{n \in \mathbb{N}} F_n$ is a zero set containing the regularly closed set A and contained in O.

Definition 8. [Velicko, 7]. A set P is said to be δ-closed if for each point $x \notin P$, there exists an open set G containing x such that $G \cap P = \emptyset$, or equivalently, for each point $x \notin P$, there exists a regular open set containing x which has empty intersection with P. A set G is δ-open iff its complement is δ-closed.

Theorem 7. Let X be a nearly C-compact almost completely
regular space. If A and B be two disjoint subset of X such that A is regularly closed and B is δ-closed, then there exists a continuous function f on X into $[0, 1]$ such that $f(A) = 0$ and $f(B) = 1$.

Proof. Since every regularly closed set is δ-closed. Therefore theorem follows from Theorem 6.

References

Department of Mathematics and Statistics
University of Saugar, Sagar, M. P. (INDIA).