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FOREWORD

This book reproduces, with Notes and Bibliography, a set of ten lectures
given at Rikkyo University, Tokyo, from April 11 to June 20, 1985, i.e. every
Thursday of that interval except May 2 which belongs to the Golden Week.

These lectures are concerned with an interpretation and a generalization
of the genus theory of C. F. Gauss on binary quadratic forms in the language
of arithmetic of algebraic groups, especially of algebraic tori. The theory of
Gauss may be described as establishing an equality between a kind of “Euler
number E(K/Q)” of a quadratic field K over Q and other arithmetical
invariants of K. The definition of such an “Euler number” can easily be
generalized to an arbitrary relative extension K/k of number fields and
general arithmetic theory of tori, e.g. the theory of isogenies, class numbers,
Tamagawa numbers, etc., furnishes us with tools to determine E(K/k). The
process is most successful when K/k is a cyclic Kummer extension.

I wish to express my thanks to Mr. N. Aoki who took notes, to Ms. Y.
Uchida who typed the manuscript and to Messrs. M. Endo, T. Arakawa and
F. Sato who took the trouble to prepare the whole volume for print and
thereby detected various mistakes which appeared in its original form.

Last but not least, I express my thanks to President T. Takahashi of
Rikkyo University and to Ms. K. Nakao in the office of International
Exchange Programs of the University who made my visit possible.

The Johns Hopkins University
August 27, 1985 Takashi ONO



NOTATION AND CONVENTIONS

As usual, Z, Q, R, C are the integers, the rational numbers, the real
numbers, the complex numbers, respectively. For a rational prime p, Z,, Q,
are the p-adic integers, p-adic numbers, respectively. We think of oo as the
last prime and put Z_ =Q_ =R. For an associative ring R with 1, we denote
by R™ the group of units, i.e. invertible elements of R. M,(R) is the ring of
matrices of degree n over a ring R. We put GL,(R)=M,(R)*. When R is
commutative SL,(R) is the group of matrices in GL,(R) of determinant=1.
K is the algebraic closure of a field K. # X is the cardinality of a set X. R *
denotes the multiplicative group of positive real numbers. When k is an
algebraic number field of finite degree over Q, we denote by k, the
completion of k£ with respect to a valuation v of k; if v is discrete, we use often
notation p for v and denote by o, the ring of p-adic integers in k.
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Arithmetic of Algebraic Groups
and its Applications

(Dedicated to John Tate)

by
Takashi ONO

I. Classes of Binary Quadratic Forms
Consider a quadratic form
f=ax*+bxy+cy*, a,b,ceZ.

Assume that the discriminant A fzb2 —4ac+#0. One can write

f(2)='2Fz  with z=<’;>, F:(b‘/lz bf).

We introduce two equivalence relations ~ and <. Let g=a'x*+b'xy+c'y*
be another integral quadratic form with the matrix G.

DEFINITION 1.
f~g <5 g(2)=f(32), 37eGLy(Z),
frg L g)=f(y2), 3IyeSLy(2).

Obviously f Lg = f ~g, but the converse is not true. For example, put

f=3x>+2xy+5y%, F=<f ;)

g=3x*=2xy+5y*>, G= 3 -1
-1 5)°
We have 4,=4,=—2%-7. Since 'TFT=G with T=(§ _9), we have f ~g. If
fXg, there must be an integral matrix U with det U= —1 such that
'UFU=F. Write U=(?), xu—yz= —1. From '"UF=FU™?, we get
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3x+z x+35z\ [—3utz 3y—=x
3y+u y+5u) \—u+5z y—5x)°
Eliminating u from the relations

3x+z=—-3u+z
x+5z=3y—x
xu—yz=—1
we get
3y=2x+5z
{x2+yz=1 .

Eliminating y from the last relations, we have
324+ (2x+52)z=3, ie. (3x+2)*+1422=9.

If z=0, then x=+1 and so 3y= +2, which is impossible. If z5#0, then
142z* <9 which is impossible, too. Hence /' g is not true.

Let us recall some standard notions on quadratic fields.” Let m (#0, 1)
be a square-free integer and K= Q(\/W ). Denote by 4y the discriminant of
K. If we put

_{\/m, m=2,3 (mod 4),

W=

1+./m)/2, m=1 (mod 4),

then, 1, w form the canonical basis of the ring oy of integers, ogx=Z+
Zo=[1, w]. We have

Adﬁfl w
K — /2

1 w

2_{4m, m=2,3 (mod. 4)
m, m=1 (mod. 4)

where o’ is the conjugate of w. We denote by I the group of (fractional)
ideals of K, by Py the subgroup of Iy of principal ideals. Furthermore, we
put

P ={a=(x)ePg; Na>0}.»
We have

1 m<0or m>0, deeoy Ne=—1
1 :P+ - ] ] K »° ]
@ [Pi:Px] {2, m>0, Ne=1, Veeoy.
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Next, we define the factor groups:

Hy=Iy/Pg, hg=4#Hg,

Hg=Ix/Px, hx=#Hg.
Hence, h g =hg or 2hg by (1). Ay is the class number of K and % is the class
number of K in the narrow sense. We denote the equivalence of ideals
mod Py (resp. mod PZ) by a~Db (resp. a<b).

An ideal acog is called primitive if it is not divisible by a natural

number >1. Such an ideal has the canonical basis:

a=[a, h+w], a=Na, h(moda).
Furthermore, we have
@ a| Nh+w).

Conversely, if a Z-module m=[a, h+ ] in og has the property (2), then m
becomes an ideal and a, 2+ w form a generator of m as an og-module: m=
(a, h+w). When a=[a, h+ o] is an ideal and a=aq, - a,, one verifies that a=
a, -a, where q; is the ideal [q;, A+ o], i=1, 2.

Back to quadratic forms, for a fixed quadratic field K, consider the set

a,b,ceZ
A=< f=ax*+bxy+cy?; ’ 3
A4y {f PETOVTE S f = A (F>01if AK<0)}
Since the equivalence < makes sense in Q(4y), we can consider the quotient:
O(4x)=0(4g)/ % .

THEOREM 1. There is a bijection iy: H g = Q(4y).

Here, the map iy is the following. We agree to orient a basis of an ideal a=
[, B] by the rule:

p ﬁ,‘>0 if m>0,
o
i,ﬁ ﬁ, >0 if m<0.
i|o

Then, i is the one induced by -
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N(xo+ yp)

a fo= Na

Remark 1. Note that for a primitive ideal a=[a, 2+ w] this order of
basis is the right one. It is useful to notice that
(i) m=2,3 (mod. 4)

a=[a, h+w] — f,=ax*+2hxy+cy?,
h—ac=Ag/d=m,
(i) m=1 (mod. 4)
a=[a, h+w] — f,=ax*+Qh+xy+cy?,
Qh+1Y2—4dac=Ag=m.
In particular, for a=og=[1, w], we have

x2—my?, m=2,3 (mod. 4),

x2+xy+@y2, m=1 (mod. 4).

foK:

Remark 2. Thanks to ig, one can define a group structure in the set

O(4y). Gauss (1801) defined directly a group structure in O(dg) (the

composition theory of quadratic forms).* The notion of ideals was in-
troduced by Dedekind (1871).9

Let us recall here an important theorem due to Kummer. Let K= Q(6)

be an algebraic number field of degree n, fcog and f(x) be the monic
minimal polynomial for 6. Put

10 A

1 9/ (0/)2 . (9/)71—1
A(9)= x .

1 gD (g(n—l))z . (g(n—l))n—l

Then we have A(0)=m(0)*4g, m(0)eZ.
THEOREM 2.2 Let p be a rational prime such that p ym(0). If

f=ritfe (mod.p),
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f: being a monic polynomial in Z|[x], 1 <i<g, then
P=PT P,
where p; is a prime ideal in K such that p;=(p, fi(0)), degp,=degf;, 1 <i<gy.

Example 1. m=—14=2(mod. 4). K=Q(w), o =./—14, 4x=—23"7.
As for the Minkowski constant, we get

M,(:%« /|4 1=0.63662 x 2. /14=4.76 .

Since 2 and 3 are only rational primes <My, one sees that H 7 = Hy (since
m<0) is generated by classes of prime factors p,, p; of 2, 3, respectively.
Notice that A(w)=A4g, i.e. m(w)=1.

@® p=2

f(x)=x*+14=x*> (mod. 2)
Hence 2=p2 with p, =(2, w)=[2, »].
Gi) p=3.
f)=X+14=2*—1=(x+1)x—1) (mod. 3).
Hence 3=p;p5; with p; =3, 1 +w)=[3, 1 + w].
pi=0, —1+w)=[3, —1+a]=[3, 2+].
Since N2+ w)=22+14=18=2-3%, we have
I~Q2+w)=[NQ+w), 2+w]=[2-3% 2+ ]
=[2,2+]3, 2+ 0P =[2, w][3, 2+ w]
=p,(p3)’
~P,p5 2 (since pypi=3~1).

Therefore, we have p3 ~p,, i.e. Hg is a cyclic group generated by the class of
Ps.

On the other hand, p3=2~1 but p,+1. (If p,=(x+yw), then 2=
N(x+yw)=x*+14y, which is impossible.) Hence Hy=Z/4Z and hj =
hK = 4. .

The bijection iy : Hg = O(4y) is induced by the following:



T. Ono

og=[1, 0] — f, =x*+14y*

ps=I[3, 1+ 0] — f,,=3x>+2xy +5)?
pi~p =02, 0] = f,,=2x"+T)*
P3~p3=[3,24 0] > f,,=3x*+4xp+6)* .

Q(4x) K=0(/-14)
Ok p3
Ps3 3

II. Genera of Binary Quadratic Forms

Consider a rational quadratic form of n variables:
X1

f=Yfyxe="xFx,  x=|: |,
Xn

F="F=(f,)e M,(Q), detf=det F£0.

Let g="xGx be another such form. For a group I', we can speak of the
equivalence

f~9 <5 g()=f0x), 3yel.

In Section I, we used I'=GL,(Z) and SL,(Z). In general, when we use I' =
GL,(Z), GL(Q), GL(R), GL,(Z,), GL,(Q,), we write

ng’ f~g: f~g> f~g: f~g,
z [} R z, 2,
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respectively. When we use I'=SL,(Z), we write
fg.

Usually, we consider co as the last rational prime and put Z,,=Q. =R. So,
when we write p, p= oo is included unless otherwise stated.
Hasse (1923) proved the Hasse principle :

THEOREM 1.Y
frge=—=f~g Vp.
Q Qp
The implication f ~g = f ~g is trivial, but, as we shall see later, the
z Zy
converse is not true. This motivates the following:
DEFINITION 1.
def
frg—f~g, Vp.
ZP
When that is so, we say that f and g are in the same genus. Since
f %g = f~g, a genus consists of a certain (finite) number of classes. Back to

n=2, consider the quotient spaces:
0(49=0(4y) / L =04y / L, 049=0(4p) / ~

Gauss characterised f~¢g by ‘“‘characters”.?) By virtue of the bijection iy:
H i = O(4g) (Section I, Th. 1), those “characters” become characters of the
group H . For each p, the “character” is a map

¥, O(dy) —{£1}
such that
f;pg =Y, ()=¥,9).
Y, can be introduced by Hilbert symbols.” For a, beQ ), put
1 if ax*+by*=z*> has a solution
(a,b),= (x,,2)#(0,0,0) in Qj,

—1 otherwise .



8 T. Ono

This pairing induces a non-degenerate, symmetric, bilinear map
0, /0, x0, (@, )P —{£1}.
Furthermore, we have

PROPOSITION 1.
1) (a,b),=1ifa>0o0rb>0.
(i) For p#2, oo, write a=p"u, b=p’v, o, fe Z, u,ve Z ;. Then

—1\* B o

w (TCICT

(iiiy For p=2, write a=2"u, b=2Pv as in (ii). Then
(a, b)2 — ( _ l)s(u)s(v) +ae(v) + Boo(u)

where

o, u=1 (mod. 4)
=11 u=3 (mod. 4),

1, u=3,5 (mod. 8).
iv) [](a b),=1,a,beQ*.
p

w(u):{o, u=1, 7 (mod. 8)

(v) Fora,beQ, put k=Q,(/b). Then

(a,b),=1 == a=Nyq (c), Jeek™ .
) (@, —a),=1, acQ,.
Now, for e Q(4g), ae @, we write

f e (f represents o)

when £(xo, yo) =0, (xo, ¥o) € Q5.

PROPOSITION 2.  Given feQ(4y), (o, Ag), does not depend on o such
Mmf;m

In fact, since we are dealing with the field Q,, we may assume that /= AX*+
By*, A,BeQ, . Ifo—p»oc, then Ax3+ Byg=u, (xo, ¥o)€Q7, and so

(AXO)2+ABy3:O(A , oOr (OCA)XZ-i-(—AB)yZ:zZ
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has a solution (1, yy, 4x,)#(0,0,0). Since Ax=—4A4B, we have 1=
(ad, Ag),= (o, 4g),(4, Ag), which implies that («, 4¢),=(4, 4¢),, Q.E.D.

This makes the following definition possible.
DEFINITION 2. For fe Q(4k), we put
l/’p(f)=(a, AK)p

where
f——*Qp o, weQ, .

Since f%g implies fz~g and then fQ~g, fQ—mz if and only if g;cx. Hence
p P P P

v ,(f)=y,(g). Therefore we may view y, as a function on o x)- We only
state the following important result:

THEOREM 2.9 For f, ge Q(4y),
D) V(=¥ =1 andf;;g,

(i) ¥, (f)=V,9)=1 andf;g, when p y Ag
i) () =Vy(9) =/ 59, when p | 4.
In view of Definition 1, this implies the following
THEOREM 3. Let f, geQ(4g). We have
THEOREM 4.
#(0A)=2"",
where t means the number of distinct prime factors of Ag.

This follows form Theorem 2, Theorem 3 and Proposition 1, (iv). Let ix be
the bijection Hy =(0(4y) in Theorem 1 in Section I. Put xp=V, ix. Our
situation is:
ig
(group) Hf —=—0(4,) (set)
(character) xp\ / ¥, (““character”)
{£1}
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THEOREM 5. ¥, is a character of the ideal class group H .

In fact, take any class [a] e H §, where a=[a, h+ ®], the canonical basis of
primitive ideal a (cf. Remark 1 in Section I). Since fa—Q>a=Na, we have

Xp([(l])= ‘//p(f;) =(aa AK)p:(Na’ AK)p .

If bela], then b=(p)a, Np>0, hence Nb=NpNa. By Proposition 1, (v) we
have (Na, 4g),=(Nb, Ax),, which proves our theorem.
Let us define a subgroup Gk of H ¢ by

Gg=()Kery,.
p

Since
a=b (mod. Gg) «— x,(a)=1x,(b) Vp
==Y (f)=V,(f) Vp
— Sl
the bijection ix: H ¢ =0 (4) induces the bijection
H{[Gx = 0(4y).

G is called the group of principal genus. Call 2§ the order of G. h¥ is at the
same time equal to the number of classes in an arbitrary genus.

Hg
2!—1

G
hi

1

Theorem 4 yields
THEOREM 6. hg=h§-2""1.
THEOREM 7. Gg=(H§g)>.

Here, Gx>(H £)* is trivial. To see Gx<(H §)?, take an ideal class [a] € Gy.
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Since Jf,; Jop for all p, we have fa’; Jor- For oriented basis a=[o, f], ox=
[1, w], we have

(=MD N ye).
a
Let ye Q@ * be a number represented by both of £, and £, _. Thus, (N)/(Na) =
Ny for some ¢ neK* and so Na=Np>0, p=¢meK*. We have
N(ap~')=1. Since we are dealing with the ideal classes in the narrow sense,
we may assume from the beginning that Na=1. Let now p, q be typical
prime ideals of K such that

(i) p=pyp, p#p’ (p’ being the conjugate of p),

(i) g=q or q* (¢’=q in this case)
and let

a=[T»%" [0’
the prime decomposition of a. Since
1=Na=[[p*"*[]¢*, e=lor2,

we must have a+b=0 and ¢=0. In order words,
a=[Tp@) “~[Ip*=(]p)* =0, Q.ED.
Example 1. Notation being as in Example of Section I. 4y=4m=
—2%-7 (m= —14). Since hx=4 and =2, we have h¥=2. This means that
Q(4g) consists of two genera and each genus consists of two classes.
Since Hj is a cyclic group (of order 4) generated by (class of) p;, the

principal genus Gy =(H g )* consists of og and p% and the coset p;Gx makes
up the other genus. Note that

Jou=X+14x f, o~ f,, =2 +T)?,
Joys =32 +2xy+5V* % fy 3~ [y =3 +4xy +6)7

The form g=3x*—2xy+5)* is in Q(4y), too. As we saw in Section I, g is not
in the class of £, .. But, since, both g and f,, represent 3 over Q, g belongs to
the genus of f,, and so to the class of p5~p3.
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0(4g) K=0(/-14)
ok 3
Ps P3

Example 2. Using Theorem 6, one can find a quadratic field which has
a big class number. Let m=1-2***=1 (mod.4). Since w=(1+./m)/2, we
have Nw=(1—m)/4=2?*% where 223 is prime. —m is square-free and
decomposes into primes as follows:

—m=2?*_1
=7-31-73-151-601-631-1801-23311-100801-115201
x 617401-10567201 - 1348206751 -13861369826299351 .9

Since Agx=m, we have =14 and hy=2"3h%. Consider the ideal a=[2, w].
One sees easily that a+1.

Now, a*#=[2, w]??=[2?%, w]=[Nw, w]~1 which implies that
223 | h. Hence hy is a multiple of 2'* x 223 =1826816.

III. A Generalization of Genera

One can generalize the notion of the genus unlimitedly. We first need an
algebraic group.” Let Q be a universal domain containing Q.% A subgroup
GcGL,(Q) is called an algebraic group (defined) over Q if there is an
algebraic set A= M,(Q)=Q" over Q such that G=4 N GL(Q). G=GL,(Q)
is an algebraic group over Q. In particular, G=GL,(Q)=Q* =G,, is such a
group. If R is a commutative subring of Q with 1€ R, we have the group

GL(R=M,(R)*={xe M,(R); det(x)e R*} .

With an algebraic group G over @ we can associate a group G(R)=
G nGL,(R). Important cases are R=C, R, Q, Z, Q,, Z,. When Q is of
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characteristic p >0, we can speak of algebraic group G over some subfield k&
of Q, usually k =F,, a finite field with ¢ elements, g being a power of p. For a
group G over Q, we have the following descriptions:

G(R)=real Lie group (locally compact)
G(Z)=discrete subgroup of G(R)
G(Q,)=p-adic Lie group (locally compact)
G(Z,)=open compact subgroup of G(Q,).

DEFINITION 1. Let f, g be polynomial maps: Q"—Q™ defined over Q
and G< GL,(Q) be an algebraic group over Q. Then,
def

fRrg—f~g and f ~ g, Vp.
G G(Q) G(Z)p)

Here f o, 9 means that the diagram

Qn f Qn
vjn /

is commutative for some y e G(R).
Remark 1. f~g—f=g.
G(2) G

Therefore a genus defined by the relation 'E” consists again of certain
number of classes defined by the relation ot

Remark 2. The reader must notice that there is an inconsistency in the
old definition of class and genus for quadratic forms. Namely in Section II
we deﬁnedf%g and f~g by

() fRg=—f ~ g

z SLu(Z)
() frge=—=f ~ g Vp=f=y.
GL(Zp) GL,

From the point of view of algebraic groups, we prefer to use one algebraic
group instead of SL, and GL, above. We shall use SL, in view of the
following

PROPOSITION 1. Let f, g be non-singular quadratic forms of n variables
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over Q. Then we have

GL, SL,

Proof. (<) is trivial. To prove (=), we need a lemma:

LEMMA. If fis a non-singular quadratic form of » variables over Q,
O(f)(Q) and O(f)(Z,) (¥ p) contain matrices of determinant — 1. (Note that
O(f)Z)=0"(f)Z) wnen f=3x*+2xy+5y*. See the first example in
Section I.)

Proof of Lemma.” Since Q and Z_=Q_ =R are fields, the lemma is
obvious. So, assume that p # co. Since | f(x) |, is continuous on the compact
set Z7, it attains the maximum at x=x,€ Z}:

| f(Xo) |,= Sugnlf(X)I,,-

Xo

Clearly, f(x,) #0. Let {x, y) be the inner product defined by
2x, > =f(x+y)=f(x)—f(y).
Call o the symmetry given by

xeQj.

We have deto= —1. We shall show that ce O(f)(Z,). Since ¢*>=1, it is
enough to show that 6(Z}) = Z}. Now for xe Z}, we have

12¢%0, X7 [, <SUP(Lf(x +%0) | 1/ (X1, 1/ (50) 1)
= |f('x0) |p s
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or | 2{xy, x>/f(x0)|,<1 and so o(Z})) = Z},. Q.E.D.
Proof of (=). Notice first that fGTg =detf=detg. Hence g=fy,,

7,€GL,(Z,),dety,=+1,Vp. When dety,= —1, we can adjust y, by Lemma
so that dety,=+1. Hence f ~g. Since quadratic forms satisfy Hasse
principle, we have St

frg—f~g
GL, Qp
Hasse
—f~g
Q
—_—D ~
GLn(Q)
Le
M f o~ g, Q.ED.
SLn(Q)

Back to a general algebraic group G over Q, the associated adele group
is given by
G(A4)=G(R) x l;[ G(Q,)
pF o
where []’ means the restricted direct product.* Thus,

x:(xoo’ 5 s .,xp’ >0 )EG(A)
def

= x,eG(Q,) Vp(=o00) and x,eG(Z,) Yp.

(V' p <> for almost all p<>for all but a finite number of p)
Put

G(A),=GR) x [] G(Z,)
p# o
and topologize G(A) so that G(A), is an open subgroup. Since G(R) is
locally compact and [] G(Z,) is compact, G(4) becomes locally compact.

P#

The subgroup G(Q) of G can be embedded in G(A) diagonally (i.e.
x> (x, -+, x, ). Since G(Q) N G(A), =G(Z), G(Q) is discrete in G(A).
It is well-known that the set

G(Q)\G(A)/G(A) .,
of double cosets is finite (Borel, 1963).> We put
he=#(G(QN\G(A)/G(A4).,) ,

the class number of G.
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For a polynomial map defined over Q:
[ Q" ——Qm,
put

Gs(NEg g ~ f}
G NEG4(S) /
G(f)E {ceG; fo=f},

where the latter being an algebraic subgroup of G defined over Q. For

g€%s(f) there are te G(Q) and ue G(A), such that g=f-¢, g=f-u. Then we
have f=ftu"" and s=ru""' belongs to G(f)(A4).

G(Z)

THEOREM 1. Notation being as above,

(1) the map [g]l+—ls] is well-defined from ?G( f) to G O\G(f)(A)/
G(f)(A) o>

(2) the map is injective.
(3) If hg=1, then the map is surjective and we get the identification

Go()=G(N\GNA/G(f)A),, -
Proof. With obvious notation, (1) and (2) mean that
[91=[g'] = [s]=I[s"].
(=) Yl=lg'l=g'=gv, veG(Z).
Hence,

g’ =ft'=gv=ftv, g’ =fu’'=gv=fuv.
tv T eG(NQ),  wvT'uTleG(f)(A),
and

s'=tu "t =0T () wou ™) e GUQ@)sG()(A)

(<) [1=lsl=s"=asb, aeG(f)Q), beG(f)A),.
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Then,
g’ =ft'=fs'u’=fasbu’=fsbu’=ftu" bu’ =gu""'bu’),
where
v=u"tbu'e G(A),, .
We must show that ve G(Z). In fact,
s'=ashb=t'u""=atu"'bh,

ie.
tTlaT ' =u"bu'=veG(Q) N G(A) ,=G(Z) .
We have then [¢g']=[g].

(3) Assume that hg=1. Consider any element [s] of G(/)QN\G(f)(4)/
G(f)(A),,. Since G(f)(A)=G(4)=G(Q)G(A),, by the assumption, we can
write

s=tu"1, teG(Q), ueG(A), .
Put g=ft,i.e. ¢ ~ f. On the other hand, since s e G(f) 4), we have g=fu,

G(@)
ie. g o f. Therefore we have g = f, i.e. g € %5(f). It is obvious that [g] —[s],
Ao G

which proves (3).

Example 1. Let f be a non-singular quadratic form over Q. It can be
shown that hg; =1 (cf. Section IV). Therefore

Gsr.(N)=Ys1(f) / =0, (NN, (/)40 (f)A)o,

SLn(Z)

since G(f)={0eSL, fo=f}=0,(f).

IV. Class Number of Algebraic Groups
The class number of an algebraic group G over Q is defined by
he=#(G(Q\G(A)/G(A4).,) -

We shall consider simple examples for which Ag=1.
(i) G=G,=Q. As a matrix group, G is described as
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oo 1) <o

which is a unipotent group.
(i) G=G,=Q*=GL,(Q) is a torus.
(iii) G=SL,(Q) is the simplest example of a semi-simple group.

(i) G=G,. In this case, G(4)=A4," G(Q)=Q and a fundamental
domain for Q\A4 is

F=[0,nx [] z,.

p# o
From this follows that 4;=1 and that Q\A is compact.

(i) G=G,. In this case, GIQ\G(A)/G(A),=A"/Q*A which is
isomorphic to the ideal class group of Q, i.e. g =hy=1.> Consider the norm
(volume) map:

| II:4"—RZ
given by |lx||=]]Ix,l,, x=(---,x,, ). Put
p
A]Z {xed™; |x|=1}.

Then by the product formula Q=4[ and 4 */A{ ~R by x+r—log|x|.
From A*=Q A4, it follows that A" =Q “A4 7 ; where

A=A nA ={x1}x ] Z).

p*F©

As a fundamental domain for 4 /Q we can take

F={1}x [] z;

p#F o

and it follows that 4*/Q is compact.
(iii)) G=SL,(RQ). We begin with a general lemma:

LEMMA 1. Let G=NH be a semi-direct product of an algebraic group
G over Q with N normal. If hy=hy=1, then hs=1.

In fact,
G(4)=N(A)H(A)= N(A)H(Q)H(A),,
=H(Q)N(A)H(A),, = HQ)N(Q)N(A4) ,H(A) . = G(Q)G(A)., ,
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which shows that hg=1.
We apply Lemma 1 to the group

a 0 y
B:{( a_1>;ae{2 ,ceQ}cSLZ(Q)

c

and the semi-direct product B=NH where

A

By (1), (i1) we have hy=hy,=1. Hence, by Lemma 1, we have hgz=1. To show
that h;=1, it is enough to show that, for p+# oo,

() G(Q,)=B(0,G(Z,) .
In fact, applying () for p-component of x=(x,, -, x,, - *)€G(A), we
have

x,=b,y,, b,e B(Q,), y,€G(Z,) .
Therefore
X=(1, T bp7 o .)(xooa o "ypa o )EB(A)G(A)OO N
Since hz=1, we have

B(4)G(A),, = B(Q)B(A4),,G(4),, = G(Q)G(A), ,

or
G(A)=G(Q)G(A)., .
ie. ho=1.
Proof of (+). Take any
x=<‘c’ Z)eG(Q,,).
If =0, then

a 0
x=<c a_1>eB(Qp).

If a=0, then
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0 b0 -1\ (b © 0 -1
<c d><1 0>:<d _c>eB(Q,,) with <1 O)eG(Zp)_

So we may assume that a#0, b#0. Put a=p'u, b=p"v, u,veZ,.
Multiplying (¢ ~%) if necessary, we may assume that v<p. Then, we have

pu po\(u ' —p*v\ [ p’ 0
N T S

u —p" "
(0 ) )eG(Z,,),

which completes the proof of ().

with

Remark 1. The argument of (iii) can be generalized to prove that
hg=1 for G=SL, and G=GL,.
In case G=SL,, a fundamental domain for G(Q)\G(A4) is given by
F=Fx [] G6(z,)

p# 0

where Fis a fundamental domain for G(Z)\G(R) to be determined. Let G(R)
act on the upper half plane $ by the rule

az+b a b
S = G(R).
X'z otd’ X (c d>€ (R)

The action is transitive and the isotropy group at ie $ is
K={xeG(R); xi=i}=0;(R)
which is a maximal compact subgroup. We have
GR)/K=9 .

Actually G(R)/{ +1} acts on § effectively.
Let D be the standard fundamental domain for G(Z)\$. Call ¢ the map
x+—xi, x€ G(R). Then we can use

F=a fundamental domain for {+1}\¢ (D).

Later we need the area of D. Take the usual non-euclidean metric
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dx?+dy* 1> 0
2—— - = ss) =5
ds*= y2 s g (gu) 0 1/y2 .

The volume element o is

dx nd
—/det(g;)dx Adyzx—y’\zi.

Then, we have

dx A dy J J‘ J
= dx[—1/y]%—
j J -1/2 a=Y Joap . /yJ‘/l_x

=2[sin~

n
= x]1/2_2 "
J—uz«/l——x 6 3

At

|
Ja—

|
=
o
W=
Ju—

V. G(Q)\G(A),

Let GeGL,, G'=GL, be connected algebraic groups over Q and f:
G—G’ be a homomorphism over Q. It is useful to know that f can be
described as

f(x)=(det x)"P(x), veZ, P(x):a polynomial map over Q,

x=(x;)e M(Q). For R=0, Q,, A, finduces a map fr: G(R)—G'(R). For
any extension k£ of Q, k=, we can speak of homomorphisms over k. In
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particular a (rational) character ¢: G—G,,, i.e. a homomorphism (over Q) of
G in GL, is important. Characters form naturally an additive group
(character module):

G=Hom(G, G,,)

which is Z-free of finite rank. It can be shown that each & € G is defined over
0. Hence G gets a structure of a g=Gal(Q/Q)—module. The submodule
formed by ¢&’s invariant under the action of g is denoted by

GQ)=(G).

Given a character £ e G(Q), we can consider the sequence:

G(4) €a VE I R%.
We put

def

GAL=E () Ker(] [°€)-
£cG(Q)

By the product formula, we have G(Q)=G(A),. We have
G(A)/G(A),~R°, ro=rankG(Q).
It is known (Borel, 1963) that

J W<+
G(Q\G(4)1

where o is a Haar measure of the locally compact group G(4),." Actually,
G(A4), is unimodular in the sense of integration theory on topological
groups. As for the compactness,

G(Q)\G(A), is compact
<>any unipotent element of G(Q) is contained in the
radical of G(Q).?

In particular, when G is semi-simple,

G(Q)\G(A), is compact
<> G(Q) has no non-trivial unipotent element.

This is a generalization of the following statement on quadraic forms over Q
of n (>3) variables:
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0,/ (N0, (f)(A) is compact
<> vg(f)=0
< “flx)=0<x=0 for xeQ"”,

where vo(f) means the Witt index of f overQ. Finally, note that G(Q)\G(A4),
is compact when G is abelian because G(Q) is its own radical.

In Section IV we considered simple examples for which /;=1. Here, we
shall consider the general case. Let G be any connected algebraic group in
GL, defined over Q. Recall that

h=he=1(G(Q)\G(4)/G(4),,) .
Let

G(A)=.Zh: G(Q)xG(A4),,  x€G(4),

be the decomposition into double cosets. We want to determine a fundamen-
tal domain for G(Q)\G(A4). We first determine a fundamental domain for
G(O)\G(Q)x;G(A),,. For xe G(A4) put

I'.=G(Q)nxG(A) ,x *<G(R).
In particular, for x=e, we have
I.=G(Q)nG(A4),=G(Z).

I', is discrete in G(R) for all xe G(4) and I',, I', are commensurable each

other:
Iy r,
ﬁnite\ / finite
r.nr,
Let F, be a fundamental domain for I' \G(R) and put
F.=F.x [] x,G(Z)x, ', x=(x,).

p#F ®©

Then F, is a fundamental domain for G(Q)\G(Q)xG(4),,x " and hence F x
is a fundamental domain for G(Q)\G(Q)xG(A),,. Doing this for all repre-
sentatives x;, 1 <i<h, we obtain a fundamental domain
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for G(Q)\G(A).
From this it follows that

G(Q)\G(A) is compact
<1, \G(R) is compact for all i
< G(Z)\G(R) is compact.

Since G(Q)\G(A) is not even of volume finite, we need to modify above
argument.

LEMMA 1. G(A4)=G(A),G(A).,,.

Since G(A4), is a normal subgroup of G(A4) and G(A4), is an open
subgroup in G(4), G(A4)/G(A),G(A),, is discrete. On the other hand,
G(A)/G(A), = R is connected and hence G(4)=G(A4),G(A),,. Q.E.D.

By Lemma 1, we can write
G(4)=) G(Q)x,G(4),, xeG(A), .
We have
h
G(A);= ), G(Q)x;G(A)1,
i=1
where G(A4), ,=G(A); N G(A),,.
Now, put
G(R), = {xeG(R); |&(x) |, =1, VEeG(Q)} .
Then, we can verify that

(@) G4);,,=GR), x [] G(Z),

p#F©

(i) G(R)/G(R),~R", ry=rankG(Q).
Putting, as before,

I,=6(Q)nxG(A),,x~",  xeG4),,

we can prove that
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G(Z)\G(R), is compact

< I',\G(R) is compact

< G(Q)\G(A), is compact

< any unipotent element of G(Q) is contained in
the radical of G(Q).

We also have:

j ww<+oo=J‘ w,<+00.Y
G(Z)\G(R)1 G(Q\G(4)1

VI. Group of Units

Let G be a connected algebraic group over Q. It is known that the group
G(Z) of units is finitely generated.” We need occasionally the following Levi-
Chevalley decomposition of G :?

G=NTS,
where

N =the unipotent radical of G,

R= NT=the radical of G,

H=TS=a reductive group,

T=a torus=the identify component of the center of H,
S'=a semi-simple group =the commutator group of H.

Furthermore, G=NH is a semi-direct product with N normal and 7'x S—H
defined by (7, s)—ts is an isogeny, i.e. a surjective homomorphism with
finite kernel. As for the uniqueness, let G=NT’'S’=NH’ be another such
decomposition. Then, H’ is conjugate to H by an element of N(Q).
Accordingly, 7', S’ are conjugate to 7, S, respectively. Hence the decom-
position is unique up to isomorphisms over Q.

One proves that G(Z)> N(Z)T(Z)S(Z) and the latter has a finite index
in G(Z). In this section, we shall mainly consider a torus and obtain the
number of generators of 7(Z). But, first, when N=G,, we have N(Z)=Z, a
group of one generator. A general unipotent group N has a semi-direct
decomposition N=N'-H’ where N’ is normal and dim H'=1. Hence the
structure of N(Z) is determined inductively. Let now 7 be a torus over Q.
The unique maximal compact subgroup K of T(R) is given by
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KE (xeT(R); |00, =1, Ve TR)} -
We put ro=rank 1(Q), r,, =rank T(R).
Then, we have T(R)/K=~ R". If we put

T EKx [[ T(Z,),

pF

this becomes a compact subgroup of 7(4). The following picture explains
the structure of 7(A4).

T(4),,=TR) x [ T(Z,)

pF o

8 T(A)1,m=T(A)1X H T(Zp)

pF 0

discrete

Y AC) W=T(Z) N T(A)x (finite group)

One obtains from this the following theorem which generalizes Dirichlet’s
unit theorem in algebraic number theory.



Arithmetic of Algebraic Groups and its Applications 27

THEOREM 1. T(Z)xZ"™=""ex W

Let us describe now how the original Dirichlet’s theorem follows from
Theorem 1.

Let K be an algebraic number field over Q of degree n. Let oy be the ring
of integers of K and w,, ---, w, be a basis of og. Consider the regular
representation x — P(x) of K using this basis:

(o, x0) = (@, 0)PX)
where P(x)e M, (Q), xe K. Extending scalars from K to Q, consider the set
A={P(x)e M(Q); x=) x;0;, x;€Q}
which is a subalgebra of M,(Q) defined over Q. Put
T=AnGL,(Q).

As we see soon, T becomes a torus defined over Q. Since A(Q)=K
(identification by P), we have T(Q)=K" and T(Z)=0og.

In general, let K/k be a finite separable extension and ¥ be a variety
defined over K. Then, in almost all cases, we can find a variety W defined
over k such that dim W=[K:k]dim V and W, ~ V. The association V'— Wis
functorial and written: W= Ry, (V) (Weil functor).*) Applying this to V=
G,/K, we have T'= Ry,;y(G,,).

The character module 7 is described as follows. Let w®, 1 <k <n, be
conjugates of w;. For x=x,0, + - - - + x,0,, x;€Q, put

P =x,0®+ - +x,0® .
Then, ¢, e T is defined by

E(Px)=x®,  P(x)eT.

[t can be seen that &, - - -, £, form a basis of T', a free module of rank n. Since
i+ ENP(X))=E(P(X)) - - - E(P(X))
— )
=N K/Q(x) s
ve have

T(Q):<f1 +e +6;1>=<NK/Q>
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by identification by P. On the other hand, after a suitable change of order, let

51, SR érl embed Kin R and let £r1+1’ £r1+1’ Y érl +ry0 5r1+r2 embed Kin C
(not in R). Then we have

T(R):{éls Ty érla €r1+1 +ér1+15 T €r1+r2+ér1+r2} o
We have therefore shown that ry=rank T(Q)=1 and r=rank T(R)=r, +r,.

Theorem 1 implies that

COROLLARY 1 (Dirichlet). og ~Z" 2 1x W.

VII. Reduction Modulo p

Let G be a connected algebraic group over Q. We denote by G'? the
algebraic group defined over F,=Z/pZ obtained by reduction mod. p. For
almost all p, G is just defined by a system of polynomials reduced mod. p of
the defining system of polynomials for G with coefficients in Q. Let

G=NTS

be a Levi-Chevalley decomposition of G explained in Section VI. Then we
have a similar decomposition

G = N TP S for Y'p.

Since the number of rational points over F, is unchanged by an isogeny, we
get
#(GP(F,)=#(NP(F,)) #(TP(F,)) #(SP(F,))
for almost all p.
(i) N (unipotent). #(NP(F,))=p*™¥
(i) T (torus).
Let T= (&, 0, €y and let K/Q be a finite galois extension such that T=
T(K). We obtain an integral representation of degree d: g—GL,(Z), g=
Gal(K/Q), by
¢q <5
M)
£ <a

, gEgQ.

Choose p such that 7” remains a torus and p is unramified for K/Q. Call o,
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(p is a prime ideal in K dividing p) the Frobenius substition in g for p. Then it
can be shown that
#(TP(F,)=det(p-1,—M(s,)), Vp."

(ili) G=SL,. In this case, we have G’ =SL, for all p. #(SLy(F,)=

p(p*—1).
In general, we define:

_HGP(F)

dimG
p

(i) N (unipotent). u,(N)=1 for V'p.
(i1) T (torus).

1,(G)

w(T)=det(1,—p~'M(q,))
1
_Lp(ls XT)

where L (s, x7) is the p-component of Artin’s L-function associated with the
representation g—GL,(Z).

(i) G=SL,. p,(SL,)=1-p~2.
Note that [ [ u,(SL,)=1/{(2)=6/".

p

We want to generalize this last property for any semi-simple groups. So,
let G be a connected semi-simple algebraic group defined over Q with d=
dim G > 3. For the moment, we take C for Q. Hence the Lie algebra g of G is
a complex semi-simple Lie algebra defined over Q. Call G, the identity

component of the Lie group G(R) and g, the Lie algebra of G,. Hence, we
have

g=g,®C

R

Let K be a maximal compact subgroup of G, and ¥ be its Lie algebra. Let B:
g x g—C be the Killing form defined by

B(X, Y)=tr(adX-ad Y).
B induces on g, the orthogonal decomposition:
go=I+ T >

where Bis <0 on f and >0 on . Therefore Bis <0 on



30 T. ONO

w=t4/=TE .

Let U be the connected Lie group =G corresponding to u. U is compact
semi-simple and is called a compact form of G,. U is a maximal compact
subgroup of G.

Let b,, 0<v<d, be Betti-numbers of U. We know that b,=b;=1, b, =
by_1=0,b,=b;_,=0,b3=>5,_5>0. As for the Poincaré polynomial of U, we
know that

P(U; )= i Bt e ]L£(1+t2”f‘1),
V=0 =
where /=rank of U=dimension of a maximal torus of U=dimension of a
Cartan subalgebra of g. Note that ¢;>2, 1 <i</, because b, =b,=0.
Example 1. G=SL,. Then, we have
g=sL(C)={XeM,(C); tr X=0},
G,=SL,(R),
go=sL(R)={XeM,(R); tr X=0},
K=0,(R)={xeGL,(R); 'xx=1,, detx=1},

I={XeM,(R); ‘X+X=0}={<_?b g), beR},

B(X, Y)=4tr(XY),

fl={<; yx>; x,yeR},

u=ft+/—1H={XeM,(C); X+ X=0, tr X=0}

and
U=SU,={xeGL,(C); '*xx=1, detx=1}.

Since U~ S? (3-sphere), we have P(U; t)=1+13, by=by=1,b, =b,=0, =1,
a,=2. T=S" (circle) is a maximal torus of U and U/T=S?/S*=S? (Hopf
fibration).

Now, we introduce the Chevalley group.? Let g be a complex semi-
simple Lie algebra with n=dimg. It is known that g has a basis (called
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Chevalley basis) for which all structure constants C}; are integers. Using such
a basis, Autg can be embedded in GL, as an algebraic group over Q. G=
(Autg),, the identity component, is called a Chevalley group. For every
connected semi-simple algebraic group G over Q, G/center becomes a Q-
form of a Chevalley group G, i.e. G/center is isomorphic with G over Q.

Let us determine 1,(G) for almost all p. As before, put G, =the identity
component of G(R), U=a compact form of G,. Fixing a Cartan subalgebra
of the Lie algebra of G, denote by N the number of positive (negative) roots,
by W the Weyl group. For each we W, put

N(w)=#{o>0 (positive roots); w(a) <0} .

We have n=I[+2N, [ being the dimension of the Cartan subalgebra. A
maximal torus 7 of U has dimension /, too. It is known that

M HGPF)=(p—1'p" §, p"™,
(2) P(U/T, t): Z tZN(W)z(tz_l)—l.l (tz"i—l),

From (1), (2), putting t=./p , we have

©) HGPF)=p" [T (p*~1).

4

On the other hand, since

1

PV =TT (14277,

i=1

we get

1
n=dimU=2) a,—1, ie.
i=1

i

ZI: a=n+02=N+I

i=1
as n=[+2N. Hence, (3) implies that

#HGP(F))
p" _i

) 1(G)= l:[1 (I=p ), ¥p.

THEOREM 1. Let G be a connected semi-simple algebraic group over Q.
Then [ | u,(G) is absolutely convergent.
p
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Proof. (Outline.)

Case 1. Assume that G is isogenous to a Chevalley group G over Q.
Then, from (4), we have

1 l
[T @~TTTT (t=p~ )~ [T lla)~*
P p i=1 i=1
since a;>2. (For a, be R we write a~b when ab~'eQ ™).

Case 2. Otherwise, G is isogenous to a Q-form of G. We known that

P T (p%=)<#(GP(F) <p" T] (p+1)®

i=1 i=1

which implies

. 1
fu <@,

i=1

VIII. Tamagawa Numbers"

Let G be a connected algebraic group over Q with d=dimG. A
differential form w of degree d on G which is regular and nowhere zero is
called a gauge form on G. It can be shown that there is a left invariant gauge
form w over Q, unique up to multiplication by Q. For each x,€ G, using
local coordinates ¢, - - -, t; around x,, we have

(1) w=fdt;n--- Adt, fis regular around x,,

(i) f(xo)#0.

Now, take a point x, € G(Q,) (p= o0 is included).
la

G(Q,)
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Then, ¢, : x+—(f(x), -, %(x)) induces a local homeomorphism
Uy, ® @y (Uy,) = Q4. On Q¢ choose the normalized Haar measure such that
[0, 11" has measure 1 for p=co and Z¢ has measure 1 for p # co. Pulling back
this measure on U, by ¢, , we obtain a measure

|dt, A~ Adty on U, .

lp

For a gauge form w having properties (i), (ii) above, using the power series
expansion

f(x):Zav(tl—t(l))"‘ T (td—tg)vd,

a,eQ,, v=(v,, -, V,), we obtain a measure
(1) Ou, =), 1dty A ndy,.

Applying functional determinant, we can verify that this local measure
extends to a left invariant Haar measure w, on G(Q,). Put

b= o,
G(Zp)

#(GP(F,)
P pd .

It can be shown that
1, (G) for Vp.

Assume, for the moment, that G is unipotent or semi-simple, or, more
generally, that G(Q)={0}. Then, on G(4),, = G(R) x [1 G(Z,), the product

pF 0
measure | | w, makes sense because [ | 1, converges absolutely. Since G(4),,
p p
is an open subgroup in G(A), ]_[wp induces a Haar measure w, on G(4).
p

Finally, let " =aw, ae Q ™, be another left invariant gauge form on G over
Q. By the product formula of valuations, we have

w;=<nla|p>wA=wA.
p

From now on, we write w,=dG(A4) and define the Tamagawa member :

(G) & J dG(A)
G(Q)\G(4)
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which is finite when G is unipotent or semi-simple, or, more generally,
whenever G(Q)= {0}, i.e. G(4), =G(A).

Example 1. G=G, Then, w=dt, t being the natural coordinate
function and

upzf ldt|,=1, pPF#O.
Zp

Since F=]0, 1) x [1Z, is a fundamental domain for G(Q)\G(4)=Q\A4, we
have ’

2(G)= J w,=1.
o\4

Example 2.

t, t
G:SLZ(Q)={x=< ! 2), t1t4—t2t3=1}.
ty ty

Consider t,, t,, t;, as parameters around e, i.e. P°=e. We can verify that

w:dtl Adty ndty
tl

is a left invariant gauge form on G. Put, for all p # oo,

1 )t t . t; t _1 0
felt )(Zp)_{<t3 t4>eG(Z")’ <t3 li>=<0 1>mod. p}.

Since G(Z,)/G"(Z,)=SL,(F,) is of order p(p*—1) and |, |,=1 on G*(Z,),
we have

up=f wp=p(p2—1)f ldty ndty Adts],
G(Zp) GUNZp)

=p(p2—1)J J f ldt, |, 1dt, |,]dts ],
t1=1Jt2=0 Jiz=1
=)

3

p

1-p~2.

Since hg=1, we can take

F=Fx [] G(z,)

p#©
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as a fundamental domain for SL,(Q)\SL,(4), where F is a fundamental

domain for SL,(Z)\SL,(R). Hence,
|
T(G)=J o, [] A=p~ =T
F pI;Iw C(z)
As in Section IV, let ¢ be a map G(R)—X=$ defined by

b+t
Dttty

d(x)=x"1i

Put
K={xeG(R); x-i=i}

ty t
=02+(R)={<_t1 t2>;tf+t§=1}.
2 1

On K, the unit circle, wg=dt,/2t, is an invariant form and on X, wy=
(dx A dy)/y* is invariant under the action of G(R). We have

j Wg=1, J‘ f0p =3 2
K G(ZNX

dt, ndt, ndt,
= :

If we put
Wg

on G(R), we can verify that wg=d*wy A wg. Hence,

J f(x)wc=f wxj Jxk)a .
G(R) X K

G(R) xK

<

P(x)
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Since we can use F=a fundamental domain for { + 1}\¢ ~*(D), where D
is the standard fundamental domain for G(Z)\X (i.e. ¢ (D)= F+(—1)F),
we get, with f=yp,

1 1
J‘ XF(X)0g =7 J‘ Xo- 1(D)(x)wG Z? J Dy J Xo- 1(D)(Xk)wK
G(R) G(R) X K

1 1
I K
1

7!2

= ={(2).

o
2 3

Therefore, we have 1(G)=1.

Remark 1. The statement

(W) 1(G)=1 when G is simply connected ,

is known as Weil’s conjecture. (W) has been settled for almost all simply
connected groups, including all classical groups and quasi-split groups.

Remark 2. When G is a Chevalley group, as an application of his
theory of Eisenstein series, Langlands proved that

1
(2) f 0o =#F [] lay,
G(2)\G(R) =1

where F=the fundamental group of G and g; are integers appeared in
Section VII. Combining (2) with the fact that 4;=1 and with a computation
of the volume of G(Z,) for any prime p, we can prove that

WG)=4F.

Now, we shall define the Tamagawa number for any unimodular group.
A connected algebraic group G is called unimodular if the left invariant
gauge form is also right invariant. We have the following chains of
containment
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unimodular
N\
reductive
/ N\
unipotent torus semi-simple
|
G, G, SL, .

Let G=Hom(G, G,) be the character module. Choose a finite galois
extension K/Q such that G=G(K). Then, g=Gal(K/Q) acts on G. Since G is
Z-free of finite rank, we may speak of the character y; of the corresponding
integral representation of g. Let

L(S9 XG): l—[ Lp(S, XG)

p# ©

be the Artin’s L-function. Then the product

1_[ <Lp(17 XG) : J (Up>
p# o G(Zp)

converges absolutely because yg =y when G =NTS (Levi-Chevalley decom-
position) and

Lp(la XG)lup(G)sz(la XT)/"'p(T):up(N)up(S)zlup(S)

for almost all p. (See Section VII, Th. 1.)
Put

pe=lim (s— 1y2L(s, 75) >0,
s—*1
where rg =rank G(Q). Recall that G(4), ={xe G(A); | E)=1,V¢e G(0)}
and the map

Y(x)=(log [|&; (X, - - -, log [I€, (X))

induces the isomorphism
G(A4),\G(4)=R",

where {¢;, -+, ¢, } is a basis of G(Q). As a measure on G(4), we take
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dG(A):iwoo T L, xo, -

G pF®

It can be verified that dG(A4) is independent of the choice of K/k and w. As a
measure on G(A4),\G(A4) we copy the usual measure on R" which we denote
by d(G(A4),\G(A)). Since G(Q) is discrete in G(A), we define dG(Q) to be the
canonical discrete measure.

Finally we define the Tamagawa number 7(G) by

T(G)=J d(G(O\G(A),) < + 0,
GO\G();

where the measure d(G(Q)\G(A),) is determined by the relation:
dG(A) =d(G(A4),\G(A)d(G(@)\G(A),)dG(Q) .

In general, if G is a unimodular topological group and H is its closed
unimodular subgroup, then by the equality dG=d(H\G)dH we mean the
relation:

J f (g)dG=J d(H \G)j f(hg)dH .
G H\G H

Practically, we can use the following definition:

SW))A(GQ\G(4))

1(G)= J‘G(Q)\G(A)
fle)de

R"®
where Y(x)=(log [|§,(x)[, - - -, log |, ,(¥)]) -
Example 1. G=G,,. We have

w=—-, G=Z, K=0, ps=lin}(s—1)é(s)=1,

L(Sa XG)ZC(S)’ ll/(X)=10g ”X” ’ xed”.
We also have hg=1. Since

F=R.T.x nZ;3

p# ©
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can be taken as a fundamental domain for Q *\4* and Y(x)=log x,, when
X=(Xg "7y Xp, " e F, we get

[ g 2= 1
T(Gm) = ! + o0 = l_[ J\ {—p~ 1
f foar 0T

dx
x

=1.

p

Example 2. Let T be an arbitrary torus defined over Q. In this case,
we know the following theorem:

THEOREM 1.¥
h(T)
=iy

where
hl(T)z#Hl(Q, T) ,  il=#Ker <H1(Q, T)—»HHl(Qp, T)>.

COROLLARY 1. o(T)=h"(T) if T is split by a cyclic extension K/Q.

COROLLARY 2. wo(T)=1if T is split by a finite galois extension K/Q
such that T is G(K/Q)-projective.

Example 3. Let K=Q(/m), m being a square free integer #0, 1, and

T={z=<x my>; x2—my*=1, x,yeQ}.
y X

Hence, T(Q)={z€ K*; Ng,o(z)=1} with the identification:

x m
z=< y><—+z=x+«/my, x,y€Q.

y X

One can also write T=0,(f) with f=x>—my?>. We have T=(¢> where
E-(E™)=x+./my. Since T=T(K), Corollary 1 yields

«(T)=h"(T)=#H" (G(K/Q), T).
Call ¢ the generator of G(K/Q). Then

éa_<x rny>=x_ﬁy.

y X
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Therefore,
(E+E)) =L@ =(x+ymy)x—my)=x*—my’=1,
ie. E+E7=0, or, 2= —¢. We have
H'(D)~H D)={neT;n+n"=0}/{n—n"; neT}
=(OK2H~Z)2Z .
Hence
U(T)=1(05(f)=2.

Remark 3. It was Tamagawa’s discovery that O, (f)=2 in the late
fifties for any n>3. (Siegel’s theorem on the quadratic form f.) This
stimulated the work of Weil (1961).%

Example 4. Consider the torus R,(G,,) (cf. Section VI) where K/Q is
a cyclic extension. The norm map defines the exact sequence :

Nxjo
0———>T—+RK/Q(G,”) —G,,—0.

The dual of this is:

0 T Z[g] z 0,

w w
z) o—dz
geg

where g=G(K/Q). Then, we have the exact sequence:
H'(Z[g)) HY(T) HX(Z) H*(Z[g]),
Il I |
0 Z/nZ 0

n=[K:Q], and so ©(T)=[K: Q].

Remark 4. For any galois extension K/Q and the torus T=
R{)(G,)=Ker(Ng,p), we know that

i'(T)=1 <> Hasse’s norm theorem for K/Q .

Let G be a connected semi-simple algebraic group defined over Q and G
be the universal covering group of G over Q. Call x the covering map which
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is defined over Q. Then the group M =Ker n (the fundamental group of G) is

endowed with a G(Q/Q)-module structure. Denote by M the character

module Hom(M, (Q)*) which is a G(Q/Q)-module, too. We have then
wG) h°(My

———

(G) iY(M)’
where HO(M)=4#(M?), g=G(Q/Q) and

6)

i(M)=# <Ker<H YQ, M) —[[HYQ,, M))) .
(It is known that /'(M)=1 if G is simple.)

This formula determines the Tamagawa number of semi-simple groups
modulo Weil’s conjecture (W) (cf. Remark 1).

Example 5. Let G=SL, and G=PL,=GL,/G,=SL,/W, where W, is
the group of n-th roots of 1. We have M=W,, M=Hom(W,, (Q)*)=
Hom(W,, W,)={x>, x(\)={, { being a primitive n-th root of 1. Since M°=
M, 3=G(Q/Q), we have h°(M)=#(M®)=4#(M)=4#(M)=n. Therefore

uPL,)
(SL,)

Usually, one first proves that t(PL,)=n."" Then the formula implies
o(SL,)=1.

Example 6 (n>3). G=0.(f), G=Spin,(f). Since M=2Z/2Z, ob-
viously M®=M. Since ©(0O)=2 by Siegel-Tamagawa, we have
©(Spin,(f))=1.

Remark 5. We don’t know yet how to use directly the “‘simply
connectedness” of G to prove that o(G)=1.

Remark 6. 1t is desirable to extend the notion of the Tamagawa
number to a more general category of algebraic varieties over Q. Then
G(Q/Q)-module structure of the fundamental group and its dual of the
variety should be studied.

IX. Class Number of Tori"

Let T be a torus defined over Q. By the class number formula for T we
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mean the equality:

_T(T)PTWT\/ Dy,
1 hT—R—.
T

Here h; is the class number of T, hr=[T(4): T(Q)T(4),], ©(T) is the
Tamagawa number of 7T (cf. Section VIII, Th. 1) and wp=#W=
#(T(Z) N T(A)) (cf. Section VI, diagram). Furthermore,

pr=lim (s—1y2L(s, y;)  where ro=rank 7(Q),
51

yr=the character of the integral representation of G(K/Q) on T, K being a
galois splitting field for 7" over Q. It remains to define Ry and Dy.
Let r,, =rank T(R). Choose bases &’s of modules 7(Q), T(R) such that

TQ)=CE, &> STRI=CEry &y Ergrs 5 &) -

The map ¥, : T(R)—R"= given by

Voo (x) =(l0g | £;(X) o5+ + +5 10g | &, (X) |2)
induces isomorphisms

T(R)/K~R"™ , T(R),/K~R"~"2 (cf. Section VI).
By the unit theorem (Section VI, Th. 1), we have
N(Z)=ExW, ExZ'~""e.
Let E={ej; rg+1<j<r,>. Since T(Z) <= T(R),, we have
o
P
Ya(e)=(0, - -,0,108|&,+1(e) e, "~ -5 l0g] &, (€)) ]o)
for each j, ro+1<j<r,. We can now define the regulator R
Ry =|det(log| &ie)) |,) | -

Let w be a gauge form on T defined over Q and w, be the measure on
T(Q,) induced by w. For p= oo, put

M, ={xe T(R); 0<|log ()|, <1, 1 <i<r,}

and
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cT=J‘ o, [] JT(Z)LP(I,XT)wp>0.

p# ©

Finally, define Dy by Dy=1/c3.

We shall now examine those ingredients of the class number formula in
case where T= Ry ,(G,,), k being any finite algebraic extension of Q. First,
recall that T(Q)=k, T(Z)=voy', r,=r;+r,, ro=1. Since W is the torsion
group of k™, wy=w,=the number of roots of 1 in k. Write

T(Z)=o,=ExW,
E={e;; 2<j<r +ry~Z "1,

Recall also that

T=<171a T ”Im ’1r1+1’ ’7r1+1’ T ’1r1+r29 ’7r1+r2>
where 1,(P(x)) = x", P(x) is the regular representation of x € k and x is the i-

th conjugate of x. We have then

7A—'(Q)=<171 + e +’1r1+(’1r1+1 +nr1+1)+ e +(’1r1+r2+r]r1+r2)>

CT(R)=<’717 T 1’]rl, ’7r1+1+r’r1+1a o .9nr1+r2+nr1+r2> .

Or, we can write, with
51 :7]1 e +’1r1+(nr1+1 +’7r1+1)+(’7r1+r2+nr1+r2) ’
TQ)=<E > TR)Y=KE, &, 3 Gy

and

Ry =|det(log| i) ),
2<i,j<r,+r,. Therefore, we have R;=R,, the regulator of the field &.
Consider the following natural identification:
T(A)=J,=the idele group of £,
T(4),=T(R)x [[ T(Z,)

p#F 0

=l|—[kvxx l_[ Hopx

p#w plp

ZHkUX XHD: dzeka’w,

v]a P
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T(A4)/T(Q)T(A), =y /k ™ I, . =1,/P, = H,, the ideal class group of k.

This shows that hp=#,.

Let K/Q be a galois extension such that Kok. Put g=G(K/Q)>h=
G(K/k). Then g-module T, T= Ry0(G,), is induced from the trivial h-module
G,=Z:

T=0G, ® Z[d].
Z[b]

Hence, yr=yx& where y, denotes the trivial character of . Then we have
L(s, xr; K/Q)=L(s, x&; K/Q)=L(s, xo; K/k)
={,(s), the zeta-function of k.

Therefore we have:
pr=lim (s~ DL(s, 1r)=lim (s— D59 = o,

the residue of {,(s) at s=1.
Finally, as for D, let w=dx/x be a gauge form on G,, viewed as an
algebraic group defined over k. Then,

er=Tl (dx),,H j 1 (dx),
T e 1x1, 5 S 1=NpTT [x],

where
M,={xek,); 0<log|x|,<e}
={xek,; 1<|x|,<e}.

When v is real, then | x|,=]|x| and

[ e,
M,,,x|v 1 X

When v is complex, then | x|,=|x[?, (dx),=idxdx and

dx), (> (Ve2rdrdd [(?= (V¢ 24
[ 72 ]2
lexlu 0o J1 r 0 I

When v=p, finite prime, then
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Np
(dx) =f (dx),=(No,) "',
JD: Np—1 P o P P
where 6, is the different of k,. Hence we have
cr=2"1(2n)2| 4,717, A,=discriminant of k.

Then we have

| 4]
Dp=—rt
T@@nyy?
It is well-known that
_2"2n)" Ry,
P 4,1,

Comparing this with the class number formula (1) of an arbitrary torus
T, we get

THEOREM 1. For any algebraic number field k,
T(Rk/Q(Gm)) =1.

We conclude this section with a formula on class numbers of isogenous
tori. Let 7, 7" be tori over Q and

A T—T
by an isogeny over Q. Then A induces the following homomorphisms:
M@, : T(Q,) —T(Q,)  (p=co included)
MZ,): T(Z,)—T(Z,)
MZ): T(Z)—T'(Z)
AQ): T(Q) —T(Q).

In general, when a: G—G”’ is a homomorphism of abelian groups such that
groups Kera and Cok o are finite, we put

_ #(Cok o)
a(e)= #(Keroa)

THEOREM 2. Let A: T—T" be an isogeny of tori, defined over Q. Then
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hy_dT) Hq(z(z
e AT A2VAD)

Remark 1.3 As for q(M(Z,)), it can be shown that g(A(Z,)) =1 when p
is unramified for k/Q and (p, v(A))=1 where v(1)=# (Ker 1) =# (Cok 1) and
k/Q is a common galois splitting field for T, 7. Because of this remark, the
product in Theorem 2 is finite.

Remark 2. Theorem 2 is one of main theorems in Dissertation of Jih-
Min Shyr (1974, The Johns Hopkins University).®

X. Gauss’ Genus Theory Revisited

Let k be any algebraic number field of finite degree over Q and K/k be a
finite galois extension. We have the exact sequence over k:

K

!’ N rr
0——T,—T, { g

0

b

ng
o

where T,=Rgu(G,), T§'=G, and N=Ng,=the norm map. With this
sequence, we associate the isogeny over k:

Ty —»T
o\ /1
Ty x Ty

where n: x — x", Ao(x) =(x"(Nx) ™', Nx)and A{(x’, x")=x'x". Applying the
functor Ry, we obtain the isogeny over Q:

A T—T'xT”
where
A= Rk/Q(j'O)a T= Rk/Q(TO) = RK/Q(Gm)’ 7= Rk/Q( T(/))a T"= Rk/Q(Gm)'
Since

hposgo=hp X by, (T x T =o(TH(T"),
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Theorem 2 of Section IX yields

def hx 1 q(AR))
b—— — - = }'(Z
W~ A1) qA2)aA0) L, V)
where we used that hp=hg, hy.=h, and ©(T)=t(T"")=1 (cf. Section IX,
Th. 1).
Here, g(X(Q)) is the easiest one to handle.

(1) 9(A(Q@))=q(Ao(k)=1.
Taking the dual of the exact sequence
! N 7t
0 T,——T, T} 0,

Il Il
Rgpn(G,) G

E(K/k)=

we get
0e—Fre bt PN Fro o

I [ I
Zlgl/zs Zlsl Z

where g=Gal(K/k), s= Y o, N(z)=zs and i(y)=ymod Zs. The dual 1, of
the isogeny 4, is 7e9

Z[g]< =" Z[g]

\/'

[gl/Zsx Z,

where 1, and 1} are injective. Since A,(x)=(x"(Nx)~!, Nx), we have
Zo(y mod Zs, z)=zs+(ny — S(y)s) ,
Lo(y)=(ymod Zs, S(7))

where
Sy=Yz, if y=) z, 0.
ceg oeg

Note that 7(y)=ny (i=n) and 1,4 =n. Taking g-invariant parts of the last
diagram we have
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Zs— " Zs

(kx / 1o

because Z[g]*=Zs, (Z[a]/Zs)*= {0}, Z%=Z. Since 1, is injective,

# Cok(Ao(k))

T 07 — 4 Cok Ag(k) .
TRero() ! Cok Aalb)

a(2o(k) =

On the other hand,

14(k)(zs) = (zs mod Zs, S(z5)) = (0, nz) =nz
and hence

n=4#Cok 1 (k) # Cok Z,(k)=n# Cok I,(k) ,

or #Cok Zo(k)=1, which proves our assertion (1).
From now on we assume that k& contains a primitive n#-th root of 1.

@ GOR) =TT qo(kp)=nt—m

v| oo

Let v be an infinite place of k.
Case 1. k,=C. We claim that g(1,(k,))=n'"". Since
Tok)=Ryxu(Guk)=[[ Ky =C*x -~ xC*,
{ SOES—

Viv
To(k)=k, =C",
no i x=0x, 0, x)e(CF),
Tolk,)={xe(C™)": x; - - x,=1},

Nx=x-'x

the isogeny io(ku) is just the map:

n n
. X1 Xn
Aolky): x R
X1t X, Xy X,

If x belongs to Ker Ay(k,), then x, -+ - x,=1 and x"="--- =x"=1. Then, it
follows that # Ker Aq(k,) =n"""'. On the other hand, take any (u, v)e T¢(k,) x
T (k,) with u - u,=1, u=(uy, -+, u,). Find x; such that x!=wuv, - -,
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xh=u,v. Then, x{ - - xp=u; - - - u,r"=0v"and x, - - - x,=wv with w"=1. Put
x¥*=x,w™ ! Then, x, - - x,_,;x¥=v. Now put

x=(xp, ", Xuo1, X)) € To(k,) -
Then we have
Aok )(x) = ((xT, -+ =y xp— g, X(Cry =+ - 22y X0, Xy 7 X X5)
=((wv, - -+, ty_ 10, Uy)/v, V) =(u, V)
which shows that # Cok 4,(k,)= 1. Hence we have q(1(k,))=n""".

Case 2. k,=R, K,=R for any V|v. Our assumption implies that
n=2. Since

Ty(k,)=R*xR™,
Ty(k,)=R",

Nx=x,x, and
Tok)={x=(xy, x); 13, =13,

the isogeny A4(k,) is just the map:

2 2
. X7 X3 X1 Xj
)'O(ku)' xz(xls x2) f H y x1x2 — IR ) x1x2 .
XXy X1X; X2 Xy

It is easy to see that Ker Ao(k,)={(1, 1), (—1, —1)} and so #Ker 1y(k,)=2.
On the other hand, we have an isomorphism

To(k,) x Tg(k,)~R™ x R*

by the correspondence
((uy, ), v)e—(uy, v)  where wu,=1

and one sees easily that Im(4,(k,))~ {(y,, v); u,v>0}, which proves that
#Cok Ay(k,)=2. Hence q(1y(k,)=1.

Case 3. k,=R, K,=C for any V|v. Again our assumption implies
that n=2. Since

Tolk)=Ryu(Gu)k)=] [ Ky =C*,

Vv
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Tg(k,)=R",

Nx=xX% and

Tyk,)={xeC*; Nx=xi=1} €W,
the isogeny 4,(k,) is just the map:

Ao(k,): x ——(x*/Nx, Nx)=(x/%, x X) .

In this case, one verifies again that #Ker Ay(k,)=# Cok A(k,)=2. Hence

q(Ao(k,)=1.
Summarizing 3 cases, we have

gAR) =T a(Ao(k)=n* "2

v| oo

where r, denotes the number of complex places of k.
©) a(MZ,) =] [a(Ao(0,)) =] [ e, (K/R)(Np)® =D
»lp vlp
Let P be a prime factor of p in K. We use the standard notation e=e¢,=
e (K/k), f=f,=f,(K/k), g=g,=9g,(K/k). We have n=efg. Since Ty(o,) =
[Tog, Tg(o)=0, and N(x)=N,(x;) --N,(x,) when x=

Bl
(xy, -, x,) € Ty(0,)," the isogeny Ay(o,) is the map:

Ao(o,): T —— TV x 0

where I'=[] oq, I'V={xel; Nx=1}, given by
Blp

Ao(0,)(x) = (x"(Nx) ™', Nx) .

First we claim that #KerAy(o,)=(ef)n’ '=g~'n’. So suppose that
(x"(Nx)~™*, Nx)=(1,1). Then, Nx=1 and x"=(x{,---,x})=1, ie.
x{=---=xy=1, or x;={* Now, we have

l=Nx= ﬁ (NC)“'— ﬁ Cefal_Cef-Za

<=»efzg: .=0 (mod. n) = Z a;=0 (mod. g).

i=1 i=1

This implies that
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Ker )'O(Dp):{x:(cal5 T, Cag); Zg: aiEO (mod g)} .

i=1

Since a, is uniquely determined mod. g by
g—1
a,=— Y a; (mod.g),
i=1

there are g~ 'n=ef choices of 4, mod.n and we get
#Ker Ay(0,)=g " 'n?.
Before computing Cok 4,(o,) we state a simple lemma which will also be
needed later on.

LEMMA 1. Let ¢: A— A’ be a homomorphism of abelian groups and
be the restriction of ¢ on a subgroup B of A.

b,

)
Y
B

Assuming all indices are finite, we get

[A:B]=[Im ¢:Im y][Ker ¢: Ker ] .

We apply the lemma to the following situation:
X ¢ X
' xopy —— >
U U o(x, y)=xy
Im 4,(0,) —l/l~>1"" :

Obviously, ¢ is onto. The same is true for i, because for any x we have
Y(u, v)=uv=x" with u=x"(Nx)"!, v=Nx. Now,

Ker ¢s(x, y)e—x=y el no
—x=y7L I=Ny=(¥)y=y".
Hence #Ker ¢p=#(I"" no,)=n. Next,

Kery a(u, v)e—u=v"'el' n o

—u=v"1 v"=1.
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This time, however, u=x"(Nx)"!, v=Nx for some xeI'. From u=v"1 it
follows that x"(Nx)~™'=(Nx)~!, ie. x"=1 or x{=---=x)=1. Since k
contains all n-th roots of 1, all x; belong to k and so Nx=x{ -+ xJ=w.
Therefore v/=x7 -+ x;=1. Conversely, 1Y =1=1"=1= v={" for some
N=n|gN=ef|N=v={" So, if we put x=({*1,--,1), then Nx=
(" =v and u=v~ ! =x"(Nx)"!, which shows that (i, v)e Kery. Thus, we
have seen that # Kery=¢g. By Lemma 1, we have
#Cok Ag(0,)=[I'" x 0, :Im A(0,)]
=[Im ¢:Imy][Ker ¢:Ker /]
=[I'Y ) :T™"n/g
_n [T
g [I:I%e)]"
Applying Lemma 1 to the situation:
r %, 0,
V) V)

1
It )Dp>< —>(D: )n

we have
[F: I 1=[NI:(0,) I : ")
=[NI':(0,;)"].
Hence,
n [
#Cok A D e e
)= ENT: o7
Therefore,
1 [I:I7]

q(io(np))=n9—1 [NF‘(D X)n] :

Note that NI'=N_oq where P is any prime factor of p in K and N, on the
right means the norm for Ky/k,. From local class field theory, we have

#H%0og)=[0):N,og]=e, >
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and so

Qlhof0)) = =25 [[”D"“Q,(fo““f)}]” :

p -

Since
[0 (0 Y1=n(NpY™™ ,  [og : (04)]=n(NR)™® =n(Np)™/»*
we see that

q(Ao(0,)) = e, (Np)®"~ 1>
and that
dqMZ)=TTe, - [T(Np)n= 1.

vlp »lp
Multiplying this for all p(# c0), we get
) 1 qu(zp))=<ﬂ ) B,
p#© P
From now on we assume that g=Gal(K/k) is cyclic of degree n.
(5) qUZ))=n"="""1-20 - H(0g) >
The isogeny 4, induces the map
Zo(0y) 1 To(o) —— Tg(0) x T (0y)
II I Il
x 1) X

og 0% 0,

where 0’={xepny; Nx=1}. Since { e k, one sees easily that # Ker 1,(o,) =n.
To determine # Cok A,(0;), apply Lemma 1 to the situation:
0§’ x 0y LD%)‘OkX
U S d(x, y)=xy
Im Ay(0,) —— (0, )".
We get
#Cok Ay(0,) =[Im ¢ : Imy/][Ker ¢ : Ker y]=[0% -0, : (0g)"] 7,

because one verifies immediately that Ker ¢ 0’ n o, =<{)> and Kery=1.
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We have therefore

[og :(0g)"]
Cok A =
# O(Dk) n[DK D(Kl) Dk]
Applying again Lemma 1 to the situation:

X N X
DK S Dk
v U
o0y —— ()"
we get [og : 080, 1=[Nog : (0.)o% : 0¥ ]=[Nog : (0,)"] and so
[og :(0g)"]
UL ) = -
[Nog :(0r)"]
In general, for a g={o)-module 4, the Herbrand quotient is defined by
#HA) #H%A)
Q(A)z —1 = 1 -
#H™Y(A) #H(A)
It is known in class field theory that

0(o2)= [0y :Nog] 2°9%

T [of:0g)' 7] n

where p is the number of real places in £ which ramify for K/k. [i.e. 2°=
[T e(K/k)]. As for the group of units, write

" o, =W, xZ"™, n=ri+r,—1,
og =Wy xZ'™=, rgk=R,+R,—1.
Since one verifies easily that [Wy: Wi]=[W,: W], we have
[oF:©8)T_ oo,
[ox :(0)"] '
Since

X .0 x\n _[Dkx :(0g)"] __[Dkx H(og)"] . 1
ek O o Ne ] ™ Qo) FHIGR)

we get finally
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qUZ)=n"="""1-27 f H' (o)) .

Before combining (1), - - -, (5), note the following relations,
[ nny=R, +2R,
ng=r;+2r,
©6) lrn=0+p, o being the number of real places
of k unramified for K/k ,
R, =no
LR, =(n/2)p+nr, .

Note that p=0 if n>3 because { ek. Note also that our assumption K/k
yields ©(T")=n (Section VIII, Th. 1, Cor. 1).”
We are now ready to determine
h 1 q(A(R))
(7) E(K/k)=7—"—=—— NZ)) .
by~ oT) qKZ)aR@) 1L, 1)

By (1), - -, (7), we get

nnp/Z ]._[ eP(K/k)

(8) E(K/k)= v ’ ;Hl—(o,é) .

If n=2, we have (n"/?)/2°=1. If n>3, since p=0 in this case, we have
(n"?)/2° =1 again. Hence, we get

[Te.(K/k)
) E(K/k)y=t —rr, K/k=cyclic kummer .
#H(o5) Y
If, in particular, n=/ a prime number, we have
(10) [Te (K/k)y=1"%™ |
P

where #(K/k) means the number of prime ideals of k ramified for K/k. We
also have

(11) HI(DKX)z(Z/ZZ)e(K/k) 6)

for some integer e(K/k)>0. Hence, in this case,
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(12) E(K/k) = ['"KlR=e(Kfk)

Suppose now that k=0 and /=2. As hy=1and T=0; (f,,), f,,, = N(x+yw)
(see Sections I, II, III), we have A=A} and so

(13) E(K/Q)=hy/h % =2"KIQ)~eKiQ)
Let o be the generator of galois group G(K/Q). Then
Hl(o,}‘)zH‘l(olﬁ)=o§}’/(o,§)1"’ )

From this, one finds easily that

(K/Q)= e Ax<0 or Ag>0, Jeeog, Ne=-1
|2,  4g>0, Ne=1 Veeoy.
and so
(14) hi Ry =250

which is the Theorem of Gauss (Section II, Th. 6).

Remark 1. Let K=Q(e*"?), p=a prime >3, and let k be the maximal
real subfield of K: k=Q((+{™Y), {=e*"/P, Applying (12) to this quadratic
extension, we can prove that

E(K/k)=1."
Remark 2. The number E(K/k) makes sense for any finite extension

Kk.

Added in Proof. Recently, we obtained for any galois extension K/k
the following formula which generalizes (8):

#Ker(H(g, K*)>Hg, K () [[#H (g, 07)
[K':k]1#H%g, o)

where K’/k is the maximal abelian subextension of K/k, K is the idele
group of K, oy =pg or R or C for V|v and g, is the galois group of K, /k,.

E(K/k)=
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Notes

Prequisites on quadratic forms and quadratic fields are found in [5] and [7]. Some classics
are: [17], [18], [32] and [35].

No=ao’, the norm of o€ K.

/>0 means that the quadratic form f'is positive definite. Note that for f/in Q(4g) one has
(a,b,c)=1.

cf. [14] Sec. V, art. 234-art. 249.

cf. [13] Supplement XI, Uber die Theorie der ganzen algebraischen Zahlen.

See, e.g. [21] p. 79, Theorem 27.

See, e.g. [5] p. 70, Theorem 2.

cf. [14] Sec. V, art. 230-art. 233.

See [5] Chapter 1, [7] Chapter 3 and [30] Chapter III for proofs of properties of Hilbert
symbols.

See [7] Chapter 8.

I used Tables in [6]. I want to take this opportunity to mention a perhaps novel invariant
px of an imaginary quadratic field K =Q(\/E). Notation being as in Section I, put /=Nw
and consider the polynomial

x2+1, m=2,3 (mod 4),
x*+x+I, m=1(mod4).

For a natural number v, denote by degv the number of its prime factors counted with
multiplicity. Now put

PK(x)=N(x+w)={

Pr=, max deg(Pg(x)) .

This invariant of K is closely connected with the structure of Hy. For example, we have
px=le=hg=1(29]),
px=2+——=hg=2 (R. Sasaki, cf. [34]).
But, py =3 <hg=4if m= —21. Sasaki also proved that pg <h, always (cf. [34]). I have a
conjectural inequality
() h <205

H. Wada informed me, using computer, that («) is true for —m <8173. See, e.g. [16] more
about recent progresses on class numbers of imaginary quadratic fields.

Prerequisites on algebraic groups are found in [2], [19]. Some classics are: [9], [10], [11], [12].
An algebraically closed field Q that has an infinite transcendence degree over the prime
field is called a universal domain.

We followed the proof in [7] pp 113-114.

The definition of G(A4) for any linear algebraic group G was given by [23], but its intrinsic
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1)
2)

9]
2)

VI
1)
2)
3)
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character, i.e. the invariance under algebraic isomorphisms over Q was proved by [37], 1.2.
Weil’s lectures [37] have played an important role in the development of the arithmetic of
algebraic groups and Tamagawa numbers. cf. [28] for a survey of the history of the
arithmetic theory of algebraic groups.

cf. [1].

A means the adele ring of Q.
A* =the idele group of @, A =R* x z,

cf. [1], [3].

cf. [1], [15].

At this moment, w,, (resp. w,) simply means any Haar measure of the unimodular group
G(R), (resp. G(4),).

cf. [3].

cf. [4] Proposition 5.1.

cf. [24] Theorem 4.

cf. [37], 1.3. Because of its importance, we reproduce here the definition of the functor: Let
K/k be a finite separable extension of degree d. Let V, W be varieties defined over K, k,
respectively. Let p: W—V a map defined over K. Let 2 ={a,, - - -, 0,} be the set of all
distinct isomorphisms of K into k. We can then define p: W— V. and also (p°*, - - -, p%9):
W—V7tx -+ x ¥V, this being the mapping w+—(p°(w)),.s. If the latter map gives an
isomorphism, we call W (actually the pair {W, p}) the variety obtained form V by the
restriction of the field of definition from K to k and write { W, p} = Ry, (V'), or by abuse of
language, W= Ry, (V).

of. [25] (1.2.6).
of. [11].
of. [33].

cf. [37], Chapter II and Appendix by Ono. See also [22].
See the end of Section IV.
cf. [26].
cf. [37].
[ 6], Theorem 6.1.1.
[27].
cf [37], Chapter III.

Although the notation of the Tamagawa number ©(G) is intrinsic, i.e. independent of the
matrix embedding G < GL,, things like G(Z,), p# o0, G(Z), G(A),,, h, etc. depend on how
we realize G as a matrix group. Fortunately, however, as far as tori are concerned, it is
customary to adopt the following intrinsic definition. (cf. [25], 2.1) Namely, for a torus T
over Q, we define T(Z,) as the unique maximal compact subgroup of 7(Q,):
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[2]
[3]

[4]
[5]
[6]

[91]

[10]
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T(Z,)E {xeT(Q,); |E(x)|,=1, Ve T(Q,)} .

[When p= co, this is the group K< T(R) in Section VL]
We then put

T4), E TR % [ T(Z), T@DETQ)TA),,

p#E

he & HTQNTA)/T(A),,) -
in Sections IX and X, we shall follow this shift of definition for tori.
The formula (1) is implicit in [25], explicit in [31] and is obtained by following Tate’s
computations of various measures in idele groups (cf. [36]).
cf. [25], Theorem 2.3.1.
cf. [31], Theorem 3.1.1.

N, (o) means the Ky/k,-norm of ae Ky.

[20], p. 188, Lemma 4.

ks T p Will be explained soon.

[20], p. 192, Corollary 2.

Actually, Section VIII, Th. 1, Cor. 1 is not enough unless k=Q. For a general k, ©(T")=
7(T4)=n follows from [26], p. 69, Cor.

See e.g. [8], p- 105, Corollary 1 and Corollary 2.

[31], p. 53.
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