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Abstract. We formulate the algorithms, based on the Mordell-Weil lattices, which
can be applied to the construction of a cubic surface together with 27 lines. This con-
struction contains six free parameters, and in particular, it allows to construct 6-parameter
families of cubic surfaces and 27 lines on them, all defined over a given field, e.g. over the
rational number field Q.

1. Introduction

Fix any field K of characteristic # 2, 3; for example, you can take K = Q (the field
of rational numbers).

We formulate two algorithms (M) and (A). For both algorithms, the input is a six
or seven-tuple of elements of K, called the data below, while the output is a six-tuple of
elements of K, called the parameter: . = (po, p1, P2, 90, 41, q2).

Algorithm (M)
Input E=(s1,...,86:F) St. S;---S¢ =7
Output | A = (po, P1, P2, 490,91, 42) and {Py, ..., Py}

3

For the algorithm (A), the input data is: u = (u1, ..., ug), and the output is of the same
form as above.
The parameter A is attached to the following cubic Weierstrass equations

(M) Y2+ txy = x> + (po + pit + patDx + qo + qit + gat> + 12 (1)
(A) y* =212y = x> + (po + pit + patH)x + g0 + qit + qot* )

(of total degree at most 3), as the case may be. They have a singular fibre at + = oo as an
elliptic surface over P!, which is of Kodaira type I3 for (M) and type IV for (A).
A solution P = (x, y) of the Weierstrass equation will be called a linear solution if it
is of the form
P:x=at+b, y=dt+e (a,b,d,ecK). 3)
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Our algorithms will give a down-to-earth approach to write down the Weierstrass equations
such that the 27 linear solutions {P,} are effectively described in terms of the given data.
For the algorithm (M), for example, the coefficients a of the first six linear solutions P;

have the preassigned value:
1

a=-— 4)
1
determined by the given data, which partly explains the title of the paper. The precise
statement of algorithm (M) will be given in §3.
Geometrically, each of the Weierstrass equation will define the following closely re-
lated objects:
e E: an elliptic curve over the rational function field K (¢),
e S: a smooth projective rational elliptic surface f : S — P! over the projective
t-line with zero section,
e X: an affine surface in the affine 3-space A3 with coordinates (x,y,t),and
e V: a cubic surface in the projective 3-space P3 with homogeneous coordinates
(X:Y:T:Z)=(x:y:t:1). Explicitly, for (M):

Vi i Y2Z4TXY = X34+ (poZ> +p1TZ+paTHX+qoZ° + i T 2>+ o T?Z+T3 . (5)

They will be denoted by Ej, Si, X, Vi, in case the parameter A should be indicated. For
generic parameter X, the Mordell-Weil lattice (MWL) of S is known to be isomorphic to
E;‘, the dual lattice of the root lattice E¢. For any parameter A, Sy (or A) will be said to be
non-degenerate if the MWL of S; stays isomorphic to E¢. We shall prove a necessary and
sufficient condition for non-degeneracy in terms of the input data (§8).

The linear solutions of the Weierstrass equation will then give, in the non-degenerate
case,

e the 27 K (¢t)-rational points of the Mordell-Weil group E; (K (¢)) of the elliptic
curve E; /K (t) such that suitable six among them, e.g. {P;|1 < i < 5} and P5,
form a set of free generators of the Mordell-Weil group;

e the 27 sections { P,|1 < n < 27} of the Mordell-Weil lattice (MWL) of the elliptic
surface S, corresponding to the half of the 54 minimal vectors of height 4/3, and

e the 27 lines on the cubic surface V;:

Iy :X=aT +bZ,Y =dT + eZ (6)
Moreover our construction automatically incorporates the double six structure

since the first six lines /; and the second six lines /gy ; form two sets of 6 lines
satisfying the “double six” condition in the sense of Schlifli.

Furthermore the map (¢, x, y) — (¢, x) defines a double cover of the plane P? (with ho-
mogeneous coordinates (7 : X : W) = (¢ : x : 1)) whose branch locus is a plane quartic
curve, say I'y: for(M), it is given by

3 1 2.0 2 2
XW + 72X+ XW(poW? + i TW + paT?)

+ (oW + I TW? + pT*W +THW =0 (7)

For generic A, it is a smooth genus 3 curve, and we get as a by-product:
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o the 28 bitangents to I} are given by the 27 lines
X =aT +bW ()
and one more: the line at infinity W = 0.

The algorithms (M), (A) are based on the results on Mordell-Weil lattices of the elliptic
surface S (or of the elliptic curve E/k(t), k = K); see §5 below, and cf. [9], [16] for
algorithm (M), and [10, 11, 13] for algorithm (A). The chosen letter (M) or (A) refers to
the multiplicative or additive nature of the algorithm, reflecting the structure of the singular
fibre at ¢+ = oo of the elliptic surface S), which is of Kodaira type I3 for (M) and type IV for
(A). The smooth part of the singular fibre is an algebraic group whose identity component
is the multplicative group G,, for (M) and the additive group G, for (A).

Both algorithms can be formulated in elementary terms only, without use of algebraic
geometric terms. Thus the algorithm could be used by any interested reader. For example,
it will allow you to write down equations of a cubic surface with all 27 lines having the
rational (hence real) coefficients at your will, and to draw the picture of such if you like.
See the appendix for some illustration.

Now the subject “cubic surfaces and 27 lines” is one of the most classical, famous and
well-studied topics in algebraic geometry since its discovery in the middle 19th century,
and there are excellent books on the subject (e.g. [6], [3]). Hopefully the present article
will make some useful contribution to the subject, by affording a systematic method to
give the defining equation of a cubic surface, together with explicit equations of 27 lines
on it. Compared with our old work [11, 12, 13] (based on the idea of algorithm (A)), the
present article gets much improved, as it is based on the more recent progress on what
we call mutplicative excellent families studied in [16] and [5]. The latter paper treats not
only MWL of type E¢ but also of types E7 and Eg, and reveals a close connection of
MWL-theory to the representation theory of exceptional Lie algebras (or groups) of type
Es, E7, Eg. Thus similar application can be expected to the study of del Pezzo surfaces of
degree 1 or 2 (cf. [6]) and the exceptional curves on them.
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2. Preliminary remarks

Before formulating the algorithms, we write down the obvious condition for a linear
solution (3) of the Weierstrass equation (1) or (2).

First, substituting (3) into (1), we have formally a polynomial of ¢ of degree 3, whose
coefficients should be identically zero for (3) to be a solution of (1). Thus in the case (M),
the following relations should hold among a, b, d, e:

ad = a’> +apr + 1
ae = (3a* —d + p2)b + (ap1 + g2 — d*?)
0 = 3ab?> — be — 2de + apo + bp1 + q1
0="03—e>4+bpo+qo
Similarly, substituting (3) into (2), we see that, in the case (A), the following relations
should hold among a, b, d, e:

€)

—2d =a® + ap>
—2e =3a’h —d* +apy +bpr + ¢
2de = 3ab® + apy + bp1 + q1
e* = b’ +bpo+ qo
In both cases, one can uniquely determine d, e in terms of a, b from the first two
relations of (9) or (10). Then the last two relations of (9) or (10) become two polynomial
relations of b of degree 2 and 3, say

2(b) =0, 93(b) =0 (11)
with coefficients in K[A, a, a_l] orin K[A, a].
By eliminating b, i.e. by taking the resultant of ¢, (b), ¢3(b) with respect to b, we
obtain a monic polynomial

(10)

P@)=a +--- (12)
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of degree 27 in a with coefficients in Q[A], cf. [16] and [10]. For later use, we note
an obvious remark about the resultant that there exists at least one common solution b of
¢1(b) = ¢2(b) = 0 if and only if a is a root of the resultant @ (a) = 0:

b |p1(b) =0, @) =0« P(a)=0. (13)

3. Algorithm (M)

3.1. Input
Fix any field K of characteristic # 2, 3. The input data of the algorithm(M) is a 7-tuple
of non-zero elements in K

E=0(51,82,...,867r) s #0 (14)

such that the product of s;’s equals the third power of r:
5182 - - - 56 =r (15)
As & is uniquely determined by the 6-tuple &' = (sq, 52, ..., 55, 1), to give a data is equiv-

alent to giving a 6-tuple of non-zero elements.

3.2. Notation
To state the algorithm, we fix some notation. Define

S r
si=—(1<i<6), sf:= (i #J) (16)
r Sl'Sj
and consider the finite ordered set with 27 elements (a 27-set in short):
2 :={S1,82, ..., 86, 57, Sy ooy Sy 812 8130+ oo Sog)
={s1,..., 57} (17)

with fixed ordering. We write §2 = §2¢ if necessary. We also need the following set of 36
elements (a 36-set):

H:Hg:{l,i(i<j§6), r (i<j<k§6)} (18)
ros; i8Sk
Let
€ (or €_y) (19)
denote the n-th elementary symmetric polynomial of {si, ..., s27} (or {sl_l, ...,s2_71}).
Note that €_,, = €p7_, since H,Zl 1 8i = 1 as is easily verified. For the algorithm, it is

enough to prepare €, €_,(n = 1, 2, 3). Further we set

1 S r i8Sk
51 = - — — 20
=y iy Z( i ) (20)

N NAFR) r
iz icj<k NIk

which is the sum of 36 elements of the set IT above and their inverses.
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3.3. Output
Fix an input data (14)
E=0(51,52,...,56: 7).
The first output is the parameter (Weierstrass coefficients):

A = (po, p1, P2, 90,41, q2)
and the second output is the ordered set of 27 linear solutions

{(P,:x=at+b, y=dt+e(l <n<27)}
of the form (3), in which a has the value:

a:—i(1§n§27). 21

Sn
First, using the six quantities €1, €2, €3, €_1, €_3, §1 given above, we define the output
parameter A = (po, p1, P2, 90, 41, q2) by the following key formula:

p=ie

_ 1
p1=—301
po=e— el —e

_ T2 (22)
612——6—14-%61
q1 = —€1+€2— %5161

qo=9+38+ 18— te_jei — el + tae — e
(cf. [16, (25)]). Look at the resulting Weierstrass equation (1):
(M) y? +txy = x> 4 (po + pit + patHx + qo + qit + qat> + 13

Note that, if a and b are given, d and e are uniquely determined by the first two
relations of (9).

_ 1 2
{d_a +a*+ p2 23)

e=((3a®> —d + p2)b+ (ap1 + q2 —d?))/a.
Thus P, will be uniquely defined by giving a = —1/s, and finding a suitable b.
We distinguish three cases: (i) n < 6, (ii)) 7 < n < 12 and (iii) n > 12. In the
following, the indices i, j, k are in the set I := {1, 2, 3,4, 5, 6}.

3.3.1. Case(i))n =i
Forn=1i <6, P, = P; has

1
si
1 1
b=si+— + E (s;+s{fj)—§61 (25)

ST
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3.3.2. Case(iiyn=6+1i
We have s, = s; and P, = P/ has

1 r
a=—— =—— (26)
Si Si
1
b=s;+— +Z(SJ +S,/ — —61 27
s J#i

3.3.3. Case (iii) n > 12
In this case, we have s, = sl” ; for some i # j,and P, = Pl.’/f has

1 Lo
a=—— =~ (28)
sij r
1
b—s”+,—,2+(sl+s+s,+s)+z Y s ze (29)

k<l {kl}N{ij}=9

4. Proof

Given the key formula (22), it is straightforward to verify (with the help of computer)
that the above formulas for a and b are correct, by plugging in x = at + b, y = dt + e into
the Weierstrass equation (1). q.e.d.

Instead, let us indicate below the idea of proof leading to the above formula for the
coefficient b of P,.

4.1. Idea
Fix n, and take a = —1/s, and d, e by (23). Then, by (11), b satisfies two polynomial
relations of degree 2 and 3 in b,

p2(b) =0, @3(b)=0 (30)
which have at least one common solution b. In fact, the key formula in the algorithm (M)

is so arranged that the resultant @ (a), (12) is a degree 27 polynomial in a such that @ (X)
is equal to the following polynomial:

27 1
[T(x+): 61
Sn
n=1
cf. [16, (34)], and we have only to apply the remark (13).

In this way, we obtain 27 distinct linear solutions provided that 27 s, are all distinct.
But this condition is too restrictive. To be instructive, let us insert a numerical example
here, before continuing the proof.
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4.2. A numerical example
Let K = Q and take the data:

1 1
&= (1,2,—5,3,—5,8; 2>. (32)

By following the above indication (with the help of computer), we obtain 27 distinct linear
solutions. In this example, however, the 27 s,, are not necessarily distinct. For example,
we have s, = 1 forn = 1,8 or 13, i.e. 1 appears three times in the 27-set £2. Looking at
the list of P, given in §9.1, we find that the three linear sections P, Pg and Pj3 are indeed
distinct and have the same coefficient a = —1. There arises a natural question: how to
decide the order among them.

There are several methods for this type of question, but the most useful way is the
following: first work out the generic case and then consider specializing the results in the
case under consideration.

4.3. Proof (continued)

Suppose that the data & is generic. By this we mean that the field Ko (&) := Ko(s1, .. .,
s¢, ) has transcendence degree 6 over the prime field K¢ contained in K, and we may
replace K by Ko(§).

In this case, the polynomials ¢, @3 in (30) have coefficients in the ring of Laurent
polynomials in Ko(§):

Kol&, 6" == Kols1.s7 ', ..., se.55 1.

We claim that the common solution b = b, of (30) is unique and it is contained in this
ring. Indeed, as the degrees of ¢;, ¢3 in b are 2 and 3, b, is a rational function of K¢(§).
Furthermore it is integral over Ko[&, £ '] since 3 = 0 is a monic equation over this ring.
This implies our claim, because Ko[£, £ '] is clearly normal (it is equal to the polynomial
ring Ko[s1, ..., s5, r] in 6 variables, localized by (s - - - s57).)

Therefore the common solution » = b,, of (30) fora = —1/s, is an element of the
ring Ko[£, £7']. A direct computation gives this element, which is then identified with the
formulas stated in (25), (27) and (29).

Once the generic case is established, we may specialize the generic data, say & to any
data £&. Then the generic linear solutions P,’s naturally specialize to P,’s, since all the
coefficients involved are contained in the ring of Laurent polynomials. g.e.d.

REMARK. There are 27 distinct linear solutions precisely under the non-degeneracy
condition that

r#&E1, s #F s <), sisjskFEri<j<k) (33)
which is equivalent to saying that the 36-set IT¢ of (18) does not contain 1:
1 & I (34)

(see §8). The data (32) satisfies this condition, as shown by (84).
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5. Algorithm (A)

For the sake of the comparison, we briefly include a set-up for the algorithm (A). This
is based on our old work [10, 12, 13], improved by the simplified construction of the lattices
Eg and E¢ in [14].

5.1. Input
Assume that K is any field of characteristic # 2, 3, 5, 7. The input data of the algo-
rithm (A) is simply any 6-tuple of elements in K

u= uy,uy,...,ug). (35)
Letting
w= 3@ bt tug), (36)
the 7-tuple (u1, ua, ..., ue; vo) may look more parallel to the data & of the algorithm (M).
5.2. Notation
In this case, define
uy ==u; —vo (1 <i <6), ué}::vo—ui—uj i< j) 37)

and consider the finite ordered set with 27 elements (a 27-set in short):
Q= ={ur,us, ... u,uy, wy, ... ug, uly, uls, . use)
={uy,...,u27} (38)
as before. We also consider the following set of 36 elements (a 36-set):
n=1II,={-vo, uj —u;j (i <j<6), vo—u; —uj—up (i <j<k=<06)} 39)
Next let
€n (40)
denote the n-th elementary symmetric polynomial of {u1, ..., ua7}.
5.3. Output

Then we define the output parameter A = (po, p1, P2, 40, 41, q2) by the following
formula:

P2 = e

P1 = €5

42 = 55(—168p3 + €6)

Po = 755(—294p3 — 528p2q + €3) 1)
q = ﬁ(—1008171p% + €9)

40 = 17555 (—608p? pr — 4768 pop3 — 252p§ — 1200p3q2 + 124842 + €12)

(cf. [10, (2.15)]). For generic data u, these six polynomials form a system of fundamental
invariants of the Weyl group W (Eg), generating the graded ring of the invariants in the
classical sense.
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Now look at the resulting Weierstrass equation (2):
(A) y* =207y =+ (po + pit + pat)x + g0 + qit + qar°

Then there are 27 linear solutions of the form (3) and one can determine the coefficients
a, b, d, e as follows.
Take
a=u, (1<n<27). (42)

Then determine d and e from the first two relations of (10): i.e.
d = —3(a®+ap)
e =—3(Ba’+ p)b + (api + ¢ — d?).

Then the remaining two relations of (10) have at least one (and at most three) common
solution(s) b. This follows from (13) and the fact that the resultant @ (x), (12) in the case
(A), is equal to the following polynomial:

(43)

27
o) =[] —un): (44)
n=1

cf. [10, §10].

In this way, we obtain 27 linear solutions of the Weierstrass equation (2), if all u,, (1 <
n < 27) are distinct, and more generally, under the non-degeneracy condition in the case
(A) that no element of the 36-set IT, (39), vanish (cf. §8). We omit the closed formula for
the linear solutions P, here (cf. [13]).

A numerical example is given in §9, (87).

In the rest of the paper, we mostly focus on the multiplicative case (M) only, but there
are parallel facts for the additive case (A).

6. Background from the MWL-theory

In general, consider a rational elliptic surface with a zero-section (defined over an
algebraically closed field k)

f:S— P! (45)
and let M denote the Mordell-Weil lattice ([9]). It is known that (i) if f has no reducible
fibres, then M is isomorphic to the root lattice Eg. (ii) If f has a single reducible fibre with
two irreducible components (Kodaira type I or I11), then M is isomorphic to E;‘ , the dual
lattice of the root lattice E7. (iii) If f has a single reducible fibre with three irreducible
components (Kodaira type /3 or /V), then M is isomorphic to Ef, the dual lattice of the
root lattice Eg.

As an abstract lattice, the three lattices Eg, E;‘ and Eg‘ can be uniformly described as
follows (cf. [14]). Let L, be a free Z-module of rank » = 6, 7 or 8, with free generators
uy, ..., ur, equipped with bilinear pairing

1
9—r

(ui,uj) =26 ;+ , (46)
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where §; ; is the Kronecker’s delta, and let I:r be the lattice spanned by uy, ..., u, and vy,
where

1
v0=§(ul+~'+ur).

Then, for r = 8,7 or 6, the lattice I:r is isomorphic to Eg, E;‘ or Eg‘ respectively. The
minimal vectors of these lattices and the roots in the root lattices E, can be described in a
relatively simple form in terms of uq, ..., u, and vg (cf. [14]).

In this paper, we are dealing with the case (iii) above. Thus, for any rational elliptic
surface having MWL M = E;, there exist six sections P; € M and one R € M, corre-
sponding to u; and vg, such that the height pairing satisfies

1

(Pi,Pj)=5i,j+§, 47)
and
6
Z P; =3R. (48)
i=1

Now consider the elliptic surface defined by the Weierstrass equation (1) with generic
parameter A. It has a fibre of type I3 at t = co. Consider the specialization homomorphism

SPoo 1 M — k*. (49)
It is the unique homomorphism from M to k* such that spoo(P) = —1/a for any linear
section P : x = at + b,y = dt + e (cf. [7]). If we set
Si = 8$poa(Pi),  r =Spso(R), (50)
then the relation (48) implies
S152 56 =1 (51

The algorithm (M) is based on the idea to reverse the above process. Namely, starting
fromthe data & = (sq, ..., S¢; r), we recover first the parameter A, by using the key formula
(22), which involves the multiplicative invariants of the Weyl group W (E¢), and then we
determine the 27 linear sections { P,} on the elliptic surface Sj, as indicated in §4.

The MWL M, is generated by Py, ..., Ps and R. Furthermore, corresponding to (16),
we have

Pl=P,—R, Pl=R—P—P(i<]) (52)
where P/ = P; ¢ and {Pi’J’.} = {P13, ..., P»7}. These relations hold true from the start of

our construction (47, 48), but of course they can be confirmed, for instance, by the addition
formula on an elliptic curve.

Next we look at the sections of height 2 in M (the narrow MWL) corresponding to
the 72 roots of Eg. The set of 36 positive roots in M ~ Eg (w.r.t. a suitable basis) is given
by

(=R, Ajj =P —Pj(i<]),Bjr=R—-—P—P;j—P. (i <j<k)}. (53)
More precisely, letting A; = A; ;41, the six roots
{A1,..., As, Bi23} (54)
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form a Dynkin basis of M? = Eg, and the above 36 elements of (53) are positive roots with
respect to this basis.
In general, a root Q of M is of the form:

O=(x,y): x=gt’+at+b, y=ht’>+ct>+di+e. (55)
By a direct computation (the addition theorem, in principle), we have for
r r
=R: =, h=——— 56
Q I=r—12 r—1)3 °6)
0=A;: SL pe (57)
o g_(si—sj)z’ (s =)}
2,22
rSiS Sk rS;Ssg
= B N =, e 58
0 ik g (r — sisjsk)? (r — sisjs)? (58)

In terms of the specialization homomorphism at infinity, restricted to M?,

spoo : MY = Of =Gy spoc(Q) = ghih, (59)
we can write
$Poo(R) =7, spool(Aij) = j_, . SPeo(Bijk) = Sis’jSk (60)
Hence the above formulas for (g, #) of a root Q can be summarized as follows:
PROPOSITION 6.1. Forany root Q € M°, let p = spoo(Q). Then we have
g=—"— £ (61)

, h=——.
(p—1)2 (p—1)3
Moreover we have for Q = (x,y)
(0 —D%x, (p— 17y e Kol&, £I1]. (62)
The 36-set I1 (18) is equal to the set of speo(Q) for the 36 roots Q € MO in (53).

The root R can be computed as the difference P; — P/ for any i < 6. For example, the
x-coordinate of the root R is given by the following:

2,2
r , rr+1)y, Yo 1
= - t 2= = 63
T2 (r — 1) G_nz T3 (63)
where y; (resp. y—;) denotes i-th elemenratry symmetric polynomial of {s1, ..., se¢} (resp.
syt st

7. Digression: a refined algorithm (M')

In this section, we consider the following Weierstrass equation
(M) y* +txy = x> + mox? + (po + p1t)x + qo + qit + qot* + 1 (64)

with a new parameter:
A" = (mo, po. p1. 90,41, q2) - (65)
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The base field K can be any field of charcteristic # 2.

Consider the relations in a, b, d, e for a linear solution (3) to satisfy the new Weier-
strass equation (64), similar to (9). By eliminating d, e and b successively, we obtain the
algebraic equation @ (a) = 0 of degree 27 with coefficients in Z[my, po, p1, 90, 91, g2]-

&(X) =X — X + (g1 —mo)X> + (9 —6p1 + p? — o)X + -

+ 9 —6p1+pi —q0)X> + (po— q)X* —moX +1  (66)

Then comparing the coefficients of X in (66) and (31), we find the key formula for the
algorithm (M'):

my = —€]

g2 = —€_|

po =€ —€_|

q1 = €-2 — €]

q0 = —€3 + 1 (81 +6)?

pr=-38
where €, €_, or 81 are the same as before; cf. (19) and (20). It is slightly simpler than the
previous one (22).

Accordingly, the coefficients a, b, d, e of linear solutions P, are simplified.
(i) Forn =i <6, P, = P; has:

(67)

1 1
a=—— b:s,»+s—2+2<s;+s;j,,-> (68)
i i A
(i) Forn =6 +i, we have s, = s/ and P, = P/ has:
1 1
a=—<. b=si+ 5+ (5j+s!) (69)
i S
(iii) Forn > 12, we have s,, = sl.”j for some i # j,and P, = Pi’]f has
1 1
a=— b=sit p kst EY Y sy (70
ij ij k<l (kI}n{ij}=v

The algorithm (M’) is formulated, using the same input as (M). The output is the new
parameter A’ , defined by (67), and 27 linear solutions P, determined by the above (i)—(iii).

The two Weierstrass equations, (64) and (1), are actually related by the coordinate
transformation " mo

0
—, ——t. 71
xax+3 y=>y- (71)

Thus there is no essential improvement, except that the new formula (67) works in every
characteristic p different from 2, especially it works even in case p = 3.

Personally the idea behind the above refinement is inspired by the work of late Profes-
sor Jun-ichi Igusa (especially his paper “Arithmetic variety of moduli for genus two”), in
whose memory this paper is dedicated.
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8. Non-degeneracy condition and vanishing roots

Some of the following results (Theorem 8.1, Proposition 8.5) have been stated without
proof before ([16]).

THEOREM 8.1. Let& = (s1,52,...,56; 1) be any data and let A be the correspond-
ing Weierstrass parameter. Then the elliptic surface S, has Mordell-Weil lattice E; if and
only if the 36-set I1g defined by (18) is free from 1.

Proof.  First let us prove the only-if part. Suppose that § = S; has Mordell-Weil
lattice E¢. Then there are 72 sections of height 2, say Q,,(m < 72), coresponding to the
72 roots of the root lattice E¢. By the height formula for any section Q of height 2, (Q)
is disjoint from (O) on S and it intersects the identity component &y at t = oco. Thus the
values of the specialization homomorphism sp, (Q) and sp, (O) differ at every point v of
the base curve, and especially at # = co. Hence

$Poo(Q) # 5po(0) =1

for each Q@ = Q,,. Hence, by Proposition 6.1, the set It is free from 1. This proves the
only-if part.

Conversely, assume that 1 ¢ [z and that S = S, has a degenerate MWL of rank
less than 6. This is the case if and only if there is a new reducible fibre at some v # oo
(cf. [8, 9]). Let us derive a contradiction.

Take a non-identity component @’ of this fibre. Then we have ©@’> = —2 and the class
of ® in the Néron-Severi lattice N S(S) belongs to the Eg-frame V, i.e. V is the orthogonal
complement of U @ Too in NS(S) = U @ Eg, which is isomorphic to the negative root
lattice E . [Here U denotes the unimodular rank 2 sublattice spanned by (O), F'.]

At this point, we recall (cf. [15]) that the set of negative roots in the Néron-Severi
lattice NS(S) (S: arational elliptic surface)

D = Ds = {cl(D)|D* = =2, D 1 (0), F} C NS(S) (72)

is a finite set of 240 elements. The intersection of D with the E¢-frame in the present
situation consists of the 72 negative roots in V = E .

Now take a generic data € = (§1, ..., S: 7) and consider the specialization o : E— &
of £ to a given data § = (s1,...,56; 7); practically, this means just replacing Si, 7 by
si,r. Thus if X (resp. 1) is the parameter corresponding to the data £ (resp. &), then the
specialization of Lundero : & — £ 1is equal to A, i.e. o(X) = A

Applying the results discussed above to the generic (é 1), we consider the specializa-
tion of the elliptic surface S = S5 and the 72 roots O, on Sundero : € — &. Then the set
Dy consists of the classes of 72 elements

Dy = (Qm) — (0) =
When § is specialized to S via o, the set of negative roots Dy is specialized bijectively to

the set Ds. But Dg contains the class of @', and this shows that some Qm specializes to
O. Hence we have spoo(Q;) = 1, which implies that [T contains 1 (cf. Lemma below): a
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contradiction. Thus Theorem 8.1 is proved. g.e.d.

DEFINITION. We say that a root Q becomes a vanishing root on S, if the special-
ization Q = o (Q) is equal to the zero-section O. [An obvious example is this: the root
Ajj = P, — Pj(i < j) becomes a vanishing rootif s; = s; holds in the data §.]

LEMMA 8.2. With the above notation, we have: (i) the specialization Py =~a(ﬁ,,)
isa liizear section on Sy, for any ) and any n < 27. (ii) The specialization Q = o(Q) of a
root Q on S is the zero-section Q = O on Sy, if and only if spso(Q) is equal to 1.

Proof. (i) The coefficientsa, b, d, e of any linear section 15,, are contained in the ring
Ko[slil, el s},il, 7+1]. Hence they have well-defined specialization under o : § — &,
which gives the specialized linear section P,,.

(i) Any root 0 on S is of the form (55) where the coefficients g,h,a,b,... are
contained in the ring Ko[s1=", ..., s6=", FE[1/(5 — 1)], where § = spoo(Q); see Prop.
6.1. Note that the specialization o (p) is equal to p = spso(Q). Then, by the formula (61),
it is clear that we have Q = O iff p = 1. [Recall that the zero O of a Weierstrass cubic is

the point at infinity : (x, y) = (00, 00).] g.e.d.

COROLLARY 8.3. With the above notation, there are no vanishing roots on S, iff
the 36-set Il is free from 1.

DEFINITION. We call a data & non-degenerate if the 36-set I1; is free from 1.

Now let us consider, with the notation in §1, the elliptic surface S, the affine surface
X, or the cubic surface V;, defined by the Weierstrass equation (1) with the parameter A
which is determined by a given data £ by the algorithm (M). Then we have:

THEOREM 8.4. The following conditions are equivalent to each other:
(1) & is non-degenerate, i.e. 1 ¢ Ilg.

(2) the elliptic surface S; has Mordell-Weil lattice isomorphic to Ef.
(2") S, has 27 distinct linear sections.

(3) Sy has no reducible fibres other than the I3-fibre att = oo.

(4) the affine surface X;, has no singular points.

(5) the cubic surface V), is smooth.

(5") V;. contains 27 distinct lines.

(6) the plane quartic Iy, is smooth.

(6") Ty has 28 distinct bitangents.

NOTATION. Let ®;(i = 0, 1, 2) be the three irreducible components of the /3-fibre
att = oo where O intersects the zero-section (O); {®1, ®,} span the (negative) root lattice
s = Aj. The linear sections intersect one and the same component which is labeled as
O1.
The cubic surface V), is defined by the equation:

Vi i YZ2ZHTXY = X34+ (poZ2+p1 TZ+paTHX+q0 23+ T 22+ 2 T Z+T3 . (73)
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The plane quartic I, is defined by the equation:

1
Lo:x® + thxz + (po+ pit + pat)x +qo + qit + qot* + 12 =0 (74)

with (x : ¢ : 1) replaced by (X : T : W).

Proof. (Outline) We assume the basic facts on elliptic surfaces ([4], [17]) and
Mordell-Weil lattices (cf. [7], [9], [8]).

The equivalence of (1) through (3) is already covered in Theorem 8.1 and the discus-
sion leading to it.

Let S; denote the open subset of S; which is the complement of the union of the
zero-section and the fibre at t+ = co. By construction of Kodaira-Néron model (or Tate
algorithm), S;\ can be identified with the minimal resolution of the affine surface X;,. This
shows (3) < (4).

Further, X, is isomorphic to the open set {Z # 0} of V; by definition. Then we see
that the birational morphism S)/\ — X, extends to a morphism S; — V) which blows down
three curves (0O), ®y and ®; to a point of V, and maps @; to the nodal rational curve
which is cut out on the cubic surface V by the plane at infinity {Z = 0}. It is easy now to
check (4) < (5). The equivalence (5) < (5'), (6) < (6') are classically well-known, and
the equivalence of (2'), (5') and (6') can be seen from the explicit construction of the linear
sections in our algorithms (M). g.e.d.

More generally, we denote by v = v(§) (resp. v(u)) the number of times 1 (resp.
0) occurs in I (resp. [1,), and we call it the number of vanishing roots (logically, 2v
should be called by that name (cf. the proof of the if-part of Theorem 8.1), but we prefer
the present one for simplicity. It is obvious that a data & (or u) is non-degenerate iff v = 0.
Including the degenerate case v > 0, we have:

PROPOSITION 8.5. Suppose that S, has new reducible fibres at t # 0o and let
Thew := @uzoo Ty be the new part of the trivial lattice; it is a direct sum of root lattices of
ADE-type. Then

(1) 2v is equal to the number of roots in Tyey.
(i1) the affine surface X, has precisely the ADE-singularities indicated by Tey).

(iii) the cubic surface V) has (only) the same ADE-singularities as above.

Proof.  (Outline) (i) 2v is the number of D € Dg which is mapped to O in the MW M.
Since the latter is isomorphic to the quotient NS(S)/Triv(S) and Triv(S) = Thew @ Twos
(i) follows. (ii) is a wellknown fact on the Kodaira-Néron model, and (iii) then follows
from the same argument as the equivalence of (4) and (5) of Theorem 8.4. g.e.d.

Applying the algorithm (M) to the degenerate data (i.e. £ with v(§) > 0), one gets
all the 21 possible OS-types for which the trivial lattice contains A as a direct factor.
Moreover one can show the existence of Q-split examples in all except one inevitable type;
for this, cf. [16, Table 1].
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9. Examples

Let the base field K = Q. The singular fibres are determined by using [4, 17]

A non-degenerate example of algorithm (M)

1 1
§= (1,2,—5,3,—3,8; 2>. (75)

9.1.
Take the input data

The 27-set £2 is:

1 1 1 13 1
Q: 1725__735__5 87_715__5_5__547
2 3 2 4°2 6
2 1 1 1 4 1 1 3
11_41_1_61 1_21 7_37_7__1127__1_21_1__ (76)
3 4 3 8§ 3 2 127 4
and the 36-set IT:
1 ) 1 3 1 4 2 6 1 13 1 9 3 1 1 3
- 2527 737 787 735 545 6525 167 785 247 737 5
1 4 1 1 3 2 1 1 3 13 1
_15_ T oY T [y Ay T (77)
8 6 2 4

_7__7125__5_25_5__5__7 s T T )
8 3 2 12 4 3 4 24
Observe that the above I7 is free from 1. Hence the chosen data & is non-degenerate and we
should have MWL =~ E¢ and 27 distinct linear sections. Let us check this more directly.
By the algorithm (M), the output parameter is given by
26221 1177 39 46567453 11609 2223) (78)

A= - — —
( 192 7 288 ' 16’ 82944 ' 256 = 256

so that the Weierstrass equation is:
39t2 1177t 26221)

24, i, n 5 222312 11609r 46567453 79)
Xy =X — —
Yoy 16 288 192

256 256 82944

The j-invariant is given by
j = —27648(12¢* — 1404¢% — 23541 + 78663)° /D,
D = 477757441° — 698720256:% — 1150300569617 + 1815037839367°
+ 8896887866881 — 164253899234881* — 145158174916007°
+501036184456704t> — 351749903932440¢ — 1282516588562325

which has 9 simple poles at # # oo and a pole of order 3 at + = oco. This shows that there
is a reducible fibre at # = oo, which is of Kodaira type /3, and no others.

(80)
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The 27 linear sections P, = (at + b, dt + e)(1 < n < 27) are as follows:
39 39 9601 t 7 11t 7291 77 111+ 3391
-1 - —, + = —= = + — 24—, — + ==
816 ' 288 2 1216 ' 288 8 16 288

77 t 17635 65t 2 259 565t 5345 947 ¢t 12895 355t
192 8’ 4608 64

72 3 864 144 +ﬁ’ FERRETT

<89 5t 2965) ( 391 1285> ( 689 299 41035)
8 A+ ——, — + —— ),

24 288 288 247 16 ' 288

359 2 199r 1823 1073 1853 83381\ (57 ¢ 3t 6313
<ﬁ_ 3’ 864> ( FTNNTT: > (R_Z’_?_%)
(B2 2495) (4-o 13r+@> (M3 o _suw)

8 16 288 4 "2 576 12 27 48 288
{473 1210t 8087\ (231, 291r 41429\ (1 97 75t 6005
<8_¥’T_864)< 16 _W) <__§’1_6_2Ts)

311 533t 8959\ [t 727 799t 26077
(ﬁ‘ f’W‘Tss) (5‘?@‘@)
(852 g, 000 _1T00) (30393 10 1700
12 16 288 )\ 4 483 576
(M0 2 sy (o ] Ll (13 T o7
144 12°1728 9 )" 8 16 288 2 416 288 )°
<3689 1, 0250 547285) <ﬂ L 167 715t @)
24 48 288 )\ 3 " 727 144 864

81
It is immediate to translate the above results into the classical setting of the 27 lines on
the smooth cubic surface V;, or of the 28 bitangents of the plane quartic Iy, with everything
defined over rational numbers Q.
See the appendix for the illustration of the drawings for them.

9.2. A non-degenerate example of algorithm (M)
Take the input data

1
&= (1,2,3,4,—1,—;;2). (82)
The 27-set £2 is:

2 = {1,2,3,4,—1,

3727277 2 6
l,%,l,—2,—6,l,l,—l,—3,l,—g,—2,—l,—§,6} (83)
32 3°4 6 3 27 2
and the 36-set [T
- {l,l,l,l,_ Y S N P R 1 1 S PO §
2234 3°2 4 3 4
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1221361111331123 (84)
6’ 3’ 9 2’ 2’ 9 12’ 3’ 9 4’ 4’ b 6’ 2’ ’2
Observe that the above I7 is free from 1.
By the algorithm (M), the output parameter is given by

EER R )
4 39 324 3 4
so that the Weierstrass equation is:
NP 21x? N (@ B g)x | 105625 1751 2112 8 86
4 9 3 324 3 4

Computing the j-invariant as before, we can check that it has 9 simple poles at t # oo and
a pole of order 3 at r = oco. Hence there is a /3-fibre at 1 = o0, and no other reducible
fibres.

The 27 linear sections P, = (at + b, dt + e) are given as follows. The first six:

325 19 ¢ 395 7t 40 ¢ 385 26t
P1: _ts_ 9 P2= Y T A’ A 4 9 P3: A A =4 T Ta 9
13 6 2736 4 9 354 9
b (85 1 2435 63 poe (1220, 5
*“\16 4576 16) T 3 18)"

po (3 20 2B S
6= 3°3 " 18)°

The second six:

19 Tt 1 25 25 55 2t 19t 35
P7: __2t7___ ) P8: Z_tv__ ) P9= A A o  AA )

pio e (6 115 2070 1945
2= 36 9

The remaining fifteen:

pac(8—+ 107 Py 55 3t 19t 395 P — 35 o 7t 205
13 = ’ 18 ’ 14 = 6 2 ’ 12 36 ’ 15 = 3 ’ 2 9 ’
t 15 9r 245 t 115 217+ 1615
—— =+ =, Pu=\--—= =,
2 2 4 36 6 18 36 108

40 26t 565 85 63t 715
__3t7___ ) P19: __4t7___ )
3 3 18 4 9

20 245 t 20 28t 1105
P2()= t——,2t—— y P21: - Y — — — ),
3 18 399 54
< 125 215t 2225) <3t 25 35t 725)
’ 23 = ’

3 T 276 12 36
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e (L 19 619N (9 175
24 = 2 274 36 ’ 25 = 72 9 ’

po (2,25 350 325 b (125 1 175 21
X=\3 79 18 T 27 ) T8 T 67108 36

9.3. A non-degenerate example of algorithm (A)

u=(1,,2,3,4,5,—-12), wvo=1. 87)
The 27-set £2 and the 36-set I7:

£2=1{1,2,3,4,5,-12,0,1,2,3,4, —13,
-2,-3,-4,-5,12, -4, -5, —6,11,-6,-7,10,-8,9,8} (88)

m,={-1,-1,-2,-3,-4,13,—-1,-2, -3, 14, -1, -2, 15, -1, 16, 17, -5,
-6,-7,10,-7,-8,9,-9,8,7,-8,-9,8,-10,7,6, —11,6,5,4} (89)
Observe that the above 7, does not contain 0. Hence the chosen data u is non-degenerate
and we should have MWL ~ E¢ and 27 distinct linear sections. Let us check this more

directly.
By the algorithm (A), the output parameter is given by

444675 99 1013154175 178695 142373
=( - , =360, ——, , . (90)
256 2 2048 2 32
so that the Weierstrass equation is:
992 444675 142373t> 178695t 1013154175
2 2 3
— 2ty = ——— — 360t —
Y Y x+< 2 256 )x 2 T2 T o
O

The j-invariant is given by
j = —(27(42241> + 307201 + 148225)°) /16D ,
D = 409618 — 3715148815 — 8738611201 + 657063688161* + 3115481950080¢°

+ 50047294335775¢> 4 360113812047000¢ + 999242951788125
This shows that there is a unique reducible fibre at = oo, which is of type I V.
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The 27 linear sections P, = (at + b, dt + e)(1 < n < 27) are as follows:

<l‘+49l,&+%> (2[.,_@ &_’_ﬁ)
16 4 4 ’ 16 2 16 )’
16 4 4 16 16
<5t 3 @ 245¢ n 2871> (15635 101 567¢ — 488435>
167 4 4 )’ 16 ’ 16 ’
16° 16 )’ 16 ° 4 4 ’
16 2 16 16 4 4
< 365 11565> (25135 3107t 248985>
4t — —, 67t + , —13t, ——— — )
16 16 16 4 4
(U, oty (35, 227
1 2 16 )\ 16 ’ 4 4 )
(o= 137) (g, 1302850 65T),
16 16 16 4 4
16115 511115 115 11115
<12t~I—T,—567t— 6 ),(F—m, —67t—T>,
(<o S0, 205029 (1381 643y
16 4 4 16 16 2 )’
<llt 9295’ _1573t B 55935) ’ <—6 B % _& B ﬁ)
16 4 4 16 2 16
< 1265 1485 7t> < 4651  505¢ 79281>
-7t — —, ——— — — |, | 10r + , = - ,
16 4 4 16 2 16
605 11385 1775 567t 5165
<—8I—F,58t—l—T>,<9t+ TS )
<8t + 32 —58t — %>
16 16
9.4. A cubic surface with four A;-singular points
Take the input data
11
é:(—l,—1,2,2,§,§;1>. (92)
The 27-set £2 and the 36-set IT:

11 1.1
Q: _17_172127_7_7_17_172127_27_7
2°2 2
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I 1 1
17__5__5_25 _25__27__5_25 _25_5171517154 93
272 172 4 } ©3)
1 1 1 1 11
H= 1117__1__1_21 _21__7__1_21 _21174147414711_7_1
22 22 2°2

1 1 11
21 27__1_11_11_11_11_41__1_11_11_11 _11_41_7_1272 (94)
4 4 2°2

The number of vanishing roots v = 4. This holds only if either 7}, = 4Aj or = A| @ Aj.
Let us check that we have T, = 4A1; OS41 (i.e. No. 41 in [8]).
By the algorithm (M), the output parameter is given by

483 7 2009 287
)\'= - T 1_1—7_1 [ (95)
16 8 32 64
and the Weierstrass equation is:
712 483 287+ 2009
2 3 3
txy = — +4t - — - — 14t + —— 96
oy x+(8+ 16)ij 64 MRS 0
The j-invariant is computed as
. 4(r* — 4212 — 1921 + 1449)°
j= ( ) o7

=52 =32+ D2+ 724t —21)
It shows that there are four I>-fibres at r = 5, 3, —1 and —7, in addition to the I3- fibre at
t = oo. Further, the four singular points of V, and X are as follows;

11 55 5 15 13 13 35 245
(tv-xvy): 51__7_ 5 31_7__ 5 _17_1_ 5 _71__1__ (98)
4 8 4 8 4 8 4 8
The 27 lines I, (1 < n < 27) in the generic case reduce to the 6 lines with multiplicity
7 23t 21 11 ¢t 3 7t 29 35¢
t__’___ 9 ___7___ 9 __2t7__15 9
48 2 4 2 4 8 4 8

21 43 ¢ 21 250 35 9o 7 5
2 T T o 7 ) ~ T T TS T T ) - by g ~ ) 99
(t+4 8+> <2 478 4) (4 t8+2) ©9)

and the 3 lines with multiplicity 1:

9 t7t 17 39 4 133¢ %3 57 t 43 49¢ (100)
2 '8 4 )’ 2 T8 ’ 16 4’ 64 16 )
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9.5. Totally degenerare case with Eg-singularity
Finally take the input data

E=1%1). (101)
We write 1" for n-times 1. The 27-set £2 and the 36-set [T are simply
Q=0%), o={1%. (102)

The number of vanishing roots is v = 36, which holds only if 7., = Eg, i.e. we should
have No. 69 in [8]. The MW-group will be Z/3Z, there is only one line on the cubic surface,
which (as well as the affine surface X) will have a unique Eg-singularity.

Let us check these facts directly, verifying that we are in the case No. 69.

By the algorithm (M), the output parameter is given by

9 27
A= (81,-36,-,54,0, — (103)
2 4
and the Weierstrass equation is:
9¢2 271
y2+txy=x3+t3+<7—36t+81)x—T+54 (104)

The discriminant and j-invariant is given by
(1 —6)(+18)°
B r+21
which shows that there is a singular fibre of type IV* at ¢ = 6, in addition to the /3- fibre
at t = oo. Further, the unique singular point of V) and X below

(t,x,y)=1(6,-3,9)

is an Eg-singularity, which can be resolved using only curves defined over rational numbers
(i.e. without using any irrational numbers in the resolution process).
The MW group is generated by an order 3 point:

A=—(t—-68%:+21), (105)

9
P1:(x,y)=<—t—|—3,§t—18>

which gives the unique line on V, (multiplicity 27) passing through the singular point.
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Appendix
Picture of a Cubic Surface with 27 Lines and a Plane Quartic with 28
Bitangents, All Over Q
by

Tetsuji SHIODA

Graphics are drawn with Mathematica, using the examples of outcome of the algo-
rithms in Section 9. The 3D-pictures are in the (¢, x, y)-space and the others are in the
(z, x)-plane.



Appendix: Picture of a Cubic Surface with 27 Lines and a Plane Quartic with 28 Bitangents, All Over Q 181

EXAMPLE 9.1 a cubic surface with 27 lines

(View from above and below):
20
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contour map of a plane quartic with 28 bitangents:

Weierstrass equation (M') :

+x’-txy-y’ =0

- P—

105625 175t 212 " [175 68!:] 21 x?
+

-—-—
324 3 4 9
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a plane quartic with 28 bitangents:

20[ ) \

/)
7

20|
-20

105625 175t 21t> | 175 68t 1
- - +t7 + (— ) X+ — (—
324 3 4

EXAMPLE 9.3
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EXAMPLE 9.4 a cubic surface with four Al-nodes:
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