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Abstract. First, we characterize differential operators on Siegel modular forms of
degree nm such that the restrictions of the images of the operation to the n × n diagonal
blocks which consist of the same matrices are again Siegel modular forms of degree n of
some different weight. The characterization is given in terms of pluri-harmonic polyno-
mials. Then we show that when n = 1, all such differential operators are obtained by
composing two kinds of operators, one which preserves automorphy for the restriction of
Hm to the diagonals (the product of the upper half planes), and one which preserves auto-
morphy for the restriction from the product of m pieces of upper half planes to the upper
half plane embedded diagonally.

1. Introduction

If we apply any holomorphic differential operators on holomorphic Siegel modular
forms, in most cases the images are not modular at all. But we can give a theory of good
differential operators such that the restriction of the image to some smaller domain is again
modular for several fixed pairs of the domains. We would like to call such operators au-
tomorphic differential operators. For example, if we denote by HN the Siegel upper half
space of degree N , well studied pairs of the domains are

(i) The restriction from Hn to Hn1 × · · · × Hn1 with n = n1 + · · · + nr , where the
latter is embedded to diagonal blocks of Hn.

(ii) The restriction from Hm
n = Hn × · · · × Hn to Hn, where the latter is embedded

diagonally to Hm
n .

Automorphic differential operators for (ii) are called Rankin-Cohen operators. Automor-
phic differential operators for (i) are important in various stages of number theory, including
the pullback formula of Eisenstein series and calculation of special values of the standard
L function. General characterization for these two cases has been given in [3] and there are
several related deeper results such as [1], [5], [2], [4], [6], [8].

In this paper, we consider the following pair of domains.
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(iii) The restriction from Hnm to Hn, where Hn is embedded in Hnm by

Hn � τ →

⎛
⎜⎜⎜⎝

τ 0 · · · 0
0 τ · · · 0
... 0

. . .
...

0 · · · 0 τ

⎞
⎟⎟⎟⎠ ∈ Hnm .

The characterization of such operators will be given in Theorem 2.3. The proof is more
or less similar to those in [3]. The second problem of this paper is to answer the question
posed by D. Zagier. He asked if all the differential operators for (iii) for n = 1 is obtained
from compositions of operators for (i) for n = r = m, n1 = · · · = nm = 1 and for (ii)
with n = 1. We give an affirmative answer to this in Theorem 4.1. The same question
for the case n > 1 involves the case starting from vector valued forms in (ii) and seems
more complicated. We would like to thank Don Zagier for asking the author an interesting
question.

2. Characterization of the case (iii).

In this section, we solve the first problem, that is, a characterization of automorphic
differential operators for the case (iii). For any positive integer N , we denote by HN the
Siegel upper half space of degree N , and by Sp(N,R) ⊂ GL2N(R) the symplectic group
of matrix size 2N . For any irreducible representations (ρ, V ) of GLN(C), any V -valued

functions f on HN , and any elements g =
(

a b

c d

)
∈ Sp(N,R), we write

(1) (f |ρ[g])(Z) = ρ(cτ + d)−1f (gZ) .

When ρ = detk, we write f |ρ = f |k. Let m, n be positive integers. For any n × n matrix
A and m × m matrix B = (bij ), we denote by A ⊗ B the Kronecker product defined by

A ⊗ B =
⎛
⎜⎝

Ab11 · · · Ab1m

... · · · ...

Abm1 · · · Abmm

⎞
⎟⎠ .

We consider an embedding

ι : Hn � τ → τ ⊗ 1m =

⎛
⎜⎜⎜⎜⎝

τ 0 · · · 0

0 τ 0
...

... 0
. . .

...

0 0 · · · τ

⎞
⎟⎟⎟⎟⎠

∈ Hnm .

We embed Sp(n,R) into Sp(nm,R) by

ι : Sp(n,R) �
(

a b

c d

)
→
(

a ⊗ 1m b ⊗ 1m

c ⊗ 1m d ⊗ 1m

)
∈ Sp(nm,R) .

We sometimes identify Sp(n,R) with the image of this embedding. Then the action of
Sp(n,R) on Hn and the action on Hn ⊗ 1m ⊂ Hnm are equivariant.
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We fix a positive integer k and an irreducible polynomial representation (ρ, V ) of
GLn(C). Let D be a V -valued linear holomorphic differential operator on holomorphic
functions on Hnm with constant coefficients and consider the following condition.

CONDITION 2.1. For any holomorphic functions F on Hnm, any elements g =(
a b

c d

)
∈ Sp(n,R) ⊂ Sp(nm,R), and τ ∈ Hn, we have

(2) (D(F |k[ι(g)]))(τ ⊗ 1m) = ((DF)(τ ⊗ 1m))|detmk⊗ρ [g] .

We would like to characterize such differential operators. Let T be an nm × nm symmetric
matrix of variable components. Let V be any vector space over C. We consider a V -valued
polynomial P(T ) in the components of T . For such P , we define DP by

DP = P

(
∂

∂Z

)
,

where for Z = (zij ) ∈ Hnm, we put

∂

∂Z
=
(

1 + δij

2

∂

∂zij

)

1≤i,j≤mn

.

This DP is a V -valued differential operator on holomorphic functions on Hnm. If we con-
sider a V -valued linear partial differential operator D on functions on Hnm with constant
coefficients, then of course there exists some V valued polynomial P(T ) such that DP = D.
So a characterization of D which satisfies Condition 2.1 is given by characterizing P .

We prepare several definitions. For any positive integers N and d , we consider an
N × d matrix Y of variable components and a polynomial P̃ (Y ) in the components of Y .
We define mixed Laplacians Δij (Y ) by

Δij (Y ) =
d∑

ν=1

∂2

∂yiν∂yjν

(1 ≤ i, j ≤ N) ,

and we say that P̃ is pluri-harmonic if P̃ satisfies

Δij (Y )P̃ (Y ) = 0 for all 1 ≤ i ≤ j ≤ N .

This is equivalent to say that P̃ (AY ) is harmonic with respect to Nd variables of com-
ponents of Y for any A ∈ GLN(R). We denote by HN,d the space of pluri-harmonic
polynomials P̃ (Y ) where Y is an N × d matrix. Assume N = mn. For integers i with
1 ≤ i ≤ m, let Yi be a n × d matrix, and put

Y =

⎛
⎜⎜⎜⎝

Y1
Y2
...

Ym

⎞
⎟⎟⎟⎠ .

Denote by O(d) the orthogonal group. Assume that d ≥ N and P̃ (Yh) = P̃ (Y ) for
all h ∈ O(d). Then by the fundamental theorem of classical invariant theory ([9]), there
exists a polynomial P(T ) such that P̃ (Y ) = P(Y tY ). We can rewrite the mixed Laplacians
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Δij (Y ) in terms of tij (see [5]). For each i, j with 1 ≤ i, j ≤ N , we write ∂ij = (1+δij )
∂

∂tij

and we put

Dij (d) = d∂ij +
N∑

k,l=1

tkl∂ik∂jl .

Then we have
(Dij (d)P )(Y tY ) = (Δij (Y )P̃ )(Y ) .

We also define n × dm matrix Y0 by Y0 = (Y1, Y2, . . . , Ym). For a V -valued polynomial
P(T ) for nm × nm symmetric matrix T , we put P ∗(Y0) = P(Y tY ). (We use here a
different notation P ∗ instead of P̃ to emphasize that the argument is an n × md matrix.
This is only by a psychological reason.) We consider the following two conditions.

CONDITION 2.2. (1) Every component of P ∗(Y0) is a pluri-harmonic polynomial
with respect to Y0, that is, an element of Hn,md .

(2) For any A ∈ GLn(C), we have P ∗(AY0) = ρ(A)P ∗(Y ).

Here the pluri-harmonicity of P ∗(Y0) = P(Y tY ) is written for P by
m−1∑
l=0

Di+nl,j+nl(d)P (T ) = 0 for all i, j with 1 ≤ i , j ≤ n ,

where Dij (d) is defined for N = mn, i.e. for nm × nm symmetric matrix T .

THEOREM 2.3. We put d = 2k and we assume that d ≥ nm. A V -valued differen-
tial operator DP on functions on Hnm satisfies the condition 2.1 if and only if P ∗(Y0) =
P(Y tY ) satisfies the condition 2.2.

REMARK. The representation ρ cannot be taken arbitrary if we demand existence of
P 
= 0. For example, when n = 1 where the representation ρ is a representation of GL1 and
ρ(x) = xκ , this κ should be obviously an even integer if P 
= 0, since P(c2T ) = cκP (T ).

Proof. First we prove if-part for a special function. We put d = 2k. We define a
function F0(Z) of Z ∈ Hnm by F0(Z) = exp

(
i
2T r(tYZY )

) = exp
(

i
2T r(Y tYZ)

)
where

Y = (yiν) is an nm × d matrix of variable components. For any integer N , we write

JN =
(

0 −1N

1N 0

)
∈ Sp(N,R). Then ι(Jn) = Jnm. We prove that the condition 2.1 is

satisfied for F0 and Jn for P ∗ satisfying condition 2.2. It is well known that we have

F0|k[Jnm] = (2πi)−mnk

∫
Mnm,d (R)

exp(iT r(tXY )) exp

(
i

2
T r(tXZX)

)
dX.

(See [3] Lemma 1 for P = 1.) For any c ∈ C, we have P ∗(cY0) = ρ(c1n)P
∗(Y0) =

cl′P ∗(Y0) for some positive integer l′ by Schur’s lemma. So P(c2T ) = cl′P(T ) and l′ is
even, so we write l′ = 2l. Then differentiating under the integral by DP , we have

(2πi)nmk
DP (F0|k[Jnm])

=
∫

Mnm,d (R)

exp(iT r(tXY ))DP

(
exp

(
i

2
T r(tXZX)

))
dX .
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= (i/2)2l

∫
Mn,d (R)

exp(iT r(tXY )) exp

(
i

2
T r(tXZX)

)
P(X tX)dX .

We write X =
⎛
⎜⎝

X1
...

Xm

⎞
⎟⎠ by n × d matrices Xi and put X0 = (X1, . . . , Xm), then the poly-

nomial P(X tX) = P ∗(X0) is pluri-harmonic with respect to X0 by assumption. We see
also T r(X tX) = ∑m

i=1 T r(Xi
tXi) = T r(X0

tX0) and T r(X tY ) = ∑m
i=1 T r(Xi

tYi) =
T r(X0

tY0). In the last expression of the above integral, we restrict Z to τ ⊗ 1m where
τ ∈ Hn. Then the integral part becomes∫

Mn,md (R)

e(iT r(tX0Y0)) exp

(
i

2
T r( tX0τX0)

)
P ∗(X0)dX0 .

Again applying [3] Lemma 1 for the pluri-harmonic polynomial P ∗, we see that this integral
is equal to

(2π)mnd/2 det(τ/i)−dm/2 exp

(−i

2
T r(tY0(τ

−1 ⊗ 1m)Y0)

)
P ∗(−τ−1Y0)

= (2πi)mnd/2 det(τ )−kmρ(τ)−1P(Y tY )F0(−τ−1 ⊗ 1m)

= (2πi)mnk(i/2)−2l det(τ )−kmρ(τ)−1(DF0)(−τ−1 ⊗ 1m) .

So as a whole we have

(D(F0|k[Jnm]))(τ ⊗ 1m) = ((DF0)(τ ⊗ 1m))|detkm⊗ρ |[Jn] .

So the condition 2.1 is satisfied for F0 and Jn. We see that the same holds for any holomor-
phic functions F(Z) on Hnm. We denote by ννν = (νij ) a multi-index with νij ∈ Z≥0 with
1 ≤ i ≤ j ≤ nm. We put

Dννν =
∏

1≤i≤j≤n

(
∂

∂zij

)νij

.

Since DP is a differential operator with constant coefficients, it is clear by the chain rule
that there are V valued holomorphic functions Qννν(Z) on Hnm such that

DP (det(Z)−kF (−Z−1)) =
∑
ννν

Qννν(Z)(DνννF )(−Z−1) ,

where ννν runs over a finite number of indices. So the restriction is∑
ννν

Qννν(τ ⊗ 1m)(DνννF )(−τ−1 ⊗ 1m) .

On the other hand, we also have V -valued functions Rννν(τ ) such that

(DP F)(τ ⊗ 1m)|detkmρ [Jn] =
∑
ννν

Rννν(τ )(DνννF )(−τ−1 ⊗ 1m) .
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So Condition 2.1 is satisfied if Qννν(τ ⊗ 1m) = Rννν(τ ) for all indices ννν. Now if we write i-th
row of Y by yi , then we have T r(Y tYZ) = ∑

1≤i,j≤nm(yi, yj )zij . So

(DνννF0)(Z) =
(

i

2

)∑
i≤j νij ∏

1≤i≤j≤nm

(yi, yj )
νij F0(Z).

By the assumption that d ≥ nm and the fundamental theorem of invariant theory [9], the
polynomials (yi, yj ) for 1 ≤ i ≤ j ≤ nm are algebraically independent. This means
that DνννF0(Z) are linearly independent for all indices for any Z. Since the condition 2.1
is satisfied for F0 and Jn, the relation Qννν(τ ⊗ 1m) = Rννν(τ ) should be satisfied, and this
means the condition is satisfied for general F . Next we see other elements of Sp(n,R).

For u(S) =
(

1n S

0 1n

)
∈ Sp(n,R), we have (F |k[ι(u(S))])(τ ⊗ 1m) = F((τ + S) ⊗ 1m)

and F(τ)|detkmρ[u(S)] = F((τ + S) ⊗ 1m). Since DP (F (Z + S)) = (DP F)(Z + S),

the condition is obvious. For t (U) =
(

U 0
0 tU−1

)
∈ Sp(n,R) where U ∈ GLn(R), put

W = (U ⊗ 1m)Z(tU ⊗ 1m). Then we have
∂

∂Z
= (tU ⊗ 1m)

∂

∂W
(U ⊗ 1m).

P

(
∂

∂Z

)
= ρ(tU)P

(
∂

∂W

)
.

Since
F |k[ι(t (U))] = det(U)kmF((U ⊗ 1m)Z(tU ⊗ 1m)) ,

we have

DP (F |k[ι(t (U))] = det(U)kmρ(tU−1)−1(DP F)((U ⊗ 1m)Z(tU ⊗ 1m)) .

Restricting to τ ⊗ 1m, we have the condition 2.1. Since Sp(n,R) are generated by these
elements Jn, u(S) and t (U), the condition 2.1 is satisfied for any F and any element of
Sp(n,R). Now we prove the converse, that is, if D = Q

(
∂

∂Z

)
satisfies the condition 2.1,

then we may take the polynomial Q such that Q satisfies the condition 2.2. If we write
Q∗(Y0) = Q(Y tY ), it is clear from behaviour under t (U) for U ∈ GLn(C) on F0 that
Q∗(UY0) = ρ(U)Q∗(Y ). So it is sufficient to prove that Q∗(Y0) is pluri-harmonic. By
previous calculation, it is obvious that DQ satisfies the condition only if∫

Mn,md (R)

e(iT r(tX0Y0)) exp

(
i

2
T r( tX0τX0)

)
Q∗(X0)dX0

= (2π)mnd/2 det(τ/i)−dm/2 exp

(
− i

2
T r(tY0τ

−1Y0)

)
Q∗(−τ−1Y0)

Here we put τ = √−1 tαα for α ∈ GLn(R). In the above relation, we replace X0 by
α−1X0 and Y0 by t αY0. Then since d(α−1X0) = det(α)−mddX0, we have∫

Mn,md (R)

e(iT r(tX0Y0))) exp

(−1

2
T r( tX0X0)

)
Q∗(α−1X0)dX0 .
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= (2π)mnd/2 exp

(−1

2
T r(tY0Y0)

)
Q∗(iα−1Y0)

So by [3] Lemma 2, we see that Q∗(α−1Y0) is harmonic for all α ∈ GLn(R). This means
that Q∗(Y0) is pluri-harmonic. �

3. Other embeddings

In the next section, we will see that when n = 1, the differential operators treated
in section 2 are all obtained by composing two kinds of differential operators for (i) and
(ii). So to prepare for that, in this section we review the cases (i) and (ii) more precisely,
without assuming that n = 1. First we explain the case (i). We fix an ordered partition
n = (n1, . . . , nr ) of n with n1 + · · · + nr = n. We put

Sp(n,R) = Sp(n1,R) × · · · × Sp(nr ,R) .

According to the embedding Hn1 × · · · × Hnr ⊂ Hn, we have the natural embedding
Sp(n,R) → Sp(n,R). Let k be a fixed positive integer and (ρi, Vi) be fixed irreducible
polynomial representations of GLni (C) for i with 1 ≤ i ≤ r . Put V = V1 ⊗ · · · ⊗ Vr . For
a V -valued linear holomorphic partial differential operator D with constant coefficients on
holomorphic functions on Hn, we consider the following condition.

CONDITION 3.1. For any elements g = (g1, . . . , gr ) ∈ Sp(n,R) ⊂ Sp(n,R) and
for any holomorphic functions F on Hn, we have

D(F (Z)|k[g])

⎛
⎜⎜⎜⎝

τ1 0 · · · 0
0 τ2 0 0

0 0
. . . 0

0 0 0 τr

⎞
⎟⎟⎟⎠

= (DF)

⎛
⎜⎜⎜⎝

τ1 0 · · · 0
0 τ2 0 0

0 0
. . . 0

0 0 0 τr

⎞
⎟⎟⎟⎠
∣∣∣∣
τ1

detkρ1

[g1]
∣∣∣∣
τ2

detkρ2

[g2] · · ·
∣∣∣∣
τr

detkρr

[gr ] .

We put d = 2k and we define Dij (d) for n × n symmetric matrix T as before. For the
partition n and integer p with 1 ≤ p ≤ r , we define

I (p) =
⎧⎨
⎩(i, j) ∈ Z

2; 1 +
p−1∑
q=1

nq ≤ i, j ≤
p∑

q=1

nq

⎫⎬
⎭ .

I (n) =
r⋃

p=1

I (p) .

So I (n) is the set of the row and column numbers which appear in the diagonal blocks for
the partition. We denote by C[T ] the ring of polynomials in the components of T . We put

Pn
n (d) = {P(T ) ∈ C[T ]; Dij (d)P = 0 for all (i, j) ∈ I (n)} .
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We put GLn(C) = GLn1(C) × · · · × GLnr (C) and embed this to GLn(C) by

(A1, . . . , Ar) → A =

⎛
⎜⎜⎜⎜⎝

A1 0 · · · 0

0 A2 0
...

... · · · . . .
...

0 · · · 0 Ar

⎞
⎟⎟⎟⎟⎠

∈ GLn(C)

and sometimes identify GLn(C) with the image of this embedding.

THEOREM 3.2 ([3]). Assume that d ≥ n. Then for any V -valued polynomial P ,

DP = P

(
∂

∂Z

)
satisfies the condition 3.1 if and only if P satisfies the following two

conditions.
(1) All the components of P(T ) are in Pn

n (d).
(2) For any A ∈ GLn(C) ⊂ GLn(C), we have

P(AT tA) = ρ(A)P (T ) .

Next we explain the case (ii). We consider the embedding

Hn � τ → (τ, . . . , τ ) ∈ Hn × · · · × Hn = Hm
n .

We embed Sp(n,R) diagonally to Sp(n,R)m by g → (g, . . . , g). We fix positive integers
k1, . . . , km and an irreducible polynomial representation (ρ, V ) of GLn(C). For a V -valued
holomorphic linear partial differential operatorD with constant coefficients on holomorphic
functions on Hm

n , we consider the following condition.

CONDITION 3.3. For any holomorphic function F(τ1, . . . , τm) ∈ Hm
n and any ele-

ments g =
(

a b

c d

)
∈ Sp(n,R), we have

(
D

(
F(gτ1. . . . , gτm)

m∏
i=1

det(cτi + d)−ki

))
(τ, τ, . . . , τ )

= det(cτ + d)−k1−···−kmρ(cτ + d)−1(DF)(gτ, . . . , gτ ) .

For a characterization of such D, we prepare some notation. Since D is a differential
operator on Hm

n , if we write (τ1, . . . , τm) ∈ Hm
n , then there is a n×n symmetric matrices T1,

T2, . . . , Tm and a V -valued polynomial P(T1, . . . , Tm) such that D = P

(
∂

∂τ1
, . . . ,

∂

∂τm

)
.

We put dp = 2kp for 1 ≤ p ≤ m and we would like to write down a condition that for
n × dp matrices Yp with 1 ≤ p ≤ m, a function P(Y1

tY1, . . . , Ym
tYm) is pluri-harmonic

w.r.t. Y0 = (Y1, . . . , Ym). Pluri-harmonicity condition is written in terms of Tp as before.
But to make notation consistent, we write this as follows. We rewrite Tp by Tpp and regard
these as diagonal blocks of nm × nm matrix T , that is, we regard that the specialization of



Composition of Differential Operators 105

T to Tpq = 0 for all p 
= q is given by⎛
⎜⎜⎜⎝

T1 0 · · · 0
0 T2 · · · 0
... · · · . . .

...

0 · · · · · · Tm

⎞
⎟⎟⎟⎠ .

The components of each Tp(= Tpp) is given by tij for (i, j) ∈ I (p), where I (p) is defined
as before for nm, m instead of n and r , respectively, and for n1 = · · · = nm = n. But
in this formulation, Tpq with p 
= q does not appear, so the shape of the mixed Laplace
operators is slightly different from the one we define before. For nm × nm matrix T and
(i, j) with 1 ≤ i, j ≤ n, we put

D
(p)
ij (dp) = dp∂i+n(p−1),j+n(p−1)

+
n∑

k,l=1

tk+n(p−1),l+n(p−1)∂i+n(p−1),k+n(p−1)∂j+n(p−1),l+n(p−1).

Then the pluri-harmonicity condition in this case is written by
m∑

p=1

D
(p)
ij (dp)P (T11, T22, . . . , Tmm) = 0 for all (i, j) with 1 ≤ i, j ≤ n .

THEOREM 3.4 ([3]). We assume that dp = 2kp ≥ n for all p with 1 ≤ p ≤
m and let (ρ, V ) be an irreducible polynomial representation of GLn(C). Then any V -
valued linear holomorphic partial differential operator DP = P(∂τ1, . . . , ∂τm) satisfies
the condition 3.3 if and only if P satisfies the following two conditions.

(1)
∑m

p=1 D
(p)
ij (dp)P = 0 for all (i, j) with 1 ≤ i, j ≤ n.

(2) For any A ∈ GLn(C), we have

P(AT11
tA,AT22

tA, . . . , ATmm
tA) = ρ(A)P (T11, T22, . . . , Tmm) .

We note that some more explicit description of differential operators in Theorems 3.2,
3.4 are given for example in [2], [5], [6].

4. Composition of operators

Before stating next theorem, we prepare notation. We say that a polynomial P(T ) for
m × m symmetric matrix T = (tij ) is of multidegree a = (a1, . . . , am) if P((cicj tij )) =(∏m

i=1 c
ai

i

)
P(T ). If P 
= 0, we have

∑m
i=1 ai is even. For a partition m = (1, . . . , 1), we

put P (1,...,1)
m (d) = Pm(d) and we denote by Pa(d) the subspace of Pm(d) of polynomials

of multidegree a. We have
Pm(d) =

∑
a

Pa(d) .

For any integer l, we denote by ρl the representation of GL(1,C) given by ρl(x) = xl . In
this section, we prove the following second main theorem.
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THEOREM 4.1. We fix an integer l with l ≥ 0 and k with 2k ≥ m. Then any linear
holomorphic differential operator D with constant coefficients which satisfies Condition 2.1
for n = 1, k above and ρ = ρl , is a linear combination of compositions of a differential
operator which satisfies Condition 3.1 for the same k above, both n and r being replaced
by m, all ni = 1, and representations ρi(x) = xai for some non-negative integers ai

(1 ≤ i ≤ m) with a1 + · · · + am ≤ l, and a differential operator which satisfies Condition
3.3 for k1 = k + a1, . . . , km = k + am and ρ(x) = xk0 with k0 = l − (a1 + · · · + am).

If we say this in more down to earth fashion, all the differential operators which map
Siegel modular forms F of weight k on Hn to elliptic modular forms of weight mk + l by
the restriction to H1 are obtained by composing differential operators which map F into
the space of products of elliptic modular forms of weight k + ai and differential operators
which maps m pieces of elliptic modular forms of weight k + ai (1 ≤ i ≤ m) to an elliptic
modular form of weight mk + l = mk + a1 + · · · + am + k0.

Proof. We prove this by using characterization by pluri-harmonic polynomials. We
start from a differential operator which satisfies Condition 2.1 for n = 1. Then the
representation ρ is one dimensional and we have a scalar valued polynomial P(T ) for
m × m matrix T which safisfies the condition of Theorem 2.3. For any c ∈ C

×, we have
P(c2T ) = clP (T ) by the assumption. (So l is even, but this does not matter.) By assump-
tion, we have

(3)
m∑

i=1

Dii(d)P (T ) = 0

where d = 2k. Now we would like to decompose P(T ) into a linear combination of prod-
ucts of two parts. The polynomial P(T ) itself does not vanish under a single Dii(d) in gen-
eral but we have the following harmonic decomposition of P(T ). For b = (b1, . . . , bm) ∈
Z

m
≥0, we define δ(T )b = ∏m

i=1 t
bi

ii . By [5] Corollary to Theorem 1, we have

C[T ] = ⊕bδ(T )bPm(d) ,

where Pm(d) = P (1,...,1)
m (d), that is the space of elements Q(T ) such that Dii(d)Q = 0

for all i with 1 ≤ i ≤ m. So since P(c2T ) = clP (T ), this is contained in the space∑
a,b

δ(T )bPa(d)

where the sum is taken over multidegrees a, b such that 2
∑m

i=1 bi +∑m
i=1 ai = l. We note

that any multidegree a of non-zero polynomial always satisfy that
∑

i ai is even, so this is
consistent with the fact that l is even. Since we have ∂iq(δ(T )b) = 0 for any (i, q) with
i 
= q , we have

Dii(d)(δ(T )b) = (d∂ii + tii∂
2
ii )(δ(T )b)

= 2bi(d + 2bi − 2)δ(T )b−ei ,

where ei is a m dimensional vector whose i-th component is one and the other components
are zero. If we take any P0 ∈ Pa(d), then we have

Dii(d)(δ(T )bP0(T )) = 2bi(d + 2bi − 2)δ(T )b−ei P0(T )
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+ 2
∑
q 
=i

tiq∂ii (δ(T )b)∂iqP0(T ) + 2tii∂ii(δ(T )b)∂iiP0(T ) .

By homogeneity of P0(T ), we have
m∑

q=1

tiq∂iqP0(T ) = aiP0(T ) .

So we have

Dii(d)(δ(T )bP0(T )) = 2bi(d + 2ai + 2bi − 2)δ(T )b−eiP0(T ) .

On the other hand, we have

D
(i)
ii (d + 2ai) = (d + 2ai)∂i + tii∂

2
ii ,

so
D

(i)
ii (d + 2ai)δ(T )b = 2bi(d + 2ai + 2bi − 2)δ(T )b−ei .

Hence
m∑

i=1

Dii(d)(δ(T )bP0(T )) =
(

m∑
i=1

D
(i)
ii (d + 2ki)δ(T )b

)
P0(T ) .

For any multidegrees a = (a1, . . . , am), fix a basis {Pa,λ(T ); λ ∈ Λ(a)} of Pa(d). For any
polynomial R(T ) ∈ C[T ], we can write

R(T ) =
∑

b,a,λ∈Λ(a)

cλ(b, a)δ(T )bPa,λ(T ) ,

where b and a are suitable multidegrees. If R(T ) = 0, then obviously cλ(b, a) = 0 since
the harmonic decomposition is a direct sum. For our P(T ), write

P(T ) =
∑
b,a,λ

cλ(b, a)δ(T )bPa,λ(T ) .

In this sum, for a fixed a and λ, we write

Qa,λ(t11, t22, . . . , tmm) =
∑

b

cλ(b, a)δ(T )b

where b runs over those multidegrees such that 2
∑m

i=1 bi = l −∑m
i=1 ai . Then we have

0 =
m∑

i=1

Dii(d)

⎛
⎝∑

a,λ

Qa,λ(t11, t22, . . . , tmm)Pa,λ(T )

⎞
⎠

=
∑
a,λ

(
m∑

i=1

D
(i)
ii (d + 2ai)Qa,λ(t11, . . . , tmm)

)
Pa,λ(T )

From the last expression and by the previous remark, we have
m∑

i=1

D
(i)
ii (2(k + ai))Qa,λ(t11, . . . , tmm) = 0 .
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So Qa,λ corresponds to a differential operator which satisfies Condition 3.3 for n = 1,
weights k1 = k + a1, . . . , km = k + am and ρ(x) = x

∑m
i=1 2bi . The polynomial Pa,λ(T ) of

course corresponds to a differential operator which satisfies Condition 3.1 for the same k,
taking n and r to be m, ni = 1 for all i, and ρi(x) = xai (1 ≤ i ≤ m) there. So P(T ) is a
linear combination of the products of these. �

Finally, we give a following easy remark.

PROPOSITION 4.2. Rankin-Cohen differential operators for the restriction of Hm
1

to H1 is obtained by iterate use of Rankin-Cohen differential operators for the restriction
of H 2

1 to H1.

Proof. We prove this by induction on m. We take a polynomial P(t1, . . . , tm) which
gives a Rankin-Cohen operator for Hm

1 → H1 from weights k1, . . . , kr to weight k1 +· · ·+
km + 2l. By condition 3.3, this means that P(t1, . . . , tm) is homogeneous of degree l and
satisfies the harmonic condition

(4)
m∑

i=1

(
ki

∂P

∂ti
+ ti

∂2P

∂t2
i

)
= 0 .

Now we expand P by a product of powers of t1 and polynomials in t2, . . . , tm and apply
the harmonic decomposition for the latter. That is, we may write

P(t1, t2, . . . , tm) =
∑

a+b+c=l

c(a, b)ta1 (t2 + · · · + tm)bPc(t2, . . . , tm),

where c(a, b) are constants, Pc are harmonic of homogeneous degree c for weight k2, . . . ,
km (i.e. Pc(n(y2), . . . , n(ym)) are harmonic for (y2, . . . , ym) of degree 2c where yi are
vectors of length 2ki). Using the condition (4) on P , we have∑

a+b+c=l

ta−1
1 (t2 + · · · + tm)bc(a, b)(k1a + a(a − 1))Pc(t2, . . . , tm)

+
∑

a+b+c=l

c(a, b)ta1

m∑
i=2

kib(t2 + · · · + tm)b−1Pc(t2, . . . , tm)

+
∑

a+b+c=l

c(a, b)ta1

m∑
i=2

b(b − 1)ti(t2 + · · · + tm)b−2Pc(t2, . . . , tm)

+ 2
∑

a+b+c=l

c(a, b)ta1 b(t2 + · · · + tm)b−1
m∑

i=2

ti
∂Pc

∂ti
(t2, . . . , tm) = 0 .

By homogeneity of Pc, the last term is equal to 2cPc(t2, . . . , tm). So if we put

Qc(t1, x) =
∑

a+b=l−c

c(a, b)ta1 xb

then (
k1

∂

∂t1
+ t1

∂2

∂t1

)
Qc(t1, x) +

((
2c +

m∑
i=2

ki

)
∂

∂x
+ x

∂2

∂x2

)
Qc(t1, x) = 0 .
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So Qc defines a Rankin-Cohen operator from weight k1, 2c + ∑m
i=2 ki to 2l + ∑m

i=1 ki .
Since each Pc define a Rankin-Cohen operator from weight k2, . . . , km to 2c + ∑m

i=2 ki ,
we are done by induction. �

We note that, in general for n > 1, it is not true at all that a scalar valued Rankin-
Cohen operator for the restriction of Hm

n to Hn is obtained from scalar valued Rankin-
Cohen operators for the restriction of H 2

n to Hn.
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