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Abstract. In [10], Martin classified modular forms that are multiplicative eta quo-
tients. We will show that weight one eta quotients of Martin’s classification are in fact theta
functions associated to imaginary quadratic fields. As an application, a congruence relation
of the coefficients of some eta products is obtained. This may be regarded as a generaliza-
tion of Wilton’s congruence of Ramanujan’s τ -function. We will also determine the Galois
representation which corresponds to each of the eta quotients of weight one.

1. Introduction

Ramanujan’s τ -function is defined to be the Fourier coefficients of the cuspidal elliptic
modular form Δ of weight 12

Δ = q

∞∏

n=1

(1 − qn)24 =
∞∑

n=1

τ (n)qn .

After Ramanujan has showed the congruence relation ([14])

τ (p) ≡ 1 + p11 (mod 691), p is a prime ,

various congruence relations of the τ -function have been found (eg. [2], [9], [13], [16]). In
particular, Wilton obtained the following congruence relation

τ (p) (mod 23) =

⎧
⎪⎨

⎪⎩

0 if (−23
p

) = −1 ;
2 if (−23

p
) = 1 and p is represented by x2 + xy + 6y2 ;

−1 if (−23
p

) = 1 and p is represented by 2x2 + xy + 3y2

for a prime p. Here we mention that n is represented by an integral quadratic form
Q(x, y) = ax2 +bxy + cy2 if the equation Q(x, y) = n has an integral solution. Since the
conditions of Wilton’s results are described by quadratic forms of discriminant −23, it is
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natural to expect that the congruence relations may be related to theta functions for the con-
gruence group of level 23. In fact, in [3], Zagier clarified the relationship. Let us briefly re-
call his argument. Using the bijective correspondence between quadratic forms of discrim-
inant −23 and the ideal class group Pic(OK) of the maximal order OK of K = Q(

√−23),
one has Pic(OK) = {Q0, Q1, Q2}, where

Q0 := x2 + xy + 6y2, Q1 := 2x2 + xy + 3y2, Q2 := 2x2 − xy + 3y2 .

In particular Pic(OK) is isomorphic to Z/3Z by the map

Z/3Z → Pic(OK), i �→ Qi, (i = 0, 1, 2) .

Let χ be one of the non-trivial characters of Z/3Z, and set

f = 1

2

2∑

i=0

χ(Qi)θQi ,

where θQi is the theta function associated to Qi (cf. Definition 3.1). We remark that f is
independent of the choice of χ because θQ1 = θQ2 (see §4.1) and

f = 1

2
(θQ0 − θQ1) .

Since the level of the Qis are all 23, f is a cusp form on Γ0(23) of weight one with
Nebentypus character ε−23 (see Fact 3.1). Moreover, one sees that it is a Hecke eigenform
(see §4) and that it has an infinite product

(1) f = q

∞∏

n=1

(1 − qn)(1 − q23n) .

Now the obvious congruence

(2) (1 − x)p ≡ 1 − xp (mod p) ,

implies that
2∑

i=1

χ(Qi)θQi ≡ q

∞∏

n=1

(1 − qn)24 = Δ (mod 23) ,

which yields Wilton’s congruence. In this paper we will generalize his results along the
Zagier’s arguments.

DEFINITION 1.1. Let d be a positive divisor of 24. For a positive integer n we
define Td(n) by

q

∞∏

n=1

(1 − qdn)
24
d =

∞∑

n=1

Td(n)qn

Note that T1(n) is nothing but the Ramanujan’s tau function, τ (n). Here are our results.

THEOREM 1.1. (1)

T2(p) (mod 11) =

⎧
⎪⎨

⎪⎩

0 if (−44
p

) = −1 ,

2 if (−44
p

) = 1 and p is represented by x2 + 11y2 ,

−1 if (−44
p

) = 1 and p is represented by 3x2 + 2xy + 4y2 .
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(2) Suppose that the prime p satisfies one of the following conditions ;
• (−63

p
) = −1

• (−63
p

) = 1 and p is represented by 2x2 + xy + 8y2.
Then

T3(p) ≡ 0 (mod 7) .

Moreover,

T3(p) (mod 7) =
{

2 if (−63
p

) = 1 and p is represented by x2 + xy + 16y2 ,

−2 if (−63
p

) = 1 and p is represented by 4x2 + xy + 4y2 .

(3) Suppose that the prime p satisfies one of the following conditions ;
• (−80

p
) = −1

• (−80
p

) = 1 and p is represented by 3x2 + 2xy + 7y2.
Then

T4(p) ≡ 0 (mod 5) .

Moreover,

T4(p) (mod 5) =
{

2 if (−80
p

) = 1 and p is represented by x2 + 20y2 ,

−2 if (−80
p

) = 1 and p is represented by 4x2 + 5y2 .

(4)

T2(p) (mod 3) =
{

0 if (−108
p

) = −1 ,

−1 if (−108
p

) = 1 .

(5) T1(p)(= τ (p)) (mod 2) = 0 for every odd prime p.
(6) Suppose that the prime p satisfies one of the following conditions ;

• p ≡ −1 (mod 4)

• p ≡ 1 (mod 4) and p is represented by 5x2 + 4xy + 8y2.
Then

T4(p) ≡ 0 (mod 3) .

Moreover

T4(p) (mod 3) =
{ −1 if p ≡ 1 (mod 4) and p is represented by x2 + 36y2 ,

1 if p ≡ 1 (mod 4) and p is represented by 4x2 + 9y2 .

The assertion (5) is fairly well known. Let us explain how the theorem will be proved.
For a pair of positive integers (a, b) whose sum is equal to 24, we define

ηa·b(q) = η(az)η(bz) = q

∞∏

n=1

(1 − qan)(1 − qbn)

where η(z) is the eta function

η(z) = q
1

24

∞∏

n=1

(1 − qn), q = exp(2πiz), (Imz > 0) .
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Since η(z) is a modular form of weight 1/2, ηa·b is a modular form of weight one. Martin
([10]) has shown that ηa·b is a cusp form if and only if

(3) (a, b) = (1, 23), (2, 22), (3, 21), (4, 20), (6, 18), (8, 16), (12, 12) .

Moreover he has shown that ηa·b is a Hecke eigenform on a congruence subgroup of level
ab for these pairs. We are interested in the coefficient of the Fourier expansion

ηa·b(q) =
∞∑

n=1

cηa·b (n)qn .

Wilton’s congruence is the case (a, b) = (1, 23). We will show a similar equation as (1),
namely that ηa·b(q) can be written by a linear combination of theta functions associated
to integral binary quadratic forms of level ab. Although in order to obtain the relation of
Wilton the maximal order of Q(

√−23) plays an important role, we will use a non-maximal
order of the quadratic field Q(

√−ab). Using Proposition 2.1 we will compute the Fourier
coefficients of a linear combination of theta functions which are cuspidal Hecke eigen-
forms. The results are summarized in Proposition 4.1 and Proposition 4.3. On the other
hand, the Fourier coefficients of ηa·b(q) can be obtained by machine calculation. Compar-
ing these coefficients, we will show that Martin’s eta products are linear combinations of
theta functions. These calculations will be carried out in Theorem 4.1 and Theorem 4.2.
Taking the equation (2) into account, Theorem 1.1 is an immediate consequence of these
theorems and will be proved at the end of the paper. Since ηa·b is a cuspidal Hecke eigen-
form of weight one for (a, b) listed by (3), it corresponds to a Galois representation ([5]).
We will identify these Galois representations in Proposition 4.2 and Proposition 4.4.

Acknowledgements. The author thanks Prof. Yokoyama who has kindly informed
us of the results of numerical experiments and Prof. Geisser for careful reading of the
manuscript. He is also grateful to the referee for corrections and valuable comments.

2. Quadratic forms and orders

In this section, we recall basic facts of binary quadratic forms and the ideal class group
of orders of imaginary quadratic fields.

Let K be an imaginary quadratic field of discriminant dK and O its order of conductor
f . Thus O = Z + fOK , where OK is the ring of integers and the discriminant of O is
dKf 2. The number of units of O is denoted by w. Let Pic(O) be the ideal class group
of O. This is a finite abelian group of the order the number h(O). In the next section we
will associate a theta function with every element of Pic(O). So we explicitly describe the
relation between binary quadratic forms and the ideal classes. A binary quadratic form with
integral coefficients

f (x, y) = ax2 + bxy + cy2, a, b, c ∈ Z
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is called a positive definite primitive quadratic form if the common divisor of a, b, c is one
and if

a > 0, Δf = b2 − 4ac < 0 .

We call Δf the discriminant of f . We say that two forms f and g are equivalent if there
are integers p, q, r and s such that

g(x, y) = f (px + qy, rx + sy), ps − qr = 1 .

Then Δf = Δg , and this defines an equivalence relation between quadratic forms of dis-
criminant D. Let C(D) be the set of equivalence classes, a finite set of cardinality h(D). A
primitive positive definite quadratic form f (x, y) = ax2 + bxy + cy2 is said to be reduced
if

|b| ≤ a ≤ c, and b ≥ 0 if either |b| = a or a = c .

It is known that every primitive positive definite form is equivalent to a unique reduced
form ([4], Theorem 2.8). Suppose that we are given two positive definite quadratic forms
f (x, y) = ax2 +bxy + cy2 and g(x, y) = a′x2 +b′xy + c′y2 of discriminant D satisfying

gcd
(
a, a′,

b + b′

2

)
= 1 .

Then the Dirichlet composition of f (x, y) and g(x, y) is defined to be

F(x, y) = aa′x2 + Bxy + B2 − D

4aa′ y2 ,

where B is the unique integer modulo 2aa′ such that

B ≡ b mod 2a

B ≡ b′ mod 2a′
B2 ≡ D mod 4aa′ .

(see [4] p.139). Dirichlet’s composition preserves the equivalence relation and makes C(D)

a finite abelian group of order h(D)([4], Theorem 3.9). In particular, the identity element
of C(D) is the class containing the form

x2 − D

4
y2, if D ≡ 0 mod 4 ,

x2 + xy + 1 − D

4
y2, if D ≡ 1 mod 4 ,

and the inverse of the class of ax2 + bxy + cy2 is the class of ax2 − bxy + cy2.

FACT 2.1. ([4], Theorem 7.7) Let O be the order of discriminant D in an imaginary
quadratic field K .

(1) If f (x, y) = ax2 + bxy + cy2 is a primitive positive definite quadratic form of dis-
criminant D, then [

a,
−b + √

D

2

]

is a proper ideal of O. Here [α, β] denotes the free abelian group of rank two in K

generated by α and β.
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(2) The map sending f (x, y) to [a, −b+√
D

2 ] induces an isomorphism between C(D) and
Pic(O). In particular,

h(D) = h(O) .

(3) A positive integer n is represented by the form Q(x, y) (i.e. there is a pair of integers
(x, y) such that Q(x, y) = n) if and only if n is the norm N(A) of some integral ideal
A in the class A ∈ Pic(O) which corresponds to Q.

Here is a remark to Fact 2.1 (3). Let rA(n) be the number of integral solutions of Q(x, y) =
n and ρA(n) the number of integral ideals with norm n in the ideal class A. Then rA(n) =
wρA(n).

Let O be the order of conductor f of an imaginary quadratic field K of discriminant
dK . The class number is given by the following formula.

FACT 2.2. ([4], Theorem 7.24)

h(O) = h(OK)f

[O×
K : O×]

∏

p|f

(
1 −

(dK

p

) 1

p

)
.

LEMMA 2.1.

O
[ 1

f

]
= OK

[ 1

f

]
.

Proof. Obviously O[ 1
f
] is contained in OK [ 1

f
]. It is sufficient to show that OK is

contained in O[ 1
f
]. Let x be an element of OK . Since the conductor of O is f , there is an

integer m such that y = m + f x is an element of O. Therefore

x = y − m

f
∈ O

[ 1

f

]
.

�
PROPOSITION 2.1. Let n be a positive integer coprime to f dK . Then

1

w

∑

A∈Pic(O)

rA(n) =
∑

m|n

(dK

m

)
.

Proof. We define the zeta function

ζ
†
O(s) =

∑

A,(NA,f dK)=1

(NA)−s ,

where A runs through the integral ideals of O whose norm is coprime to f dK . Computing
this function in two ways, we will show the claim. By the bijective correspondence between
quadratic forms of discriminant f 2dK and ideal classes of O (in particular the remark after
Fact 2.1),

ζ
†
O(s) =

∞∑

n=1,(f dK,n)=1

n−s
∑

A∈PicO
ρA(n) = 1

w

∞∑

n=1,(f dK,n)=1

n−s
∑

A∈PicO
rA(n) .
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On the other hand, since

{P ∈ SpecO | f /∈ P} = SpecO
[ 1

f

]

and

{P ∈ SpecOK | f /∈ P} = SpecOK

[ 1

f

]
,

the lemma shows that

{P ∈ SpecO | f /∈ P} = {P ∈ SpecOK | f /∈ P} .

Therefore

ζ
†
O(s) =

∑

A∈PicO,(NA,f dK)=1

(NA)−s

=
∑

A∈PicOK,(NA,f dK)=1

(NA)−s

=
∏

P,(NP,f dK)=1

∞∑

k=0

(NP)−ks

where P runs through the non-zero prime ideals of OK whose norms are coprime to f dK .
Thus

ζ
†
O(s) =

∏

(p,f dK)=1,(
dK
p )=1

(1 − p−s )−2
∏

(p,fdK)=1,(
dK
p )=−1

(1 − p−2s)−1

=
∏

(p,f dK)=1

(1 − p−s )−1
∏

(p,f dK)=1

(
1 −

(dK

p

)
p−s

)−1

= ζ †(s)L†(s, εdK ) ,

where ζ †(s) is the Riemann zeta function with the Euler factors at the primes dividing f dK

removed :

ζ †(s) =
∞∑

n=1,(n,f dK)=1

n−s ,

and

L†(s, εdK ) =
∞∑

n=1,(n,f dK)=1

(dK

n

)
n−s .

Therefore
∞∑

n=1,(f dK,n)=1

n−s

(
1

w

∑

A∈PicO
rA(n)

)
=

∞∑

n=1,(n,f dK)=1

n−ks
∑

m|n

(dK

m

)
.

Comparing the coefficients of n−s , the desired equation is obtained. �



52 K. SUGIYAMA

3. Theta functions

Following [12], we recall basic facts of modular forms. Let k and N be a nonnegative
integer and a positive integer, respectively. In this report we will consider modular forms
for the following congruence subgroups of SL2(Z):

Γ1(N) =
{(

a b

c d

)
∈ SL2(Z) : a ≡ d ≡ 1, c ≡ 0 (mod N)

}

and

Γ0(N) =
{(

a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Γ1(N) is a normal subgroup of Γ0(N) with quotient is isomorphic to (Z/NZ)×. Let H be
the upper half plane, H := {z ∈ C : � z > 0}, and O(H) the set of holomorphic functions
on H. A modular form on Γi(N)(i = 0, 1) of weight k is a function f ∈ O(H) satisfying
the functional equation

f
(az + b

cz + d

)
= (cz + d)kf (z),

(
a b

c d

)
∈ Γi(N) .

Since f admits the Fourier expansion at the cusp ν,

f =
∑

n

aν(n)qn
ν

where qν is the local parameter at ν defined by

qν = exp(2πανz), ∃αν ∈ Q .

We say that f is regular at ν if aν(n) = 0 for n < 0. The set of modular forms on Γi(N)

of weight k which are regular at any cusp is denoted by Mk(Γi(N)). Moreover, we define
the set of cusp forms on Γi(N) of weight k to be

Sk(Γi(N)) = {f ∈ Mk(Γi(N)) | aν(0) = 0 ∀ν} .

Since Γ1(N) is a normal subgroup of Γ0(N) whose quotient is isomorphic to (Z/NZ)×,
Sk(Γ1(N)) is decomposed by the characters of (Z/NZ)×,

Sk(Γ1(N)) = ⊕χSk(Γ0(N), χ) ,

where

Sk(Γ0(N), χ)=
{
f ∈Sk(Γ1(N))

∣∣∣ f
(az + b

cz + d

)
=χ(a)(cz+d)kf (z),

(
a b

c d

)
∈Γ0(N)

}
.

By definition Sk(Γ0(N), 1) = Sk(Γ0(N)) where 1 is the trivial character. It is well-known
that Mk(Γi(N)) (and hence Sk(Γi(N))) is a finite dimensional vector space over C for
i = 0, 1.

Now let Q(x, y) = ax2 + bxy + cy2 be a positive definite primitive integral quadratic
form.
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DEFINITION 3.1.

θQ(z) =
∞∑

n=0

r(Q, n)qn, q = exp(2πiz) ,

where
r(Q, n) = |{(x, y) ∈ Z × Z | Q(x, y) = n}| .

The quadratic form Q(x, y) can be written in the form

Q(x, y) = 1

2
(x, y)A(x, y)t , A =

(
2a b

b 2c

)
.

Since Q is positive definite, A is invertible.

DEFINITION 3.2. The level of Q is the smallest positive integer N such that NA−1

is again an integral matrix whose diagonal entries are all even. The discriminant Δ of Q is
defined by

Δ := b2 − 4ac .

For any odd prime p not dividing N let

εΔ(p) =
(Δ

p

)
, (Legendre symbol)

(see [11], p. 303).

FACT 3.1. ([1], Theorem 2.2) Let Q be a positive definite binary quadratic form
of level N and discriminant Δ. Then θQ is a modular form on Γ0(N) of weight one with
Nebentypus character εΔ which is regular at any cusp. Namely

θQ

(az + b

cz + d

)
= εΔ(a)(cz + d)θQ(z)

for z ∈ H and

(
a b

c d

)
∈ Γ0(N).

4. Results

4.1. The cases of class number 3; η2·22 and η6·18
Let O−d be the order of the quadratic fields K in the following table;

d 44 108

K Q(
√−11) Q(

√−3)

O−d Z + 2OK Z + 6OK

f 2 6

Here f and −d are the conductor and the discriminant of O−d , respectively. Let us iden-
tify C(−d) with Pic(O−d ) by Fact 2.1. Then Fact 2.2 tells us that the class numbers of
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these orders are 3. Hence C(−d) � Pic(O−d ) are isomorphic to Z/3Z and we write the
isomorphism as,

φ−d : Pic(O−d ) → Z/3Z, φ−d(Q
(−d)
i ) = [i], (i = 0, 1, 2) ,

where {Q(−d)
i }i=0,1,2 are defined by the following table;

d Q
(−d)
0 Q

(−d)
1 Q

(−d)
2

44 x2 + 11y2 3x2 + 2xy + 4y2 3x2 − 2xy + 4y2

108 x2 + 27y2 4x2 + 2xy + 7y2 4x2 − 2xy + 7y2

Let χ3 be the character of Pic(O−d ) defined by

(4) χ3(Q
(−d)
i ) = ζ i

3, ζ3 = exp

(
2π

√−1

3

)
,

and set

fd,χ3(q) = 1

2

{
χ3(Q

(−d)
0 )θ

Q
(−d)
0

(q) + χ3(Q
(−d)
1 )θ

Q
(−d)
1

(q) + χ3(Q
(−d)
2 )θ

Q
(−d)
2

(q)
}
.

It is easy to check that the level of the quadratic form Q
(−d)
i is d for i = 0, 1, 2.

Therefore, fd,χ3(q) ∈ S1(Γ0(d), ε−d ) by Fact 3.1. Moreover it is a Hecke eigenform
since the L-function has an Euler product ;

(5) L(fd,χ3(q), s) =
∑

A∈Pic(O−d)

χ3(A)
∑

A∈A:integral

NA−s =
∏

P:prime

1

1 − χ3(P)NP−s
.

Here we regard χ3 as a character on the ideal group of O−d via the projection. Since the
solutions of Q

(−d)
1 (x, y) = n and Q

(−d)
2 (x, y) = n are exchanged by the involution

(x, y) → (x,−y) ,

we see that r(Q
(−d)
1 , n) = r(Q

(−d)
2 , n) for every nonnegative integer n. Therefore

(6) θ
Q

(−d)
1

(q) = θ
Q

(−d)
2

(q) ,

and

fd,χ3(q) = 1

2

{
θ
Q

(−d)
0

(q) − θ
Q

(−d)
1

(q)
}
.

PROPOSITION 4.1. Suppose that d = 44 or 108. Let c(n) be the n-th Fourier coef-
ficient of 1

2 {θ
Q

(−d)
0

(q) − θ
Q

(−d)
1

(q)} and p a prime satisfying (p, d) = 1. Then

c(p) = 0 if
(−d

p

)
= −1 .

Moreover if (−d
p

) = 1,

c(p) =
{

2 if p is represented by Q
(−d)
0 ,

−1 if p is represented by Q
(−d)
1 .
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Proof. By definition,

c(p) = 1

2

(
r(Q

(−d)
0 , p) − r(Q

(−d)
1 , p)

)
.

On the other hand, Proposition 2.1 and (6) show that

(7) r
(
Q

(−d)
0 , p

) + 2r
(
Q

(−d)
1 , p

) = 2
(

1 +
(−d

p

))
.

Thus if (−d
p

) = −1, then r(Q
(−d)
0 , p) = r(Q

(−d)
1 , p) = 0 and this implies half of our

claim. Suppose that (−d
p

) = 1. Then (7) yields

r
(
Q

(−d)
0 , p

) + 2r
(
Q

(−d)
1 , p

) = 4 .

Here note that if (x, y) is an integral solution of Q
(−d)
i (x, y) = n so is (−x,−y). Therefore

{r(Q(−d)
i , p)}i=0,1 are always nonnegative even integers and there are two possibilities,

(
r
(
Q

(−d)
0 , p

)
, r

(
Q

(−d)
1 , p

)) = (4, 0), or (0, 2) ,

which prove the rest of the claim. �
As we have seen in (5), since fd,χ3(q) ∈ S1(Γ0(d), ε−d) (d = 44, 108) is a cuspidal Hecke
eigenform of weight one, it corresponds to a Galois representation ([5]),

ρd : Gal(Q/Q) → GL2(C)

unramified outside d , such that

Trρd(φp) = cp(fd,χ3(q)), detρd(φp) = ε−d (p) =
(−d

p

)
.

Here φp is the Frobenius at a prime p with (p, d) = 1. Let us identify the conjugacy class
of ρd(φp). By Proposition 4.1 we see that

Trρd(φp) =

⎧
⎪⎨

⎪⎩

0 if (−d
p

) = −1 ,

2 if (−d
p

) = 1 and p is representable by Q
(−d)
0 ,

−1 if (−d
p

) = 1 and p is representable by Q
(−d)
1 .

Since detρd(φp) = (−d
p

), ρd(φp) satisfies

ρd(φp) ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 1
1 0

)
if (−d

p
) = −1 ,

(
1 0
0 1

)
if (−d

p
) = 1 and p is representable by Q

(−d)
0 ,

(
ζ3 0
0 ζ−1

3

)
if (−d

p
) = 1 and p is representable by Q

(−d)
1 ,

where ∼ means "conjugate". By class field theory, the character (4) induces a homomor-
phism

χ3,K : Gal(Q/K) → C×, K = Q(
√−d) ,
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and the previous computation shows that ρd is the induced representation of χ3,K . Thus we
have proved the following proposition.

PROPOSITION 4.2. Suppose that d = 44 or 108. Then the Galois representation ρd

is the induced representation of χ3,K .

THEOREM 4.1. Denote ηd1d2 = ηd1·d2 . If (d1, d2) = (2, 22) or (6, 18),

ηd(q) = fd,χ3(q) = 1

2

{
θ
Q

(−d)
0

(q) − θ
Q

(−d)
1

(q)
}
.

REMARK 4.1. In [6] [7], Hiramatsu determined the Fourier coefficients of η2·22 and
η6·18.

Proof. The results of Martin ([10]) says that ηd(q) is a cuspidal Hecke eigenform
on Γ1(d) of weight one. In (5) we have seen that fd,χ3(q) ∈ S1(Γ0(d), ε−d ) is also a
cupsidal Hecke eigenform. Since the Fourier coefficients {cn}n≥1 of a Hecke eigenform are
determined by {cp}p:prime, let us compare some of them. Let p be a prime. If (p, d) = 1,
the p-th Fourier coefficient of

fd,χ3(q) = 1

2

{
θ
Q

(−d)
0

(q) − θ
Q

(−d)
2

(q)
}

can be computed by Proposition 4.1. If p divides d , we can compute cp by hand. On
the other hand we obtain the coefficients of ηd(q) by computer. Here are the results which
suggests that fd,χ3(q) = ηd(q).

p 2 3 5 7 11 13 17 19 23 29

cp(η44) 0 -1 -1 0 1 0 0 0 -1 0
cp(f44,χ3) 0 -1 -1 0 1 0 0 0 -1 0

p 31 37 41 43 47 53 59 61 67 71

cp(η44) -1 -1 0 0 2 2 -1 0 -1 -1
cp(f44,χ3) -1 -1 0 0 2 2 -1 0 -1 -1

p 2 3 5 7 11 13 17 19 23 29

cp(η108) 0 0 0 -1 0 -1 0 -1 0 0
cp(f108,χ3) 0 0 0 -1 0 -1 0 -1 0 0

p 31 37 41 43 47 53 59 61 67 71

cp(η108) 2 -1 0 2 0 0 0 -1 -1 0
cp(f108,χ3) 2 -1 0 2 0 0 0 -1 -1 0

In order to show the desired identity we will compare the Fourier coefficients of
fd,χ3(q) and ηd(q) (not only for primes). According to [8]Theorem 1.12, it is enough
to check cn(fd,χ3) = cn(ηd) for n ≤ μ(d)

12 , where

μ(d) := d
∏

p|d,p:prime

(
1 + 1

p

)
.
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The coefficients of ηd(q) are obtained by machine calculations. On the other hand, the co-
efficients of fd,χ3(q) are computed by the associated L-function. In fact, since fd,χ3(q) ∈
S1(Γ0(d), ε−d ) is a Hecke eigenform, the L-function has an Euler product

L(fd,χ3(q), s) =
∞∑

n=1

cn(fd,χ3)n
−s =

∏

p

1

1 − cp(fd,χ3)p
−s + ε−d (p)p−2s

.

Knowing cp(fd,χ3) for the primes p less than or equal to μ(d)/12, we expand the right
hand side and cn(fd,χ3) for n ≤ μ(d)

12 are determined. For example, let us consider the case
of d = 44. Since μ(44) = 72, it is sufficient to compare the Fourier coefficients up to order
6. Using the table, we see that the Euler factors of L(f44,χ3(q), s) at 2 and 11 are 1 and
1 − 11−s , respectively. Hence we have

∞∑

n=1

cn(f44,χ3)n
−s = 1

1 − 11−s

∏

p �=2,11

1

1 − cp(f44,χ3)p
−s + (−11

p
)p−2s

.

In order to compute cn(f44,χ3) for n ≤ 6, it is sufficient to know cp(f44,χ3) for the primes
p = 2, 3 and 5, which are given by the table. On the other hand, the coefficients of η44(q)

can be determined by computer from the q-expansion of the definition,

η44(q) = q

∞∏

n=1

(1 − q2n)(1 − q22n) .

We compare these coefficients and conclude that

f44,χ3(q) = η44(q) .

The case of d = 108 is similar. �
4.2. The cases of class number 4 ; η3·21, η4·20, η8·16 and η12·12

Let O−d be the order of the quadratic fields K in the following table;

d 63 80 128 144

K Q(
√−7) Q(

√−5) Q(
√−2) Q(

√−1)

O−d Z + 3OK Z + 2OK Z + 4OK Z + 6OK

f 3 2 4 6

As before f and −d are the conductor and the discriminant of O−d , respectively. Using
Fact 2.2, one sees that the class numbers of these orders are 4. Let us identify Pic(O−d)

with C(−d) by Fact 2.1. A simple computation shows that C(−d) is isomorphic to Z/4Z,
and we write the isomorphism as

φ−d : Pic(O−d ) → Z/4Z, φ−d(Q
(−d)
i ) = [i], (i = 0, 1, 2, 3) .

Here is a table of {Q(−d)
i }i=0,1,2,3.
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d Q
(−d)
0 Q

(−d)
1 Q

(−d)
2 Q

(−d)
3

63 x2 + xy + 16y2 2x2 + xy + 8y2 4x2 + xy + 4y2 2x2 − xy + 8y2

80 x2 + 20y2 3x2 + 2xy + 7y2 4x2 + 5y2 3x2 − 2xy + 7y2

128 x2 + 32y2 3x2 + 2xy + 11y2 4x2 + 4xy + 9y2 3x2 − 2xy + 11y2

144 x2 + 36y2 5x2 + 4xy + 8y2 4x2 + 9y2 5x2 − 4xy + 8y2

It is easy to check that the level of Q
(−d)
i is d . Let χ4 be the character of Pic(O−d ) defined

by

(8) χ4
(
Q

(−d)
i

) = (
√−1)i ,

and set

fd,χ4(q) = 1

2

3∑

i=0

χ4
(
Q

(−d)
i

)
θ
Q

(−d)
i

(q) = 1

2

{
θ
Q

(−d)
0

(q) − θ
Q

(−d)
2

(q)
}
.

Here the right equality is due to

Q
(−d)
1 (x,−y) = Q

(−d)
3 (x, y) ,

which yields
θ
Q

(−d)
1

(q) = θ
Q

(−d)
3

(q) ,

as (6). By the same reason as fd,χ3(q), fd,χ4(q) is a Hecke eigenform in S1(Γ0(d), ε−d ).

PROPOSITION 4.3. Suppose that d = 63, 80, 128 or 144. Let c(n) be the n-th
Fourier coefficient of 1

2 {θ
Q

(−d)
0

(q) − θ
Q

(−d)
2

(q)} and p a prime satisfying (p, d) = 1. Then

c(p) = 0 if
( d

p

)
= −1 .

Moreover, if ( d
p
) = 1,

c(p) =

⎧
⎪⎨

⎪⎩

0 if p is represented by Q
(−d)
1 ,

2 if p is represented by Q
(−d)
0 ,

−2 if p is represented by Q
(−d)
2 .

Proof. By definition,

c(p) = 1

2

(
r
(
Q

(−d)
0 , p

) − r
(
Q

(−d)
2 , p

))
,

and Proposition 2.1 shows that

(9) r
(
Q

(−d)
0 , p

) + 2r
(
Q

(−d)
1 , p

) + r
(
Q

(−d)
2 , p

) = 2
(

1 +
(−d

p

))
.

Thus if (−d
p

) = −1,

r
(
Q

(−d)
0 , p

) = r
(
Q

(−d)
1 , p

) = r
(
Q

(−d)
2 , p

) = 0 ,
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and half of the claim is proved. Suppose that (−d
p

) = 1. Then (9) yields

r
(
Q

(−d)
0 , p

) + 2r
(
Q

(−d)
1 , p

) + r
(
Q

(−d)
2 , p

) = 4 .

As we have seen, {r(Q(−d)
i , p)}i=0,1,2 are always nonnegative even integers. We claim that

r(Q
(−d)
i , p) is a multiple of 4 for i = 0, 2. In fact, the space of solutions

S = {
(x, y) ∈ Z × Z

∣∣ Q(−d)
i (x, y) = p

}
, (i = 0, 2) ,

admits the action of involutions σ and τ defined by

Q
(−d)
i Q

(−63)
0 Q

(−63)
2 Q

(−128)
2 the remainings

σ(x, y) (−x,−y) (−x,−y) (−x,−y) (−x, y)

τ (x, y) (x + y,−y) (y, x) (x + y,−y) (x,−y)

It is easy to check that the actions have no fixed point. Hence we see that Z/2Z × Z/2Z
generated by the involutions σ and τ freely acts on S and the claim is proved. Therefore
there are three possibilities,

(
r(Q

(−d)
0 , p), r

(
Q

(−d)
1 , p

)
, r

(
Q

(−d)
2 , p

)) = (4, 0, 0), (0, 2, 0) or (0, 0, 4) .

which proves the rest of our claim. �
fd,χ4(q) ∈ S1(Γ0(d), ε−d ) (d = 63, 80, 128, 144) is a cuspidal Hecke eigenform of weight
one since the L-function has an Euler product :

(10) L(fd,χ4(q), s) =
∑

A∈Pic(O−d)

χ4(A)
∑

A∈A:integral

NA−s =
∏

P:prime

1

1 − χ4(P)NP−s
.

Hence it corresponds to a Galois representation

ρd : Gal(Q/Q) → GL2(C)

satisfying

Trρd(φp) = cp(fd,χ4), detρd(φp) = ε−d (p) =
(−d

p

)

for any prime p with (p, d) = 1 as before. By class field theory the character defined by
(8) induces a homomorphism

χ4,K : Gal(Q/K) → C×, K = Q(
√−d)

The same argument as in the previous subsection implies the following theorem.

PROPOSITION 4.4. Let d = 63, 80, 128 or 144. Then the Galois representation ρd

is the induced representation of χ4,K .

THEOREM 4.2. Set ηd1d2 = ηd1·d2 , where (d1, d2) = (3, 21), (4, 20), (8, 16) or
(12, 12). Then

ηd(q) = fd,χ4(q) = 1

2

{
θ
Q

(−d)
0

(q) − θ
Q

(−d)
2

(q)
}
.

In fact, the following tables suggest the theorem. Since the proof of the theorem is similar
to that of Theorem 4.1, we omit it.
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p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

ap(η63) 0 0 0 -1 0 0 0 0 0 0 0 -2 0 -2 0 0 0 0
ap(f63,χ4 ) 0 0 0 -1 0 0 0 0 0 0 0 -2 0 -2 0 0 0 0

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

ap(η80) 0 0 -1 0 0 0 0 0 0 2 0 0 -2 0 0 0 0 -2
ap(f80,χ4 ) 0 0 -1 0 0 0 0 0 0 2 0 0 -2 0 0 0 0 -2

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

ap(η128) 0 0 0 0 0 0 -2 0 0 0 0 0 2 0 0 0 0 0
ap(f128,χ4 ) 0 0 0 0 0 0 -2 0 0 0 0 0 2 0 0 0 0 0

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

ap(η144) 0 0 0 0 0 -2 0 0 0 0 0 2 0 0 0 0 0 2
ap(f144,χ4 ) 0 0 0 0 0 -2 0 0 0 0 0 2 0 0 0 0 0 2

Proof of Theorem 1.1.. Since the proofs of the congruences are similar, we will only
show the congruence of T2(p) modulo 11. Putting p = 11 and x = q2n, the equation (2)
yields

(1 − q2n)11 ≡ 1 − q22n (mod 11) .

Thus we have

η2·22(q) = q

∞∏

n=1

(1 − q2n)(1 − q22n) ≡ q

∞∏

n=1

(1 − q2n)12 =
∞∑

n=1

T2(n)qn (mod 11)

and Theorem 4.1 yields
∞∑

n=1

T2(n)qn ≡ 1

2

{
θ
Q

(−44)
0

(q) − θ
Q

(−44)
2

(q)
}

(mod 11) .

Now the desired congruence follows from Proposition 4.1. �
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