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Abstract. Let ζ(s) denote the Riemann zeta-function. In this paper we obtain ex-
plicit formulas for the pair correlation of zeros of the function Hλ(s) = ζ(s − iλ/2)ζ(s +
iλ/2), where λ is a fixed positive real number.

1. Introduction and statement of results

Since Riemann’s study of the distribution of prime numbers, in particular, his Memoir
“Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse” [29], a deep and careful
work of striking originality and unexpected insights, first appeared in the Monatsberichte
der Berliner Akademie in 1859, a vast amount of further work on the distribution of zeros
of the Riemann zeta-function ζ(s) has been done. (See the wonderful expositions of the
classical computations by Titchmarsh [32], [33], Ingham [16], Davenport [3], Edwards [4],
Ivić [17], Iwaniec and Kowalski [18], Patterson [27], and Karatsuba and Voronin [19].) For
example, it was shown successfully by Professor Akio Fujii [10] in 1993, without assuming
any unproved hypothesis, that the discrepancy of the set of fractional parts {{αγ } : 0 < γ ≤
T }, where α is a fixed positive real number and γ ranges over the imaginary parts of all
nontrivial zeros of ζ(s), is at mostO(log logT/ log T ). Using further work of Fujii [7], [11]
certain measures naturally associated with this set of fractional parts and some connections
to the pair correlation of zeros of ζ(s) were recently investigated by Ford, Soundarajan, and
one of the authors [5], [6].

The pair correlation of zeros of ζ(s) was studied for the first time by Montgomery [24]
in the early years of the 1970’s. (See the notes by Goldston [12] for a complete discussion of
Montgomery’s important results and their relations to prime numbers.) Montgomery’s work
was later generalized to triple correlation by Hejhal [15] and to higher correlations for more
general L-functions by Rudnick and Sarnak [30], followed by further developments from
Katz and Sarnak [20], [21]. A heuristic derivation of the n-level correlations of zeros of
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ζ(s) without restrictions on the test functions was obtained by Bogomolny and Keating [1],
[2]. Also, the pair correlation of zeros of functions in the Selberg class S was researched
by Murty and Perelli [25] and Murty and one of the authors [26]. (See Selberg’s lecture [31]
at the Amalfi Conference in 1989 for the precise definition of the class S and important
fundamental conjectures surrounding S .)

In the present paper we consider the function

Hλ(s) = ζ

(
s − iλ

2

)
ζ

(
s + iλ

2

)
,

where λ is a fixed positive real number. As is well known, explicit formulas in number
theory were originally motivated by the counting of prime numbers. It is our purpose to
carry through the derivation and prove explicit formulas for the pair correlation of zeros of
Hλ(s). We will use the order relations f = O(g) and f � g synonymously. It is to be
understood, here and in all that follows, that f (x) = O(g(x)) in a set X means that there
exists a nonnegative constant k so that |f (x)| ≤ kg(x) for all x ∈ X. The implied constant
k will sometimes depend on other parameters, which is usually clear from context. We can
summarize our first result as follows.

THEOREM 1. Fix a positive real number λ. For all 2 ≤ x ≤ T , we have∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

xρ+ρ′

ρ + ρ′ = 2xT

π

{[
1 + �

(
xiλ

1 + iλ

)]
log x − �

(
xiλ

(1 + iλ)2

)
− 1

}

+Oλ(xT exp(−c(log x)3/5(log log x)−1/5))

+O(x2(log T )4)+O(T (log T )3) ,

where c is a positive absolute constant.

As an application of Theorem 1 we obtain general formulas for the correlation of zeros
of Hλ(s) for a class of smooth test functions. We prove in particular

THEOREM 2. Fix a positive real number λ. For any T > 2 and any continuously
differentiable complex-valued function g with support contained in the interval (2, T ) we
have

∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

f (ρ + ρ′) = 2T

π

∞∫
2

g(x)(1 + cos(λ log x)) log xdx

+Oλ(T ‖g ′(x)x exp(−c(log x)3/5(log log x)−1/5)‖1)

+O((log T )4‖g ′(x)x2‖1)+O(T (logT )3‖g ′(x)‖1) ,

where f is the Mellin transform of g and c is a positive absolute constant.
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We will consider Montgomery’s weight function w(z) given by w(z) = 4/(4 − z2)

and define for any real number α

FHλ(α, T ) = π

T log T

∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

T α(ρ+ρ′−1)w(ρ + ρ′ − 1) .

Then the following asymptotic formula for FHλ(α, T ) can be established.

THEOREM 3. Fix a positive real number λ and an α ∈ (0, 1). We have

FHλ(α, T ) = 1

(4 + λ2)2 log T
[2α(4 + λ2)(4 cos(αλ log T )+ 4 + λ2) log T

− 16λ sin(αλ log T )]
+Oλ(exp(−αc(log T )3/5(log log T )−1/5)) ,

where c is a positive absolute constant.

Some general variants of the above results have been formulated and proved for pairs
of functions in the Selberg class S by Murty and one of the authors [26]. It should be
emphasized that although Hλ(s) clearly is not a function in S , the general method applies
to the present case as well and is carried out in rigorous detail.

2. Proof of Theorem 1

We begin the proof by fixing a positive real number λ and taking an x ∈ (1, T ]. We
may write ∑

Hλ(ρ)=0
−T≤�(ρ)≤T

xρ = S1 + S2 − S3 + S4 + S5 − S6 ,

where

S1 = xiλ/2
∑
ζ(ρ̃)=0

−T≤�(ρ̃)≤T

xρ̃ , S2 = xiλ/2
∑
ζ(ρ̃)=0

−T−λ/2≤�(ρ̃)<−T

xρ̃ ,

S3 = xiλ/2
∑
ζ(ρ̃)=0

T−λ/2<�(ρ̃)≤T

xρ̃ , S4 = x−iλ/2 ∑
ζ(ρ̃)=0

−T≤�(ρ̃)≤T

xρ̃ ,

S5 = x−iλ/2 ∑
ζ(ρ̃)=0

T<�(ρ̃)≤T+λ/2

xρ̃, S6 = x−iλ/2 ∑
ζ(ρ̃)=0

−T≤�(ρ̃)<−T+λ/2

xρ̃ .

Since the number of zeros of ζ(s)with imaginary parts in the interval [−T−λ/2,−T+
λ/2] ∪ [T − λ/2, T + λ/2] is at most Oλ(log T ) where the implied constant depends only
on λ (see Chapter 15 of the reference by Davenport [3]) and since |xρ̃ | < x for all ρ̃, it
follows that each one of the sums S2, S3, S5, and S6 is at most Oλ(x log T ). To examine
the remaining sums S1 and S4, we employ the Landau-Gonek asymptotic formula (see the
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papers by Landau [23], Gonek [13], [14], Fujii [8], [9], and Ford, Soundarajan, and one of
the authors [5], [6]) in the form:∑

ζ(ρ)=0
−T≤�(ρ)≤T

xρ = −Λ(nx)
π

sin(T log(x/nx))

log(x/nx)
+O

(
x(log(2xT ))2 + log(2T )

log x

)
,

where x, T > 1, nx is the nearest prime power to x, andΛ(n) is the von Mangoldt function.
This remarkable formula enables us to derive that∑

Hλ(ρ)=0
−T≤�(ρ)≤T

xρ = −Λ(nx)
π

sin(T log(x/nx))

log(x/nx)
(xiλ/2 + x−iλ/2)

+Oλ

(
x(log(2xT ))2 + log(2T )

log x

)
.

Then squaring both sides of this relation and multiplying the result by x−1, we get∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

xρ+ρ′−1 = Λ(nx)
2

π2

(
sin(T log(x/nx))

log(x/nx)

)2

(x−1+iλ + x−1−iλ + 2x−1)

+Oλ

(
x(log(2xT ))4 + x−1

(
log(2T )

log x

)2
)

+Oλ

(
log x

(
(log(2xT ))2 + log(2T )

x log x

) ∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣
)
.

If we integrate this with respect to x from 2 to y for some y ∈ [2, T ], we obtain∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

yρ+ρ′ − 2ρ+ρ′

ρ + ρ′

= G(λ, T , y)+G(−λ, T , y)+G(0, T , y)+Oλ(y
2(log T )4)

+Oλ


 y∫

2

log x

(
(log(2xT ))2 + log(2T )

x log x

) ∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣ 4dx


 ,

(1)

where

G(v, T , y) =
y∫

2

Λ(nx)
2

π2

(
sin(T log(x/nx))

log(x/nx)

)2

x−1+ivdx .

To deal with the integral G(v, T , y), we consider the sequence of prime powers
q1, q2, q3, q4, . . . which satisfies the inequalities q1 < q2 < q3 < q4 < . . . and has as
midpoints the numbers xm = (qm + qm+1)/2 where m > 0. Thus the sequence of prime
powers 2, 3, 4, 5, 7, 8, 9, 11, . . . has midpoints x1 = 2.5, x2 = 3.5, x3 = 4.5, x4 = 6,
x5 = 7.5, x6 = 8.5, x7 = 10, and so on. Moreover, we note that nx = q2 = 3 for
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x ∈ (x1, x2), that nx = q3 = 4 for x ∈ (x2, x3), that nx = q4 = 5 for x ∈ (x3, x4), and so
on. Continuing like this we see that nx = qk+1 whenever x ∈ (xk, xk+1) where k > 0. As
a result, we haveΛ(nx) = Λ(qk+1).

Now let xl < x < y < xl+1 where l > 0. Then we may decompose G(v, T , y) into
parts as follows:

G(v, T , y) =



x1∫
2

+
x2∫
x1

+ · · · +
xl∫

xl−1

+
y∫

xl


 Λ(nx)

2

π2

(
sin(T log(x/nx))

log(x/nx)

)2

x−1+ivdx .

Here we make a change of variable t = T log(x/qm) and compute
xm∫

xm−1

Λ(nx)
2

π2

(
sin(T log(x/nx))

log(x/nx)

)2

x−1+ivdx

= Λ(qm)
2

π2

(qm+qm+1)/2∫
(qm−1+qm)/2

(
sin(T log(x/qm))

log(x/qm)

)2

x−1+ivdx

= Λ(qm)
2qivm T

π2

T log((qm+qm+1)/2qm)∫
T log((qm−1+qm)/2qm)

eivt/T
(

sin t

t

)2

dt .

We observe that
T log((qm+qm+1)/2qm)∫
T log((qm−1+qm)/2qm)

eivt/T
(

sin t

t

)2

dt =
∞∫

−∞
eivt/T

(
sin t

t

)2

dt − EI − EII ,

where

EI =
T log(qm−1+qm)/2qm∫

−∞
eivt/T

(
sin t

t

)2

dt �v

T log(qm−1+qm)/2qm∫
−∞

dt

t2

and

EII =
∞∫

T log(qm+qm+1)/2qm

eivt/T
(

sin t

t

)2

dt �v

∞∫
T log(qm+qm+1)/2qm

dt

t2
.

If we use the Taylor series expansion for exp(ivt/T ) with |t| < √
T , we obtain

∞∫
−∞

eivt/T
(

sin t

t

)2

dt =
∞∫

−∞

(
sin t

t

)2

dt +Ov

(
1√
T

)
= π +Ov

(
1√
T

)
.

We consider now the integrals EI and EII and focus our attention on EII . We note that
since

T log

(
qm + qm+1

2qm

)
≥ T log

(
1 + 2qm

2qm

)

 T

2qm

 T

y
,
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we have

EII �v

∞∫
T/y

dt

t2
�v

y

T
.

It would follow by similar reasoning that

EI �v

y

T
.

Combining our estimates, we get
T log((qm+qm+1)/2qm)∫
T log((qm−1+qm)/2qm)

eivt/T
(

sin t

t

)2

dt = π +Ov

(
1√
T

)
+Ov

( y
T

)
,

and it follows that
xm∫

xm−1

Λ(nx)
2

π2

(
sin(T log(x/nx))

log(x/nx)

)2

x−1+ivdx

= Λ(qm)
2qivm T

π2

[
π +Ov

(
1√
T

)
+Ov

( y
T

)]
.

Hence we obtain

G(v, T , y) = T

π

∑
q prime power

q≤y

Λ(q)2qiv +Ov

(√
T

∑
q prime power

q≤y

Λ(q)2
)

+Ov

(
y

∑
q prime power

q≤y

Λ(q)2
)
.

Since ∑
q prime power

q≤y

Λ(q)2 ≤ log y
∑

q prime power
q≤y

Λ(q) ∼ y log y (as y → ∞) ,

we see that

G(v, T , y) = T

π

∑
q prime power

q≤y

Λ(q)2qiv +Ov(y
2 log y) .

However ∑
q prime power

q≤y

Λ(q)2qiv =
∑

q prime power
q≤y

Λ(q)qiv log q

+
∑

q prime power
q≤y

Λ(q)qiv(Λ(q)− log q) ,
(2)

and we examine the two sums on the right-hand side in turn.
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Since Λ(q) = log q = 0 for q prime and since the number of prime powers that are
not prime up to y is π(

√
y) + π( 3

√
y) + · · · = O(

√
y/ log y), an easy calculation shows

that

(3)

∣∣∣∣∣∣∣∣
∑

q prime power
q≤y

Λ(q)qiv(Λ(q)− log q)

∣∣∣∣∣∣∣∣
� √

y log y .

Next, if we write ∑
q prime power

q≤y

Λ(q)qiv log q =
∑
n≤y

Λ(n)niv logn

and apply the summation by parts formula (see Section 1.5 of the reference by Iwaniec and
Kowalski [18]), we obtain

(4)
∑

2<n≤y
Λ(n)niv logn = ψ(y)yiv log y−ψ(2)2iv log 2−

y∫
2

ψ(t)t−1+iv(1+iv log t)dt ,

where ψ(x) = ∑
n≤x Λ(n) with x > 0. It follows by the prime number theorem deduced

from the sharpest known zero-free region for ζ(s), essentially due to Korobov [22] and
Vinogradov [34] (see the paper by Richert [28], Chapters 2 and 5 of the reference by Wal-
fisz [35], Chapters 13 and 18 of the reference by Davenport [3], Chapter 6 and 12 of the
reference by Ivić [17], and Chapter 4 of the reference by Karatsuba and Voronin [19] for
alternative expositions),

(5) ψ(x) = x +O(x exp(−c(log x)3/5(log log x)−1/5)) ,

where c is a positive absolute constant, that we have
y∫

2

ψ(t)t−1+iv(1 + iv log t)dt =
y∫

2

t iv(1 + iv log t)dt

+Ov


 y∫

2

exp(−c(log t)3/5(log log t)−1/5) log tdt


 .

Here we note that
y∫

2

exp(−c(log t)3/5(log log t)−1/5) log tdt

=
√
y∫

2

exp(−c(log t)3/5(log log t)−1/5) log tdt
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+
y∫

√
y

exp(−c(log t)3/5(log log t)−1/5) log tdt .

Since √
y∫

2

exp(−c(log t)3/5(log log t)−1/5) log tdt �
√
y∫

2

dt � √
y

and
y∫

√
y

exp(−c(log t)3/5(log log t)−1/5) log tdt

≤
y∫

√
y

exp(−c(log
√
y)3/5(log log

√
y)−1/5) log

√
ydt

� y exp(−c′(log y)3/5(log log y)−1/5) ,

where c′ is a positive absolute constant, we see that
y∫

2

ψ(t)t−1+iv(1 + iv log t)dt

=
y∫

2

t iv(1 + iv log t)dt +Ov(y exp(−c′(log y)3/5(log log y)−1/5)) .

Integration by parts shows that
y∫

2

t iv(1 + iv log t)dt

= y1+iv

1 + iv

(
1 + iv log y − iv

1 + iv

)
− 21+iv

1 + iv

(
1 + iv log 2 − iv

1 + iv

)
,

and so we must have
y∫

2

ψ(t)t−1+iv(1 + iv log t)dt = y1+iv

1 + iv

(
1 + iv log y − iv

1 + iv

)

+Ov(y exp(−c′(log y)3/5(log log y)−1/5)) .
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Inserting this into (4), we apply the prime number theorem (5) and combine the result and
(3) in (2) to conclude∑

q prime power
q≤y

Λ(q)2qiv = y1+iv
(

1 − iv

1 + iv

)(
log y − 1

1 + iv

)

+Ov(y exp(−c′(log y)3/5(log log y)−1/5)) ,

and it follows that

G(v, T , y) = y1+ivT
π

(
1 − iv

1 + iv

)(
log y − 1

1 + iv

)
+Ov(yT exp(−c′(log y)3/5(log log y)−1/5))

+O(y2 log y) .

Putting v = λ, v = −λ, and v = 0 and inserting the results into (1), we get∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

yρ+ρ′ − 2ρ+ρ′

ρ + ρ′

= 2yT

π

{[
1 + �

(
yiλ

1 + iλ

)]
log y − �

(
yiλ

(1 + iλ)2

)
− 1

}
+Oλ(yT exp(−c′(log y)3/5(log log y)−1/5))

+O(y2 log y)+O(y2(log T )4)

+Oλ


 y∫

2

log x

(
(log(2xT ))2 + log(2T )

x log x

) ∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣ dx

 .

(6)

Now, let us note that
y∫

2

log x

(
(log(2xT ))2 + log(2T )

x log x

) ∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣ dx

≤ (log y)(log(2yT ))2
y∫

2

∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣ dx .
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The integral on the right-hand side can be estimated as follows. For each 2 ≤ m ≤ l, we
have

xm∫
xm−1

∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣ dx =
xm∫

xm−1

∣∣∣∣ sin(T log(x/qm))

log(x/qm)

∣∣∣∣ dx

= qm

T log((qm+qm+1)/2qm)∫
T log((qm+qm+1)/2qm)

et/T
∣∣∣∣ sin t

t

∣∣∣∣ dt ,
after the change of variable t = T log(x/qm). Since qm+1 < 2qm and qm−1 > qm/2,
it follows that T log((qm + qm+1)/2qm) ≤ T log(3/2) and T log((qm−1 + qm)/2qm) ≥
−T log(4/3), respectively. Thus

xm∫
xm−1

∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣ dx < qm

T log(3/2)∫
−T log(4/3)

et/T
∣∣∣∣ sin t

t

∣∣∣∣ dt

≤ 3qm
2

T log(3/2)∫
−T log(4/3)

∣∣∣∣ sin t

t

∣∣∣∣ dt
� log T ,

when t ≤ T log(3/2) or in other words when et/T ≤ 3/2. Hence
y∫

2

∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣ dx �
∑

q prime power
q≤y

q log T � y2 log T

log y
,

and we combine all estimates to find that

(7)

y∫
2

log x

(
(log(2xT ))2 + log(2T )

x log x

) ∣∣∣∣ sin(T log(x/nx))

log(x/nx)

∣∣∣∣ dx � y2(log(2yT ))2 log T .

From (6) and (7) we see that∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

yρ+ρ′ − 2ρ+ρ′

ρ + ρ′

= 2yT

π

{[
1 + �

(
yiλ

1 + iλ

)]
log y − �

(
yiλ

(1 + iλ)2

)
− 1

}
+Oλ(yT exp(−c′(log y)3/5(log log y)−1/5))+O(y2(log T )4) .

(8)
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Here we note that∣∣∣∣∣∣∣∣∣∣∣
∑

Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

2ρ+ρ′

ρ + ρ′

∣∣∣∣∣∣∣∣∣∣∣
≤ 4

∑
Hλ(ρ)=0

−T≤�(ρ)≤T

∑
0≤k≤2T

∑
Hλ(ρ

′)=0
−T≤�(ρ′)≤T

|�(ρ+ρ′)|∈[k,k+1]

1

|ρ + ρ′|

= SI + SII ,

where

SI = 4
∑

Hλ(ρ)=0
−T≤�(ρ)≤T

∑
Hλ(ρ

′)=0
−T≤�(ρ′)≤T

|�(ρ+ρ′)|∈[0,1]

1

|ρ + ρ′|

and

SII = 4
∑

Hλ(ρ)=0
−T≤�(ρ)≤T

∑
1≤k≤2T

∑
Hλ(ρ

′)=0
−T≤�(ρ′)≤T

|�(ρ+ρ′)|∈[k,k+1]

1

|ρ + ρ′| .

We leave the sum SI for the moment and consider the sum SII , which we estimate as
follows:

SII

≤ 4
∑

Hλ(ρ)=0
−T≤�(ρ)≤T

∑
1≤k≤2T

1

k
|{ρ′ : Hλ(ρ′) = 0,−T ≤ �(ρ′) ≤ T , |�(ρ + ρ′)| ∈ [k, k + 1]}|

� log T
∑

Hλ(ρ)=0
−T≤�(ρ)≤T

∑
1≤k≤2T

1

k
� (log T )2

∑
Hλ(ρ)=0

−T≤�(ρ)≤T

1 � T (log T )3 .

We bear in mind that �(ρ) and �(ρ′) are each 
 1/ logT by the classical zero-free region
for ζ(s) (see Chapters 13 and 15 of the reference by Davenport [3]) and thus estimate the
sum SI as follows:

SI ≤ 4
∑

Hλ(ρ)=0
−T≤�(ρ)≤T

∑
Hλ(ρ

′)=0
−T≤�(ρ′)≤T

|�(ρ+ρ′)|∈[0,1]

1

�(ρ + ρ′)
� log T

∑
Hλ(ρ)=0

−T≤�(ρ)≤T

∑
Hλ(ρ

′)=0
−T≤�(ρ′)≤T

|�(ρ+ρ′)|∈[0,1]

1

� log T
∑

Hλ(ρ)=0
−T≤�(ρ)≤T

|{ρ′ : − T ≤ �(ρ′) ≤ T , |�(ρ + ρ′)}| ∈ [0, 1]}|

� (log T )2|ρ : Hλ(ρ) = 0,−T ≤ �(ρ) ≤ T | � T (log T )3 .
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Therefore

(9)

∣∣∣∣∣∣∣∣∣∣∣
∑

Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

2ρ+ρ′

ρ + ρ′

∣∣∣∣∣∣∣∣∣∣∣
� T (log T )3 ,

and it follows from (8) and (9) that∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

yρ+ρ′

ρ + ρ′

= 2yT

π

{[
1 + �

(
yiλ

1 + iλ

)]
log y − �

(
yiλ

(1 + iλ)2

)
− 1

}
+Oλ(yT exp(−c′(log y)3/5(log log y)−1/5))+O(y2(log T )4)+O(T (log T )3) ,

as asserted. This completes the proof of Theorem 1.
It is worthwhile to remark that the main term in Theorem 1 dominates the three error

terms when (log T )4 ≤ y ≤ T/(log T )5.

3. Proof of Theorem 2

Let us fix a positive real number λ, take T > 2 and consider a continuously differen-
tiable complex-valued function g with support contained in the interval (2, T ). We shall
use Theorem 1 for each x in the interval [2, T ] and have frequent recourse to the function

(10) f (s) =
∞∫

2

g(y)ys−1dy = −1

s

∞∫
2

g ′(y)ysdy .

Thus f denotes the Mellin transform of g where (10) converges. (See Chapter 4 of the
reference by Iwaniec and Kowalski [18] and Appendix 2 of the reference by Patterson
[27].) Applying (10) with s = ρ + ρ′ and summing the result over all ρ and ρ′ with
−T ≤ �(ρ),�(ρ′) ≤ T , we get

∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

f (ρ + ρ′) = −
∞∫

2

g ′(y)
∑

Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

yρ+ρ′

ρ + ρ′ dy .

By Theorem 1, the right-hand side above equals

−
∞∫

2

2yT g ′(y)
π

{[
1 + �

(
yiλ

1 + iλ

)]
log y − �

(
yiλ

(1 + iλ)2

)
− 1

}
dy
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+Oλ


 ∞∫

2

|g ′(y)|yT exp(−c(log y)3/5(log log y)−1/5)dy




+O


 ∞∫

2

|g ′(y)|y2(log T )4dy


+O


 ∞∫

2

|g ′(y)|T (log T )3dy




= −
∞∫

2

2yT g ′(y)
π

{[
1 + �

(
yiλ

1 + iλ

)]
log y − �

(
yiλ

(1 + iλ)2

)
− 1

}
dy

+Oλ(T ‖g ′(y)y exp(−c(log y)3/5(log log y)−1/5)‖1)+O((logT )4‖g ′(y)y2‖1)

+O(T (log T )3‖g ′(y)‖1) .

We integrate by parts to find that
∞∫

2

g ′(y)y1+it
(

log y − 1

1 + it

)
dy = −(1 + it)

∞∫
2

g(y)yit log ydy

for any real number t . Then putting t = λ, t = −λ, and t = 0, we obtain
∞∫

2

2yT g ′(y)
π

{[
1 + �

(
yiλ

1 + iλ

)]
log y − �

(
yiλ

(1 + iλ)2

)
− 1

}
dy

= −2T

π

∞∫
2

g(y)(1 + cos(λ log y)) log ydy .

Altogether

∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

f (ρ + ρ′) = 2T

π

∞∫
2

g(y)(1 + cos(λ log y)) log ydy

+Oλ(T ‖g ′(y)y exp(−c(log y)3/5(log log y)−1/5)‖1)

+O((log T )4‖g ′(y)y2‖1)+O(T (log T )3‖g ′(y)‖1) ,

which is precisely the statement of Theorem 2. Hence this theorem is now proved.
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4. Proof of Theorem 3

We first fix a positive real number λ and an α ∈ (0, 1). Then we take T to be large and
consider the test function

g(y) =




y

T α
, if 0 < y ≤ T α ;

T 3α

y3
, if y > T α .

The test function g is clearly continuous on the interval (0,∞). Although g is not differen-
tiable at y = T α, it is differentiable on (0, T α)∪ (T α,∞). Even though g is not compactly
supported, it in fact goes to 0 as y approaches 0 and decays in y rapidly enough as y tends to
infinity. Thus one easily sees that the proof of Theorem 2 applies here and the statement of
the theorem holds true for g . In this case the three error terms appearing on the right-hand
side of the statement of Theorem 2 can be dealt with as follows. In the first error term, we
see that

T

∞∫
0

|g ′(y)|y exp(−c(log y)3/5(log log y)−1/5)dy

= T 1−α
T α∫
0

y exp(−c(log y)3/5(log log y)−1/5)dy

+ 3T 1+3α

∞∫
T α

1

y3
exp(−c(log y)3/5(log log y)−1/5)dy

� T 1+α exp(−αc(log T )3/5(log log T )−1/5) .

In the second error term, we see that

(log T )4
∞∫

0

|g ′(y)|y2dy = (log T )4
T α∫
0

|g ′(y)|y2dy + (logT )4
∞∫

T α

|g ′(y)|y2dy

= (log T )4

T α

T α∫
0

y2dy + 3T 3α(log T )4
∞∫

T α

dy

y2

� T 2α(log T )4 .
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In the third error term, we see that

T (log T )3
∞∫

0

|g(y)|dy = T (log T )3
T α∫
0

|g ′(y)|dy + T (log T )3
∞∫

T α

|g ′(y)|dy

= T 1−α(log T )3
T α∫
0

dy + 3T 1+3α(log T )3
∞∫

T α

dy

y4

� T (log T )3 .

For a fixed α ∈ (0, 1) the first of the above three big O terms is the dominant, and so
we get

∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

f (ρ + ρ′) = 2T

π

∞∫
0

g(y)(1 + cos(λ log y)) log ydy

+Oλ(T
1+α exp(−αc(log T )3/5(log log T )−1/5)) .

(11)

By (10)

f (s) =
∞∫

0

g(y)ys−1dy = 1

T α

T α∫
0

ysdy + T 3α

∞∫
T α

ys−4dy = 4T αs

4 − (s − 1)2
.

We then conclude that∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

f (ρ + ρ′) =
∑

Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

T α(ρ+ρ′)w(ρ + ρ′ − 1) ,

from which we obtain

(12) FHλ(α, T ) = π

T 1+α log T

∑
Hλ(ρ)=0
Hλ(ρ

′)=0
−T≤�(ρ),�(ρ′)≤T

f (ρ + ρ′) .

By (11) and (12)

FHλ(α, T )

= 2

T α log T

∞∫
0

g(y)(1+cos(λ log y)) log ydy+Oλ(exp(−αc(log T )3/5(log log T )−1/5))

= 2

T 2α log T

T α∫
0

y(1 + cos(λ log y)) log ydy + 2T 2α

log T

∞∫
T α

y−3(1 + cos(λ log y)) log ydy

+Oλ(exp(−αc(log T )3/5(log log T )−1/5)) .
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After a short calculation, we find that
T α∫
0

y(1 + cos(λ log y)) log ydy

= T 2α

4(4 + λ2)2
[(4 + λ2)2(2α log T − 1)+ 4(2α(4 + λ2) log T − 4 + λ2)

× cos(αλ log T )+ 4λ(α(4 + λ2) log T − 4) sin(αλ log T )]
and

∞∫
T α

y−3(1 + cos(λ log y)) log ydy

= T −2α

4(4 + λ2)2
[(4 + λ2)2(2α log T + 1)+ 4(2α(4 + λ2) log +4 − λ2)

× cos(αλ log T )− 4λ(α(4 + λ2) logT + 4) sin(αλ log T )] .
Piecing this together, we obtain

FHλ(α, T )

= 1

(4 + λ2)2 log T
[2α(4 + λ2)(4 cos(αλ log T )+ 4 + λ2) log T − 16λ sin(αλ log T )]

+Oλ(exp(−αc(log T )3/5(log logT )−1/5)) ,

which finishes the proof of Theorem 3.
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