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Preface

This note is based on a series of lectures delivered at Rikkyo Uni-
versity, Tokyo, from the 24th till the 28th of June, 2013. The aim was
to give a short survey on dispersionless integrable hierarchies and their
connection with complex analysis. In particular there was a pedagog-
ical purpose to show students how complex analysis which they had
learned was applied to other areas of mathematics.

As most of audiences were graduate/undergraduate students who
were not familiar with integrable systems and physics, I added a brief
introduction on the integrable systems at the beginning of the lecture.
To make this note readable also to those who have never heard about
integrable systems, I included this introductory part here. It is too
elementary for experts, but some historical facts might be interesting
to young researchers.

On the contrary, I wrote about complex analysis (the Riemann
mapping theorem, the Löwner type equations, the harmonic moments,
the Laplacian growth problem and so on) in the latter half of this note
but quite inadequately, since I am merely a novice in this domain.

I am very grateful to Professor Michio Jimbo for giving me the
opportunity to deliver the lecture at Rikkyo University. I also thank
Saburo Kakei, Yoko Shigyo and Teruhisa Tsuda who attended the lec-
ture and helped me in preparing this note. Michiaki Onodera, Jun’ichi
Shiraishi and Anton Zabrodin gave me helpful information and com-
ments to the draft, to which I express special gratitude. I was partly
supported by “The National Research University Higher School of Eco-
nomics’ Academic Fund Program in 2013-2014, research grant No.12-
01-0075”.

Moscow, Russia Takashi Takebe
January 2014.
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CHAPTER 1

Introduction to integrable hierarchies

In this chapter we give a brief overview of the theory of integrable
systems by describing its history, emphasising “why such systems are
interesting”. Since the whole world of integrable systems is so enor-
mous, it is impossible to mention all of important theories. We have
to restrict ourselves to those facts which will be necessary to the main
subject of this lecture note, namely, the dispersionless integrable hier-
archies.

1.1. Linear wave equation

There are various phenomena called “waves”: water waves, elec-
tromagnetic waves (light, radio waves, X-ray,...), sound waves, seismic
waves and so on. Figure 1.1.1 shows typical examples, water wave and
longitudinal wave (for example, sound wave), symbolically.

x

u(x, t)

u

water wave sound wave
(longitudinal wave)

x

u(x, t)

Figure 1.1.1. Wave profiles (at time t).

The behaviour of any wave is approximately described by one and
the same equation, if its amplitude is sufficiently small. We examine
the simplest case, namely the wave travelling in one-dimensional space.
Let x be the coordinate in the one-dimensional space and u(x, t) be the
amplitude of the wave at time t. Then it satisfies the (one-dimensional)
linear wave equation:

(1.1.2)
∂2u

∂t2
− c2∂

2u

∂x2
= 0.

Here the constant c is a parameter determined by properties of the
medium in which the wave propagates.

As an example, let us derive this equation for a limit of a one-
dimensional system of particles. Assume that there is a chain of parti-
cles with mass m connected by springs (Figure 1.1.3).

1
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n+ 1n− 1 n

un(t)

Figure 1.1.3. Vibrating chain of springs.

The “amplitude” in this case is the displacement un(t) of the n-th
particle from its original position. The spring between the n-th and
the n + 1-st particles gets extended by un+1 − un. (If it is negative, it
means that the spring is compressed.) We assume that the force of the
spring extended by u is equal to F (u). Then, according to Newton’s
second law the equation of motion of the n-th particle is

(1.1.4) m
d2un
dt2

= F (un − un−1)− F (un+1 − un).

The first term in the right hand side is the force by the spring left
to the particle in Figure 1.1.3, while the second term is by the right
spring.

It is known that, if the displacement u of the spring is small, the
force is proportional to u (Hooke’s law): F (u) = −ku, where k is a
constant factor characteristic of the spring. In this case the equation
of motion (1.1.4) becomes

(1.1.5) m
d2un
dt2

= −k(un − un−1) + k(un+1 − un).

In order to take the continuous limit of this equation, we change the
coordinate from the discrete n ∈ Z to the continuous x ∈ R: we
denote the distance between neighbouring particles at the equilibrium
position, i.e., when the particles are at rest, by ∆ and assume that the
n-th particle’s coordinate is x = n∆. Then the displacement un(t) is
interpreted as the amplitude u(x, t) = u(n∆, t) of a continuous “chain”
or “string”.
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In the limit ∆→ 0 the extension un+1 − un of the spring becomes

un+1(t)− un(t)→ u(x+ ∆, t)− u(x, t)

= u(x, t) + ∆
∂u

∂x
(x, t) +

∆2

2!

∂2u

∂x2
(x, t) +O(∆3)− u(x, t)

= ∆
∂u

∂x
(x, t) +

∆2

2

∂2u

∂x2
(x, t) +O(∆3),

because of Taylor’s theorem. Similarly we have

un(t)− un−1(t) = ∆
∂u

∂x
(x, t)− ∆2

2

∂2u

∂x2
(x, t) +O(∆3)

Substituting the above expressions into (1.1.5), we have

m
∂2u

∂t2
= k∆2∂

2u

∂x2
+O(∆3).

Scaling m and k so that the ratio k∆2/m is constant (which eventually
becomes c2), we take the limit ∆ → 0 and obtain the wave equation
(1.1.2).

The most important feature of the equation (1.1.2) is its linearity.
The equation is linear in u and hence the solution space (= the kernel

of the linear operator
∂2

∂t2
−c2 ∂

2

∂x2
) is a linear space. Therefore the sum

u1 + u2 of two solutions u1 and u2 is a solution, and a scalar multiple
λu of a solution u (λ ∈ R) is also a solution. This property is called
the superposition principle in physics.

Because of this linearity we can analyse the linear wave equation
(1.1.2) thoroughly and understand its solution quite well.

For example, let us assume that the domain of (x, t) is the whole
plane R2. Then any solution is written in the form

(1.1.6) u(x, t) = f(x− ct) + g(x+ ct)

with appropriate functions f and g in one variable1. In fact, by chang-
ing the coordinate system from (x, t) to (ξ, η) = (x− ct, x+ ct), we can
rewrite the equation (1.1.2) in the form

∂2u

∂ξ ∂η
= 0.

This means that the function

(1.1.7)
∂u

∂η
= G(η)

1Of course, f and g should be sufficiently differentiable, but we do not linger
on this kind of conditions here.
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is a function solely in η and does not depend on ξ. Integrating (1.1.7)
with respect to η, we have

u =

∫ η

0

G(η′) dη′ = g(η)− g(0),

where g is an indefinite integral of G. The integration constant g(0)
cannot depend on η but may depend on ξ. Denoting −g(0) by f(ξ), we
have u(ξ, η) = f(ξ) + g(η), which is nothing but (1.1.6). This solution
is called d’Alembert’s solution.

The first part f(x− ct) in (1.1.6) is a wave propagating to the right
x→∞ (cf. Figure 1.1.8), while g(x+ ct) is a wave propagating to the
left.

x− ct = ξ0

t

t = 0

f(ξ0)

x = ξ0 + cT

x = ξ0

f(ξ0)

t = T

x

Figure 1.1.8. Right moving wave.

Actually, the right mover f(x− ct) is a solution of the equation

(1.1.9)

(
∂

∂t
+ c

∂

∂x

)
u(x, t) = 0,

which is a “factor” of the wave equation (1.1.2) in the sense

∂2

∂t2
− c2 ∂

2

∂x2
=

(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
=

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
.

In the same way g(x+ ct) satisfies another factor of (1.1.2),

(1.1.10)

(
∂

∂t
− c ∂

∂x

)
u(x, t) = 0.
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1.2. Discovery of integrable systems

However, there is no way that the real world is so naive and sim-
ple! In fact, if the amplitude of a wave gets large, the system obeys
non-linear equation, solutions of which no longer form a linear space.
There is no good theory applicable to all general nonlinear partial dif-
ferential equations and has to attack the problem one by one, or use
the numerical method.

When the very first electronic computers became available to physics
in the middle of the twentieth century, three physicists, Fermi, Pasta
and Ulam, made use of this opportunity to compute the behaviour of
the nonlinear lattice. They added perturbation terms (quadratic or
cubic in un’s) to (1.1.5) and solved the equation by a computer.

From their intuition as physicists, they expected that the system
would become chaotic because of interaction of modes (states which
were independent when the system were linear) by the nonlinear terms.
But, contrary to this intuitive expectation, their result [FPU]2 quite
unexpectedly showed a quasi-periodic behaviour.

It was so stimulating to physicists and as a result two important
questions were posed. One is “what about continuous system?” and
the other is “is there a nonlinear lattice which has periodic solutions
rigorously (i.e., not only confirmed numerically but proved mathemati-
cally)?”. The former was by Zabusky and Kruskal [ZK] and the latter
was by Toda [To1].

Zabusky and Kruskal numerically solved the KdV equation3,

(1.2.1)
∂u

∂t
+ u

∂u

∂x
+ δ2∂

3u

∂x3
= 0

which is one of continuous limits of Fermi-Pasta-Ulam’s lattices. The
coefficient δ is a parameter, which Zabusky and Kruskal set to 0.022
in their experiment, but by scaling the variables x, t and u we can
change the coefficients in this equation arbitrarily. They took u(x, t =
0) = cosπx as the initial value and found that this initial sine curve
decomposed into several waves. These waves travel like “particles”.
They have their own speed (the taller, the faster) and after collisions
each wave returns to its original shape.

Because of this particle-like property, Zabusky and Kruskal named
each wave a “soliton” = solitary wave + on.

2See also [Dau], according to which there is another person, Tsingou, who
contributed this result essentially.

3The KdV equation was first introduced by Boussinesq [Bo] (p.360) and redis-
covered by Korteweg and de Vries [KdV], who found a solitary wave solution and
a periodic solution.
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Figure 1.2.2. Collision of two solitons.

When one soliton is isolated, it has a form

(1.2.3) u(x, t) =
c

cosh2 α(x− ct)
.

Hence the speed is proportional to the height c. Actually, the first two

terms
∂u

∂t
+ u

∂u

∂x
in (1.2.1) corresponds to the equation of the right

moving wave (1.1.9) with the speed c of the wave replaced by u, which
means that the wave travels faster when the amplitude is larger. The

last term δ2∂
3u

∂x3
in (1.2.1) is called the dispersion term. Because of

the dispersion term, the speed of the wave differs by its wavelength.
The balance of dispersion and nonlinear effect makes soliton solutions
stable.

In 1967 Gardener, Greene, Kruskal and Miura [GGKM] found
analytic method of solving the KdV equation, so-called the inverse
scattering method. There are also solutions expressed in terms of elliptic
functions or theta functions.

One can find details of the inverse scattering method and ellip-
tic/theta function solutions of these systems in references on integrable
systems like [TD, To2, To3, DJ, To4, Kasm].

Toda took a different way from the result of Fermi-Pasta-Ulam.
He searched for a nonlinear lattice which possesses a periodic solution
rigorously. The linear lattice (1.1.5) has a periodic solution expressed
in terms of trigonometric functions. His idea was, “How about elliptic
functions? They have addition formulae like trigonometric functions.”
In the summer vacation in 1966 he was at a summer resort in Japan
by the sea. Among a few books on mathematics, which he had there,
was an encyclopedia of mathematics with a list of formulae of elliptic
functions at the end. After several trials with the help of those for-
mulae he found that a lattice (1.1.4) with F (u) = a(e−bu − 1) (a and
b are constants) has a periodic solution expressed in terms of elliptic
functions. (Details of this discovery are in [To5].) When we normalise
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the constants a, b and m to 1, the equation of motion (1.1.4) becomes

(1.2.4)
d2un
dt2

= eun−1−un − eun−un+1 ,

which is now called the Toda lattice. Soliton solutions of this equation
were also found later.

1.3. Why are integrable systems solvable?

It is natural to ask why those equations (integrable systems) like
the KdV equation and the Toda lattice have good analytic solution in
spite of their nonlinearity.

One answer to this question is the existence of conserved quanti-
ties. In many typical dynamical systems energy and momentum (and
sometimes angular momentum also) are conserved. It was discovered
that integrable systems have infinitely many conserved quantities in
addition to energy and momentum. (See, for example, Ch.14 of [To2],
Ch.13 of [To4].) These infinitely many conserved quantities constrain
the system as parameters of a solution so tightly that the system be-
comes “solvable”.

Another answer is that the system possesses infinite-dimensional
symmetries. Actually these two answers are two sides of the same
coin, because Noether’s theorem guarantees that symmetry is always
associated with a conserved quantity. For example, conservation of
energy (respectively, momentum, angular momentum) is a consequence
of the symmetry of the system with respect to translation in time
direction (respectively, translation in space direction, rotation).

One good framework4 to explain the solvability of an integrable sys-
tem was proposed in 1981 by Mikio Sato [Sat1, SS]. He introduced the
KP hierarchy (= the Kadomtsev-Petviashvili hierarchy), which is a sort
of universal family of integrable nonlinear partial differential equations
and includes the KdV equation as a special case. The Sato theory claims
that the solution space of the KP hierarchy is an infinite-dimensional
Grassmann manifold (the Sato Grassmann manifold). The “solvabil-
ity” is explained by linearising the flow of the nonlinear equations on
the Grassmann manifold. It also explains

• existence of infinitely many conserved quantities; in fact, since
each point of the Sato Grassmann manifold corresponds to a

4Because of my insufficient knowledge I cannot mention other frameworks like
the Gelfand-Dickey hierarchy [GDi], the Drinfeld-Sokolov hierarchy [DS], Hamil-
tonian formalism (for example, [FT]) and so on and so forth, which have their own
importance.
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solution of the KP hierarchy, the coordinates serve as con-
served quantities of solutions.
• infinite-dimensional symmetry; as the finite-dimensional Grass-

mann manifold is a homogeneous space GL(N)/P , where P is
the subgroup of GL(N) consisting of block upper triangular
matrices, the Sato Grassmann manifold is also a sort of homo-
geneous space. From this view point, Date, Kashiwara, Jimbo
and Miwa [DJKM] constructed the theory of transformation
groups for soliton equations. (See also [DJM].)

Later in 1984 Ueno and Takasaki [UT] introduced the Toda lattice
hierarchy, which is the Toda lattice version of the KP hierarchy.

Chapter 2 of this lecture note is a brief review of the Sato Theory
of the KP hierarchy, and Chapter 3 is on the Toda lattice hierarchy.

1.4. Dispersionless integrable systems

Now, relax. Let us watch the KdV equation5

(1.4.1)
∂u

∂t
− 3u

∂u

∂x
− 1

4

∂3u

∂x3
= 0,

“relaxed from afar”. By this we mean introducing so-called “slow vari-
ables”: X = εx, T = εt, where ε is a small parameter. In slow variables
equation (1.4.1) becomes

(1.4.2)
∂u

∂T
− 3u

∂u

∂X
− ε2 1

4

∂3u

∂X3
= 0

The limit ε → 0 of this equation is called the dispersionless limit be-

cause the dispersion term
∂3u

∂X3
vanishes:

(1.4.3)
∂u

∂T
− 3u

∂u

∂X
= 0.

This is the dispersionless KdV equation or the dKdV equation for short.
Such an equation was studied first by Lebedev and Manin [LM] and
by Zakharov [Zakh] independently around 1980. Krichever [Kr1] got
to the same equation when he studied Whitham’s averaging method.

As we mentioned in the previous section, the soliton solution of
the KdV equation exists thanks to the balance of the nonlinear term
and the dispersion term. So, the dKdV equation (1.4.3) has no longer
soliton solutions. Nevertheless this equation is solvable, i.e.,

5We choose the coefficients so that it is embedded in the KP hierarchy without
scaling. See a remark after (1.2.1).
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• has explicit solutions [KG] (by Tsarev’s generalised hodograph
method), [Kr2] (by a Riemann-Hilbert type method);
• has conserved quantities [LM];
• the inverse scattering method can be applied [Zakh].

The Toda lattice version of such kind of equations was found in [BF,
GDa] in the study of general relativity. It also appeared in [GKR, SV,
KSSV] from completely different context (Lie algebras with continual
gradings).

In 1990’s it turned out that such dispersionless type integrable sys-
tems have deep connection with the string theory and the topological
conformal field theory in elementary particle physics. There are too
many references on this subject, so we refer to the introduction of
[TT1] or to the introduction of [TT3] for references till 1994. The
main idea in this connection is that the dispersionless hierarchies de-
scribe the leading term in the asymptotic expansion of solutions of the
original hierarchies. In particular, an important quantity called the free
energy (logarithm of the tau function) of a dispersionless integrable hi-
erarchy describes the tree level part of the partition functions or the
matrix integrals.

I beg readers’ permission to tell my personal history on this subject.
In 1991 during my stay in Leningrad as an exchange graduate student
between Japan and the USSR, I visited Moscow for a few weeks, where
Krichever showed me the draft of [Kr2], which analysed the dKdV
equation appearing in the topological conformal field theory6. I was
quite puzzled by his method of constructing solutions of the dKdV
equation. Just after that, Takasaki and I attended a conference in
Turku, Finland, where I showed Takasaki my hand-written note of
Krichever’s draft. (It was still difficult to make photocopies in the
USSR then.) This was the start of our collaboration. We could gen-
eralise Krichever’s construction of solutions to the dispersionless KP
hierarchy (Theorem 5.3.1), when we participated the RIMS Research
Project on Infinite Analysis in the summer of 1991. In subsequent
years we were able to make some contributions to this area, which we
summarised in [TT3]. Most of the contents in Chapter 4, Chapter 5
and Chapter 8 of this note are taken from this paper.

Around the turn of the century came a real surprise (at least for
me). Gibbons and Tsarev [GTs2] found a differential equation which

6The topological field theory and the theory of Frobenius manifolds are also
very closely related to the dispersionless integrable hierarchies. See, for example,
[Dub] for details.



10 Preface

describes a reduction of the dispersionless KP hierarchy (or the Ben-
ney equations) This equation turned out to be a differential equation
satisfied by conformal mappings of slit domains and is now called the
chordal Löwner equation. On the other hand, Mineev-Weinstein, Wieg-
mann and Zabrodin [MiWZ] found that certain interface dynamics of
two-dimensional fluid (the Hele-Shaw flow) is described by the dis-
persionless Toda hierarchy. Further study revealed that the Riemann
mapping theorem and related complex analysis are deeply involved
with the dispersionless integrable hierarchies. But we still do not know
why such systems should appear in complex analysis.

In Chapter 7 and Chapter 9 we shall give examples of solutions
coming from the Riemann mapping theorem. This is the main goal of
this note.



CHAPTER 2

KP hierarchy and Sato theory

In this chapter we briefly review Sato’s theory of the KP hierarchy.
We omit many details, which can be found in many references, for
example, [DJKM, DJM, SN, SS, NT].

The name “KP hierarchy” comes from the KP equation (the Kadomtsev-
Petviashvili equation),

(2.0.1)
3

4

∂2u

∂y2
=

∂

∂x

(
∂u

∂t
− 3u

∂u

∂x
− 1

4

∂3u

∂x3

)
, u = u(x, y, t),

which is a generalisation of the KdV equation. Indeed the KdV equa-
tion is contained in the parentheses in the right hand side of (2.0.1) and
any solution u(x, t) of the KdV equation automatically satisfies the KP
equation when we regard u(x, t) as a function of (x, y, t) not depending
on y. This equation is also a soliton equation and integrable.

Mikio Sato’s theory of the KP hierarchy tells us that we can reveal
the true nature of this integrable equation when we consider not only
this equation alone but also infinitely many equations (which corre-
sponds to the infinitely many conserved quantities) together.

2.1. KP hierarchy

The KP hierarchy depends on infinitely many independent variables
t = (t1, t2, t3, . . . ) and x. We usually identify t1 with x for simplicity,
but sometimes we need to distinguish them. The unknown functions
are also infinitely many: ui(t) (= ui(t, x)) (i = 2, 3, . . . ). They are
encapsulated into a generating series called the Lax operator,

(2.1.1) L = ∂ + u2(t)∂−1 + u3(t)∂−2 + · · · =
∞∑
i=0

ui(t)∂
1−i,

where we set u0 = 1, u1 = 0.

11
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Here ∂ =
∂

∂x
, but what are ∂−1, ∂−2, . . . ? They are called mi-

crodifferential operators1. Though they are named “operators”, they
are nothing more than “symbols”, or exactly speaking, elements of an
algebra. We consider objects like

A = aN(t, x)∂N + aN−1(t, x)∂N−1 + · · · =
∑
n≤N

an(t, x)∂n.

The integer N in this expression is called the order of A, when aN 6= 0.
The sum of microdifferential operators is defined as usual and the

product is defined by the following rules:

∂m ◦ ∂n = ∂m+n,

∂n ◦ f(x) =
∞∑
r=0

(
n

r

)
f (r)∂n−r.(2.1.2)

Here f (r) is the r-th derivative of f and the binomial coefficient is
defined by

(2.1.3)

(
n

r

)
:=

1 (r = 0),
n(n− 1) · · · (n− r + 1)

r!
(r 6= 0).

Note that this definition is valid for any n ∈ Z (even for n < 0). Of
course the above definition coincides with the ordinary composition of
differential operators when n = 0. For example, let n = 2 and consider
the action of the operator ∂2 ◦ f(x) on a function g(x). Because of the
Leibniz rule, we have

(∂2 ◦ f)g = ∂2(fg)

= (∂2f)g + 2(∂f) (∂g) + f (∂2g)

= (f∂2 + 2f ′∂ + f ′′)g,

namely ∂2◦f = f∂2 +2f ′∂+f ′′, which coincides with (2.1.2) for n = 2.
Hereafter we omit ◦ for the product.

Since this multiplication is noncommutative, the commutator,

(2.1.4) [A,B] := AB −BA,

1The name “pseudo-differential operator” seems to be more popular. In this
book, however, following Sato’s original works [Sat1] and [SS], we use the name
“microdifferential operator” as in [Scha] and [Kash].
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is not trivial. For example, the commutator of ∂ and L of the form
(2.1.1) is

(2.1.5) [∂, L] =
∂L

∂x
:=

∞∑
i=0

∂ui
∂x

∂1−i.

Another operation to a microdifferential operator is the truncation
to the differential operator part:

A =
∑
n∈Z

an∂
n 7→ A+ =

∑
0≤n

an∂
n.

We sometimes use the truncation to the other side: A− := A− A+.

Now let us proceed to the definition of the KP hierarchy.

Definition 2.1.1. We call the system of differential equations

(2.1.6)
∂L

∂tn
= [Bn, L], Bn = (Ln)+, n = 1, 2, . . . ,

the Kadomtsev-Petviashvili hierarchy or the KP hierarchy for short.

The left hand side of (2.1.6) is the derivation of L with respect to
tn, which means the differentiation of coefficients of L:

∂L

∂tn
=
∞∑
i=0

∂u

∂tn
∂1−i.

Remark 2.1.2. Equation (2.1.6) for n = 1 is the reason why we
identify t1 with x. In fact, B1 = (L)+ = ∂ and therefore (2.1.6) for

n = 1 is
∂L

∂t1
=
∂L

∂x
, which means L depends on t1 and x only through

combination t1 + x and does not depend on t1 − x.

The equations of the form (2.1.6) are called the Lax equation and
therefore the above definition of the KP hierarchy is called the Lax
representation. In fact there are other formulation of the KP hierarchy.

Proposition 2.1.3. (i) When L satisfies (2.1.6), then the following
equations hold for all m and n:

(2.1.7)
∂Bm

∂tn
− ∂Bn

∂tm
+ [Bm, Bn] = 0.

(ii) Conversely, if Bn (n = 1, 2, . . . ) satisfy (2.1.7), then L satisfies
(2.1.6).

Definition 2.1.4. We call the system (2.1.7) the Zakharov-Shabat
representation of the KP hierarchy.
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Proof of Proposition 2.1.3. (i) Because of the Leibniz rule and
the Lax equation (2.1.6), we have

∂Lm

∂tn
=
∂L

∂tn
Lm−1 + L

∂L

∂tn
Lm−2 + · · ·+ Lm−1 ∂L

∂tn
= (BnL− LBn)Lm−1 + L(BnL− LBn)Lm−2 + · · ·
· · ·+ Lm−1(BnL− LBn)

= [Bn, L
m].

(2.1.8)

for all m and n. Decomposing Lm as Lm = Bm − Bc
m, where Bc

m =
−(Lm)−, we can rewrite (2.1.8) as

(2.1.9)
∂Bm

∂tn
− ∂Bc

m

∂tn
= [Bn, Bm]− [Bn, B

c
m].

Interchanging m and n in (2.1.8) and substituting Bm = Lm +Bc
m and

Ln = Bn −Bc
n into it, we obtain

∂Bn

∂tm
− ∂Bc

n

∂tm
= [Lm +Bc

m, L
n] = [Bc

m, L
n]

= [Bc
m, Bn]− [Bc

m, B
c
n].

(2.1.10)

From (2.1.9) and (2.1.10) follows

(2.1.11)
∂Bm

∂tn
− ∂Bn

∂tm
+ [Bm, Bn] =

∂Bc
m

∂tn
− ∂Bc

n

∂tm
+ [Bc

m, B
c
n].

Note that the left hand side is the differential operator (a linear combi-
nation of ∂k (k = 0)) while the right hand side is the microdifferential
operator of negative order (a linear combination of ∂k (k < 0)). Hence
both hand sides are zero, which proves (2.1.7).

(ii) As we do not use this statement later, we omit the proof. �

In the above proof we obtained following equations for m,n =
1, 2, . . . , together with (2.1.7):

(2.1.12)
∂Bc

m

∂tn
− ∂Bc

n

∂tm
+ [Bc

m, B
c
n] = 0.

Exercise 2.1.5. Show that, if we put u = u2, t1 = x, t2 = y,
t3 = t, the equation (2.1.7) for (m,n) = (2, 3) implies the KP equation
(2.0.1). (Hint: When one expands (2.1.7), (m,n) = (2, 3), it has the
form f(x)∂ + g(x) = 0, which is equivalent to f = g = 0. Eliminate u3

in these equations.)

Exercise 2.1.6. The KP hierarchy with the condition “L2 = ∂2 +
u(t)” (i.e., L2 does not have the negative order part) is called the KdV
hierarchy. Show that
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(i) L does not depend on t2n (n = 1, 2, 3, . . . ).
(ii) u = u2 satisfies the KdV equation (1.4.1) with respect to t1 = x

and t3 = t. (Hint: expand (2.1.6) for n = 3.)

2.2. Wave function

Equations (2.1.7) and (2.1.12) might be more impressive if we write
them as follows: [

∂

∂tm
−Bm,

∂

∂tn
−Bn

]
= 0,(2.2.1) [

∂

∂tm
−Bc

m,
∂

∂tn
−Bc

n

]
= 0,(2.2.2)

which are called the zero-curvature conditions. Actually the Lax equa-
tion (2.1.6) can be also rewritten in the form of commutator:

(2.2.3)

[
L,

∂

∂tn
−Bn

]
= 0.

The equations (2.2.3) and (2.2.1) are the compatibility conditions of
the linear system,

LΨ(t; z) = zΨ(t; z),(2.2.4)

∂Ψ

∂tn
(t; z) = BnΨ(t; z), n = 1, 2, . . . .(2.2.5)

Hence if L is a solution of the KP hierarchy, the above system possesses
a solution Ψ(t; z).

Remark 2.2.1. Let V be a linear space and A(x, y) and B(x, y) be
linear operators on V depending on (x, y). Then, under certain “good”
conditions like unique solvability of ordinary differential equations, the
system of linear partial differential equations for a V -valued function
f(x, y),(

∂

∂x
− A(x, y)

)
f(x) = 0,

(
∂

∂y
−B(x, y)

)
f(x) = 0,

has a unique solution for any initial value f(0, 0) = f0 ∈ V , if the
compatibility condition,[

∂

∂x
− A(x, y),

∂

∂y
−B(x, y)

]
= 0,

holds. This is also true for the system with more than two variables.

Actually, since L and Bn have specific forms, we can prove more
precise statement.
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Proposition 2.2.2. Let L be a solution of the KP hierarchy (2.1.6).
Then there exists a solution of the system (2.2.4), (2.2.5) of the form

(2.2.6)

Ψ(t; z) = ŵ(t; z)eζ(t;z),

ŵ(t; z) = 1 + w1(t)z−1 + w2(t)z−2 + · · · ,

ζ(t; z) =
∞∑
n=1

tnz
n.

This solution is called the wave function2 of the KP hierarchy.
To such a wave function one can assign a microdifferential operator

(2.2.7) W = 1 + w1(t)∂−1 + w2(t)∂−2 + · · · ,

which is called the wave operator or the dressing operator. Defining the
action of ∂n on eζ(t;z) naturally by ∂neζ(t;z) = zneζ(t;z), we have

(2.2.8) Ψ(t; z) = Weζ(t;z).

Moreover, it is easy to see from (2.2.4) and (2.2.5) that W satisfies

L = W∂W−1,(2.2.9)

∂W

∂tn
= BnW −W∂n, (n = 1, 2, . . . ).(2.2.10)

Exercise 2.2.3. Show that if W satisfies (2.2.9) then Ψ defined by
(2.2.8) is a solution of (2.2.4). Likewise, show that equation (2.2.10)
implies (2.2.5).

In fact, we can prove the existence of W satisfying (2.2.9) and
(2.2.10) from the compatibility condition (2.1.12) and then Proposi-
tion 2.2.2 is proved as in Exercise 2.2.3.

2.3. Tau function

Now we are in a position to introduce the tau function, one of the
most important notion in the Sato theory.

Theorem 2.3.1. (i) If Ψ(t; z) is a wave function of the KP hierar-
chy, it is expressed in terms of a function τ(t) as

(2.3.1) Ψ(t; z) =
τ(t− [z−1])

τ(t)
eζ(t;z),

2Recently it is also called the Baker-Akhiezer function, but originally this name
was for a function on a Riemann surface satisfying certain properties, which makes
it a wave function in the above sense.
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where

(2.3.2) t− [z−1] :=

(
t1 −

1

z
, t2 −

1

2z2
, t3 −

1

3z3
, . . .

)
,

and the function τ(t) satisfies the following equation for any t and t′.

(2.3.3)

∮
z=∞

τ(t− [z−1]) τ(t′ + [z−1]) eζ(t;z)−ζ(t
′;z) dz

2πi
= 0.

(ii) Conversely, if a function τ(t) satisfies (2.3.3), we obtain a solu-

tion of the KP hierarchy by tracing back τ −−−→
(2.3.1)

Ψ
(2.2.7)−−−→
(2.2.6)

W −−−→
(2.2.9)

L.

In (2.3.3) the symbol

∮
dz

2πi
means taking the residue of the power

series in z: ∮
z=∞

(∑
n∈Z

anz
n

)
dz

2πi
= a−1.

Definition 2.3.2. The function τ(t) in Theorem 2.3.1 is called the
tau function of the KP hierarchy. The equation (2.3.3) is called the
bilinear residue identity.

If we compute the residue in (2.3.3), expanding τ(t−[z−1]) and τ(t′+
[z−1]), we obtain bilinear differential equations for the tau function.
The first two non-trivial equations are

(2.3.4)
(D4

t1
+ 3D2

t2
− 4Dt1Dt3)τ(t) · τ(t) = 0,

(D3
t1
Dt2 + 2Dt2Dt3 − 3Dt1Dt4)τ(t) · τ(t) = 0,

where P (Dt)τ(t) · τ(t) is Hirota’s bilinear operator defined by

P (Dt)f(t) · g(t) = P (∂a)
(
f(t+ a) g(t− a)

)
|a=0.

The generating function of all the bilinear equations obtained from the
bilinear residue identity (2.3.3) is

(2.3.5)
∞∑
j=0

pj(−2a) pj+1(D̃t)e
∑∞

l=1 alDtτ(t) · τ(t) = 0.

Here pj(t) is a polynomial defined by

∞∑
j=0

pj(t)z
j = eζ(t;z), or pj(t) =

∑
i1+2i2+3i3+···=j

ti11
i1!

ti22
i2!

ti33
i3!
· · · .

The equations (2.3.4) or (2.3.5) are called Hirota’s bilinear equations
of the KP hierarchy.
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In 1970’s Hirota [H1] found that soliton equations can be trans-
formed into bilinear differential equations of this kind by suitable change
of dependent variables. (See, for example, [H2].) Sato, Miwa and
Jimbo extended Hirota’s bilinearisation to higher order equations in
the hierarchy. As a result Sato revealed what mathematical structure
was hidden behind them by the following theorem3 in [Sat1].

Theorem 2.3.3. The derivatives {sλ(∂̃)τ(t)}λ∈Y of the tau function
τ(t) form a set of the Plücker coordinates of a point in an infinite-
dimensional Grassmann manifold, which is called the Sato Grassmann
manifold. Hirota’s bilinear equations are the Plücker relations among
them.

Conversely, any point of the Sato Grassmann manifold gives a so-
lution of the KP hierarchy.

Here Y is the set of all Young diagrams and sλ(t) is the Schur
polynomial corresponding to the Young diagram λ = (λk = λk−1 =
· · · = λ1):

(2.3.6) sλ(t) = det(pλi−i+j)i,j=1,...,k.

Details of this theory are in [SS, SN, Sat2, Sat3] or [NT].

As is well-known, the finite-dimensional Grassmann manifold is a
homogeneous space GL(N)/P , where P is a maximal parabolic sub-
group of GL(N) and consequently has the GL(N)-symmetry. Like-
wise the Sato Grassmann manifold can be regarded as an infinite-
dimensional homogeneous space “GL(∞)/P”, but we need to pay at-
tention to possible divergence caused by infinite-dimensionality.

Date, Jimbo, Kashiwara and Miwa considered the infinitesimal
gl(∞)-symmetry instead of the group symmetry and constructed the
theory of transformation groups of the KP hierarchy in [DJKM]. (See
[DJM], too.) They found that the action of generators of gl(∞) can
be expressed in terms of the so-called vertex operators and that soliton
solutions are generated by means of them.

3Those who are not familiar with words like “Grassmann manifold” or the
“Plücker coordinates/relations” are referred to, for example, [Fu] or [DJM].



CHAPTER 3

Toda lattice hierarchy

In this chapter we briefly review the Toda lattice hierarchy. Stim-
ulated by Sato’s work, Ueno and Takasaki introduced the Toda lattice
version of the KP hierarchy in [UT]. Exactly speaking, what they
introduced contains the two-dimensional analogue of the Toda lattice
(1.2.4). The one-dimensional original Toda lattice is obtained by the
reduction procedure, which imposes a condition to solutions. (See Exer-
cise 3.1.2.) We omit detailed proofs, which can be found in the original
paper [UT] or in Takasaki’s book [Taka].

3.1. Toda lattice hierarchy

The independent variables of the Toda lattice hierarchy are two sets
of continuous variables t = (t1, t2, . . . ), t̄ = (t̄1, t̄2, . . . ) and one discrete
variable s ∈ Z. The unknown functions, ui = ui(t, t̄; s), ūi = ūi(t, t̄; s),
are encapsulated in two difference operators, the Lax operators L and
L̄, instead of one microdifferential operator L of the KP hierarchy:

L = e∂s + u1 + u2e
−∂s + u3e

−2∂s + · · · ,
L̄ = ū0e

−∂s + ū1 + ū2e
∂s + ū3e

2∂s + · · · .
(3.1.1)

Here, en∂s is a difference operator acting on a function f(s) of s as

(en∂sf)(s) = f(s+ n).

This symbol of the exponentiated differential operator comes from
the Taylor expansion formula:

(3.1.2) f(s+ ~) =
∞∑
n=0

~n

n!
∂ns f(s) = (e~∂sf)(s).

Later we shall use this “shift by ~” but in this chapter we use shifts by
integers, which makes it possible to write down everything in terms of
matrices. Let us denote a function f(s) of s ∈ Z as a column vector

19
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...

f(−1)
f(0)
f(1)

...

. Then the operator e∂s corresponds to the shift matrix Λ:

(3.1.3) Λ =



. . . . . .
0 1

0 1
0 1

0 1
0 1

0
. . .
. . .


= (δi+1,j)i,j∈Z.

(The horizontal and the vertical lines divide indices into negative and
non-negative parts.) In this notation, the Lax operators are matrices
of the following forms:
(3.1.4)

L =



. . .
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ 1

∗ ∗ ∗ ∗ ∗ ∗ . . .


, L̄ =



. . . ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗

. . .


,

We need two truncation operations, ()≥0 and ()<0 for difference
operators:
(3.1.5)(∑

n∈Z

ane
n∂s

)
≥0

=
∑
n≥0

ane
n∂s ,

(∑
n∈Z

ane
n∂s

)
<0

=
∑
n<0

ane
n∂s .

In the matrix notation, the former truncates a matrix to its upper
triangular part, while the latter to its strictly lower triangular part.

The definition of the Toda lattice hierarchy is almost the same as
that of the KP hierarchy.
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Definition 3.1.1. We call the system of difference-differential equa-
tions

(3.1.6)

∂L

∂tn
= [Bn, L],

∂L

∂t̄n
= [B̄n, L],

∂L̄

∂tn
= [Bn, L̄],

∂L̄

∂t̄n
= [B̄n, L̄],

the Toda lattice hierarchy. Here the difference operators Bn and B̄n

(n = 1, 2, . . . ) are defined by

(3.1.7) Bn = (Ln)≥0, B̄n = (L̄n)<0.

As in the KP case, the above definition by the Lax type equa-
tions (3.1.6) is called the Lax representation, which is equivalent to the
Zakharov-Shabat representation,

∂Bm

∂tn
− ∂Bn

∂tm
+ [Bm, Bn] = 0,(3.1.8)

∂B̄m

∂tn
− ∂Bn

∂t̄m
+ [B̄m, Bn] = 0,(3.1.9)

∂B̄m

∂t̄n
− ∂B̄n

∂t̄m
+ [B̄m, B̄n] = 0.(3.1.10)

Exercise 3.1.2. (i) Show that, if we put ū0(s) = exp(ϕ(s)−ϕ(s−
1)) and u1(s) = ∂t̄1ϕ(s), then the Zakharov-Shabat equation (3.1.9) for
m = n = 1 gives the two-dimensional Toda equation (or the Toda field
equation),

(3.1.11)
∂2

∂t1 ∂t̄1
ϕ(s) = eϕ(s)−ϕ(s−1) − eϕ(s+1)−ϕ(s).

(Exactly speaking, “the above substitution of ū0(s) and u1(s) is con-
sistent with (3.1.9) and in addition gives the equation (3.1.11).”)

(ii) Show that, if ϕ(s) satisfies

∂ϕ(s)

∂t1
+
∂ϕ(s)

∂t̄1
= 0,

then ϕ(s) satisfies

−1

4

∂2ϕ(s)

∂2t0
= eϕ(s)−ϕ(s−1) − eϕ(s+1)−ϕ(s).

with respect to the variable t0 := (t1 − t̄1)/2. This is the Toda lattice
equation (1.2.4) with scaled variables. (t 7→ 2t0, n 7→ s, un 7→ −ϕ(s).)
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Despite the symmetry of the roles of L and L̄ in the equations
(3.1.6), their forms (3.1.4) are not quite “symmetric”. In fact we can
change their forms by gauge transformation and make them “symmet-
ric” or even exchange their forms (up to transposition) [Take1]. Let
g be a diagonal matrix diags(e

αϕ(s)), where ϕ(s) is the Toda field in
Exercise 3.1.2. The gauge transformation of the Toda lattice hierarchy
by g is defined by
(3.1.12)

L 7→ Lg := g−1Lg, L̄ 7→ L̄g := g−1L̄g,

Bn 7→ Bg
n := g−1Bng − g−1 ∂g

∂tn
, B̄n 7→ B̄g

n := g−1B̄ng − g−1 ∂g

∂t̄n
,

or g−1

(
∂

∂tn
−Bn

)
g =

∂

∂tn
−Bg

n, g−1

(
∂

∂t̄n
− B̄n

)
g =

∂

∂t̄n
− B̄g

n,

We can replace L, L̄, Bn and B̄n in (3.1.6) with Lg, L̄g, Bg
n and B̄g

n

respectively. When we use the α = 1/2-gauge, then (3.1.1) and (3.1.7)
change to “symmetric form”,

L = u0e
∂s + u1 + u2e

−∂s + u3e
−2∂s + · · · ,

L̄ = ū0e
−∂s + ū1 + ū2e

∂s + ū3e
2∂s + · · · ,

u0(s) = ū0(s+ 1),

Bn := (Ln)>0 +
1

2
(Ln)0, B̄n := (L̄n)<0 +

1

2
(L̄n)0.

(3.1.13)

(The truncations ()>0, ()0 are defined similarly as in (3.1.5).) The
α = 1-gauge exchanges the roles of L and L̄ completely:

L = u0e
∂s + u1 + u2e

−∂s + u3e
−2∂s + · · · ,

L̄ = e−∂s + ū1 + ū2e
∂s + ū3e

2∂s + · · · ,
Bn := (Ln)>0, B̄n := (L̄n)≤0.

(3.1.14)

Later we shall encounter the symmetric gauge (α = 1/2) in the appli-
cation of the dispersionless Toda hierarchy in Chapter 9.

3.2. Wave matrices and tau function

In the Toda lattice hierarchy there are two wave operators W and
W̄ instead of one wave operator W for the KP hierarchy. They are of
the form

W = 1 + w1(t, t̄; s)e−∂s + w2(t, t̄; s)e−2∂s + · · · ,(3.2.1)

W̄ = w̄0(t, t̄; s) + w̄1(t, t̄; s)e∂s + w̄2(t, t̄; s)e2∂s + · · · ,(3.2.2)
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and characterised by the equations

L = We∂sW−1, L̄ = W̄e−∂sW̄−1,(3.2.3)

∂W

∂tn
= BnW −Wen∂s ,

∂W̄

∂tn
= BnW̄ ,(3.2.4)

∂W

∂t̄n
= B̄nW,

∂W̄

∂t̄n
= B̄nW̄ − W̄e−n∂s ,(3.2.5)

which corresponds to (2.2.9) and (2.2.10). Multiplying them to exp(ζ(t; e∂s))

and exp(ζ(t̄; e−∂s)), where ζ(t; e∂s) =
∞∑
n=1

tne
n∂s and ζ(t̄; e−∂s) =

∞∑
n=1

t̄ne
−n∂s ,

we obtain the wave matrices of the Toda lattice hierarchy,
(3.2.6)

Ψ(t, t̄; s) = W exp(ζ(t; e∂s)), Ψ̄(t, t̄; s) = W̄ exp(ζ(t̄; e−∂s)),

satisfying

LΨ = Ψe∂s , L̄Ψ̄ = Ψ̄e−∂s ,(3.2.7)

∂Ψ

∂tn
= BnΨ,

∂Ψ̄

∂tn
= BnΨ̄,(3.2.8)

∂Ψ

∂t̄n
= B̄nΨ,

∂Ψ̄

∂t̄n
= B̄nΨ̄.(3.2.9)

Actually the Toda field ϕ(s), which appeared in the gauge transfor-
mation (3.1.12) (recall that g = eαϕ(s)), is hidden in W̄ as w̄0(s) = eϕ(s),
or equivalently ϕ(s) = log w̄0(s).

The rest of the story is almost parallel to (but longer than) that of
the KP hierarchy. See [UT] or [Taka]. We can define the tau function
τ(t, t̄; s), which satisfies the Hirota type bilinear equations. The Sato
Grassmann manifold is replaced with a sort of “GL(∞)” ([ITEP],
[GM], [Take2]).





CHAPTER 4

Formal asymptotic analysis of KP hierarchy

In the introduction Chapter 1, we have mentioned the dispersionless
KdV equation as the equation obtained by limiting procedure “disper-
sion → 0” from the KdV equation. We can take such a limit of the
whole KP hierarchy, but it is more convenient to regard this limit as a
quasi-classical limit of a quantum mechanical system.

4.1. ~-dependent KP hierarchy

First note the resemblance of the equations in the KP hierarchy
to the equations in quantum mechanics. (If the reader is not familiar
with quantum mechanics, just believe me, there is a great science which
describes the microscopic world and is governed by equations shown
below.) The Lax equation corresponds to the Heisenberg equation for

an operator Â:

(4.1.1)
∂L

∂tn
= [Bn, L] ←→ −i~∂Â

∂t
= [Ĥ, Â],

and the linear equations for the wave function (2.2.5) corresponds to
the Schrödinger equations for the wave function Ψ:

(4.1.2)
∂Ψ

∂tn
= BnΨ ←→ i~

∂Ψ

∂t
= ĤΨ.

Here the Hamiltonian operator is denoted by Ĥ.
The lacking ingredients in the KP side are ~ = the Planck con-

stant, a very “small” physical constant, and i =
√
−1. The classical

mechanics is recovered when we take the “classical limit” ~ → 0 and
replace the commutator of operators [Â, B̂] by the Poisson bracket of
observables: {A,B}.

Now let us introduce a “small” parameter ~ into the KP hierarchy
and take the “quasi-classical limit” ~ → 0. (We do not care about
whether the variables take real values or complex values, so we do not
introduce i =

√
−1, which complicates the equations.) Taking the

resemblance with the Heisenberg equation into account, we consider

25
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the following ~-dependent KP hierarchy.

(4.1.3) ~
∂L

∂tn
= [Bn, L], Bn = (Ln)+, n = 1, 2, . . . .

Just writing this equation makes no sense, since we have not yet speci-
fied how L should depend on ~. In order to obtain a meaningful system
for “small ~”, i.e., around ~ = 0, it is sufficient to assume that L has a
form

(4.1.4) L = ~∂ +
∞∑
n=1

un+1(~, t, x)(~∂)−n,

where the coefficients un(~, t, x) are formally regular with respect to
~. This means that they have an expansion of the form un(~, t, x) =

u
(0)
n (t, x) + ~u(1)

n (t, x) + ~2u
(2)
n (t, x) + · · · as ~→ 0.

Let us import several notions from the theory of linear partial dif-
ferential equations with suitable modifications, which are convenient to
handle “leading terms” in the limit ~→ 0. The first is the order of the
microdifferential operators, but since we have to assign non-zero order
to ~, we call it the ~-order :

(4.1.5) ord~
(∑

an,m(t, x)~n∂m
)

:= max{m− n | an,m(t, x) 6= 0}.

In particular, ord~ ~ = −1, ord~ ∂ = 1, ord~ ~∂ = 0. We define
ord~(0) = −∞ for convenience. For example, the condition which we
imposed on the coefficients un(~, t, x) can be restated as ord~(L) = 0.

Once an order = a filtration is introduced, one of the must-do things
in mathematics is to examine its leading term: in algebra we take
“graded linear spaces” of filtered linear spaces; in analysis “principal
symbols” of linear partial differential operators determine their main
property. What we are going to examine is leading terms of the ~-
dependent KP hierarchy in the ~-order.

As the leading term of a microdifferential operator with respect
to the ordinary order is called the symbol, we call the leading term
with respect to the ~-order the ~-symbol. In fact we need two kinds of
symbols:

σ~
(∑

an,m(t, x)~n∂m
)

:=
∑

m−n=ord(A)

an,m(t, x)ξm(4.1.6)

σ~
l

(∑
an,m(t, x)~n∂m

)
:=

∑
m−n=l

an,m(t, x)ξm.(4.1.7)

The first one, σ~(A), is the principal symbol, while the second one,
σ~
l (A), is the symbol of order l. For example, σ~((~∂)2 + ~2∂) = ξ2.
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If ord~(A) = l, then σ~(A) = σ~
l (A), but when ord~(A) < l, then

σ~
l (A) = 0 while σ~(A) 6= 0. (We do not use σ~

l (A) when ord~(A) > l.)
When it is clear from the context, we sometimes write σ~ instead of σ~

l .
Basic properties of the ~-order and the ~-symbols are as follows:

Lemma 4.1.1. Let Pi (i = 1, 2) be two microdifferential operators
of finite ~-order: ord~(Pi) = li.

(1) ord~(P1 + P2) 5 max(l1, l2) =: l and

(4.1.8) σ~
l (P1 + P2) = σ~

l (P1) + σ~
l (P2).

In particular, ord~(P1 + P2) < max(l1, l2) only when l1 = l2
and σ~(P1) + σ~(P2) = 0.

(2) ord~(P1P2) = l1 + l2 and

(4.1.9) σ~(P1P2) = σ~(P1)σ~(P2).

(3) ord([P1, P2]) 5 l1 + l2 − 1 and

(4.1.10) σ~
l1+l2−1([P1, P2]) = {σ~(P1), σ~(P2)},

where { , } is the Poisson bracket defined by

(4.1.11) {f(ξ, x), g(ξ, x)} =
∂f(ξ, x)

∂ξ

∂g(ξ, x)

∂x
− ∂f(ξ, x)

∂x

∂g(ξ, x)

∂ξ
.

For example, the principal symbol of the commutation relation
[~∂, x] = ~ is the relation {ξ, x} = 1.

Exercise 4.1.2. Prove Lemma 4.1.1.

Now let us take the principal symbols of the ~-dependent KP hi-
erarchy (4.1.3). First, The principal symbol of the L-operator is the
series

(4.1.12) L = σ~(L) = ξ +
∞∑
n=1

u
(0)
n+1(t, x)ξ−n,

where u
(0)
n (t, x) := σ~

0(un(~, t, x)). The principal symbols of the Lax
equations (4.1.3) are

(4.1.13)
∂L
∂tn

= {Bn,L}, Bn = (Ln)+, n = 1, 2, . . . ,

because of Lemma 4.1.1. Here the truncation ( )+ of a Laurent series
in ξ is defined by

(4.1.14)

(∑
n∈Z

anξ
n

)
+

:=
∑
0≤n

anξ
n.
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This system (4.1.13) of partial differential equations for L is called the
dispersionless KP hierarchy and this shall be one of our main topics,
but for the moment, we keep assuming that we have L satisfying (4.1.3).

The Zakharov-Shabat representation of the ~-dependent KP hier-
archy is

(4.1.15) ~
∂Bm

∂tn
− ~

∂Bn

∂tm
+ [Bm, Bn] = 0, m, n = 1, 2, . . . ,

as is easily proved. (The proof is the same as that of Proposition 2.1.3.)
The principal symbols of them are

(4.1.16)
∂Bm
∂tn
− ∂Bn
∂tm

+ {Bm,Bn} = 0, m, n = 1, 2, . . . ,

which is called the Zakharov-Shabat representation of the dispersionless
KP hierarchy.

4.2. Formal WKB analysis of the linear equations

The next important ingredient of the KP hierarchy was the wave
operator (2.2.7) and the wave function (2.2.6) which satisfies the lin-
ear equations (2.2.4) and (2.2.5). What form should they have in the
presence of ~?

As in the previous section, we introduce ~ into the linear equations
as follows.

LΨ(t; z) = zΨ(t; z),(4.2.1)

~
∂Ψ

∂tn
(t; z) = BnΨ(t; z), n = 1, 2, . . . .(4.2.2)

As the L-operator has the form L = ~∂ + u1(~∂)−1 + · · · , we can infer
that the equation (2.2.9) should be replaced by

(4.2.3) L = W (~∂)W−1.

For those who are familiar with Lie groups and Lie algebras it is evident
that W in an operation like ~∂ 7→ Ad(W )~∂ := W (~∂)W−1 should
have the form W = exp(X̃). If W has such a form, namely, if

(4.2.4) W = eX̃ =
∞∑
n=0

1

n!
X̃n, or X̃ = logW = −

∞∑
k=1

(1−W )k

k
,

then we can rewrite (4.2.3) as follows.

(4.2.5) L = ead(X̃)~∂ :=
∞∑
n=0

(ad(X̃))n

n!
~∂,
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where ad(A)B := [A,B]. Let us explain this for those who have never
seen this kind of expression before. We denote the left (respectively,
right) multiplication operation B 7→ AB (respectively, B 7→ BA) by
LA (respectively, RA). With these notations (4.2.3) is expanded as

L = W (~∂)W−1 = eX̃(~∂)e−X̃ =
∞∑

m,n=0

1

m!n!
X̃m~∂(−X̃)n

=
∞∑

m,n=0

1

m!n!
Lm
X̃
Rn
−X̃~∂

=
∞∑
k=0

1

k!

( ∑
m+n=k

k!

m!n!
Lm
X̃
Rn
−X̃

)
~∂.

Note that LA and RA′ always commute for any A and A′. Hence we
have

L =
∞∑
k=0

1

k!
(LX̃ +R−X̃)k~∂

by the binomial theorem. The operation LA +R−A is nothing but the
commutator B 7→ AB − BA = [A,B] = ad(A)B. Thus we obtain
(4.2.5).

Recall that the commutation operation decrease the ~-order by 1
because of Lemma 4.1.1 (3): ord~([X̃, P ]) = ord~(P ) + ord~(X̃) − 1.
Therefore in order to obtain an operator L of the ~-order 0 by the
operation (4.2.5), it is sufficient that the operator X̃ should have the
~-order 1. Hence we consider W of the form

(4.2.6)
W = e

1
~X , ord~(X) = 0,

X = χ1(t)(~∂)−1 + χ2(t)(~∂)−2 + · · · .

Proposition 4.2.1. (i) A solution L of the ~-dependent KP hi-
erarchy (4.1.3) is expressed as L = W (~∂)W−1 by an operator of the
form (4.2.6) satisfying the equations

(4.2.7) ~
∂W

∂tn
= BnW −W (~∂)n, n = 1, 2, . . . .

Conversely, if W of the form (4.2.6) satisfies (4.2.7), then L = W (~∂)W−1

is a solution of (4.1.3).
(ii) If an operator W has the form (4.2.6),

(4.2.8) We
1
~ ζ(t;z) = exp

(
1

~
(
S(t; z) +O(~1)

))
.
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Here the function S(t; z) has an expansion

(4.2.9) S(t; z) =
∞∑
n=1

Sn(t)z−n + ζ(t; z), ζ(t; z) =
∞∑
n=1

tnz
n.

(Note that S(t; z) does not depend on ~.)
(iii) For the operator W in (i) the function

(4.2.10) Ψ(~; t; z) = We
1
~ ζ(t;z)

satisfies the system (4.2.1), (4.2.2).

Idea of the proof of Proposition 4.2.1. (i) Although the equa-
tion is the same as (2.2.10), the proof of the existence of such an oper-
ator is more complicated than that of the ordinary KP hierarchy, since
we specify the form (4.2.6). The detailed proof can be found in [TT3],
Proposition 1.7.5.

(ii) By definition (~∂)keζ(t;z)/~ = zkeζ(t;z)/~, which means that ap-
plying an operator to eζ(t;z)/~ replaces ~∂ in it by z. In view of this
observation, the statement (ii) might seem obvious, but in fact it is by
no means trivial. This is because multiplication in the definition of the
exponential in the left hand side of (4.2.8),

(4.2.11) W = eX/~ =
∞∑
n=0

X(~, x, ~∂)n

~nn!
,

is non-commutative, while the exponential in the right hand side,

(4.2.12) e(S+··· )/~ =
∞∑
n=0

(S + · · · )n

~nn!
,

is defined by commutative multiplication. The proof is rather lengthy.
See Proposition 3.1 of [TT6]. (The key idea comes from the theory of
symbols of microdifferential operators of infinite order by Aoki, [Ao].)

(iii) This is a direct computation as in Exercise 2.2.3. �

Remark 4.2.2. In quantum mechanics solutions of the Schrödinger
equation of the form Ψ = exp

(
1
i~S
)

are called the WKB solutions.
The wave function Ψ in Proposition 4.2.1 corresponds to the WKB
solutions.

As we discussed above, the L-operator in Proposition 4.2.1 is L =

~∂+
∞∑
n=1

un+1(~∂)−n = exp

(
1

~
adX

)
~∂. Taking the principal symbol
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of this formula, we have

L := σ~(L) = ξ +
∞∑
n=1

u
(0)
n+1ξ

−n

= exp
(
ad{,}X0

)
ξ =

∞∑
k=0

(ad{,}X0)k

k!
ξ,

(4.2.13)

where u
(0)
n+1 := σ~(un+1), X0 := σ~(X) and ad{,}(f)(g) := {f, g}.

Therefore X0 plays a role of the wave operator for the dispersionless
KP hierarchy.

The next question is: What is the “leading term” of the linear
equations (4.2.1) and (4.2.2)? Note that Ψ has the form (4.2.8), which
makes it impossible to pick up the leading term naively from the ex-
pansion as a power series in ~. We need first apply operators L, ~∂/∂tn
and Bn to Ψ and then divide the results by the exponential factor, only
after which we can extract the leading term.

To begin with, let us apply ~∂ to Ψ.

(~∂)Ψ = ~
∂

∂x
e

1
~ (S+O(~1))

= (∂S +O(~1))Ψ.

Applying ~∂ once more, we obtain

(~∂)2Ψ = ~
∂

∂x
(∂S +O(~1))Ψ

= (~∂(∂S +O(~1)) + (∂S +O(~1))2)Ψ

= ((∂S)2 +O(~1))Ψ.

Inductively we have

(4.2.14) (~∂)nΨ = ((∂S)n +O(~1))Ψ,

for n = 0. In fact, this formula is valid also for n < 0. The proof is
rather technical1.

Now using the formula (4.2.14), we apply L = ~∂+
∞∑
n=1

un+1(~∂)−n

to Ψ. The result is

(4.2.15) LΨ = (∂S + u
(0)
2 (t)(∂S)−1 + u

(0)
3 (t)(∂S)−2 + · · ·+O(~1))Ψ.

1Let n > 0 and consider (~∂)−nΨ. By the symbol calculus (Lemma 3.3 of
[TT6]; a = (~∂)−n, p = 0, b = 1, eq/~ = W ), we have (~∂)−nΨ = f(~; t; z)Ψ for
some function f of finite ~-order. Applying (~∂)n to the both sides and using the
Leibniz rule to the right hand side, one can show that 1 = f(∂S)n +O(~).
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On the other hand, the linear equation (4.2.1) says that this is equal
to zΨ. Hence, dividing by Ψ and taking the limit ~→ 0, we have

(4.2.16) z = ∂S + u
(0)
2 (t)(∂S)−1 + u

(0)
3 (t)(∂S)−2 + · · · = L|ξ 7→∂S,

where L = σ~(L) as in (4.2.13). In a similar manner we obtain

(4.2.17)
∂S

∂tn
= Bn|ξ 7→∂S

from (4.2.2). We regard (4.2.16) and (4.2.17) as the leading terms of
the linear equations (4.2.1) and (4.2.2).

Remark 4.2.3. The above argument somehow follows derivation
of the Hamilton-Jacobi equations from the correspondence of quantum
and classical mechanics.

4.3. Tau function and differential Fay identity

The tau function of the ~-dependent KP hierarchy is introduced by
the formula

(4.3.1) Ψ(~; t; z) =
τ(t− ~[z−1])

τ(t)
e

1
~ ζ(t;z),

which replaces (2.3.1). Comparing the asymptotic form (4.2.8) with
(4.3.1), we have

(4.3.2)
1

~
(S(t; z) +O(~1)) = log τ(t− ~[z−1])− log τ(t) +

1

~
ζ(t; z).

As the shift of the argument f(tn) 7→ f(tn − ~z−n) is expressed by the
operator e−~z

−n∂tnf(tn) (cf. (3.1.2)), the shift t 7→ t− ~[z−1] is realised
by the operator e−~D(z), where

(4.3.3) D(z) =
∞∑
n=1

z−n

n
∂tn .

Hence the right hand side of the formula (4.3.2) is

log τ(t− ~[z−1])− log τ(t) = e−~D(z) log τ(t)− log τ(t)

=− ~D(z) log τ(t) +
(−~D(z))2

2!
log τ(t) + · · ·

=− ~D(z) log τ(t) +O(~2).

Therefore, substituting this into (4.3.2), we have
(4.3.4)
S(t; z) +O(~1) = −~2D(z) log τ(t) + (lower order terms) + ζ(t; z).
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Hence, in order for this to make sense, log τ should have an expansion
like

(4.3.5) log τ(t)

=
1

~2
F0(t) +

1

~
F1(t) + F2(t) + ~F3(t) + · · · =

∞∑
n=0

~n−2Fn,

and by the expansion (4.2.9), the leading term in (4.3.4) becomes

(4.3.6)
∞∑
n=0

Sn(t)z−n = −D(z)F0, i.e., Sn = − 1

n

∂F0

∂tn
.

This F0 shall play the role of the tau function (exactly speaking, its
logarithm) in the theory of the dispersionless KP hierarchy.

We know that the tau function of the KP hierarchy satisfies the
bilinear identity (2.3.3). In the presence of ~ it is modified as

(4.3.7)

∮
z=∞

τ(t− ~[z−1]) τ(t′ + ~[z−1]) e
1
~ (ζ(t;z)−ζ(t′;z)) dz

2πi
= 0.

This characterise the tau function of the ~-dependent KP hierarchy, but
there are infinite terms of both positive and negative powers of ~ in
the expansion of this equation. Therefore in order to find a reasonable
“leading term” we have to extract a part which possesses only finitely
many negative powers of ~.

Let us substitute

t′ = t− ~[u−1]− ~[v−1]− ~[w−1],

in (4.3.7), where u, v and w are parameters. Using the Taylor expansion
formula of the logarithm,

(4.3.8) − log(1− x) =
∞∑
n=1

xn

n
,

we have

e
1
~ (ζ(t;z)−ζ(t′;z)) = e

∑ zn

nun
+
∑ zn

nvn
+
∑ zn

nwn =
1

1− z
u

1

1− z
v

1

1− z
w

.

Thus, substituting this formula into (4.3.7) and taking the residue, we
have the Hirota-Miwa equation (with ~),

(w − v)τ(t− ~[u−1]) τ(t− ~[v−1]− ~[w−1])

+(u− w)τ(t− ~[v−1]) τ(t− ~[w−1]− ~[u−1])

+(v − u)τ(t− ~[w−1]) τ(t− ~[u−1]− ~[v−1]) = 0.

(4.3.9)
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One can use this equation to find the leading terms, but for later use
we further reduce the Hirota-Miwa equation to the differential Fay
identity. This is obtained by multiplying w−1 to (4.3.9), differentiating
the resulting equation by a = w−1 and setting a to 0. For example, we
need formulae like

∂

∂a

∣∣∣∣
a=0

τ(t− ~[a]) =
∞∑
n=1

(
∂

∂a

−~an

n

)
∂τ

∂tn
(t− ~[a])

∣∣∣∣∣
a=0

= −~∂t1τ(t).

Proposition 4.3.1 (Differential Fay identity [AvM]). If τ(t) is
a tau function of the ~-dependent KP hierarchy, then it satisfies the
following equation.

(4.3.10)

~∂t1τ(t− ~[u−1]) τ(t− ~[v−1])− τ(t− ~[u−1]) ~∂t1τ(t− ~[v−1])

= (v − u)
(
τ(t− ~[u−1]) τ(t− ~[v−1])− τ(t) τ(t− ~[u−1]− ~[v−1])

)
.

Dividing this equation by (v− u)τ(t− ~[u−1]) τ(t− ~[v−1]), we can
rewrite it into the form

τ(t− ~[u−1]− ~[v−1]) τ(t)

τ(t− ~[u−1]) τ(t− ~[v−1])

= 1 +
1

u− v

(
∂

∂t1
log τ(t− ~[u−1])− ∂

∂t1
log τ(t− ~[v−1])

)
.

The logarithm of this equation has an expansion in ~ with the highest
order ~−2 in view of the asymptotic form of the tau function (4.3.5).
Picking up the leading terms, we obtain the following:

Proposition 4.3.2 ([TT3]). If the tau function of the form (4.3.5)
satisfies the ~-dependent KP hierarchy, the leading term F = F0 satis-
fies the dispersionless Hirota equation,
(4.3.11)

∞∑
m,n=1

u−mv−n
1

mn

∂2

∂tm∂tn
F = log

(
1−

∞∑
n=1

u−n − v−n

u− v
1

n

∂2

∂t1∂tn
F

)
,

namely,

(4.3.12) D(u)D(v)F = log

(
1− D(u)−D(v)

u− v
∂F

∂t1

)
.

Remark 4.3.3. Although we obtained the Hirota-Miwa equation
(4.3.9) and the differential Fay identity (4.3.10) by specialising variables
in the bilinear residue identity (4.3.7), they turn out to be equivalent
to the original whole KP hierarchy. It was first proved in [TT3] and
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a shorter proof for the Hirota-Miwa equation was obtained in [Sh].
Actually an equivalent statement (without using the tau function) was
already mentioned in [SS] by Sato and Sato without a proof.





CHAPTER 5

Dispersionless KP hierarchy

In Chapter 4 we considered the leading terms of the KP hierar-
chy depending on a parameter ~ and obtained equations like (4.1.13),
(4.1.16), (4.2.16), (4.2.17), (4.3.11), which are expressed solely in terms
of the leading terms. In fact we can reconstruct the theory without con-
sidering the lower order terms. This is the theory of the dispersionless
KP hierarchy.

5.1. Dispersionless KP hierarchy

The set of independent variables of the dispersionless KP hierarchy
is the same as that of the KP hierarchy, namely, x and t = (t1, t2, . . . ).
We can identify x and t1 almost always (cf. Remark 5.1.2 below), but
sometimes we need to distinguish them (in (5.1.6), for example). The
unknown functions are ui(t) (i = 2, 3, . . . ) as in the KP case, but

actually they correspond to u
(0)
i (t) in (4.1.12) of the ~-dependent KP

hierarchy. The Lax operator L of the KP hierarchy is replaced by the
Lax series L,

(5.1.1) L = L(t; ξ) == ξ + u2(t)ξ−1 + u3(t)ξ−2 + · · · =
∞∑
i=0

ui(t)ξ
1−i,

where u0 = 1, u1 = 0.

Definition 5.1.1. We call the system of differential equations

(5.1.2)
∂L
∂tn

= {Bn,L}, Bn = (Ln)+, n = 1, 2, . . . ,

the dispersionless KP hierarchy (or the dKP hierarchy for short)1.
Here the Poisson bracket { , } is defined by (4.1.11) and the trun-

cation operation ( )+ is defined by (4.1.14).

Remark 5.1.2. Since B1 = ξ and {ξ, (·)} = ∂(·), equation (5.1.2)
for n = 1 means that L depends on t1 and x only through combination
t1 + x as in the KP hierarchy. See Remark 2.1.2.

1In some literatures the abbreviation “dKP” means the discrete KP hierarchy,
but in this lecture note we use “dKP” only for the dispersionless KP hierarchy.

37
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This is the Lax representation of the dispersionless KP hierarchy
and it is equivalent to the Zakharov-Shabat representation,

(5.1.3)
∂Bm
∂tn
− ∂Bn
∂tm

+ {Bm,Bn} = 0, m, n = 1, 2, . . . .

The equivalence of (5.1.2) and (5.1.3) is proved in the same way as
Proposition 2.1.3.

The substitute of the wave (dressing) operator W in the dispersion-
less KP hierarchy should be the symbol σ~(X) of the operator X in
(4.2.6). It is characterised by the leading order equation of (4.2.5) and
(4.2.7).

Proposition 5.1.3. (i) Let L be a solution of the dispersionless
KP hierarchy (5.1.2). Then there exists a Laurent series χ (dressing
function) of the form χ(t) =

∑∞
n=1 χn(t)ξ−n, which satisfies the equa-

tions

L = ead{,} χ(ξ),(5.1.4)

∇tnχ = −(ead{,} χ(ξn))≤−1, i.e., ∇tnχ = Bn − Ln, n = 1, 2, . . . ,

(5.1.5)

where

ad{,} χ(ψ) = {χ, ψ}, ∇tnχ =
∞∑
m=0

(ad{,} χ)m

(m+ 1)!

∂χ

∂tn
.

Such Laurent series χ is unique up to change χ 7→ H(χ, η), where η is
a constant Laurent series η =

∑∞
n=1 ηnξ

−n (ηn ∈ C) and H(X, Y ) is
the Hausdorff series defined by

exp(ad{,}H(X, Y )) = exp(ad{,}X) exp(ad{,} Y ).

(ii) Conversely, if χ(t) =
∑∞

n=1 χn(t)ξ−n satisfies (5.1.5), then
L defined in (5.1.4) is a solution of the dispersionless KP hierarchy
(5.1.2).

This is Proposition 1.2.1 of [TT3]. We omit the proof.
In principle, every ingredient of the dispersionless KP hierarchy can

be expressed in terms of the dressing function χ, but it is convenient
to use the following Orlov-Schulman series instead.

(5.1.6) M := ead{,} χ

(
x+

∞∑
n=1

ntnξ
n−1

)
= ead{,} χead{,} ζ(t;ξ)(x).

(Here we have to distinguish t1 and x: {ξ, x} = 1 but {ξ, t1} = 0.)
Since (5.1.4) can be rewritten as

L = ead{,} χead{,} ζ(t;ξ)(ξ),
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it is obvious that M is the canonical conjugate of L:

(5.1.7) {L,M} = 1,

by virtue of the formula {ead{,} AX, ead{,} AY } = ead{,} A{X, Y }. More-
over, because of (5.1.5), the Orlov-Schulman series satisfies the same
Lax equation as L.

(5.1.8)
∂M
∂tn

= {Bn,M}, n = 1, 2, . . . .

(From this equation for n = 1 follows that, once M is defined, we do
not have to distinguish t1 and x. See Remark 5.1.2.)

By the definition (5.1.6) the Orlov-Schulman series is a Laurent
series in L as follows.

(5.1.9) M =
∞∑
n=1

ntnLn−1 + x+
∞∑
i=1

viL−i−1,

where vi = vi(t) is a function of t.

Remark 5.1.4. Orlov and Schulman introduced an operator corre-
sponding to M in [OrS],

M := W

(
x+

∞∑
n=1

ntnξ
n−1

)
W−1 = Weζ(t;∂)x

(
Weζ(t;∂)

)−1
.

in order to study the symmetry of the KP hierarchy.

Let us define a two-form ω by

(5.1.10) ω := dξ ∧ dx+
∞∑
n=1

dBn ∧ dtn.

(When t1 and x are identified, the first term dξ ∧ dx is omitted.) Here
the exterior derivative d is defined with respect to all the variables x,
tn (n = 1, 2, . . . ) and ξ:

df :=
∂f

∂x
dx+

∞∑
n=1

∂f

∂tn
dtn +

∂f

∂ξ
dξ.

Proposition 5.1.5. (i) If L is a solution of the dispersionless KP
hierarchy (5.1.2) and M is the Orlov-Schulman series (5.1.6), then

(5.1.11) ω = dL ∧ dM.

(ii) Conversely, if L of the form (5.1.1) and M of the form (5.1.9)
satisfy (5.1.11), then L is a solution of the dispersionless KP hierarchy
(5.1.2) and M is a corresponding Orlov-Schulman series.
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Proof. Two-forms dξ∧dx, dξ∧dtn, dx∧dtn and dtm∧dtn (m,n =
1, 2, . . . , m < n) form a basis of the space of two-forms. The coefficients
of dξ ∧ dx in (5.1.11) are

(5.1.12) 1 =
∂L
∂ξ

∂M
∂x
− ∂L
∂x

∂M
∂ξ

= {L,M}.

Comparing the coefficients of dξ ∧ dtn and dx ∧ dtn, we have
∂Bn
∂ξ

∂Bn
∂x

 =


∂L
∂ξ

∂M
∂tn
− ∂L
∂tn

∂M
∂ξ

∂L
∂x

∂M
∂tn
− ∂L
∂tn

∂M
∂x



=

−
∂M
∂ξ

∂L
∂ξ

−∂M
∂x

∂L
∂x



∂L
∂tn

∂M
∂tn


Let us multiply the inverse of the matrix in the last expression. Note

that its determinant is

(
−∂M
∂ξ

)(
∂L
∂x

)
−
(
∂L
∂ξ

)(
−∂M
∂x

)
= {L,M} =

1. So the result is
∂L
∂tn

∂M
∂tn

 =


∂L
∂x

−∂L
∂ξ

∂M
∂x

−∂M
∂ξ



∂Bn
∂ξ

∂Bn
∂x

 =

( {Bn,L}
{Bn,M}

)
.

Namely we obtain the Lax equations (5.1.2) and (5.1.8). Similarly we
obtain the Zakharov-Shabat equations from the coefficients of dx∧ dtn
and dtm ∧ dtn in (5.1.11). �

Remark 5.1.6. In our early work [TT1] the equation (5.1.11) was
the starting point. The dressing operation in Proposition 5.1.3 and the
definition (5.1.6) of M were first introduced in [TT3].

5.2. S-function and tau function

As we have seen in the previous section, the equation of two-forms
(5.1.11) is a compact form of the dispersionless KP hierarchy. Moreover
it is an important step to define the S-function and the tau function.
Let us rewrite (5.1.11) in the following form:

d(M dL+ ξ dx+
∞∑
n=1

Bn dtn) = 0.
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According to Poincaré’s lemma this means that there exists a function
S such that

(5.2.1) M dL+ ξ dx+
∞∑
n=1

Bn dtn = dS.

In other words,
(5.2.2)

M =
∂S

∂L

∣∣∣∣
x,t fixed

, ξ =
∂S

∂x

∣∣∣∣
L,t fixed

, Bn =
∂S

∂tn

∣∣∣∣
L,x,tm(m6=n) fixed

.

Fixing the variable L is equivalent to regarding z = L as an indepen-
dent variable. Solving the second equation in (5.2.2) with respect to z
gives

(5.2.3) L|ξ=∂xS = z,

which is (4.2.16) in Section 4.2. In this context the third equation in
(5.2.2) is

(5.2.4)
∂S

∂tn

∣∣∣∣
ξ=∂xS

= Bn,

which is nothing but (4.2.17).

Remark 5.2.1. We can interpret S as a generating function of the
canonical transformation (ξ, x) 7→ (L,M).

Actually we can write down S directly in terms of L and M.

Proposition 5.2.2 ([TT1] Proposition 3). S is given by

S =
∞∑
i=1

tiLi + xL+
∞∑
i=1

SiL−i,(5.2.5)

Si = −1

i
vi.(5.2.6)

Here vi’s are coefficients in the expansion (5.1.9) of M.

Proof. If S is defined by (5.2.5) and (5.2.6), then the first equation
in (5.2.2) is obvious by construction. The essential part of the proof is
to show the third and the second equations, which can be rewritten as

Bn = Ln −
∞∑
i=1

1

i

∂vi
∂tn
L−i,(5.2.7)

ξ = L −
∞∑
i=1

1

i

∂vi
∂x
L−i.(5.2.8)
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In order to prove (5.2.7) let us differentiate (5.1.9) with respect to tn.

(5.2.9)
∂M
∂tn

= nLn−1 +
∞∑
i=1

∂vi
∂tn
L−i−1 +

∂M
∂L

∣∣∣∣
x,t fixed

∂L
∂tn

.

We can extract
∂vi
∂tn

from this equation as follows.

(5.2.10)
∂vi
∂tn

= ResLi
(
∂M
∂tn
− ∂M

∂L

∣∣∣∣
x,t fixed

∂L
∂tn

)
dξL.

Here dξ is the exterior differential with respect to ξ and the residue in
this expression means picking up the coefficient of ξ−1. Thanks to the
invariance of the residue with respect to the coordinate change,

Res f(ξ)dξ = Res f(g(ξ))dξg(ξ),

the residue in (5.2.10) is the coefficient of L−i−1 in the power series of
L in the parentheses, and thus (5.2.10) holds.

A part of the right hand side of (5.2.10) is rewritten as(
∂M
∂tn
− ∂M

∂L

∣∣∣∣
x,t fixed

∂L
∂tn

)
dξL

= {Bn,M}dξL − {Bn,L}dξM

=

(
∂Bn
∂ξ

∂M
∂x
− ∂Bn

∂x

∂M
∂ξ

)
∂L
∂ξ
dξ −

(
∂Bn
∂ξ

∂L
∂x
− ∂Bn

∂x

∂L
∂ξ

)
∂M
∂ξ

dξ

=
∂Bn
∂ξ
{L,M} dξ =

∂Bn
∂ξ

dξ = dξBn,

because of the Lax equations (5.1.2), (5.1.8) and the canonical conju-
gation relation (5.1.7). Substituting this into (5.2.10), we have

(5.2.11)
∂vi
∂tn

= ResLidξBn = −ResBndξ(Li) = −iResBnLi−1dξL.

Here we used the formula

Res f(ξ) (dξg(ξ)) + Res(dξf(ξ)) g(ξ) = 0.

(This is a consequence of Res dξa(ξ) = 0 and the Leibniz rule dξ(fg) =
f (dξg) + (dξf) g.)

The equation (5.2.11) means that the coefficient of L−i in the ex-

pansion of Bn as a power series in L is −1

i

∂vi
∂tn

. Namely,

(5.2.12) Bn =
∞∑
m=0

bmnLm −
∞∑
i=1

1

i

∂vi
∂tn
L−i.



5.2. S-FUNCTION AND TAU FUNCTION 43

By projecting this to the positive power part in ξ, we obtain

Bn =
∞∑
m=0

bmnBm.

Since Bn = ξn + (lower order terms), Bm’s are linearly independent.
Thus we have bmn = δmn and substituting this into (5.2.12), we have
(5.2.7).

If one differentiate (5.1.9) with respect to x, then we obtain

∂vi
∂x

= ResLidξ

instead of (5.2.11), from which follows (5.2.8). �

The tau function τdkp = τdkp(t) (or its logarithm) for the disper-
sionless KP hierarchy is defined by the following equation.

(5.2.13) d log τdkp =
∞∑
n=1

vn(t) dtn.

(Here x is set to 0, or identified with t1.)

Lemma 5.2.3 (Proposition 6 of [TT1]). There exists log τdkp(t) sat-
isfying (5.2.13).

Proof. Due to the equation (5.2.11) we have

∂vm
∂tn
− ∂vn
∂tm

= Res (Lmdξ(Ln)+ + (Lm)+ dξLn)

= Res (2(Lm)+dξ(Ln)+ + (Lm)−dξ(Ln)+ + (Lm)+ dξ(Ln)−) ,

(5.2.14)

where the truncation ( )− is defined by

(5.2.15)

(∑
n∈Z

anξ
n

)
−

:=
∑
n∈Z

anξ
n −

(∑
n∈Z

anξ
n

)
+

=
∑
n<0

anξ
n.

It is easy to see that −(Lm)+dξ(Ln)+ and (Lm)− dξ(Ln)− do not have
residues. Adding them to (5.2.14), we obtain

∂vm
∂tn
− ∂vn
∂tm

= Res(LmdξLn)

= nRes(Lm+n−1dξL) =
n

m+ n
Res dξ(Lm+n) = 0.

This is the integrability of the system

(5.2.16)
∂

∂tn
log τdkp = vn,
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which guarantees the existence of the function log τdkp satisfying (5.2.13).
�

Substituting (5.2.16) into (5.2.6), we obtain

(5.2.17) Sn = − 1

n

∂

∂tn
log τdkp,

which corresponds to (4.3.6) under the identification log τdkp = F0.

5.3. Riemann-Hilbert type construction of solutions

Instead of Sato’s correspondence between the solution space of the
KP hierarchy and the Sato-Grassmann manifold, we have a correspon-
dence between solutions of the dispersionless KP hierarchy and canon-
ical transformations.

Theorem 5.3.1. (i) Let L andM be series of the form (5.1.1) and
(5.1.9) respectively. Assume that there exists a pair (f(x, ξ), g(x, ξ)) of
functions (formal power series in ξ with coefficients depending on x)
satisfying

(1) {f, g} = 1,
(2) f(M,L) and g(M,L) do not contain negative powers of ξ,

i.e.,

(5.3.1) f(M,L)− = g(M,L)− = 0.

Then, L is a solution of the dispersionless KP hierarchy and M is a
corresponding Orlov-Schulman series.

(ii) Conversely, there exists a pair (f(x, ξ), g(x, ξ)) satisfying the
conditions in (i) for a pair (L,M) of a solution of the dispersionless
KP hierarchy and its Orlov-Schulman series.

The statement (i) is Proposition 7 of [TT1] (cf. Proposition 1.5.1 of
[TT3]). We omit the proof because we shall give detailed proof for the
similar theorem, Theorem 8.2.1, for the dispersionless Toda hierarchy
later. The technique of the proof is almost the same as that in the proof
of Proposition 5.1.5. The statement (ii) is Proposition 1.5.2 of [TT3],
the proof of which uses the dressing operation discussed in Section 5.1.

This construction is a sort of Riemann-Hilbert decomposition. In
fact we “decompose” a map (f, g) : (L,M) 7→ (f(L,M), g(L,M))
into two maps, (L,M) 7→ (ξ, x) and (ξ, x) 7→ (f(L,M), g(L,M)).
The former of these maps is meromorphically extended to ξ = ∞ by
condition on the forms, (5.1.1), (5.1.9). The latter map is extended to
ξ = 0 because of the condition (5.3.1).

Very roughly speaking, the Riemann-Hilbert decomposition is fac-
torisation of a function into two parts with prescribed poles, singularity
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or regularity. This method is very useful in the theory of integrable sys-
tems. See, for example, §§16–18 of [Fad] or Chapter II of [FT].

Remark 5.3.2. The above construction of solutions is a generalisa-
tion of Krichever’s construction of solutions of the dispersionless KdV
hierarchy in [Kr2].

A similar theorem for the ~-dependent KP hierarchy was proved
in [TT3] (Proposition 1.7.11 and 1.7.12). This can be regarded as a
canonical quantisation of Theorem 5.3.1.





CHAPTER 6

Dispersionless Hirota equation

In Section 4.3 we derived the dispersionless Hirota equation (4.3.11),
or (4.3.12), by taking the quasi-classical limit of the differential Fay
identity (4.3.10). In this chapter we derive the same equation, staying
solely in the realm of the dispersionless hierarchy. Since the differen-
tial Fay identity is equivalent to the whole KP hierarchy as mentioned
in Remark 4.3.3, we can expect that the dispersionless Hirota equa-
tion is equivalent to the dKP hierarchy. It is indeed so, which was
first proved by Boyarsky-Marshakov-Ruchyayskiy-Wiegmann-Zabrodin
[BMRWZ], but here we show Teo’s very clear proof in [Te], using ter-
minology in the theory of univalent functions. See also [CK].

6.1. Faber polynomials and Grunsky coefficients

In this section we review several notions in the theory of univalent
functions. For details we refer to [Dur] or [P].

Let g(z) be a power series in z of the form

(6.1.1) g(z) = z + b1z
−1 + b2z

−2 + · · · .

In the theory of univalent functions this should be a holomorphic uni-
valent function outside of the unit disk |z| > 1, but here we regard it
just as a formal series.

We call the coefficients bmn in the following expansion the Grunsky
coefficients of g(z):

(6.1.2) log
g(z)− g(ζ)

z − ζ
= −

∞∑
m,n=1

bmnz
−mζ−n.

They are polynomials in bk’s and can be computed using the formula,

log(1 + x) = −
∞∑
n=1

(−x)n

n
. Since this generating function is symmetric

in z and ζ, the Grunsky coefficients are symmetric:

(6.1.3) bmn = bnm.

47
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If we replace g(ζ) in the left hand side of (6.1.2) with w and expand
as a power series in z, we obtain,

log
g(z)− w
z − ζ

= log
g(z)− w

z
− log

z − ζ
z

= log

(
1 +

∞∑
n=1

bnz
−n−1 − w

z

)
− log

(
1− ζ

z

)

= −
∞∑
n=1

Φn(w)
z−n

n
+
∞∑
n=1

ζn
z−n

n
.

(6.1.4)

It is easy to see that Φn(w) is a monic polynomial in w of degree n.
This polynomial is called the Faber polynomial.

Exercise 6.1.1. Compute the Grunsky coefficients bmn and the
Faber polynomials Φn(w) for m,n = 1, 2, 3 explicitly. (The reader will
find the answer for bm1 and Φ1(w) below.)

Remark 6.1.2. The Grunsky coefficients were introduced by Grun-
sky [G] in 1939 in the context of geometric function theory and used, for
example, to prove special cases of the Bieberbach conjecture, which we
shall mention later. The Faber polynomials were introduced by Faber
[Fab] much earlier in 1903 in the study of approximation of analytic
functions by polynomials.

Combining the two expressions (6.1.2) and (6.1.4) of log(g(z) −
g(ζ))/(z − ζ), we have

∞∑
m,n=1

bmnz
−mζ−n =

∞∑
n=1

1

n
(Φn(g(ζ))− ζn)z−n.

from which follows

(6.1.5) Φn(g(ζ)) = ζn +
∞∑
m=1

nbmnζ
−m.

This is an important relation between the Faber polynomials and the
Grunsky coefficients. When n = 1, this equation should have the form

g(ζ) + c = ζ +
∞∑
m=1

bm1ζ
−m.

with a constant c, because Φn(w) is a monic polynomial of degree one.
Actually, as there is no constant term in the right hand side, c = 0,
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i.e., Φ1(w) = w, and we have

(6.1.6) g(ζ) = ζ +
∞∑
m=1

bm1ζ
−m.

Comparing this with (6.1.1), we can deduce bm1 = bm.

6.2. Dispersionless Hirota equation

Identity (6.1.5) means that a certain n-th degree polynomial of g(ζ)
is equal to ζn+ (negative powers of ζ). The reader might recall that
we have encountered a similar expression before. When we defined the
S-function in Section 5.2, the positive part Bn of Ln was expanded as
(5.2.7), or

(6.2.1) Bn = Ln −
∞∑
m=1

1

m

∂2 log τ

∂tm∂tn
L−m,

due to (5.2.16). (In this section we denote τdkp by τ for simplicity.)
The left hand side in (6.2.1) is a monic polynomial in ξ of degree n
and the right hand side is Ln minus a series of negative powers of
L. This exactly corresponds to (6.1.5)! The second derivatives of the
logarithm of the tau function corresponds to the Grunsky coefficients,
or, in other words, the logarithm of the tau function (the free energy)
is the potential of the Grunsky coefficients.

Solving the expansion of L with respect to ξ, we obtain (5.2.8), or

(6.2.2) ξ = L −
∞∑
m=1

1

m

∂2 log τ

∂tm∂t1
L−m.

This is the function g in our case: ξ = g(L). Namely we have the
following correspondence.

function g(z) z −
∞∑
m=1

1

m

∂2 log τ

∂tm∂t1
z−m

variables z, w L, ξ

Grunsky coefficient bmn − 1

mn

∂2 log τ

∂tm∂tn

Faber polynomial Φn(w) Bn
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Let us substitute these data into the generating function (6.1.2) of
the Grunsky coefficients.

log
1

z − ζ

((
z −

∞∑
m=1

1

m

∂2 log τ

∂tm∂t1
z−m

)
−

(
ζ −

∞∑
m=1

1

m

∂2 log τ

∂tm∂t1
ζ−m

))

=
∞∑

m,n=1

1

mn

∂2 log τ

∂tm∂tn
z−mζ−n.

This gives

(6.2.3) log

(
1−

∞∑
m=1

z−m − ζ−m

z − ζ
1

m

∂2 log τ

∂tm∂t1

)

=
∞∑

m,n=1

1

mn

∂2 log τ

∂tm∂tn
z−mζ−n.

Using the operator D(z) defined by (4.3.3), we can rewrite it in the
following form.

(6.2.4) log

(
1− D(z)−D(ζ)

z − ζ
∂ log τ

∂t1

)
= D(z)D(ζ) log τ.

These are nothing but the dispersionless Hirota equations (4.3.11) and
(4.3.12), which we derived in Section 4.3 as the limit of the differential
Fay identity (4.3.10). Thus we have proved the dispersionless Hirota
equation, starting from the dispersionless KP hierarchy itself and not
using the ~-dependent KP hierarchy.

Conversely let us assume that the function log τ(t) satisfies the
dispersionless Hirota equation (6.2.3). We define a function g(z) =
g(t; z) by

(6.2.5) g(t; z) := z −
∞∑
m=1

1

m

∂2 log τ

∂tm∂t1
z−m.

Note that the left hand side of the dispersionless Hirota equation (6.2.3)

is equal to log
g(z)− g(ζ)

z − ζ
. Comparing it with the definition (6.1.2) of

the Grunsky coefficients, we have

(6.2.6) The (m,n)-th Grunsky coefficient of g(z) = − 1

mn

∂2 log τ

∂tm∂tn
.
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Therefore it follows from the relation (6.1.5) that the n-th Faber poly-
nomial of g(z) is

(6.2.7) Φn(g(z)) = zn −
∞∑
m=1

1

mn

∂2 log τ

∂tm∂tn
z−m.

Let L(ξ) = L(t; ξ) be the inverse function of g(t; z) with respect to
z: L(t; g(t; z)) = z, g(t;L(t; ξ)) = ξ. Such a function should have the
expansion of the following form.

(6.2.8) L = g−1(ξ) = ξ + u2(t)ξ−1 + u3(t)ξ−2 + · · · .

Substituting z = L(t; ξ) into (6.2.7), we have

Φn(ξ) = Ln − (sum of negative powers of L).

Since the left hand side is a polynomial in ξ, Φn(ξ) should be equal to
the polynomial part of Ln. Hence we have

(6.2.9) Φn(ξ) = (Ln)+ = Bn,

and together with (6.2.7) we obtain (6.2.1).
Now, let us differentiate ξ = g(t;L) with respect to tn. By the

chain rule and the derivation rule of the inverse function it is easy to
see that

0 =
∂

∂tn

(
g(t;L)

)
=
∂g

∂L
(t;L)

∂L
∂tn

+
∂g

∂tn
(t;L)

=

(
∂L
∂ξ

)−1
∂L
∂tn

+
∂g

∂tn
(t;L),

where
∂g

∂tn
(t;L) in the last expression means

∂g

∂tn
(t; z)

∣∣∣∣
z 7→L

. Substitut-

ing the definition (6.2.5) of g(z), we have

∂L
∂tn

= −∂L
∂ξ

∂g

∂tn

=
∂L
∂ξ

∞∑
m=1

1

m

∂3 log τ

∂tn∂tm∂t1
L−m.

(6.2.10)

On the other hand, the derivative of (6.2.1) with respect to x = t1
becomes

(6.2.11)
∂Bn
∂x

=
∂Bn
∂L

∂L
∂x
−
∞∑
m=1

1

m

∂3 log τ

∂t1∂tm∂tn
L−m.
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By this formula we can replace the infinite sum in (6.2.10) by deriva-
tions of Bn as follows.

∂L
∂tn

=
∂L
∂ξ

(
−∂Bn
∂x

+
∂Bn
∂L

∂L
∂x

)
=
∂Bn
∂ξ

∂L
∂x
− ∂Bn

∂x

∂L
∂ξ

= {Bn,L},

which is nothing but the Lax equation of the dispersionless KP hierar-
chy (5.1.2).

Thus we have proved the following theorem.

Theorem 6.2.1 ([Te], Proposition 3.5). The tau function τ(t) of
the dispersionless KP hierarchy satisfies the dispersionless Hirota equa-
tion (6.2.3).

Conversely, if the function τ(t) satisfies the dispersionless Hirota
equation (6.2.3), it is the tau function of the dispersionless KP hierar-
chy.

In other words, τ(t) is the tau function of the dispersionless KP hi-
erarchy if and only if log τ(t) is the potential of the Grunsky coefficients
of the function g(z) defined by (6.2.5) in the sense of (6.2.6).

Remark 6.2.2. In fact the Grunsky coefficients already appeared
in [SS] in the context of the (original) KP hierarchy: Jmn in p.270,
which is directly related to the statement mentioned in Remark 4.3.3
of this lecture note. It would be much interesting if the KP hierarchy
and complex analysis would be connected in this way.



CHAPTER 7

Dispersionless KP hierarchy and Löwner equation

Around the turn of the millennium it turned out that the dKP
hierarchy is related with the theory of univalent functions (i.e., with
the Riemann mapping theorem) unexpectedly deeply. One example is
appearance of the Grunsky coefficients and the Faber polynomials in
the proof of the equivalence of the dispersionless Hirota equation with
the dKP hierarchy, as is shown in Chapter 6. The other examples are

• The dispersionless hierarchies and the Löwner type equations
(found by Gibbons and Tsarev [GTs2]).
• The Laplacian growth problem and the dispersionless Toda hi-

erarchy (found by Mineev-Weinstein, Wiegmann and Zabrodin
[MiWZ]).

We shall discuss the former example in this chapter and the latter in
Chapter 9.

7.1. One-variable reduction of the dispersionless KP
hierarchy

The Löwner equations are differential equations characterising one-
parameter families of conformal mappings between families of domains
with growing slits and fixed reference domains. It was discovered by
the seminal work by Gibbons and Tsarev [GTs2] that one of such
equations (the chordal Loewner equation) describes the reduction of
the dispersionless KP hierarchy. Soon after that similar examples were
found by [MMAM, M, TTZ, TT5, Take3] and others.

We postpone details of the Löwner equations in the context of com-
plex analysis to the next section and explain here how the chordal
Löwner equation arises from the dKP hierarchy. We follow the argu-
ments in [TTZ].

The solution L of the dispersionless KP hierarchy depends on in-
finite number of variables t = (t1, t2, . . . ) by definition, but what if
it depends essentially only on one variable? This is the one-variable
reduction of the dispersionless KP hierarchy.

53



54 7. DISPERSIONLESS KP HIERARCHY AND LÖWNER EQUATION

Theorem 7.1.1. (i) Suppose that L(t; ξ) is a solution of the disper-
sionless KP hierarchy whose dependence on t = (t1, t2, . . . ) is through
a single variable λ. Namely, there exists a function f(λ; ξ) of ξ and λ
of the form

(7.1.1) f(λ; ξ) = ξ + u2(λ)ξ−1 + u3(λ)ξ−2 + · · · ,
and a function λ(t) of t such that

(7.1.2) L(t; ξ) = f(λ(t); ξ).

We assume
du2

dλ
6= 0 and

∂λ

∂t1
6= 0. Let the function g(λ; z) of the form

(7.1.3) g(λ; z) = z + v2(λ)z−1 + v3(λ)z−2 + · · ·
be the inverse function of f(λ; ξ) with respect to ξ: g(λ; f(λ; ξ)) = ξ,
f(λ; g(λ; z)) = z. Then g(λ; z) satisfies the following equation (the
chordal Löwner equation) with respect to λ.

(7.1.4)
∂g

∂λ
(λ; z) =

1

U(λ)− g(λ; z)

du

dλ
.

Here U(λ) is a function of λ, not depending on z, and u(λ) = u2(λ).
The function λ(t) is characterised by the following system: for any

n ∈ N,

(7.1.5)
∂λ

∂tn
= χn(λ)

∂λ

∂t1
.

The function χn(λ) is defined by

(7.1.6) χn(λ) :=
∂Φn

∂w
(λ;U(λ)),

where Φn(λ;w) is the n-th Faber polynomial of g(λ; z) (cf. Section 6.1).
(ii) Conversely, suppose that f(λ; ξ) is a function of the form (7.1.1)

and its inverse function g(λ; z) satisfies the differential equation (7.1.4).
If λ(t) is a solution of (7.1.5), then L(t; ξ) := f(λ(t); ξ) is a solution
of the dispersionless KP hierarchy.

Remark 7.1.2. As we shall see in Section 7.2, the chordal Löwner
equation (7.1.4) is an equation satisfied by a one-parameter family of
holomorphic mappings on slit domains.

Remark 7.1.3. The system (7.1.5) can be solved in the following
way (Tsarëv’s generalised hodograph method). Let R(λ) be an arbitrary
(sufficiently differentiable) function. Define λ = λ(t) by the relation

(7.1.7) t1 +
∞∑
n=1

χn(λ)tn = R(λ)
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as an implicit function. Then λ(t) satisfies (7.1.5).

Exercise 7.1.4. Prove the statement of Remark 7.1.3. (Hint: dif-
ferentiate (7.1.7) by t1 and tn and compare the results.)

Proof of Theorem 7.1.1. (i) Let τ(t) be the tau function of this
solution. Recall that the inverse function of L(t; ξ) with respect to ξ is
expressed in terms of log τ(t) as in (6.2.2). Hence

(7.1.8) ξ = g(z, λ(t)) = z −D(z)
∂

∂t1
log τ(t),

where D(z) is the differential operator D(z) =
∞∑
n=1

z−n

n

∂

∂tn
defined by

(4.3.3). This formula implies
(7.1.9)

D(z1) g(λ(t); z2) = D(z2) g(λ(t); z1) = −D(z1)D(z2)
∂

∂t1
log τ(t).

Because g(λ; z) is the inverse function of f of the form (7.1.1), the
coefficient v2(λ) of z−1 in (7.1.3) is equal to −u2 = −u. Therefore the
coefficients of z−1

2 in (7.1.9) are

−D(z1)u(λ(t)) =
∂

∂t1
g(λ(t); z1).

By the chain rule we can rewrite this as follows.

−du
dλ
D(z1)λ(t) =

∂g

∂λ

∂λ

∂t1
.

Thus we obtain

(7.1.10) D(z)λ(t) = −∂g
∂λ

∂t1λ

∂λu
.

Using this formula together with the chain rule again, we can rewrite
the left hand side of (7.1.9) as

D(z1) g(λ(t); z2) =
∂g

∂λ
(λ(t); z2)D(z1)λ(t)

= −∂g
∂λ

(λ(t); z1)
∂g

∂λ
(λ(t); z2)

∂t1λ

∂λu
.

(7.1.11)

Having prepared these formulae, let us differentiate the dispersion-
less Hirota equation (6.2.4) with respect to t1. The result is

(7.1.12)
∂λg(λ(t); z1)− ∂λg(λ(t); z2)

g(λ(t); z1)− g(λ(t); z2)

∂λ

∂t1
= D(z1)D(z2)

∂

∂t1
log τ(t),
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and its right hand side is equal to
(7.1.13)

D(z1)D(z2)
∂

∂t1
log τ(t) = −D(z1) g(λ(t); z2) =

∂g

∂λ
(λ(t); z1)

∂g

∂λ
(λ(t); z2)

∂t1λ

∂λu
,

because of (7.1.8) and (7.1.11). As we assume
∂λ

∂t1
6= 0, we can divide

(7.1.12) and (7.1.13) by
∂λ

∂t1
6= 0 and obtain(

∂g

∂λ
(λ(t); z1)− ∂g

∂λ
(λ(t); z2)

)
∂u

∂λ

= (g(λ(t); z1)− g(λ(t); z2))
∂g

∂λ
(λ(t); z1)

∂g

∂λ
(λ(t); z2).

Putting all terms with z1 in the left side and all terms with z2 in the
right side, we have

∂λu

∂λg(λ(t); z1)
+ g(λ(t); z1) =

∂λu

∂λg(λ(t); z2)
+ g(λ(t); z2).

That is to say, the function

(7.1.14) U(λ) :=
∂λu

∂λg(λ; z)
+ g(λ; z)

does not depend on z.
The definition (7.1.14) is equivalent to the equation

∂g

∂λ
=

1

U(λ)− g
du

dλ
,

which is the chordal Löwner equation (7.1.4). Substituting this equa-
tion to (7.1.10), we have

(7.1.15)
∞∑
n=1

z−n

n

∂λ

∂tn
=

1

g(λ; z(t))− U(λ(t))

∂λ

∂t1
.

Note that the definition (6.1.4) of the Faber polynomials yields

−1

g(z)− w
= −

∞∑
n=1

Φ′n(w)
z−n

n
,

by differentiation with respect to w. Therefore the fraction in the right
hand side of (7.1.15) can be rewritten as

(7.1.16)
1

g(λ; z)− U(λ)
=
∞∑
n=1

Φ′n(U(λ))
z−n

n
,
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and thus the equation (7.1.15) gives

(7.1.17)
∞∑
n=1

z−n

n

∂λ

∂tn
=
∞∑
n=1

Φ′n(U(λ))
z−n

n

∂λ

∂t1
,

which is the generating function of the relations (7.1.5).

(ii) We denote the Grunsky coefficients of g(λ(t); z) by bmn(t). Dif-
ferentiating the definition (6.1.2) (with z = z1, ζ = z2) of the Grunsky
coefficients by tk, we obtain

(7.1.18)
∂λg(λ(t); z1)− ∂λg(λ(t); z2)

g(λ(t); z1)− g(λ(t); z2)

∂λ

∂tk
= −

∞∑
m,n=1

∂bmn
∂tk

(t)z−m1 z−n2 .

Because of the chordal Löwner equation (7.1.4) and the equation (7.1.5),
the left hand side of (7.1.18) is equal to

(7.1.19)
1

g(λ(t); z1)− g(λ(t); z2)
×(

1

U(λ(t))− g(λ(t); z1)
− 1

U(λ(t))− g(λ(t); z2)

)
du

dλ
(λ(t))χk(λ(t))

∂λ

∂t1
(t)

=
1

(U(λ(t))− g(λ(t); z1))(U(λ(t))− g(λ(t); z2))

du

dλ
(λ(t))χk(λ(t))

∂λ

∂t1
(t).

Using this equation and (7.1.16) which follows directly from the defi-
nition (6.1.4) of the Faber polynomials, we can rewrite (7.1.18) as

∞∑
m,n=1

z−m1 z−n2

mn
χm(λ(t))χn(λ(t))χk(λ(t))

du

dλ
(λ(t))

∂λ

∂t1
(t)

= −
∞∑

m,n=1

∂bmn
∂tk

(t)z−m1 z−n2 .

Thus we obtain

−mn∂bmn
∂tk

= χm(λ(t))χn(λ(t))χk(λ(t))
du

dλ
(λ(t))

∂λ

∂t1
(t).

Note that the right hand side of this equation is symmetric in indices
(m,n, k). Hence we have a system

∂

∂tk
(−mnbmn(t)) =

∂

∂tm
(−kn bkn(t))

for all k, m, n, which is the compatibility condition of the system

(7.1.20)
∂Gn

∂tm
= −mnbmn(t).
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Since the right hand side of (7.1.20) is symmetric in (m,n) because of
(6.1.3),

∂Gn

∂tm
=
∂Gm

∂tn
,

which is the compatibility condition of

(7.1.21)
∂F

∂tn
= Gn.

Combining (7.1.20) and (7.1.21), we have shown the existence of a
function F (t) satisfying

∂2F

∂tm ∂tn
= −mnbmn(t).

Since bmn’s are the Grunsky coefficients, F (t) is the logarithm of a tau
function τ(t) of the dispersionless KP hierarchy due to Theorem 6.2.1.
(Note that (6.2.5) is automatically satisfied because of (6.1.6).)

This completes the proof of the theorem. �

Thanks to this theorem, once we have a solution of the chordal
Löwner equation, we have a solution of the dispersionless KP hierarchy.
Then, how can we find a solution of the chordal Löwner equation? In
fact, it is known that certain families of Riemann’s conformal mapping
functions satisfy it, so the problem of solving the differential equation
is turned into a problem of conformal mappings in complex analysis!
We discuss it in the next section.

Remark 7.1.5. Theorem 7.1.1 (ii) can be generalised to the N-
variable reduction. Namely, we can construct a solution of the disper-
sionless KP hierarchy depending on t = (t1, t2, . . . ) through N variables
λ = (λ1, . . . , λN). In this case, in addition to the chordal Löwner equa-
tions for each variable λi, we need compatibility condition for them,
which is called the Gibbons-Tsarev system first proposed in [GTs1].

We refer details of the N -variable reductions to [GTs1, GTs2,
MMAM, M, TT4]. There are many references on the Gibbons-
Tsarev systems. See, for example, [OdS] besides the first papers by
Gibbons and Tsarev [GTs1, GTs2].

7.2. Löwner equations in complex analysis

The Riemann mapping theorem, one of the fundamental theorem
in complex analysis, states that any simply connected domain D ( C
is bijectively mapped to the unit disk ∆ (or to the upper half plane H,
or to any other simply connected domain D′ ( C) by a holomorphic
function (Figure 7.2.1). Such a holomorphic function f : D → ∆ is



7.2. LÖWNER EQUATIONS IN COMPLEX ANALYSIS 59

unique if one imposes the appropriate condition. (For example, if the
target domain is ∆, one can require f(z0) = 0, f ′(z0) > 0 for a fixed
point z0 in D.) See, for example, Chapter 6 of [Ah] for details.

f(z0) = 0

f ′(z0) > 0

f

D ∆

z0

Figure 7.2.1. The Riemann mapping theorem.

We consider a family of conformal mappings between slit domains
and the upper half plane H. Slit domains are, roughly speaking, do-
mains obtained by pulling out slits from a domain. Exactly speaking,
let D be a simply connected domain with the infinity on its boundary.
Let Γ be a Jordan arc Γ : [a, b]→ D lying in D except for Γ(a) ∈ ∂D.
For λ ∈ [a, b] we denote Γ([a, λ]) by Γλ and consider the conformal
mappings between D r Γλ to the upper half plane H.

gλ : D r Γλ 3 z 7→ gλ(z) = g(λ; z) ∈ H,
fλ : H 3 ξ 7→ fλ(ξ) = f(λ; ξ) ∈ D r Γλ.

They are mutually inverse,

g(λ; f(λ; ξ)) = ξ, f(λ; g(λ; z)) = z,

and normalised by the following condition (the hydrodynamic normal-
isation) on the expansion at infinity.

(7.2.2)
g(λ; z) = z − u(λ)z−1 +O(z−2),

f(λ; ξ) = ξ + u(λ)ξ−1 +O(ξ−2).

This normalisation fixes the ambiguity of the maps coming from the
automorphisms of H like a shift z 7→ z + a, a dilation z 7→ cz (c > 0)
and the inversion z 7→ −z−1.

Theorem 7.2.1. In the above situation there exists a continuous
function U : [a, b] → R (the driving function) such that g satisfies the
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chordal Löwner equation

(7.2.3)
∂g

∂λ
=

1

U(λ)− g(λ; z)

du

dλ
.

The point U(λ) on the real axis is the image of the tip of the curve
Γ(λ), if the map g can be properly extended to Γλ (Figure 7.2.4).

D H

f (λ; ξ)

g(λ; z)

U(λ)

Γ(λ)

Γλ

Figure 7.2.4. The slit mappings between D r Γλ and H.

This is how the chordal Löwner equation appears in complex anal-
ysis. It was first proved by Kufarev, Sobolev and Sporševa in [KSS].
It was rediscovered in the context of integrable systems by Gibbons
and Tsarev [GTs2] and became well-known when Schramm [Schr]
discovered it independently again and studied random curves in the
plane. (In the celebrated stochastic/Schramm Löwner evolution (SLE)
the driving function U(λ) is a Brownian motion.) For details we refer to
[ABCD]. In the next section we briefly explain how such a differential
equation arises in this context, following [dMG].

Then, how can it be named after “Löwner”? In fact there is an-
other version of the Löwner equation with different normalisation. The
original Löwner’s equation is for mappings between slit domains and
the unit disk (Figure 7.2.5).

Here the normalisation is

(7.2.6) g(λ; z) = e−φ(λ)z +O(z2)

at z = 0. Note that a fixed inner point z = 0 is mapped to a fixed
inner point ξ = 0 in this case, while in the chordal Löwner case a fixed
boundary point z =∞ corresponds to a fixed boundary point ξ =∞.
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D H

f (λ; ξ)

g(λ; z)

Γ(λ)

σ(λ)

Γλ

Figure 7.2.5. The slit mappings between D r Γλ and ∆.

This difference of normalisation is the essential difference between the
chordal Löwner equation and the original Löwner equation1.

In this case the role of the driving function U(λ) is played by a
function σ : [a, b]→ ∂∆ = {ξ | |ξ| = 1} and g = g(λ; z) satisfies

(7.2.7)
∂g

∂λ
= g

σ(λ) + g

σ(λ)− g
dφ

dλ
,

which is now called the radial Löwner equation nowadays to distin-
guish it from the chordal case. This equation was found by Löwner2 in
1923. It is a powerful tool in geometric function theory, for example,
to evaluate coefficients of univalent functions. One of the examples, to
which the Löwner equation was successfully applied, is the Bieberbach
conjecture posed by Bieberbach in 1916.

As the Bieberbach conjecture is related also to the Grunsky coeffi-
cients frequently used in this lecture, it is probably worth mentioning
what that conjecture is, digressing a little bit. Let us consider a uni-
valent holomorphic function f(z) on the unit disk ∆ = {|z| < 1}.
(Univalence means that f(z1) 6= f(z2) if z1 6= z2.) It has a Taylor
expansion

f(z) = a0 + a1z + a2z
2 + a3z

3 + · · · ,
but if we are interested only in the “shape” of the image, the image can
be shifted (f(z) 7→ f(z) + c, c ∈ C), rotated (f(z) 7→ eiθf(z), θ ∈ R)
or resized (f(z) 7→ r f(z), r > 0). So, we may assume that f(z) has

1Whether the reference domain is the upper half plane or the unit disk, is not
essential, since we can map one to the other by a fractional linear transformation.

2He changed the spelling of his family name to “Loewner” after he immigrated
to the USA, but the author of [Lö] on this subject is “Karl Löwner”.
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the following expansion.

(7.2.8) f(z) = z + a2z
2 + a3z

3 + · · · .
Namely, we normalised f(z) by f(z) 7→ a−1

1 (f(z)− a0), so that a0 = 0,
a1 = 1. Note that a1 = f ′(0) 6= 0 because of the univalence.

Bieberbach [Bi] proved that an inequality |a2| 5 2 follows from the
univalence and that |a2| = 2 if and only if f(z) is the Koebe function,

(7.2.9) k(z) :=
z

(1− εz)2
= z + 2εz2 + 3ε2z3 + · · · , (|ε| = 1).

He also conjectured in the same paper that |an| 5 n for any n ∈ N.
This is the Bieberbach conjecture. Löwner proved this conjecture for
n = 3 by using the Löwner equation (7.2.7). The Grunsky coefficients
were used for the proof of the cases n = 4 and n = 6. The final proof
of the conjecture (for any n) was by de Branges [dB], who also used
the Löwner equation. (See also [FP].)

Exercise 7.2.2. Show that k(z) defined by (7.2.9) with ε = 1 maps
the unit disk ∆ to the domain D := Cr (−∞,−1

4
). (Hint: it is easier

to construct a conformal map from D to ∆: first shift w ∈ D by 1
4
,

then take the square root and open the slit to get the upper half plane,
and then map it to ∆ by a fractional linear transform.)

As the one-variable reduction of the dispersionless KP hierarchy
was characterised by the chordal Löwner equation, the radial Löwner
equation is related to the one-variable reduction of the dispersionless
Toda hierarchy ([TTZ] and references therein), but we do not go into
details.

Now, let us return to the chordal Löwner equation and construct
solutions of the dispersionless KP hierarchy, using conformal mappings.
(These examples are from [TTZ].)

Example 7.2.3. Let us consider the maps between the upper half
plane H and the domain Dλ := Hr{U+i

√
2t | t ∈ [0, λ]}, gλ : Dλ → H

and fλ : H → Dλ (Figure 7.2.10).
It is easy to see that those holomorphic functions satisfying the

normalisation condition (7.2.2) are given by

gλ(z) = g(λ; z) = U +
√

(z − U)2 + 2λ = z +
λ

z
+
λU

z2
+ · · · ,

fλ(ξ) = f(λ; ξ) = U +
√

(ξ − U)2 − 2λ = ξ − λ

ξ
− λU

ξ
+ · · · .

Here the driving function U(λ) is the constant function U(λ) ≡ U and
u(λ) = −λ.
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U

Dλ H

f (λ; ξ)

g(λ; z)

U(λ) = U

Γ(λ) = U + i
√

2λ

Γλ

Figure 7.2.10. The slit mapping between Dλ := H r
(U + i[0,

√
2λ]) and H.

The first three Faber polynomials (Φn(λ; ξ) = (f(λ; ξ)n)+) are

Φ1(λ; ξ) = ξ, Φ2(λ; ξ) = ξ2 − 2λ, Φ3(λ; ξ) = ξ3 − 3λξ − 3λU,

and the corresponding χn(λ)’s are

χ1(λ) = 1, χ2(λ) = 2U, χ3(λ) = 3U2 − 3λ.

(Recall that χn(λ) = Φ′n(λ;U(λ)).)
Let us solve the system (7.1.5) by the generalised hodograph method

(Remark 7.1.3; we take R(λ) = 0): we fix tn = 0 (n > 3) in (7.1.7) and
obtain

t1 + 2Ut2 + (3U2 − 3λ)t3 = 0,

from which follows

(7.2.11) λ(t)|tn=0 (n>3) =
t1 + 2Ut2 + 3U2t3

3t3
.

Therefore in this case the solution (with tn = 0 (n > 3) fixed) is

L(t1, t2, t3; ξ) = f(λ(t1, t2, t3); ξ)

= U +

√
(ξ − U)2 − 2(t1 + 2Ut2 + 3U2t3)

3t3

= U +

√
ξ2 − 2Uξ − U2 − 2(t1 + 2Ut2)

3t3
.

(7.2.12)

Exercise 7.2.4. Check that the above gλ and fλ give the conformal
mappings between H and Dλ and that gλ satisfies the chordal Löwner
equation.
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Example 7.2.5. Usually the chordal Löwner equation is consid-
ered for the conformal mappings between the upper half plane and
the domain obtained from the upper half plane by subtracting a grow-
ing curve. Here we consider a different kind of domain, Dλ := C r
((−∞, 0]∪ [4λ,+∞)) (Figure 7.2.13). In this case the driving function
is U(λ) = 3λ.
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U(λ) = 3λ
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f (λ; ξ)
Γλ

Figure 7.2.13. The slit mapping between Dλ := C r
((−∞, 0] ∪ [4λ,+∞)) and H.

The conformal mappings between Dλ and H are

gλ(z) = g(λ; z) = λ+
z +

√
(z − 2λ)2 − 4λ2

2
,

fλ(ξ) = f(λ; ξ) = ξ +
λ2

ξ − 2λ
= ξ + λ2ξ−1 + 2λ3ξ−2 + · · · .

Exercise 7.2.6. (i) Check that the above gλ and fλ are indeed
conformal mappings between Dλ and H.

(ii) Check that gλ satisfies the chordal Löwner equation.
(iii) The slit Γλ = [4λ,+∞) is “shrinking” when λ grows. Appar-

ently this violates the conditions we considered, but nevertheless (as we
have checked in (ii)) the chordal Löwner equation holds. Why? (Hint:
change the coordinates: z′ = 1/z, λ′ = 1/λ. The chordal Löwner
equation is covariant under the change of the coordinates.)

As is readily seen from the explicit expressions, u(λ) = λ2 and the
Faber polynomials are

Φ1(λ; ξ) = ξ, Φ2(λ; ξ) = ξ2 + 2λ2, Φ3(λ; ξ) = ξ3 + 3λ3ξ + 6λ3.

Thus

χ1(λ) = 1, χ2(λ) = 6λ, χ3(λ) = 30λ2.
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We solve the system (7.1.5) with tn = 0 (n > 2) by the generalised
hodograph method with R(λ) = 0 in (7.1.7) again. The generalised
hodograph relation is

t1 + 6t2λ = 0, i.e., λ(t1, t2) = − t1
6t2

,

and the solution of the dispersionless KP hierarchy is

L(t1, t2; ξ) = ξ +
t21

12(3t2ξ + t1)
.

7.3. Idea of proof of the chordal Löwner equation

There are several proofs of Theorem 7.2.1. Those found in the con-
text of the SLE require techniques like the Brownian motion ([La]) or
the extremal length ([LSW]). There is a simple explanation by physi-
cists (for example, [C]), which is not rigorous. Recently del Monaco
and Gumenyuk published a rigorous elementary direct proof [dMG].
In this section, following this paper, we explain how a differential equa-
tion arises from a family of slit conformal mappings.

When the slit is determined by the map Γ : [a, b] 3 λ 7→ Γ(λ) ∈ D,
we define a family of conformal maps by

(7.3.1) ϕs,t(ξ) := g(s; f(t; ξ))

for a < s < t < b. This maps the upper half plane H to g(s;D r
Γ([a, t])) = H r g(s; Γ((s, t])). We denote g(t; Γ[s, t]) by Cs,t.

To make the idea of the proof clear, in Figure 7.3.2 we assume that
the maps can be continuously extended to the boundaries in appropri-
ate sense. In particular, the segment Ct is the double-valued “image”
of Γ([a, t]) by g(t; z).

Note that ϕs,t(ξ) has an expansion of the form

(7.3.3) ϕs,t(ξ) = ξ − uϕ(s, t)ξ−1 +O(ξ−2), uϕ(s, t) = u(s)− u(t),

because of the normalisation (7.2.2) of g and f .
If we can show that this map ϕs,t satisfies the chordal Löwner equa-

tion

(7.3.4)
∂ϕs,t
∂s

(ξ) =
1

U(s)− ϕs,t(ξ)
∂uϕ(s, t)

∂s
,

substituting f(t; ξ) by z and s by λ, we obtain the chordal Löwner
equation for g, (7.1.4). The advantage to use ϕs,t is that both the
domain of definition and the image are almost the upper half plane.

The basic tool of the proof is the following Schwarz integral formula.
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ϕs,t(ξ)

Γ(s)

Figure 7.3.2. Definition of ϕs,t and Cs,t.

Lemma 7.3.1. Let f : H → C be a holomorphic function and as-
sume that

(1) f has a continuous extension from H̄ = H∪R to Ĉ = C∪{∞};
(2) f(∞) = 0;
(3) for any ξ ∈ H ∫

R

∣∣∣∣Im f(x)

x− i

∣∣∣∣ dx < +∞.

Then,

(7.3.5) f(z) =
1

π

∫
R

Im f(ξ)

ξ − z
dξ

for all z ∈ H.

This can be regarded as a limit of the usual Cauchy integral formula,
as is explained, for example, in [Nak] (p.9). The rigorous proof consists

of the Cayley transform z 7→ i
1 + z

1− z
from the unit disk ∆ = {|z| < 1}

to the upper half plane H and another version of the Schwarz integral
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formula for a holomorphic function on ∆,

(7.3.6) f(z) = i Im
(
f(0)

)
+

1

2π

∫ 2π

0

Re
(
f(eiθ)

)eiθ + z

eiθ − z
dθ,

which is a direct consequence of the Gauss’ mean value theorem for
harmonic functions. (Another proof of (7.3.6) is found in [Y], §31).

Note that ϕs,t(ξ) takes real value on R r Cs,t if continuously ex-
tended to the boundary. Moreover ϕs,t(ξ) − ξ satisfies the conditions
in Lemma 7.3.1. Therefore for ξ ∈ H we have

ϕs,t(ξ) = ξ +
1

2π

∫
R

Im(ϕs,t(x)− x)

x− ξ
dx

= ξ +
1

2π

∫
Cs,t

Im(ϕs,t(x)− x)

x− ξ
dx.

(7.3.7)

Substituting ξ = iy in (7.3.7) and using the expansion (7.3.3), we
obtain

u(t)− u(s) +O((iy)−1) =
1

2π

∫
Cs,t

iy

x− iy
Imϕs,t(x) dx.

The limit y →∞ gives us

(7.3.8) −uϕ(s, t) = u(t)− u(s) =
−1

2π

∫
Cs,t

Imϕs,t(x) dx.

Let us assume s < s′ < t. It is easy to see that ϕs,t = ϕs,s′ ◦ ϕs′,t.
(See Figure 7.3.9.)

Hence, applying (7.3.7) to ϕs,s′ , we have

ϕs,t(ξ)− ϕs′,t(ξ) = ϕs,s′(ϕs′,t(ξ))− ϕs′,t(ξ)

=
1

2π

∫
Cs,s′

Imϕs,s′(x)

x− ϕs′,t(ξ)
dx.

(7.3.10)

Here is the punchline of the proof: since Cs,s′ shrinks to one point U(s)
when s′ → s, the ratio of (7.3.10) and (7.3.8),

ϕs,t(ξ)− ϕs′,t(ξ)
u(s)− u(s′)

=

1
2π

∫
Cs,s′

Imϕs,s′ (x)

x−ϕs′,t(ξ)
dx

1
2π

∫
Cs,s′

Imϕs,s′(x) dx
,

converges to

(7.3.11)
∂ϕs,t

∂s
∂uϕ
∂s

(s, t)
∼

Imϕs,s′ (x)

x−ϕs′,t(ξ)
|Cs,s′ |

Imϕs,s′(x) |Cs,s′ |
→ 1

U(s)− ϕs,t(ξ)
,
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ϕs′,t(ξ)

g(s′; z)

g(s; z)

ϕs,s′(ξ)

Γ(t)

Γ(s′)

Γ(s)

Figure 7.3.9. ϕs,t = ϕs,s′ ◦ ϕs′,t.

from which follows the chordal Löwner equation (7.3.4) for ϕs,t. Here
|Cs,s′| is the length of Cs,s′ . (We assumed s < s′ < t and s′ ↘ s but if
s′ < s < t and s′ ↗ s, the limit (7.3.11) is the same.)

This is the outline of the proof of Theorem 7.2.1. We omitted
important details like extendability of conformal maps to boundaries
or the convergence Cs,s′ → {U(s)}, for which we refer to the original
paper [dMG].



CHAPTER 8

Dispersionless Toda hierarchy

Recall that the Toda lattice hierarchy is a system of differential-
difference equations. For example, one of the equations is the two-
dimensional Toda lattice equation (3.1.11),

∂2

∂t1 ∂t̄1
ϕ(s) = eϕ(s)−ϕ(s−1) − eϕ(s+1)−ϕ(s).

for the Toda field ϕ(t, t̄; s). In this differential-difference equation the
shift of the s variable is fixed to 1. Let us replace this with a small
parameter ~ and replace t1, t̄1 to t1/~, t̄1/~ as we did in Chapter 4.

~2 ∂2

∂t1 ∂t̄1
ϕ(s) = eϕ(s)−ϕ(s−~) − eϕ(s+~)−ϕ(s).

We can take the limit ~ → 0, scaling ϕ appropriately, and obtain the
equation

∂2

∂t1 ∂t̄1
ϕ(s) +

∂

∂s
exp

(
∂ϕ

∂s

)
= 0.

This is called the two-dimensional dispersionless Toda lattice equation
or the continual Toda lattice, which was studied in late 80’s in the
context of the “continual Cartan subalgebra” ([GKR, SV, KSSV]).

In principle the above procedure is how we derive the dispersionless
Toda hierarchy from the Toda lattice hierarchy. Probably the reader
has noticed resemblance with the arguments in Chapter 4. In fact,
we can proceed just like in Chapter 4 and Chapter 5 to develop the
theory of the ~-dependent/dispersionless Toda lattice hierarchy parallel
to the KP case therein. So we omit most details and refer to [TT2]
and [TT3].

8.1. Dispersionless Toda hierarchy

For the Toda lattice hierarchy the procedure in Chapter 4 and
Chapter 5 are changed as follows. We first replace the difference oper-
ator e∂s : f(s) 7→ f(s+ 1) by e~∂s : f(s) 7→ f(s+ ~). We introduce the
symbol map σ~ defined by

(8.1.1) σ~(f(s)en~∂s) = f(s)pn.

69
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By taking the symbols the canonical commutation relation of the dif-
ference operator is mapped to the canonical Poisson relation:

[e~∂s , s] = ~e~∂s −→ {p, s} = p,

[P ,Q] −→ {σ~(P ), σ~(Q)},

where the Poisson bracket is defined by

(8.1.2) {f(s, p), g(s, p)} := p

(
∂f

∂p

∂g

∂s
− ∂f

∂s

∂g

∂p

)
.

Note that for the dispersionless KP hierarchy the canonical Poisson
relation is {ξ, x} = 1, but in the present case {p, s} = p.

Definition 8.1.1. The dispersionless Toda hierarchy (or the dToda
hierarchy for short) is the system of differential equations

(8.1.3)

∂L
∂tn

= {Bn,L},
∂L
∂t̄n

= {B̄n,L},

∂L̄
∂tn

= {Bn, L̄},
∂L̄
∂t̄n

= {B̄n, L̄},

where L and L̄ are generating functions of unknown functions ui =
ui(t, t̄; s), ūi = ūi(t, t̄; s),

L = p+ u1 + u2p
−1 + u3p

−2 + · · · ,
L̄−1 = ū0p

−1 + ū1 + ū2p+ ū3p
2 + · · · ,

(8.1.4)

and Bn, B̄n are defined by

(8.1.5) Bn = (Ln)≥0, B̄n = (L̄−n)<0.

Here the truncation operations ()≥0 and ()<0 are defined by taking the
polynomial part and the negative degree part in p.

Remark 8.1.2. In contrast to the L̄-operator (3.1.1) of the Toda
lattice hierarchy, L̄ is defined by its inverse in (8.1.4). This is just
for later convenience (for the Riemann-Hilbert type construction of
solutions). If one would define L̄ as the second series in (8.1.4), then
B̄n should be B̄n = (L̄n)<0 but the equations in (8.1.3) are the same.

Remark 8.1.3. As in the case of the Toda lattice hierarchy, in
which we have freedom of gauge transformation (3.1.12), the disper-
sionless Toda hierarchy has different definition equivalent to the above
definition (8.1.3) up to gauge transformation. We omit details, which
can be found in §2.1 of [TT3]. What we shall use later is the following
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“symmetric gauge”, which is the dispersionless counterpart of (3.1.13).

L = u0p+ u1 + u2p
−1 + u3p

−2 + · · · ,
L̄−1 = ū0p

−1 + ū1 + ū2p+ ū3p
2 + · · · ,

u0 = ū0,

Bn := (Ln)>0 +
1

2
(Ln)0, B̄n := (L̄−n)<0 +

1

2
(L̄−n)0.

(8.1.6)

Here the truncation operations ()>0, ()0 and ()<0 are defined as taking
the positive power/constant/negative power part of the Laurent series
in p.

As is shown for the Toda lattice hierarchy Section 3.1, the Lax rep-
resentation (8.1.3) is equivalent to the Zakharov-Shabat representation:

∂Bm
∂tn
− ∂Bn
∂tm

+ {Bm,Bn} = 0,(8.1.7)

∂B̄m
∂tn
− ∂Bn
∂t̄m

+ {B̄m,Bn} = 0,(8.1.8)

∂B̄m
∂t̄n
− ∂B̄n
∂t̄m

+ {B̄m, B̄n} = 0.(8.1.9)

There are dressing operations, by means of which the Lax functions
are expressed in the form,

L = ead{,} χp, L̄ = ead{,} ϕead{,} χ̄p.

See §2.2 of [TT3]1 for the proof and details. Using these operations,
we define the Orlov-Schulman series as follows.

M := ead{,} χ

(
s+

∞∑
n=1

ntnp
n

)
= ead{,} χead{,} ζ(t;p)(s),

M̄ := ead{,} ϕead{,} χ̄

(
s+

∞∑
n=1

nt̄np
−n

)
= ead{,} ϕead{,} χ̄ead{,} ζ(t̄;p

−1)(s).

(8.1.10)

The series ζ(t; p) is as is defined by (2.2.6): ζ(t; p) =
∞∑
n=1

tnp
n. We have

two Orlov-Schulman seriesM and M̄ corresponding to two Lax series

1In [TT3] we used symbols ϕ, φ and ϕ̄ instead of χ, ϕ and χ̄.
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L and L̄. They have the following expansion in L and L̄.

M =
∞∑
n=1

ntnLn + s+
∞∑
i=1

vi(t, t̄; s)L−i,

M̄ = −
∞∑
n=1

nt̄nL̄−n + s+
∞∑
i=1

v̄i(t, t̄; s)L̄i.
(8.1.11)

(In fact, we can start from the quadruple (L, L̄,M,M̄) without intro-
ducing the dressing operators, as we did in the earlier work [TT2].)

The Orlov-Schulman series satisfy the canonical Poisson relations
with L and L̄,

(8.1.12) {L,M} = L, {L̄,M̄} = L̄.
(These are direct consequences of {p, s} = p.) They also satisfy the
same Lax equations as L and L̄,

(8.1.13)

∂M
∂tn

= {Bn,M},
∂M
∂t̄n

= {B̄n,M},

∂M̄
∂tn

= {Bn,M̄},
∂M̄
∂t̄n

= {B̄n,M̄}.

There are two S-functions S and S̄ instead of one S-function of the
dispersionless KP hierarchy (5.2.1), Proposition 5.2.2. Existence of the
tau function τdtoda(t, t̄; s) is proved similarly as Lemma 5.2.3. Since
we do not use them in this lecture note, we omit details, which can
be found in §2.4 of [TT3]. The dispersionless Hirota equation for the
dispersionless Toda hierarchy was proved in [Te].

Remark 8.1.4. As is shortly remarked in Section 7.2, the one-
variable reduction of the dispersionless Toda hierarchy is reduced to
the radial Löwner equation (7.2.7). In fact we should use the sym-
metric gauge (8.1.6) of the dispersionless Toda hierarchy. The series
L corresponds to the conformal map outside of the unit disk ∆, while
the series L̄ corresponds to the conformal map inside ∆. For details
we refer to §5.2 of [TTZ].

8.2. Riemann-Hilbert type construction of solutions

The Riemann-Hilbert type construction of solutions of the disper-
sionless KP hierarchy is a correspondence of solutions and canonical
transformations. There is a same kind of correspondence for the dis-
persionless Toda hierarchy.

Theorem 8.2.1. (i) Let (L, L̄,M,M̄) be a quadruplet of series of
the form (8.1.4) and (8.1.11). Assume that there exists a quadruplet
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(f(s, p), g(s, p), f̄(s, p), ḡ(s, p)) of functions (formal power series in p
with coefficients depending on s) satisfying

(1) {f, g} = f , {f̄ , ḡ} = f̄ ;
(2) the following equations hold:

(8.2.1) f(M,L) = f̄(M̄, L̄), g(M,L) = ḡ(M̄, L̄).

Then, the pair (L, L̄) is a solution of the dispersionless Toda hierar-
chy and the pair (M,M̄) is the corresponding pair of Orlov-Schulman
series.

(ii) Conversely, if (L, L̄) is a solution of the dispersionless Toda
hierarchy and the pair (M,M̄) is the corresponding pair of Orlov-
Schulman series, there exists a quadruplet (f(s, p), g(s, p), f̄(s, p), ḡ(s, p))
satisfying the conditions in (i).

In the present lecture note we omitted the proof of the correspond-
ing theorem for the dispersionless KP hierarchy. Actually the reader
can easily translate the following proof for the dispersionless Toda hi-
erarchy to the KP case.

Proof. We prove only the statement (i), following the proof of
Proposition 2.5.1 of [TT3]. The proof of the second statement requires
the dressing operation. See Proposition 2.5.2 of [TT3].

Differentiation of the condition

(8.2.2)

(
f(M,L)
g(M,L)

)
=

(
f̄(M̄, L̄)
ḡ(M̄, L̄)

)
with respect to p and s gives the equation

(8.2.3)


∂f

∂L
(L,M)

∂f

∂M
(L,M)

∂g

∂L
(L,M)

∂g

∂M
(L,M)



∂L
∂p

∂L
∂s

∂M
∂p

∂M
∂s



=


∂f̄

∂L̄
(L̄,M̄)

∂f̄

∂M̄
(L̄,M̄)

∂ḡ

∂L̄
(L̄,M̄)

∂ḡ

∂M̄
(L̄,M̄)



∂L̄
∂p

∂L̄
∂s

∂M̄
∂p

∂M̄
∂s


by the chain rule. The determinant of the left hand side of this equation
is equal to (

p−1{f, g}
)∣∣
s 7→M, p7→L × p

−1{L,M},

and the determinant of the right hand side of (8.2.3) is the same with
replacement (f, g,L,M) 7→ (f̄ , ḡ, L̄,M̄). Therefore, using the relations
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{f, g} = f , {f̄ , ḡ} = f̄ and f(M,L) = f̄(M̄, L̄), we can rewrite the
determinants of the equation (8.2.3) as

(8.2.4) L−1{L,M} = L̄−1{L̄,M̄}.

By the assumption of the form of (L, L̄), the right hand side of this
equation is

L−1

{
L,

∞∑
n=1

ntnLn + s+
∞∑
i=1

viL−i
}

= L−1

(
{L, s}+

∞∑
i=1

{L, vi}L−i
)

= (p−1 + (lower degree))

×

(
(p+ (lower degree))

+
∞∑
i=1

(
∂vi
∂s

p+ (lower degree)

)
(p−i + (lower degree))

)
= 1 +O(p−1).

Similarly the left hand side of (8.2.4) contains only the non-negative
powers of p. Therefore the both hand sides of (8.2.4) are equal to
1, which proves the canonical Poisson relations {L,M} = L and
{L̄,M̄} = L̄.

The Lax equations are proved as follows. First, differentiating
(8.2.2) by tn gives

(8.2.5)


∂f

∂L
(L,M)

∂f

∂M
(L,M)

∂g

∂L
(L,M)

∂g

∂M
(L,M)



∂L
∂tn

∂M
∂tn



=


∂f̄

∂L̄
(L̄,M̄)

∂f̄

∂M̄
(L̄,M̄)

∂ḡ

∂L̄
(L̄,M̄)

∂ḡ

∂M̄
(L̄,M̄)



∂L̄
∂tn

∂M̄
∂tn

 .
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Using (8.2.3), we can rewrite this equation as

(8.2.6)


∂L
∂p

∂L
∂s

∂M
∂p

∂M
∂s


−1

∂L
∂tn

∂M
∂tn

 =


∂L̄
∂p

∂L̄
∂s

∂M̄
∂p

∂M̄
∂s


−1

∂L̄
∂tn

∂M̄
∂tn

 .

The inverse matrices in this formula are easily calculated because of
the canonical Poisson relations. Indeed, for example, the determinant
of the matrix in the left hand side is

(8.2.7) det


∂L
∂p

∂L
∂s

∂M
∂p

∂M
∂s

 = p−1{L,M} = p−1L.

Thus we obtain

L−1


∂M
∂s

−∂L
∂s

−∂M
∂p

∂L
∂p



∂L
∂tn

∂M
∂tn

 = L̄−1


∂M̄
∂s

−∂L̄
∂s

−∂M̄
∂p

∂L̄
∂p



∂L̄
∂tn

∂M̄
∂tn

 .

(8.2.8)

The first component of the left hand side of (8.2.8) is given by

L−1

(
∂M
∂s

∂L
∂tn
− ∂M

∂tn

∂L
∂s

)
= L−1

(
∂M
∂L

∣∣∣∣
t,vi fixed

∂L
∂s

+ 1 +
∞∑
i=1

∂vi
∂s
L−i
)
∂L
∂tn

− L−1

(
∂M
∂L

∣∣∣∣
t,vi fixed

∂L
∂tn

+ nLn +
∞∑
i=1

∂vi
∂tn
L−i
)
∂L
∂s

= − ∂(Ln)

∂s
+ L−1

(
1 +

∞∑
i=1

∂vi
∂s
L−i
)
∂L
∂tn
− L−1

(
∞∑
i=1

∂vi
∂tn
L−i
)
∂L
∂s
,

= − ∂(Ln)

∂s
+ (negative powers of p).

(8.2.9)
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Similarly the first component of the right hand side of (8.2.8) is given
by

L̄−1

(
∂M̄
∂s

∂L̄
∂tn
− ∂M̄

∂tn

∂L̄
∂s

)
= L̄−1

(
∂M̄
∂L̄

∣∣∣∣
t,vi fixed

∂L̄
∂s

+ 1−
∞∑
i=1

∂v̄i
∂s
L̄i
)
∂L̄
∂tn

− L̄−1

(
∂M̄
∂L̄

∣∣∣∣
t,vi fixed

∂L̄
∂tn

+
∞∑
i=1

∂v̄i
∂tn
L̄i
)
∂L̄
∂s

= L̄−1

(
1−

∞∑
i=1

∂v̄i
∂s
L̄i
)
∂L̄
∂tn
− L̄−1

(
∞∑
i=1

∂v̄i
∂tn
L̄i
)
∂L̄
∂s
,

which does not contain negative powers of p. Hence the first component
of (8.2.8) should be equal to the polynomial part of (8.2.9), namely,

(8.2.10) L−1

(
∂M
∂s

∂L
∂tn
− ∂M

∂tn

∂L
∂s

)
=

(
−∂(Ln)

∂s

)
≥0

= −∂Bn
∂s

.

In the same manner we can prove that the second component of (8.2.8)
is polynomial part of (8.2.9) with ∂/∂s instead of ∂/∂p, namely,

(8.2.11) L−1

(
∂M
∂p

∂L
∂tn
− ∂M

∂tn

∂L
∂p

)
=

(
−∂(Ln)

∂p

)
≥0

= −∂Bn
∂p

.

Putting (8.2.9), (8.2.10) and (8.2.11) together, we have

L−1


∂M
∂s

−∂L
∂s

−∂M
∂p

∂L
∂p



∂L
∂tn

∂M
∂tn



= L̄−1


∂M̄
∂s

−∂L̄
∂s

−∂M̄
∂p

∂L̄
∂p



∂L̄
∂tn

∂M̄
∂tn

 =

−
∂Bn
∂s

∂Bn
∂p

 .

(8.2.12)

Due to the canonical Poisson relations again, the inverse of the matrices
in (8.2.12) can be explicitly calculated, and we obtain

(8.2.13)


∂L
∂tn

∂M
∂tn

 =

 {Bn,L}
{Bn,M}

 ,


∂L̄
∂tn

∂M̄
∂tn

 =

 {Bn, L̄}
{Bn,M̄}

 ,
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which is nothing but t-flow part of the Lax equations (8.1.3). The
t̄-flow part of the Lax equations can be proved in the same way. �

Remark 8.2.2. In Theorem 8.2.1 we used four functions f , g, f̄ and
ḡ, but we may assume that f̄ = p and ḡ = s. In fact, by composing
two canonical transformations (p, s) 7→ (f, g) and (p, s) 7→ (f̄ , ḡ) as

(f̃ , g̃) := (f̄ , ḡ)−1 ◦ (f, g), we can rewrite the condition (8.2.1) as

f̃(M,L) = L̄, g̃(M,L) = M̄.





CHAPTER 9

Hele-Shaw flow and dispersionless Toda hierarchy

The relation of the dispersionless Toda hierarchy and the Riemann
mapping theorem, which were found and developed by Mineev-Weinstein,
Wiegmann, Zabrodin, Krichever, Kostov, Marshakov and others, has
its origin in physics of two-dimensional fluid, the Hele-Shaw flow. In
this chapter we briefly introduce this problem and a tool (the Schwarz
function) in complex analysis related to it. Then we show that the
conformal mapping from outside of the domain to the outside of the
unit disk satisfies the equations of the dispersionless Toda hierarchy
when we regard the harmonic moments as independent variables.

9.1. Hele-Shaw flow

The Hele-Shaw flow is a fluid flow between two parallel plates sep-
arated by a very small gap. This is named after H. S. Hele-Shaw
(1851–1941) who invented the Hele-Shaw cell for experiments of such
flow. We shall discuss a very special case of this flow, which turns out
to be integrable. Interesting reviews on this subject are [V] and [VE].

Let us assume that two incompressible fluids, one (say, oil) of which
is much more viscous than the other (say, water), exist in-between two
parallel plates with a narrow gap (the Hele-Shaw cell; Figure 9.1.1).
The water is being injected into the cell from a hole at the centre of a
plate and the oil is pushed out by water toward infinity.

The problem is the analysis of the time dependence of the interface
curve Γ(t) between water and oil. We impose several physical and
mathematical assumptions.

• Both fluids are incompressible;
• The viscosity of water (injected fluid) is zero;
• The surface tension between two fluids is zero;
• Oil (viscous fluid) is pumped out “uniformly”, while water is

injected with constant speed;
• The interface curve Γ(t) is a real analytic Jordan curve.

79
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Figure 9.1.1. Hele-Shaw cell.

The incompressibility of the fluids imply that the pressure field p is
harmonic: ∆p = 0. Hence this kind of problem is called the Laplacian
growth problem. We refer details to [Zab2].

The important property of this flow is existence of infinitely many
conserved quantities. For the statement of this theorem we define the
harmonic moments of a domain in the plane.

In the probability theory the k-th moment of a probability measure
dµ on R is defined by

(9.1.2) mk :=

∫
R
xk dµ.

For example, m1 is the mean andm2−m2
1 is the variance. The harmonic

moment is a complex version of this notion. First, we introduce it by an
easy-to-understand definition but not-rigorous (even ill-defined!) way.

Definition 9.1.1. Let Γ be a Jordan curve in the complex plane
and D be the outside of Γ. The k-th harmonic moment of D is defined
by the following area integral.

(9.1.3) Ck(D) :=


−
∫
D

z−k dx dy, (k = 1)∫
CrD

z−k dx dy (k 5 0).

Obviously C0(D) is the area of the interior of Γ. The parallelism of
this definition with (9.1.2) is evident, but the first and second harmonic
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moments thus defined diverge. So, let us give another less intuitive
but rigorous definition (9.1.10), which coincides to the above one for
k 6= 1, 2.

Definition 9.1.1 uses the area integrals, but, as the harmonic mo-
ments are determined solely by the Jordan curve Γ, we can expect that
they should be expressed in terms of Γ itself. In fact, we can rewrite
the harmonic moments in the line integral form by Green’s formula.

Example 9.1.2. Let us consider the case k = 0. The 0-th harmonic
moment of D is by definition

C0 =

∫
CrD

1 dx ∧ dy.

We rewrite it as follows, using Green’s formula.

C0 =
1

2i

∫
CrD

(
− ∂

∂y
(x− iy) +

∂

∂x
(i(x− iy))

)
dx ∧ dy

=
1

2i

∫
Γ

(
(x− iy) dx+ (x− iy) i dy

)
=

1

2i

∫
Γ

z̄ dz.

(9.1.4)

Thus we obtain the expression of C0 in terms of the contour integral.

Similarly we obtain

(9.1.5) Ck =

∫
CrD

z−k dx ∧ dy =
1

2i

∫
Γ

z−kz̄ dz,

for k < 0.

Exercise 9.1.3. Prove (9.1.5).

When k > 0, we consider the domain DR between Γ and an auxil-
iary circle ΓR with sufficiently large radius R (Figure 9.1.6).

Applying Green’s formula to DR, we have

(9.1.7) Ck,R := −
∫
DR

z−kdx ∧ dy =
1

2i

(∫
Γ

z−kz̄ dz −
∫

ΓR

z−kz̄ dz

)
.

When k = 3, then the limit R→∞ of (9.1.7) gives

(9.1.8) Ck = −
∫
D

z−kdx ∧ dy =
1

2i

∫
Γ

z−kz̄ dz.

When k = 1 or k = 2, the equation (9.1.7) means that
(9.1.9)

Ck,R + (constant which depends on R but not on Γ) =
1

2i

∫
Γ

z−kz̄ dz.
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Figure 9.1.6. Domain DR.

In view of the above results, especially (9.1.9), we redefine the har-
monic moments by

(9.1.10) Ck :=
1

2i

∫
Γ

z−kz̄ dz.

for all k. As we have shown, this definition coincides with the previous
one (9.1.3) for k 6= 1, 2. For the case k = 1 or k = 2, this definition is
“renormalisation” of (9.1.3).

The following fact on the harmonic moments is known. (For exam-
ple, [Takh], Theorem 1.5 (i), or [No].)

Proposition 9.1.4. The harmonic moments Ck (k = 0) determine
the curve Γ locally uniquely. Namely, if there exists a continuous family
of curves Γ(x) (x ∈ (−ε, ε)) with identical harmonic moments Ck (k =
0), this family is trivial ( Γ(x) = Γ(0)).

So these quantities can be regarded as “coordinates” in the space
of curves in the complex plane.

Remark 9.1.5. It is also known that Ck’s (k = 0) determine the
curve uniquely, if the inside of the curve is star-shaped, in particu-
lar, convex ([No]). However, there exists a counterexample in general
(Sakai’s example [Sak]).
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Moreover the harmonic moments are conserved by the Hele-Shaw
flow.

Theorem 9.1.6. Let us denote the outside of Γ(t) by D(t) and the
k-th harmonic moment by Ck(t): Ck(t) := Ck(D(t)). Then

(9.1.11)
dCk
dt

=

{
(non-zero constant), k = 0,

0, k 6= 0.

This is called Richardson’s theorem. We refer its proof to Richard-
son’s original paper [R].

The fact that C0 grows linearly is an obvious consequence of the
assumption of incompressibility and the constant injection speed, be-
cause C0 is the area of the injected water. Richardson’s theorem says
that the other harmonic moments are conserved quantities. The exis-
tence of infinitely many conserved quantities suggests that this system
is integrable. We shall show in Section 9.3 that it is indeed described
by the dispersionless Toda hierarchy.

9.2. Schwarz function

In the definition (9.1.10) of the harmonic moments, the integrand
is not holomorphic, since it contains z̄. This is rather inconvenient, as
we cannot use powerful machinery of complex analysis, for example,
change of the integration contour.

Can we replace the integrand with a holomorphic function? Note
that we have only to replace it on the contour Γ in order to have the
same integral. If Γ is real analytic, the answer is positive.

Definition 9.2.1. A holomorphic function S(z) in a neighbour-
hood of a curve Γ is called the Schwarz function of Γ, if the curve Γ is
equal to {z | z̄ = S(z)} as a set.

Example 9.2.2. The trivial example is S(z) = z. The curve corre-
sponding to this Schwarz function is the real line: R = {z | z̄ = z}.

Example 9.2.3. Let Γ be the circle with radius R: Γ = {z | |z| =
R}. This means zz̄ = R2 on Γ. Hence the Schwarz function for the

circle is S(z) =
R2

z
.

The reader can find various examples and applications of the Schwarz
function in [Dav].

What we need is the Schwarz functions for real analytic curves.

Lemma 9.2.4. If Γ is a real analytic closed Jordan curve, then there
exists a Schwarz function for Γ.
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Proof. Since a real analytic curve is defined by an equation F (x, y) =
0, where F (x, y) is a real analytic function, we obtain the Schwarz func-
tion z̄ = S(z) by solving the equation

F

(
z + z̄

2
,
z − z̄

2i

)
= 0

with respect to z̄.
We shall use more explicit expression of the Schwarz function in

terms of the conformal mapping, so we give another proof of this lemma
here. According to the Riemann mapping theorem (applied to domains
including the infinity as an interior point) there exists a holomorphic
bijection ϕ(z) from the outside of Γ to the outside of the unit disk
∆̄ = {w | |w| 5 1}. We normalise ϕ so that it has an expansion

(9.2.1) ϕ(z) = r−1z +
∞∑
n=0

cnz
−n, r > 0,

around the infinity z =∞ for later use. Since we assume that Γ is real
analytic, ϕ has an analytic continuation defined in the neighbourhood
of Γ. Since ϕ maps the boundary to the boundary (Carathéodory’s
theorem), a point z belongs to Γ if and only if ϕ(z) belongs to the
boundary of ∆, i.e., |ϕ(z)| = 1. Hence

(9.2.2) ϕ(z) ϕ̄(z̄) = 1,

where ϕ̄ is defined by

(9.2.3) ϕ̄(z) = ϕ(z̄),

or, in other words, by conjugating the coefficients in (9.2.1):

(9.2.4) ϕ̄(z) = r−1z +
∞∑
n=0

c̄nz
−n.

Solving (9.2.2) as an equation for z̄, we obtain

z̄ = ϕ̄−1

(
1

ϕ(z)

)
.

Therefore the Schwarz function in this case is

(9.2.5) S(z) = ϕ̄−1

(
1

ϕ(z)

)
.

�

Replacing z̄ in (9.1.10) with the Schwarz function, we obtain

(9.2.6) Ck =
1

2i

∫
Γ

z−kS(z) dz.
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We assume that 0 is inside the curve Γ and that the Schwarz function
has the Laurent expansion

S(z) =
∑
n∈Z

anz
n.

The coefficient an of this expansion is determined by

an =
1

2πi

∮
Γ

S(z) z−n−1 dz.

Comparing this with (9.2.6), we have Ck = πak−1, i.e.,

(9.2.7) S(z) =
1

π

∑
k∈Z

Ckz
k−1.

9.3. Relation to dispersionless Toda hierarchy

Now we return to the problem of the Hele-Shaw flow. Recall that Ck
(k = 0) serve as coordinates of the space of curves (Proposition 9.1.4).
In view of this fact we rename the harmonic moments Ck(t) of Γ(t) as
follows: for k = 1

(9.3.1) tk :=
Ck
πk
, vk :=

C−k
π
, s :=

C0

π
.

The time variable t is essentially the same as C0(t) = area in Γ(t).
(See Theorem 9.1.6 and the remark to it.) Hence we identify t with
the variable s defined above. Hereafter we use the symbol t not as the
time variable of the Hele-Shaw flow, but as the set t = (t1, t2, . . . ). In
this notation, the expansion (9.2.7) is

(9.3.2) S(s, t; z) =
∞∑
k=1

k tkz
k−1 +

s

z
+
∞∑
n=1

vn(s, t)z−n−1.

Note that we regard S and its coefficients vk as functions of (s, t) =
(s, t1, t2, . . . ).

Let us recall that ϕ in the proof of Lemma 9.2.4 maps the outside
of Γ to the outside of ∆̄ and has the expansion (9.2.1). In the present
situation Γ depends on s and tk (k = 1) and consequently ϕ depends
on (s, tk; k = 1):

(9.3.3) ϕ(s, t; z) = r(s, t)−1z +
∞∑
n=0

cn(s, t)z−n.
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Therefore the inverse function of ϕ(s, t; z) with respect to z has an
expansion of the form

(9.3.4) z = ϕ−1(s, t;w) = r(s, t)w +
∞∑
j=1

uj(s, t)w
1−j.

The complex conjugate of this on the unit circle |w| = 1 is

(9.3.5) z̄ = ϕ−1(s, t;w) = ϕ−1(s, t; w̄) = r(s, t)w−1 +
∞∑
j=0

ūj(s, t)w
j−1,

since w̄ = w−1 on the unit circle and r(s, t) ∈ R.
Let us put these expansions together with those of z S(z) (cf. (9.3.2))

and its complex conjugate:

z = r(s, t)w +
∞∑
j=1

uj(s, t)w
1−j,(9.3.6)

z̄ = r(s, t)w−1 +
∞∑
j=1

ūj(s, t)w
j−1,(9.3.7)

z S(s, t; z) =
∞∑
k=1

k tkz
k + s+

∞∑
n=1

vn(s, t)z−n,(9.3.8)

z̄ S̄(s, t; z) =
∞∑
k=1

k t̄kz̄
k + s+

∞∑
n=1

v̄n(s, t)z̄−n,(9.3.9)

The crucial observation in [MiWZ] is the following: the above expan-
sions are exactly of the same form as (8.1.6) and (8.1.11)! (Well, up to
signature, of course, but essentially the same.)

Now we consider the pair (tk, t̄k) as two-dimensional independent

variables over R. Hence the derivations
∂

∂tk
and

∂

∂t̄k
should be regarded

as the Wirtinger derivatives:

∂

∂tk
=

1

2

(
∂

∂ Re tk
− i ∂

∂ Im tk

)
,

∂

∂t̄k
=

1

2

(
∂

∂ Re tk
+ i

∂

∂ Im tk

)
.

Correspondingly we consider the dispersionless Toda hierarchy with
variables s, tk and t̃k (k = 1)1. The above observation can be compiled
into Table 1.

1Note that the variable t̄k in this section is not the variable t̄k in Chapter 8 but
the complex conjugate to tk and that the variable t̄k in Chapter 8 corresponds to
t̃k in this section. We are sorry for this confusing discrepancy of notations.
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Hele-Shaw flow dispersionless Toda

w, tk, t̄k p, tk, −t̃k
z = ϕ−1(w) L
z̄ = ϕ−1(w−1) L̄−1

z S(z) M
z̄ S(z) M̄

Table 1. Correspondence of the Hele-Shaw problem
and the dispersionless Toda hierarchy.

The important point is that the equation of the curve z̄ = S(z) and
its complex conjugate correspond to

L̄−1 = LM̄, L = L̄M̄,

which reduce to L̄ = LM−1 and M̄ = M. These are exactly the
equations (8.2.1) in Theorem 8.2.1 for the data

(f(p, s), g(p, s), f̄(p, s), ḡ(p, s)) = (ps−1, s, p, s),

which satisfy {f, g} = f and {f̄ , ḡ} = f̄ . Hence the pair (L = ϕ−1, L̄ =
ϕ̄−1) is a solution of the dToda hierarchy! Another proof of this fact
by Hadamard’s variation formula is in [MaWZ].

Subsequent developments of this subject are found in [MiWZ],
[KKMWZ], [Zab1], [MaWZ], [KMWZ], [KMZ], [Nat], [Zab2],
[Zab3], [NZ].
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EuroConférence Moshé Flato 2000, Part III (Dijon). Lett. Math. Phys.
56 (2001), 181–228.

[TD] Tanaka S. and Date E.: KdV equation (in Japanese), Kinokuniya Sug-
aku Sosho 16, Kinokuniya, (1979).

[Te] Teo L.-P.: Analytic functions and integrable hierarchies — characteri-
zation of tau functions, Lett. Math. Phys. 64 (2003), 75–92.

[To1] Toda M.: Vibration of a Chain with a Non-linear Interaction, J. Phys.
Soc. Japan 22 (1967), 431–436; Wave Propagation in Anharmonic Lat-
tice, ibid. 23 (1967), 501–506.

[To2] Toda M.: Non-linear wave and soliton (in Japanese), Nihon-hyouron-
sha, (1983).

[To3] Toda M.: Nonlinear lattice dynamics (extended version in Japanese),
Iwanami-shoten (1987); Theory of nonlinear lattices (English transla-
tion of the older version), Springer Series in Solid-State Sciences, 20,
Springer, (1981).

[To4] Toda M.: Thirty lectures on waves and non-linear problems (in
Japanse), Asakura-shoten, (1995)

[To5] Toda M.: Discovery of lattice solitons (in Japanese), Butsuri 51-3, the
Physical Society of Japan, (1996)
http://www.jps.or.jp/books/50thkinen/50th 03/004.html

[TT1] Takasaki K. and Takebe T.: SDiff(2) KP hierarchy, in Infinite analysis,
Part B (Kyoto, 1991), Adv. Ser. Math. Phys. 16, World Sci. Publ., River
Edge, NJ, (1992), 889–922.

[TT2] Takasaki K. and Takebe T.: SDiff(2) Toda equation – hierarchy, tau
function and symmetries, Lett. Math. Phys. 23 (1991), 205–214.

[TT3] Takasaki K. and Takebe T.: Integrable hierarchies and dispersionless
limit, Rev. Math. Phys. 7 (1995), 743–808.

[TT4] Takasaki K. and Takebe T.: Radial Loewner equation and dispersionless
cmKP hierarchy. arXiv:nlin/0601063
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Corrigendum to
“Lectures on Dispersionless
Integrable Hierarchies”

Takashi Takebe

The following typo was found after the publication. The author apologises
for this error: The equation (5.1.1) in page 37 should be

(5.1.1) L = L(t; ξ) = ξ + u2(t)ξ
−1 + u3(t)ξ

−2 + · · · =
∞∑
i=0

ui(t)ξ
1−i,

where u0 = 1, u1 = 0.
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