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Abstract
Inflation is the most successful model of the early universe since that not only can

resolve the various problems in the standard Big-Bang cosmology but also can be

compatible with anisotropies of the Cosmic Microwave Background (CMB). How-

ever, even the successful model faces the initial singularity and Trans-Planckian

problem. In light of this, the alternatives to inflation evading the singularity have

been also explored so far. Therefore, when the non-singular models can resolve all

the problems, it would be worth investigating the consistency with CMB observa-

tions and also finding how to discriminate between inflation and alternatives.

One of the familiar alternative models is the so-called matter bounce cosmology

which can generate the scale-invariant curvature perturbation. However, it has been

pointed out that the matter bounce model in the k-essence theory cannot satisfy the

observational constraints on the tensor-to-scalar ratio and the non-Gaussianity of

the curvature perturbation simultaneously. In this thesis, we show that this is not

the case in more general models of bounce. To do so, we calculate the primordial

power spectra and the primordial bispectra of scalar and tensor perturbations in

general bounce cosmology. We also investigate how to discriminate contracting

models from inflation based on the non-Gaussian signatures of tensor perturbations.

As a result, we show that the non-Gaussian amplitudes and shapes in general bounce

models have different properties compared to those in general models of single-field

inflation.

In order to distinguish inflation from the alternatives observationally, it is impor-

tant to find specific features of inflation. It has been shown that the amplitude of

the primordial non-Gaussianity of the curvature perturbation in the case of non-

Bunch-Davies initial states can be enhanced compared with that in the case of the

Bunch-Davies one due to the interactions caused by the subhorizon perturbations.

The enhancement results from the fact which the physical wavelengths of the infla-

tionary perturbations become Planckian lengths in the far past. Therefore, we can

anticipate that the signatures due to the non-Bunch-Davies effects are peculiar to

inflation. The purpose of the present paper is to see whether or not the primoridial

non-Gaussianities of the tensor perturbations are enhanced as well. In doing so, we

consider some general theory of gravity including an inflaton and calculate the ten-

sor auto-bispectrum and the cross-bispectrum involving one tensor and two scalar

modes with the non-Bunch-Davies initial states. In particular, we prove that the



amplitude of the primordial cross-bispectrum can be enhanced at non-trivial con-

figurations characterized by not only the wave numbers but also the propagation

speeds of the perturbations.
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Chapter 1

Introduction

Inflation [1, 2, 3] is the successful model of the early universe owing to the facts

that inflation can resolve the problems in the standard Big Bang cosmology and be

consistent with Planck and other data [4]. Then, one may ask how inflation can be

conclusive observationally, but the answer is still unknown. To find the answer, we

would necessarily clarify the observational predictions of not only inflation but also

alternatives.

Inflation suffers from the initial singularity [5] and Trans-Planckian problem [6].

In light of this, the nonsingular alternatives, e.g., bounce models (see, e.g., Ref [7]

for a review), have been also explored so far. If the alternatives are consistent

with CMB observations, we should have no reason to exclude those at the present

stage. However, in some cases, a large tensor-to-scalar ratio or a large scalar non-

Gaussianity has been found. In this thesis, we focus on general bounce cosmology,

and investigate how the alternatives are viable by evaluating the primordial power

spectrum and the primordial non-Gaussianity.

Although inflation also faces some problems, it is definite that the paradigm

is successful and representative. In this thesis, we also focus on the tensor non-

Gaussianity from inflation in the context of the non-Bunch-Davies initial states.

It has been previously shown that the scalar non-Gaussianity is enhanced due to

the non-Bunch-Davies effect [8]. It can be anticipated that the non-Gaussian ampli-

tudes of the tensor non-Gaussianities can be enhanced due to the non-Bunch-Davies

effects as well as the scalar non-Gaussianity. There have been several studies about

the tensor non-Gaussianities from standard models of inflation with the non-Bunch-

Davies states [9, 10]. In this thesis, we see whether or not the non-Gaussian ampli-

tude in the non-Bunch-Davies states can be enhanced compared with that in the
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Bunch-Davies one in general single-field inflation models.

This thesis is organized as follows.

•Chapter 2.
In this chapter, we introduce the standard Big Bang cosmology and its problems.

We then review how the problems can be resolved in inflation and bouncing cosmol-

ogy. In light of the recent developments of inflation models in extended gravitational

theories, we introduce a general scalar-tensor theory.

•Chapter 3.
In this chapter, we first study the basics of the cosmological perturbation the-

ory. Then, we calculate the primordial power spectra and the primordial non-

Gaussianities of the scalar and tensor perturbations in the single-field slow-roll

inflation model. We also investigate the problems in alternatives to inflation and

also review how those can be resolved.

•Chapter 4.
In this chapter, we first introduce the general contracting background. Then, we

evaluate the primordial power spectra of curvature and tensor perturbations and

derive the conditions in order for the power spectra to be scale-invariant. Also, we

calculate the primordial non-Gaussianities and investigate whether or not a small

tensor-to scalar ratio and small scalar non-Gaussianity can be obtained simultane-

ously in the Horndeski theory. Last, we also discuss how to distinguish bounce from

inflation through the tensor non-Gaussianities.

•Chapter 5.
In the chapter, we first consider the quadratic and cubic actions for the tensor per-

turbations in general scalar-tensor theory and introduce non-Bunch-Davies initial

states which are the states obtained by performing a Bogoliubov transformation to

the usual Bunch-Davies states. We then calculate the auto-bispectrum of the tensor

perturbations, and investigate whether the enhanced non-Gaussian amplitudes can

be obtained or not. We also compute the cross-bispectrum generated by one tensor

and two scalar modes and investigate the signatures which have not been predicted

in the case of the Bunch-Davies initial state.

•Chapter 6.
The conclusion of this thesis is drawn in this chapter.

Conventions

In this thesis, we use the unit, c = 1 = ℏ. The metric signature is (−,+,+,+).
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Chapter 2

Standard Big Bang cosmology and

the Early Universe

According to the standard Big Bang cosmology, the decelerating expansion of

our universe started from the hot Big Bang universe in which each of matter com-

ponents is characterized by some high temperature and high density. (See, e.g.,

[11, 12].) However, the paradigm faces various problems regarding fine-tuning, i.e.,

the horizon and flatness problems. Furthermore, the origin of the density fluctu-

ations leading to the large scale structure and the anisotropies of CMB cannot be

explained within the paradigm. In this chapter, we briefly review the dynamics of

the universe in the standard Big-Bang cosmology and explain the problems. Then,

we introduce some early universe models which can resolve the problems.

2.1 Standard Big Bang cosmology and its problems

2.1.1 Homogeneous and isotropic universe

By assuming that the spacetime is homogeneous and isotropic on cosmological

scales, the metric of the spacetime without a spatial curvature is written by the

spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = gµνdx
µdxν = −dt2 + a2(t)δijdx

idxj , (2.1)

where a(t) is a scale factor. One can investigate the time evolution of the universe

by solving the Einstein equation,

Gµν := Rµν −
1

2
Rgµν =

1

M2
Pl

Tµν , (2.2)
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where Gµν is the Einstein tensor. The Ricci tensor, Rµν , and the Ricci scalar, R,

are defined by

Rµν = ∂λΓ
λ
µν − ∂µΓ

λ
λν + ΓλµνΓ

ρ
ρλ − ΓλνρΓ

ρ
µλ, (2.3)

R = gµνRµν , (2.4)

with

Γµνρ =
1

2
gµσ(∂ρgνσ + ∂νgρσ − ∂σgνρ), (2.5)

which is the Christoffel symbol. Each component of the Einstein tensor is given by

G00 = 3H2, Gij = −a2(3H2 + 2Ḣ)δij , G0i = Gi0 = 0, (2.6)

where H := ȧ/a is the Hubble parameter, and a dot represents a differentiation

with respect to the cosmic time, t. The energy momentum tensor, Tµν , can be

written in terms of the energy density, ρ, and pressure, P , of matter as Tµν =

diag(ρ, a2P, a2P, a2P ). In particular, the (00)- and (ij) components of the Einstein

equation, respectively, read

3M2
PlH

2 = ρ, (2.7)

M2
Pl(3H

2 + 2Ḣ) = −P, (2.8)

where the first and second equations are the Friedmann and evolution equations,

respectively. By combining Eqs. (2.7) and (2.8), we obtain the following equation

ρ̇+ 3H(ρ+ P ) = 0. (2.9)

Given a matter parametrized by P = wρ with w being the equation of state (EoS)

parameter, we have

ρ ∝ a−3(1+w). (2.10)

In the universe with the pressure-less matter (w = 0) and radiation (w = 1/3), the

Friedmann equation can be written as

3M2
PlH

2 =
ρr,0
a4

+
ρm,0
a3

, (2.11)

where ρr,0 and ρm,0 are the present values of both the energy densities, and we

normalized the scale factor as a(t0) = 1 with t0 being the present time. We also

obtain the another equation by combining the Friedmann and evolution equations

as

ä

a
= − 1

6M2
Pl

(ρ+ 3P ). (2.12)
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For the standard matter enjoying ρ ≥ 0 and P ≥ 0, the expansion of the universe

decelerates. However, it has been found that the expansion of the current universe is

accelerating [13] by the so-called dark energy. The simplest and consistent candidate

to realize the accelerating expansion is the cosmological constant which satisfies

P = −ρ(< 0) implying ä > 0 when the cosmological constant is the dominant

component in the total energy densities. (See, however, Ref. [14].) Although we

do not go deeply into the topics on the dark energy, various candidates have been

explored so far in the literature.

2.1.2 Problems

Let us get back to a topic on the universe in the past. At least during some

durations after the Big Bang, the expansion of the universe has decelerated. This

fact gives us fine-tuning problems about the initial conditions of our universe. In

this thesis, we particularly deal with the horizon and flatness problems.

•Flatness problem
In the FLRW spacetime with a constant spatial curvature, K, the curvature con-

tributes to the Friedmann equation as ρK = O(M2
PlK/a2). In particular, the spa-

tially flatness of the universe can be evaluated by the curvature parameter, ΩK,

defined by

ΩK := − K
a2H2

. (2.13)

According to Planck’s observations [4, 15], Planck TT,TE,EE+lowE+lensing has

put a constraint as

ΩK = −0.011+0.013
−0.012 (95% CL), (2.14)

and Planck TT,TE,EE+lowE+lensing+BAO has done

ΩK = 0.0007± 0.0037 (95% CL). (2.15)

In the decelerating universe, the curvature parameter decreases as the time goes

back to the past since we have ΩK ∝ ȧ−2. This indicates that the universe is highly

spatially flat, |ΩK| ≪ O(10−2) at the Big-Bang, and thus one must detune the

spatially flatness.
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•Horizon problem

The CMB observation indicates that the CMB-temperature is nearly homoge-

neous over the CMB sky, ∆TCMB/TCMB = O(10−5). To understand the homogene-

ity which seems to be mysterious at a glance, let us consider the causal structure by

focusing on the path of light. The light propagates along the null geodesic, ds2 = 0,

and the maximum path which the light can propagate from t0 to t is

η(t) :=

∫ t

t0

dt′

a(t′)
, (2.16)

where t0 now corresponds to the time of the Big Bang, and η determines causally-

(dis)connected regions at t. In a decelerating universe, a ∝ tn with 0 < n <

1, the size of the comoving particle horizon decreases as the time goes back to

the past. In particular, the horizon scale at the last scattering is much smaller

than that at the present time, (i.e., η(tCMB) ≪ η(t0) with tCMB being the time

of the last scattering). This implies that we observe the radiations which were

inside the causally disconnected regions at the last scattering surface. Nevertheless,

those share almost the same temperature. Therefore, we need to detune the small

anisotropy of the CMB temperature.

2.2 Early universe models

The problems introduced in the previous section may be evaded by assuming that

such was our universe. However, it would be reasonable to find how the ”initially”

detuned universe was realized. This can be accomplished by considering the early

universe, the phase before the Big Bang. The representative model which can

resolve the problems is inflation. Whereas alternatives to inflation have been also

explored. In this chapter, we introduce both models and briefly explain how the

problems can be evaded.

2.2.1 Inflation

Inflation [1, 2, 3] is an early universe model in which there was a phase of the

exponentially accelerating expansion of the universe before the Big Bang. By re-

calling Eq. (2.12), it can be seen that the accelerating universe can be realized by

imposing ρ + 3P < 0, i.e., violating the strong energy condition, and the violation

can be accomplished even by a canonical scalar field.
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Let us consider the Einstein gravity with a canonical scalar field whose action is

given by

S =

∫
d4x

√
−g
(
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
, (2.17)

where we denoted the potential term of ϕ as V (ϕ). The Friedmann and evolution

equations read

3M2
PlH

2 =
ϕ̇2

2
+ V (= ρ), (2.18)

M2
Pl(3H

2 + 2Ḣ) = − ϕ̇
2

2
+ V (= −P ). (2.19)

We also have the evolution of equation for ϕ,

ϕ̈+ 3Hϕ̇+ Vϕ = 0, (2.20)

where we defined Vϕ := dV/dϕ. In this case, we have

ρ+ 3P = −6M2
PlH

2(1− ϵ), (2.21)

where ϵ := −Ḣ/H2. The universe is accelerating (i.e., ä > 0) if ϵ < 1 holds (the

strong energy condition is violated).

Then, we deal with the potential-driven slow-roll inflation model. Let us charac-

terize the epoch in which a scalar field is slowly rolling on its potential in terms of

two conditions as

ϵ1 :=M2
Pl

(
Vϕ
V

)2

≪ 1, (2.22)

ϵ2 :=M2
Pl

Vϕϕ
V

≪ 1, (2.23)

implying that

3M2
PlH

2 ≃ V, (2.24)

3Hϕ̇+ V ≃ 0. (2.25)

In this regime, the spacetime is approximated by the quasi-de Sitter spacetime, i.e.,

ϵ≪ 1.

2.2.2 Resolutions for the problems in the standard Big-Bang cosmology

The density parameter of the spatial curvature are diluted away as ΩK ∝ e−2Ht

during the quasi-de Sitter expansion. Hence, the spatially flatness can be resolved.
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As for the horizon problem, we recall the comoving particle horizon, η. In accel-

erating universes, e.g., a ∝ eHt (de Sitter) and a ∝ tn with n > 1, the horizon

scale η becomes bigger as the time goes back unlike the decelerating universe. This

indicates that the would-be causally disconnected lights can be causally connected

in the far past, and hence there is no longer any problem regarding the causal

structure if one requires the sufficiently long period of the quasi-de Sitter.

2.2.3 Models of inflation

A lot of models have been constructed so far by choosing the explicit form of the

potential, e.g., large inflation models (V (ϕ) ∝ ϕn) [16], by adding higher curvature

terms, e.g., Starobinsky’s model [2], by driving inflation by a kinetic term of a scalar

field, the so-called k-inflation [17], and also by invoking a scalar field having higher-

derivatives, e.g., G-inflation [18], and so on. In light of the recent developments

of inflation, the numbers of inflation models are anymore countless. To find viable

models from a lot of inflation models, those need to be observationally distinguished.

Here, it is quite convenient to use some unified framework and formulate the general

inflation model. The familiar framework of the slow-roll inflation models has been

constructed in the Generalized Galileon theory whose action is [19, 20]

S =

∫
d4x

√
−gL, (2.26)

with

L = G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ,X)R+G4X

[
(□ϕ)2 − (∇µϕ∇νϕ)

2
]

+G5(ϕ,X)Gµν∇µ∇νϕ− G5X

6

[
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)

2 + 2(∇µ∇νϕ)
3
]
,

(2.27)

where we denoted ∂XG as GX , and Gi is an arbitrary function of ϕ and X. By

taking the arbitrary functions appropriately, the models proposed before can be

reproduced. In particular, GR with a canonical scalar field model can be reproduced

by taking G2 = X − V , G4 = M2
Pl/2, and G3 = 0 = G5. One may want to know

how general this theory is. The generality has been found through the equivalence

between Generalized Galileon theory and the Horndeski theory, the most general

single scalar-tensor theory in 4D having second-order field equations [21]. The

equivalence has been proven in Ref. [20]. Therefore, the action of Eq. (2.27) is

conventionally called the Horndeski theory. Based on this theory, the observational

signatures in slow-roll inflation models have been classified.
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2.2.4 Bouncing cosmology

The bounce models are characterized by three phases. The first phase is the

contracting one. The simple example is the matter-dominated contracting phase,

and the model with the phase has been considered in the context of the matter

bounce cosmology [22]. As we will see later, the advantage of this model is to be

able to generate the scale-invariant curvature perturbation [22]. Whereas this model

suffers from the growth of anisotropy. In general relativity with a matter field, σ,

the Friedmann equation can be written as

3M2
PlH

2 = ρσ + ρaniso, (2.28)

where

ρσ ∝ a−3(1+w), (2.29)

ρaniso ∝ a−6, (2.30)

with w being the EoS parameter of σ, Pσ = wρσ. Therefore, in the case of the

matter-dominated contracting universe, i.e., w = 0, the anisotropy gradually be-

comes the dominant energy component. This indicates that the spacetime is no

longer isotropic. The simple strategy to evade the growth of the anisotropy is to

drive the slow contraction by the matter field enjoying w ≪ 1 which is invoked in

the so-called Ekpyrotic cosmology, see, e.g., [23].

The second phase is the bouncing one. At somewhere in this phase, the scale

factor is minimized, and hence the Trans-Planckian problem is avoidable only if the

physical wavenumber of the perturbation satisfies kphys := k/a ≤ k/amin < MPl for

a given k. Similarly, the initial singularity predicted in the inflationary paradigm can

be also evaded. In general, one needs to violate the null-energy-condition (NEC),

Tµνk
µkν ≥ 0 with kµ being an arbitrary null vector, to realize the non-singular

bounce [24]. By using the Einstein equation, it can be seen that the energy condition

in a spatially flat FLRW spacetime is equivalent to*1

Ḣ > 0. (2.31)

To investigate the relation between a model of a scalar field and the violation of

NEC, we first focus on a canonical scalar field model with the Einsten-Hilbert action,

*1 In this thesis, I denote the condition, Ḣ ≥ 0, as NEC for convention though, exactly speaking,

that is equivalent to the Null Convergence Condition, Rµνkµkν ≥ 0.
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Eq. (2.17). By combining the Friedmann and evolution equations, we have

Ḣ = − X

M2
Pl

≤ 0, (2.32)

where we denoted the kinetic term of ϕ by X := −(1/2)gµν∂µϕ∂νϕ. Eq. (2.32)

states that the violation of the NEC is not allowed at the background level. The

situation can change by invoking a scalar field having a non-canonical kinetic term,

e.g., X2, or a higher derivative term, e.g., X□ϕ. To illustrate how the scalar field

can violate the NEC, we use the k-essence field as the matter field,

S =

∫
d4x

√
−g
(
R+K(ϕ,X)

)
. (2.33)

In this theory, Eq. (2.32) is modified as

Ḣ = −XKX

M2
Pl

, (2.34)

whose r.h.s. can be positive depending on the sign of KX . Similarly, the higher

derivative term can also make it possible to violate the NEC. The dynamics of

the non-standard scalar field can connect the bouncing phase and the subsequent

expanding phase which is the last phase in bouncing cosmology. One of examples

of bounce models has been constructed within the cubic galileon theory [25],

L =
M2

Pl

2
R+K(ϕ,X) +G(ϕ,X)□ϕ, (2.35)

where

K(ϕ,X) = (1− g(ϕ))X + βX2 − V (ϕ), (2.36)

G(ϕ,X) = γX, (2.37)

with

g(ϕ) = 2g0

[
e−

√
(2/p)ϕ + ebg

√
(2/p)ϕ

]−1

, (2.38)

V (ϕ) = −2V0

[
e−

√
(2/q)ϕ + ebV

√
(2/q)ϕ

]−1

, (2.39)

and β, γ, g0, p, bg, V0, q and bV are constant. Based on this Lagrangian, one can

obtain the ekpyrotic, bouncing, and expanding phases.

This solution does not suffer from the growth of anisotropy due to the ekpyrotic

contraction and the bouncing phase can occur by violating the NEC. However, the

solution and also other ones constructed within Eq. (2.35) generally develop some

problem at a perturbation level. We will consider this point later.
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2.2.5 Resolutions for the problems in the standard Big-Bang cosmology

Let us consider the general contracting universe, a(t) ∝ (−t)n for 0 < n < 1

and −∞ < t < 0 to discuss the flatness problem. In this universe, the curvature

parameter behaves as

ΩK ∝ (−t)2(1−n). (2.40)

Therefore, even though there is a phase such that |ΩK| = O(1), the effect of the

spatial curvature on the energy components is diluted away during the contracting

phase. This is due to the fact that the scale of the spatial curvature,
√
K/a, becomes

grows as the time passes while the scale of the spacetime curvature, H, does faster.

Last, we move to the argument on the horizon problem. Similarly to the case of

inflation, the size of the (comoving particle) horizon scale can be infinite in the past

infinity, and thus the horizon problem can be also resolved.
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Chapter 3

Cosmological Perturbations

In this chapter, we first study the basics of the cosmological perturbation theory,

including the definition of the perturbations, the quantization of those, and the

primordial power spectrum and primordial non-Gaussianity. Then, we calculate

the observable quantities in the single-field slow-roll inflation model, and explain

challenges in alternatives to inflation.

3.1 Perturbations in FLRW spacetime

In this chapter, we define the cosmological perturbations in FLRW spacetime.

(See, e.g., Ref. [26] for the cosmological perturbation theory.) We denote the metric

including the perturbations as

gµν = ḡµν + δgµν , (3.1)

where the first and second terms express the background and perturbed metrics,

respectively. The explicit forms of the perturbations around the spatially flat FLRW

spacetime can be written as

ds2 = −(1 + 2A)dt2 + 2aBidx
idt+ (δij + Cij)dx

idxj . (3.2)

Then, we decompose the perturbations into a scalar, vector, and tensor as

Bi = ∂iB − Si, (3.3)

Cij = −Cδij + ∂i∂jE + ∂(iFj) +
1

2
hij , (3.4)

where the vector and tensor modes satisfy

∂iFi = 0, ∂ihij = 0, δijhij = 0. (3.5)
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Each mode independently evolves in time in linear perturbation theory. Here, the

perturbation C is associated with the Ricci scalar on a t-const hypersurface as

(3)R =
4

a2
∂2C, (3.6)

and hence C is called curvature perturbation. The metric (3.2)-(3.4) includes some

gauge degrees of freedom which can be eliminated by using some gauge-invariant

variables or fixing the gauge. To eliminate those, we consider the infinitesimal

transformation,

xµ → xµ + ξµ, (3.7)

where ξµ = (δt, δxi) with δxi = δij∂jδx for the scalar mode. The perturbed metric

changes via the gauge transformation Eq. (3.7) as

δgµν → δgµν − ḡµν,σξ
σ − ḡµσξ

σ
,ν − ḡνσξ

σ
,µ. (3.8)

First, the scalar perturbations obey

A→ A− dδt

dt
, (3.9)

B → B +
δt

a
− a

dδx

dt
, (3.10)

ψ → ψ +Hδt, (3.11)

E → E − δx. (3.12)

For example, the gauge degrees of freedom can be elimintaed as

E = 0, B = 0, (Newtonian gauge) (3.13)

E = 0, C = 0, (Spatially flat gauge). (3.14)

This gauge fixing purely depends on only the perturbations of the metric. Whereas

one can fix the gauge by imposing conditions for the perturbation associated with a

matter field. In a similar way with the metric perturbations, the perturbed energy

momentum tensor can be obtained as

Tµν → Tµν + δTµν . (3.15)

In particular, the (0, i)-component of δTµν := ∂iδq, changes under the gauge trans-

formation as

δq → δq + (ρ+ P )δt. (3.16)



Chapter 3 Cosmological Perturbations 16

This gives us the way to fix the gauge associated with δt,

δT0i = 0 → δq = 0, (comoving gauge). (3.17)

Also the perturbation of the scalar field behaves as

δϕ→ δϕ+ ϕ̇δt. (3.18)

Based on this transformation, the gauge can be fixed as

δϕ = 0, (unitary gauge). (3.19)

Throughout this paper, we fix the gauge under the unitary gauge.

Next, the vector modes obey

Si → Si + a
dδxi
dt

, (3.20)

Fi → Fi − δxi. (3.21)

and the gauge degree of freedom δxi can be completely fixed by choosing Fi = 0. In

scalar-tensor theories including 1 scalar and 2 tensor degrees of freedom, the vector

modes are non-dynamical.

By construction, the tensor modes are gauge invariant, hij → hij .

3.1.1 Perturbations in GR with a canonical scalar field

In the context of the early universe models, the perturbed metric under the uni-

tary gauge is often written by employing the ADM formalism [27] as

ds2 = −N2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
, (3.22)

where

N = 1 + δn, Ni = ∂iχ, (3.23)

gij = a2e2ζ
(
δij + hij +

1

2
hki hkj + · · ·

)
, (3.24)

with ζ being the curvature perturbation.

To discuss the behavior of the dynamical perturbations, we need to derive the evo-

lution equations for perturbations. We can derive the equations from the quadratic

actions for the perturbations. For simplicity, we derive the quadratic actions in

GR with a canonical scalar field whose action is given by Eq. (2.17). Substituting
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the perturbed metric into the action and expanding it up to quadratic order in

perturbations, we obtain

S(2) =

∫
dtd3xa3

[
−3M2

Plζ̇
2 +

M2
Pl

a2
(∂iζ)

2 + (X − 3M2
PlH

2)δn2 − 2M2
PlH

a2
δn∂2χ

+
2M2

Pl

a2
ζ̇∂2χ+ 6M2

PlHδnζ̇ −
2M2

Pl

a2
δn∂2ζ +

M2
Pl

8
(ḣij)

2

− M2
Pl

8a2
(∂khij)

2

]
, (3.25)

where δn and χ are auxiliary fields. By varying the perturbed action with respect

to δn and χ, we have the constraint equations,

(X − 3M2
PlH

2)δn− M2
PlH

a2
∂2χ+ 3M2

PlHζ̇ −
M2

Pl

a2
∂2ζ = 0, (3.26)

Hδn− ζ̇ = 0. (3.27)

Then, by eliminating the auxiliary fields by use of the constraint equations, we

obtain the quadratic actions of ζ and hij as

S
(2)
ζ =

∫
dtd3xa3

[
GS ζ̇2 −

FS
a2

(∂iζ)
2

]
, (3.28)

S
(2)
h =

1

8

∫
dtd3xa3

[
GT ḣ2ij −

FT
a2

(∂khij)
2

]
, (3.29)

where

GS =
X

H2
, FS =M2

Pl

(
− Ḣ

H2

)
, GT =M2

Pl, FT =M2
Pl. (3.30)

The functions, GS , FS , GT , and FT , must be positive to avoid the ghost and

gradient instabilities.(See, e.g., Ref. [28].) In this theory, those are indeed positive

when Ḣ < 0 holds.

With a similar procedure, one can obtain the quadratic actions in more general

theories. In particular, the actions in the Horndeski theory take the same forms

with Eqs. (3.28) and (3.29).

3.2 Quantization in a curved spacetime

In this section, we quantize the perturbations in a curved spacetime [29].

In scalar-tensor theories having second-order field equations, the quadratic action

of the perturbation, ψ (should be understood as ζ and hij), takes the form of [20]

S
(2)
ψ =

∫
dtd3xa3

[
Gψ̇2 − F

a2
(∂iψ)

2

]
. (3.31)
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Note that G and F are not always constant unlike the coefficients in the quadratic

action of the tensor perturbations in GR, and thus in this section we keep G and F
functions of t.

For the purpose of the quantization, one needs to introduce canonically normalized

variables as [20]

dy :=
F1/2

aG1/2
dt, u := zψ, z :=

√
2a(GF)1/4, (3.32)

where u is the so-called Mukhanov-Sasaki variable, and the above variables make

the original perturbed action canonically normalized one as

S(2)
u =

1

2

∫
dyd3x

[(
du

dy

)2

− (∂iu)
2 +

1

z

d2z

dy2
u2
]
. (3.33)

We quantize the perturbations by promoting u to û and expanding the pertur-

bation in terms of the creation and annihilation operators. First, the canonically

normalized scalar perturbation, û, is

û(y,x) =

∫
d3k

(2π)3

(
uk(y)âke

ik·x + u∗k(y)â
†
ke

−ik·x
)
, (3.34)

where uk is the mode function, and the creation and annihilation operators satisfy

[âk, â
†
k′ ] = (2π)3δ(k− k′), (3.35)

others = 0. (3.36)

Next, the canonically normalized tensor perturbation, v̂ij , is

v̂ij(y,x) =
∑
s

∫
d3k

(2π)3

(
vk(y)e

(s)
ij â

(s)
k eik·x + v∗k(y)e

(s)∗
ij â

(s)†
k e−ik·x

)
, (3.37)

where vk is the mode function, s denotes the two polarization modes of the gravi-

tational waves as s = ±1, and the creation and annihilation operators satisfy

[â
(s)
k , â

(s)†
k′ ] = (2π)3δss′δ(k− k′), (3.38)

others = 0. (3.39)

The polarization tensor satisfies

δije
(s)
ij (k) = 0 = kie

(s)
ij (k), e

(s)
ij (k)e

(s′)∗
ij (k) = δss′ , e

(s)∗
ij (k) = e

(−s)
ij (k) = e

(s)
ij (−k).

(3.40)

Both mode functions share the same equation as

d2uk
dy2

+ ω2(y)uk = 0, (3.41)
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where

ω2 := k2 −m2
ψ(y), m

2
ψ(y) :=

1

z

d2z

dy2
. (3.42)

We hereafter deal with only the case of the scalar perturbation, but the discussion

below can straightforwardly apply to the case of the tensor perturbation.

The mode function is never uniquely determined. This is due to the fact that

there is no unique choice of the vacuum state in a curved spacetime. Therefore,

we need a requirement for the mode function. It is often assumed that the mode

function in the subhorizon region, |k/mψ| → ∞ which is approximately equivalent

to |ky| → ∞, coincides with that in Minkowski spacetime since the mode function

in such the region is not affected by gravity (spacetime curvature). In fact, by

taking the subhorizon limit, the approximated solution of the mode function can

be obtained as

uk ≃ αk√
2k
e−iky +

βk√
2k
eiky, (3.43)

where the coefficients, αk and βk, are normalized as

|αk|2 − |βk|2 = 1. (3.44)

This normalization results from the Wronskian condition,

uk
du∗k
dy

− u∗k
duk
dy

= const. = i, (3.45)

where the factor of the right hand side is due to the canonical commutation relations,

Eqs. (3.35) and (3.39). As the first step to determine αk and βk, we reminder the

quantization in Minkowski spacetime.

In the Minkowski spacetime, the (initial) vacuum state which fixes the mode func-

tion at the initial time can be uniquely determined by requiring that the Hamilto-

nian at the state is minimized. The Hamiltonian can be written as

Ĥ =
1

2

∫
d3x

[
π̂2 + δij∂iû∂j û

]
, (3.46)

where π is the conjugate momentum of u defined by π := δS
(2)
u /δu = du/dy. Then,

by moving to Fourier space, we have

Ĥ =
1

2

∫
d3k

(2π)3

[
âkâ−kF

∗
k + â†kâ

†
−kFk +

(
2â†kâk + δ(0)

)
Ek

]
, (3.47)
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where

Fk :=

(
duk
dy

)2

+ k2u2k, (3.48)

Ek :=

∣∣∣∣dukdy

∣∣∣∣2 + k2|uk|2. (3.49)

For a vacuum, |0⟩, annihilated by âk, the vacuum expectation value of the Hamil-

tonian is given by

⟨0|Ĥ|0⟩ = δ(0)

2

∫
d3k

(2π)3
Ek. (3.50)

In particular, by parametrizing the mode function as uk = rk exp(iθk) with

r2k(dθk/dy) = −1/2 (i.e., the Wronskian condition) being imposed, Ek can be

rewritten as

Ek =

(
drk
dy

)2

+
1

4r2k
+ k2r2k, (3.51)

which can be minimized for drk/dy = 0 and rk = 1/
√
2k, and hence θk = −ky. We

thus have

uk =
1√
2k
e−iky, (3.52)

in Minkowski spacetime. At the present stage, it should be emphasized that

dEk/dy = 0 holds in Minkowski while does not in a curved spacetime. In the

FLRW spacetime, the coefficient in front of the second term in Eq. (3.49) changes

from k2 to ω2(y). The time-dependence of ω2 makes Ek time-dependent function.

This makes it difficult to choose the vacuum state in a curved spacetime. However,

as far as the modes are deep inside the horizon, one can use the WKB (adiabatic)

approximation as

uk ≃ 1√
2k
e−iky, (3.53)

even in the FLRW spacetime, and the above fixes αk and βk as αk = 1 and βk = 0.

In particular, the initial state with the positive frequency mode is called the Bunch-

Davies vacuum state in de Sitter spacetime [30]. As different choices, the non-

Bunch-Davies vacuum states have been also studied. The simplest example is given

by Eq. (3.43) with non-vanishing βk, and we will also study the case later.

Before moving to the explicit calculation, we consider the behaviors of the per-

turbations in different scales. The perturbations are deep inside the horizon (in
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subhorizon scales) in the far past. Then, those amplitudes are stretched due to the

cosmic expansion, and finally the perturbations are outside the horizon (in super-

horizon scales). Especially, the superhorizon modes evolve in time as

ψk ∼ const.+

∫ y dy

z2
∼
∫ t dt′

a3G
, (3.54)

which determines the power spectrum. In the case of the standard inflation model,

the second term exponentially dumps and thus is responsible for the decaying mode.

As a result, the amplitudes of the perturbations freeze out. Whereas in non-standard

inflation models, e.g., the non-attractor inflation model in which G has a non-trivial

time-dependence such that the second term in Eq. (3.54) increases with a time (see,

e.g., Ref [31] as for the tensor perturbations), and also in alternatives to inflation,

e.g., contracting models in which a decreases with a time, the would-be decaying

mode grows [22]. In the following subsection, we deal with the standard inflation

model and will do the alternatives to inflation in the next Chapter.

3.3 Primordial power spectrum

The Fourier transformation is defined by

ψ(x) =

∫
d3k

(2π)3
ψ(k)eik·x. (3.55)

The two-point correlation function of the curvature perturbation is defined by*1

⟨ζ̂(k)ζ̂(k′)⟩ = (2π)3δ(k+ k′)Pζ , (3.57)

where Pζ is the power spectrum of the curvature perturbation, and we have

Pζ =
k3

2π2
|ζk|2 =

k3

2π2

|uk|2

z2
, (3.58)

with ζk and z being time-dependent functions. The power spectrum is evaluated at

the time of the end of the early epoch of the universe (e.g., the time of the end of

inflation) when the perturbations are in superhorizon scales.

*1 More explicitly, the correlation should be understood as the vacuum expectation value, that

is

⟨ζ̂(k)ζ̂(k′)⟩ = ⟨0|ζ̂(k)ζ̂(k′)|0⟩. (3.56)
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Similarly, the two-point correlation function of the tensor perturbation is defined

by

⟨ĥij(k)ĥkl(k′)⟩ = (2π)3δ(k+ k′)Pij,kl, (3.59)

where

Pij,kl(k) = |hk|2Πij,kl(k) =
|vk|2

z2
Πij,kl(k), (3.60)

with

Πij,kl =
∑
s

e
(s)
ij (k)e

∗(s)
kl (k). (3.61)

By using the above, we can obtain the power spectrum of the tensor perturbations

as

Ph := Pij,ij = 2
k3

2π2
|hk|2 =

k3

π2

|vk|2

z2
. (3.62)

This power spectrum is evaluated at the superhorizon scales.

In particular, the constraint on the primordial power spectrum of the tensor

perturbations has been obtained from that on the tensor-to-scalar ratio as [4]

r :=
Ph
Pζ

< 0.064, (95% CL, P lanckTT,TE,EE + lowE + lensing + BK14).

(3.63)

3.4 Primordial non-Gaussianity

The non-Gaussianity, the deviation from the Gaussian distribution, is character-

ized by the n-point correlation function with n > 2. For the Gaussian perturbation,

the statistical property is completely determined by the two-point correlation func-

tion. In the linear perturbation theory, each mode completely decouples each other,

but the modes interact with each other at a non-linear level, and thus initially

Gaussian perturbations inevitably change the statistical property. In the following

subsection, we introduce the method of the computation of the non-Gaussianity.

3.4.1 In-in formalism

First, we briefly review the in-in formalism [32] which is the way to compute the

non-Gaussianity. In the interaction picture, the three-point correlation functions
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of the perturbations, e.g., the scalar and tensor perturbations, (denoted by ψ(t,k)

together) can be computed as

⟨ψ̂(tf ,k1)ψ̂(tf ,k2)ψ̂(tf ,k3)⟩ = ⟨Ω|ψ̂(tf ,k1)ψ̂(tf ,k2)ψ̂(tf ,k3)|Ω⟩, (3.64)

where

|Ω⟩ = T exp

(
−i
∫ tf

ti

dtHint(t)

)
|0⟩, (3.65)

with T being the time ordering operator, and Hint being the interaction Hamilto-

nian. In the interaction picture, the Hamiltonian, H, is composed of a free part H0,

and non-linear parts, Hint. The former decides the time evolution of the perturba-

tion while the latter does that of the state. In particular, H0 and Hint are derived

from the quadratic and cubic (or higher-order) actions, respectively, and we define

the interaction Hamiltonian by Hint := −
∫
d3xL(3)

ψ which is thus of O(ψ3). Here,

we labeled i and f such that the perturbations are deep inside the horizon at t = ti

and the early epoch of the universe ends at tf . To first order in Hint, we have

⟨ψ̂(tf ,k1)ψ̂(tf ,k2)ψ̂(tf ,k3)⟩ ≃ −i
∫ tf

ti

dt⟨0|[ψ̂(tf ,k1)ψ̂(tf ,k2)ψ̂(tf ,k3),Hint(t
′)]|0⟩,

(3.66)

where we supposed that the perturbations at t = ti to be Gaussian. We can know by

computing Eq. (3.66) that how the statistical properties deviate from the Gaussian

distribution due to the non-linear interactions among the perturbations from t = ti

(subhorizon scales) to t = tf (superhozion scales).

We explain how to calculate the above by focusing on the cubic operator of the

form, L(3)
ζ ∼ Cζ̇3 with C being a constant. The quantized curvature perturbation

in Fourier space can be written as

ζ̂(t,k) = ζkâk + ζ∗k â
†
−k. (3.67)

It is instructive to first deal with the two-point correlation function. By using the

symbol of the Wick’s contraction, the product of the operators can be decomposed

into two parts in which the each vacuum expectation values of the first and another

one vanishes and does not, respectively, as

ζ̂(t,k)ζ̂(t,k′) = ζ̂(t,k)ζ̂(t,k′) + (· · · ), (3.68)
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where ⟨(· · · )⟩ vanishes by construction. By using this symbol, one can compute the

two-point correlation function as

⟨ζ̂(t,k)ζ̂(t,k′)⟩ = ζk(t)ζ
∗
k′(t)⟨0|âkâ

†
−k′ |0⟩ = (2π)3δ(k+ k′)|ζk(t)|2. (3.69)

Then, we move to the computation of Eq. (3.66). Similarly, one can write the r.h.s.

of Eq. (3.66) as

⟨ζ̂(tf ,k1)ζ̂(tf ,k2)ζ̂(tf ,k3)Hint(t
′)⟩

= C

∫
d3x

d3k̃1
(2π)3

d3k̃2
(2π)3

d3k̃3
(2π)3

⟨ζ̂(tf ,k1)ζ̂(tf ,k2)ζ̂(tf ,k3)
˙̂
ζ(t, k̃1)

˙̂
ζ(t, k̃2)

˙̂
ζ(t, k̃3)⟩

+ (sym. of 1, 2, 3) (3.70)

= (2π)3δ(k1 + k2 + k3)× 3!Cζk1(tf )ζk2(tf )ζk3(tf )ζ̇
∗
k1(t)ζ̇

∗
k2(t)ζ̇

∗
k3(t), (3.71)

where we discarded some terms contracted by different combinations which are

canceled out with the conjugated themselves in Eq. (3.66) of which the integrand

in the r.h.s. is composed of the above and its conjugated term. Thus those do not

contribute to the resultant non-Gaussianity. Finally, one can obtain the explicit

form of Eq. (3.66) regarding the cubic operator of the form ζ̇3 as

⟨ζ̂(tf ,k1)ζ̂(tf ,k2)ζ̂(tf ,k3)⟩

≃ (2π)3δ(k1 + k2 + k3)Im

[
12ζk1(tf )ζk2(tf )ζk3(tf )

∫ tf

ti

dt′Cζ̇∗k1(t)ζ̇
∗
k2(t)ζ̇

∗
k3(t)

]
.

(3.72)

Similarly, one can derive the concrete expressions for the other cubic operators.

3.4.2 Amplitudes and Shapes of non-Gaussianities

In this subsection, we investigate the amplitudes and shapes of the primordial

non-Gaussianities. We first focus on the amplitudes.

The curvature perturbation is composed of both the linear and non-linear parts,

and the explicit form first introduced in Ref. [33] is*2

ζ(x) = ζL(x) +
3

5
f localNL

[
ζ2L(x)− ⟨ζ2L(x)⟩

]
. (3.74)

*2 The original definition of the non-linearity parameter is [33]

Φ(x) = ΦL(x) + f localNL

[
Φ2

L(x)− ⟨Φ2
L(x)⟩

]
, (3.73)

where Φ is the gravitational potential, and the factor 3/5 in Eq. (3.74) is due to the fact

that ζ is related with Ψ as Φ ≃ (3/5)ζ during the matter-dominated era [26].
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The above expression is local in real space, and hence the corresponding non-

linearity parameter, fNL, is conventionally labeled by local. To first order in the

non-linear correction, one can calculate the three-point correlation function as

⟨ζ(k1)ζ(k2)ζ(k3)⟩ = (2π)3δ(k1 + k2 + k3)
6

5
(2π2)2P2

ζ

∑
i k

3
i

k31k
3
2k

3
3

f localNL , (3.75)

where we assumed that the power spectrum is scale invariant. In light of this result,

the general form of the non-linearity parameter is defined by

fNL(k1, k2, k3) :=
5

6

Bζ(k1, k2, k3)
(2π2)2P2

ζ

k31k
3
2k

3
3∑

i k
3
i

, (3.76)

where Bζ is the bispectrum of the curvature perturbation defined by

⟨ζ(k1)ζ(k2)ζ(k3)⟩ =: (2π)3δ(k1 + k2 + k3)Bζ . (3.77)

Next, we focus on the shape dependence of the bispectrum which is characterized

by the shape function, S(k1, k2, k3), defined by [34, 35]

S(k1, k2, k3) := N(k1k2k3)
2Bζ(k1, k2, k3), (3.78)

where N is some normalization factor, and usually normalized such that S(k, k, k) =

1. This shape function can be written in terms of the non-dimensional quantities,

y := k2/k1 and z := k3/k1, and thus one can express it as S = S(1, y, z). For

example, the bispectrum of the local type has a peak at the squeezed configuration

which is characterized by one long-wavelength and two short-wavelength modes,

i.e., k1 ≪ k2 = k3, and the explicit shape function is plotted in Fig.3.1. In addition

to this, there are several types which have been well studied, e.g., the equilateral,

k1 = k2 = k3, and flattened, k1 = k2 + k3, configurations. The bispectra peaked at

the equilateral and flattened configurations are plotted in Fig.3.2 and Fig.3.3. As we

will see later, the shape dependence of the non-Gaussianity is useful to discriminate

among the early universe models.

Here, the current CMB observations have put constraints on the non-linearity

parameter at the squeezed, k1 ≪ k2 = k3, and equilateral, k1 = k2 = k3, configura-

tions as [36]

f localNL = −0.9± 5.1, (3.79)

f eqNL = −26± 47. (3.80)
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Fig.3.1 The shape function of the local type, S(k1, k2, k3) ∝ (
∑
i k

3
i )/(k1k2k3),

as a function of y = k2/k1 and z = k3/k1. The plot is normalized to 1 for the

equilateral configuration, y = 1 = z.

Fig.3.2 The shape function of the equilateral type, S(k1, k2, k3) ∝ k1k2k3/K
3,

as a function of y = k2/k1 and z = k3/k1. The plot is normalized to 1 for the

equilateral configuration, y = 1 = z.

3.5 Application 1: Inflation

We use the results in the previous section, i.e., we impose ϵ(= const) ≪ 1 and

X ≪ V . Note also that the new time coordinate, y, coincides with the conformal
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Fig.3.3 The shape function of the flattened type, S(k1, k2, k3) ∝ k1k2k3[(−k1+

k2 + k3)
−1 +(1 ↔ 2)+ (1 ↔ 3)] as a function of y = k2/k1 and z = k3/k1. The

plot is normalized to 1 for the equilateral configuration, y = 1 = z.

time, η, whose region is −∞ < η < 0.

3.5.1 Power spectrum of the curvature perturbation

We denote the mode function of the curvature perturbation as ζk, and that obeys

ζ ′′k +

(
k2 − ν2s − 1/4

η2

)
ζk = 0, (3.81)

where νs = 3/2 + 2ϵ− ϵ̃+O(ϵ2, ϵ̃2) with ϵ̃ := −Ḧ/(2HḢ) ≪ 1. Then, the solution

with the Bunch-Davies initial state can be derived as

ζk =

√
π

2

√
−ηH(1)

νs (−kη), (3.82)

where H
(1)
νs is the Hankel function of the first kind. The modes are in subhorizon

scales in the far past, η → −∞ (|kη| ≫ 1), while are in superhorizon scales at the

end of inflation, η → 0 (|kη| ≪ 1). Using the solution in the superhorizon scales,

one can obtain the power spectrum and the spectral index as

Pζ =
|ζk|2

z2

∣∣∣∣
|kη|≪1

≃ 1

2M2
Plϵ

H2

4π2
, (3.83)

ns − 1 = 3− 2νs ≃ 2ϵ̃− 4ϵ. (3.84)
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3.5.2 Power spectrum of the tensor perturbations

Similarly to the case of the curvature perturbation, the mode function can be

derived as

vk =

√
π

2

√
−ηH(1)

νt (−kη), (3.85)

where νt = 3/2+ ϵ+O(ϵ2). As a result, the power spectrum and the spectral index

read

Ph ≃ 8

M2
Pl

H2

4π2
, (3.86)

nt = 3− 2νt ≃ −2ϵ, (3.87)

where we parametrized the power spectrum as Ph ∝ knt . Combining both results,

we have the tensor-to-scalar ratio,

r ≃ 16ϵ ≃ −8nt. (3.88)

which is the so-called consistency relation. We thus find that the small deviation

from the exactly scale-invariant power spectrum of ζ and the small tensor-to-scalar

ratio can be represented by the deviation from the exact-de Sitter spacetime.

As seen previously, it is one of the successful points of inflation that the observ-

able quantities are related to the symmetry of the spacetime. Whereas in the case

of the bounce models, it is difficult to construct the models based on some sym-

metry argument, and observable quantities are not associated with the violation

of spacetime symmetry. In addition, the models are often incompatible with the

observational constraints. Therefore, we do not deal with the bounce models here,

and explain the details of the perturbations in the models in the next section.

3.5.3 Non-Gaussianities

• Scalar non-Gaussianity

From now on, we introduce some inflation models which predict the bispectra of

the local, equilateral, and flattened configurations.

(1) Canonical scalar field

The shape function is [37]

Scanonical ∝
1

k1k2k3

[
ϵ

(
−1

8

∑
i

k3i +
1

8

∑
i ̸=j

kik
2
j +

1

K

∑
i>j

k2i k
2
j

)
+
ϵ̃

8

∑
i

k3i

]
. (3.89)
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Both terms multiplied by ϵ and ϵ̃ have peaks at the squeezed configurations. Then,

the non-linear parameter of the local type is of O(ϵ, ϵ̃) ≪ 1. This is consistent with

the current upper bound on f localNL . We thus find that the standard inflation models

predict a small scalar non-Gaussianity having a peak at the squeezed configuration.

In subhorizon scales, the integrand in the time integral in Eq. (3.66) is propor-

tional to e−iKη with K := k1 + k2 + k3. (We denote the sum of ki as K apart

from the k-essence field, K(ϕ,X), without any confusion.) This indicates that the

interactions in the scales do not contribute to the generation of the non-Gaussianity

since the rapid oscillation, |Kη| = |K/(aH)| → ∞, makes the integral exponentially

suppressed. Therefore, it can be anticipated that the non-Gaussianity is generated

by the interactions among the scalar perturbations whose physical wavenumbers,

ki,phys = ki/a, satisfy H ≲ ki,phys. Therefore, the long-wavelength mode in the

definition of the squeezed configuration is in superhorizon scales sufficiently before

the other modes cross the horizon. In the standard inflation models, the amplitude

of the perturbation freezes out in the superhorizon scales, and thus one can naively

anticipate that the sizable squeezed non-Gaussianity is not generated because the

operators are differentiated with respect to time and/or spatial derivatives. The

example to generate the squeezed non-Gaussianity (not slow-roll suppressed) is the

early universe model in which the would-be decaying mode grows in time and thus

the growing mode dominates the constant one. Below we will introduce two exam-

ples which predict different shapes.

(2) Higher-derivative operators

Let us change the Lagrangian of the canonical scalar field to that of the k-essence

field. In this theory, the higher-derivative terms can be included, e.g., L ⊃ c(∇ϕ)4

with c being a constant. Then, the shape function is modified as [37]

Sh.d. ∝
1

k1k2k3

[(
1

c2s
− 1− 2λ

Σ

)
3k21k

2
2k

2
3

2K3

+

(
1

c2s
− 1

)(
− 1

K

∑
i>j

k2i k
2
j +

1

2K2

∑
i̸=j

k2i k
3
j +

1

8

∑
i

k3i

)

+
ϵ

c2s

(
−1

8

∑
i

k3i +
1

8

∑
i ̸=j

kik
2
j +

1

K

∑
i>j

k2i k
2
j

)
+

ϵ̃

8c2s

∑
i

k3i

+
fs
c2s

(
−1

4

∑
i

k3i −
1

K

∑
i>j

k2i k
2
j +

1

2K2

∑
i ̸=j

k2i k
3
j

)]
. (3.90)

with fc := ċs/(Hcs). The shapes in the first two lines have peaks at the equi-

lateral configurations while the others do at the squeezed ones. The non-linearity
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parameter at the equilateral configuration associated with the first two terms reads

f eqNL = O
(

1

c2s
− 1− 2λ

Σ

)
+O

(
1

c2s
− 1

)
. (3.91)

Here, we consider the effects of the higher-derivative terms on the non-Gaussianity.

For example, we find from the form of c2s that the higher-derivative terms can realize

c2s = O(1) (but deviates from unity) and also c2s ≪ 1 only if KX ≪ XKXX is

satisfied. In this case, the magnitudes of the interactions among the perturbations

can be enhanced since the perturbed Lagrangian includes some cubic operators

multiplied by negative powers of cs such as Σ/(c2sH
3)ζ̇3 and ϵ/(c4s)ζζ̇

2. However,

the case of the small c2s is excluded due to the constraint on f eqNL. Therefore, the

viable slow-roll inflation models within the k-essence theory are restricted to the

cases of c2s = O(1). Even in such cases, the presence of the equilateral shape and

the non-linearity parameter of O(1) would be useful to discriminate between the

standard model and the non-standard one.

(3) Non-Bunch-Davies effects

So far we have focused on the case of the Bunch-Davies initial state. In principle,

one can also consider the non-Bunch-Davies initial states. Now let me first introduce

the resultant non-Gaussian shapes from the non-Bunch-Davies states. In Ref. [8],

it has been found that the scalar non-Gaussianities from inflation models with

the non-Bunch-Davies initial states can have peaks at the flattened configuration.

This result can be easily understood. As opposed to the Bunch-Davies state, both

positive and negative frequency modes exist in the cases of the non-Bunch-Davies

states. This indicates that the integrand in the time integral in Eq. (3.66) includes

the term proportional to e−i(−k1+k2+k3)η which does not oscillate at the flattened

configuration even in the far past, |kiη| ≫ 1. This results in the generation of the

non-Gaussianity in subhorizon scales, and finally the flattened non-Gaussianity is

predicted.

• Tensor non-Gaussianity

The cubic action of the tensor perturbations is

S
(3)
h =

∫
dtd3xa3

[
M2

Pl

4a2

(
hikhjl −

1

2
hijhkl

)
∂k∂lhij

]
=: −

∫
dtHh

int. (3.92)

By using the interaction Hamiltonian, Hh
int, and the solution of the mode func-

tion (3.85), one can compute the three-point correlation function which is defined
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by

⟨ξs1(tf ,k1)ξ
s2(tf ,k2)ξ

s3(tf ,k3)⟩ := (2π)3δ(k1 + k2 + k3)Bs1s2s3h , (3.93)

where Bs1s2s3h is the bispectrum. The bispectrum can be obtained as

Bs1s2s3h =
(2π)4P2

h

k31k
3
2k

3
3

A
{
Πi1j1,ik(k1)Πi2j2,jl

[
k3kk3lΠi3j3,ij −

1

2
k3ik3kΠi3j3,jl

]
+ 5 perms of 1, 2, 3

}
e
∗(s1)
i1j1

(k1)e
∗(s2)
i2j2

(k2)e
∗(s3)
i3j3

(k3), (3.94)

where

A := −K
16

[
1− 1

K3

∑
i ̸=j

k2i kj − 4
k1k2k3
K3

]
. (3.95)

Then, we derive the explicit form of the polarization tensor. (See, e.g., Ref [38].)

First, one can set the direction of the propagation of the graviton, k1, as z-axis. In

light of this, one can parametrize the wave vectors as

k1 = k1(1, 0, 0), k2 = k2(cos θ, sin θ, 0), k3 = k3(cosϕ, sinϕ, 0), (3.96)

where θ (ϕ) is the angle between k1 and k2 (k3), and the angles satisfy 0 ≤ θ ≤ π and

π ≤ ϕ ≤ 2π. Here, by using k1+k2+k3 = 0 which is the consequence of the spatial

rotational invariance (or equivalently the conservation law of the momentum), one

can relate the angles with the magnitudes of the wave vectors as

cos θ =
k23 − k21 − k22

2k1k2
, sin θ =

√
K(−k1 + k2 + k3)(k1 − k2 + k3)(k1 + k2 − k3)

2k1k2
,

(3.97)

cosϕ =
k22 − k23 − k21

2k1k3
, sinϕ = −

√
K(−k1 + k2 + k3)(k1 − k2 + k3)(k1 + k2 − k3)

2k1k3
.

(3.98)

Based on these setup, one can derive the explicit form of the polarization tensor as

esi(ki) =
1

2

 sin2 α − sinα cosα −isi sinα
− sinα cosα cos2 α isi cosα
−isi sinα isi cosα −1

 , (3.99)

where α takes α = 0, θ, ϕ for i = 1, 2, 3, respectively, and the polarization tensor

for s2 (s3) can be obtained by rotating the e
(s1)
ij (k1) along θ (ϕ). By substituting

Eq. (3.99) into Eq. (3.95), we can derive the resultant bispectrum as

Bs1s2s3h =
(2π)4P2

h

k31k
3
2k

3
3

A
2
(s1k1 + s2k2 + s3k3)

2F (s1k1, s2k2, s3k3), (3.100)
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where

F (x, y, z) :=
1

64x2y2z2
(x+ y + z)3(x− y + z)(x+ y − z)(x− y − z). (3.101)

Interestingly, the amplitude of the tensor non-Gaussianity does not depend on the

potential term of ϕ. This result can be straightforwardly extended to a subclass

of the Horndeski theory such that G5X = 0. In the subclass, the amplitude of the

tensor non-Gaussianity does not depend on ϕ and X.

As well as the scalar non-Gaussianity, one may explore the other non-Gaussianities

having different shapes. In the Horndeski theory with G5X ̸= 0, the another cubic

interaction term of the form, ḣ3ij can appear [39]. In Ref. [39], it has been found

that the non-Gaussian amplitude depends on the functions of ϕ, X, and H, and

also the non-Gaussianity of the equilateral shape can be generated.

In light of these results, one can find that the non-Gaussian amplitudes and shapes

are powerful quantities to obtain rich information on the detail of the theory (form

of the Lagrangian), initial conditions for the perturbations, and so on. In addition,

it would be useful to classify the inflation models and discriminate among those.

Also, it is important to investigate the non-Gaussian signatures from alternatives to

inflation to distinguish inflation with alternatives. Before doing so, let us introduce

some problems in alternatives to inflation in the following section.

3.6 Application 2: Alternatives to inflation

Alternatives to inflation not only resolve the various problems in the standard Big-

Bang cosmology but also evade the initial singularity and Trans-Planckian problems.

However, those suffer from some problems which are not problematic in inflation in

general, and the problems should be resolved in order for the models to be viable.

In this chapter, we review the problems and also recent progress on those.

3.6.1 Gradient instabilities

In Chapter 2, we have seen that one can construct the non-singular cosmological

solutions within the k-essence theory at a background level. However, some problem

occurs at a perturbation level. In the k-essence theory, the quadratic action of the

curvature perturbation takes the form,

S
(2)
ζ =

∫
dtd3xa3

[
GS ζ̇2 −

FS
a2

(∂iζ)
2

]
, (3.102)
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where

GS ≃ XKX + 2X2KXX

H2
, FS ≃M2

Pl

(
− Ḣ

H2

)
. (3.103)

In particular, the sign of FS is negative if the NEC is violated (i.e., Ḣ > 0), and

thus the gradient instability is inevitable*3.

Cubic Galileon theory

Next, we consider the cubic Galileon theory in which the second-order derivative,

∂2ϕ, is included and the action is

S =

∫
d4x

√
−g
(
R+K(ϕ,X)−G3(ϕ,X)□ϕ

)
. (3.105)

In this theory, FS takes the form,

FS =M2
Pl

[
M2

Pl

a

d

dt

(
aΘ−1

)
− 1

]
, (3.106)

where Θ :=M2
PlH − ϕ̇XG3X . It can be easily seen that the signs of FS and Ḣ can

be positive simultaneously thanks to the non-vanishing G3X .

This result may motivate one to construct the alternative models to inflation

within the cubic galileon theory. However, it has been found that some non-singular

cosmological solutions constructed within the cubic galileon theory are plagued with

the gradient instability at somewhere even though the stability conditions hold in

the NEC-violating phase. (See e.g., Refs [40, 41].) Based on these results, whether

the instability is dependent on concrete models or not has been investigated in

Ref [42]. One can rewrite the stability condition FS > 0 as

d

dt

(
aM4

Pl

Θ

)
− aM2

Pl > 0 ⇒ d

dt

(
aM4

Pl

Θ

)
> aM2

Pl > 0, (3.107)

where we used a > 0, and the above indicates that aM4
Pl/Θ is a monotonically

increasing function of t. Then by assuming that FS is a continuous function of t,

*3 For the high-frequency modes (k → ∞), the solution of the curvature perturbation expo-

nentially grows in time as

ζ ∼ exp

(
k

∫ η+

η−

|cs|dη
)
, (3.104)

where ∆η = η+ − η− is the duration during which the instability is occurring.
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i.e., Θ does not cross 0, it can be seen that∫ t

−∞
a(t′)M2

Pldt
′ <∞, or

∫ ∞

t

a(t′)M2
Pldt <∞, (3.108)

which prohibits the non-singular cosmological solutions. This is the reason why

even the solutions in the cubic galileon theory are plagued the gradient instability.

Horndeski theory

In Ref. [43], a no-go theorem stating that the gradient instability is inevitable

within the Horndeski theory has been proven. Let us illustrate the no-go argument.

In the Horndeski theory, FS can be obtained as

FS =
1

a

d

dt

(
aG2

T

Θ

)
−FT , (3.109)

where

GT := 2
[
G4 −X

(
ϕ̈G5X +G5ϕ

)]
, (3.110)

FT := 2
[
G4 − 2XG4X −X

(
Hϕ̇G5X −G5ϕ

)]
, (3.111)

which are the coefficients in the quadratic action of the tensor perturbations and

thus we require that GT , FT > 0 to avoid the ghost and gradient instabilities.

Here, we impose a > 0 to characterize the non-singular cosmologies. Then, we

can rewrite the condition, FS > 0, as

dξ

dt
> aFT > 0, ξ :=

aG2
T

Θ
. (3.112)

indicating that ∫ t

−∞
aFTdt′, or

∫ ∞

t

aFTdt′ (3.113)

should converge. Thanks to the non-minimal coupling between a scalar field and

gravity, the convergent condition now can hold even in non-singular cosmologies.

The concrete example was presented in Ref. [43].

Here, we consider the meaning of the convergent integral. Via the disformal

transformation [44], one can move to the Einstein frame for tensor perturbations,
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that is GT and FT are constant. The transformation is given by*4

ã =M−1
Pl F

1/4
T G1/4

T a, (3.118)

dt̃ =M−1
Pl F

3/4
T G−1/4

T dt. (3.119)

In Ref. [45], by using the fact that we have

ãdt̃ = aFTdt, (3.120)

which is the affine parameter of the null geodesics in the Einstein frame, it has

been found that the convergence of the integral (3.113) indicates past (or future)

incompleteness of geodesics of graviton. (See also Ref. [46]).

Here, we also consider the pathology of gravitons based on the another approach

proposed in Ref. [47]. The tensor perturbation hij obeys

ZµνDµDνhij = 0, (3.121)

where

Zµνdx
µdxν = −

F3/2
T

G1/2
T

dt2 + a2 (FTGT )1/2 δijdxidxj , (3.122)

and Dµ is the covariant derivative defined in the new geometry characterized by Zµν .

One can thus find from Eq. (3.121) that the paths of gravitons can be regarded as

the null geodesics in the geometry defined by the effective metric, and the affine

parameter λ of null geodesics is then given by dλ = aFTdt. Hence, it can be seen

that the geodesic incompleteness of gravitons can be proven without performing the

disformal transformation.

3.6.2 Evading the no-go theorem

Before closing this section, we introduce how to circumvent the no-go theorem.

*4 When the quadratic action of the perturbation can be written as

S
(2)
ψ =

∫
dtd3xa3

[
Gψ̇2 −

F
a2

(∂iψ)
2

]
, (3.114)

the disformal transformation such that G,F = const is

gµν → g̃µν = A(ϕ,X)gµν +B(ϕ,X)∂µϕ∂νϕ. (3.115)

where

A =M−2
√
GF , (3.116)

B =
M−2

√
GF

2X

(
1−

F
G

)
=

A

2X

(
1−

F
G

)
. (3.117)
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Positive spatial curvature

In a non-flat FLRW spacetime, the condition to avoid the gradient instability

within the Horndeski theory is modified as [48]

FS :=
1

a

d

dt

(
aG2

T

ΘK

)
−FT +

G3
T

Θ2
K

K
a2

> 0, (3.123)

where

ΘK := Θ− ϕ̇XG5X
K
a2
. (3.124)

The stability condition can be written as

dξK
dt

> a

(
FT − G3

T

Θ2
K

K
a2

)
, ξK :=

aG2
T

ΘK
. (3.125)

In open universes, the convergence of
∫
aFTdt is required and hence the no-go

theorem holds. Whereas in closed universes, the convergence is not always required,

and the no-go argument cannot be applied to the universes. The simplest example

which evades the no-go theorem is the quasi-de Sitter solution accomplished by a

canonical scalar field in a closed FLRW spacetime.

Beyond Horndeski

One of strategies to circumvent the instability is invoking beyond Horndeski terms

which change the dispersion relation of the curvature perturbation such that k4-

term or higher-order terms are included. For example, when the dispersion relation

is modified as

ω2 = c2sk
2 + αk4, (3.126)

even though c2s becomes negative, the stability for high frequency modes can be

guaranteed if and only if α is positive. Also, when the higher-order terms are

invoked, the positivity of the coefficient in front of the highest-order term in the

dispersion relation can guarantee stability. Based on this strategy, some healthy

non-singular cosmological solutions have been found so far. (See, e.g., Refs [43, 49].)

Cuscuton theory

When we consider a scalar field ϕ in GR, ϕ contributes to the dynamical degrees of

freedom in general. However, some specific Lagrangian of ϕ in which the coefficient
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of ϕ̈ in the equation of motion for ϕ vanishes can keep the degrees of freedom

unchanged. In Ref. [50]. such a theory, the so-called Cuscuton theory, has been

proposed, and the Lagrangian with a matter field σ is given by

S =

∫
d4x

√
−g
[
M2

Pl

2
R+X − µ2

√
2|Y | − V (σ)

]
, (3.127)

where Y := −(1/2)gµν∂µσ∂νσ. In this theory, the scalar degree of freedom regard-

ing σ does not propagate, and thus the dynamical degrees of freedom are one scalar

(ϕ) and two tensor modes. Then, the quadratic action of the curvature perturbation

under the unitary gauge, σ = σ(t), can be obtained as [51]

S
(2)
ζ =

∫
dtd3ka3

[
Gζ ζ̇2 −

Fζk2

a2
ζ2
]
, (3.128)

where Fζ for the high frequency modes is given by

Fζ ≃
X

H2
=M2

Pl

(
− Ḣ

H2

)
+
µ2

√
2Y

H2
, (3.129)

which can be positive even for the case Ḣ > 0, and the stability condition does not

lead to the geodesic incompleteness for graviton. In Ref. [51], a concrete bouncing

solution without any pathologies for the perturbations has been constructed.

3.6.3 Inconsistency with observational evidences

In order for the early universe models to be viable, those should be consistent

with CMB observations. In this section, we introduce a problem regarding the large

tensor-to-scalar ratio and/or a large scalar non-Gaussianity based on [52, 53]

First, we consider a matter-dominated contracting model in GR with a canonical

scalar field. The Friedmann and evolution equations are given, respectively, by

E = −3M2
PlH

2 + ρϕ ∼ t−2, (3.130)

P =M2
Pl(3H

2 + 2Ḣ) + Pϕ ∼ t−2, (3.131)

where ρϕ := X + V and Pϕ := X − V . The phase which we are focusing on is a

matter-dominated contracting one, and thus a ∝ η2 with η being the conformal time.

Within this theory, both the canonically normalized scalar and tensor perturbations

obey the same equation as,

d2u

dη2
+

(
k2 − 2

η2

)
u = 0. (3.132)
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By solving this equations, we obtain the curvature and tensor perturbations in

Fourier space as

ζ(η, k) = − i

2MPl
√
ϵ

k−3/2

aη
(1 + ikη)e−ikη, (3.133)

hij(η, k) = −
√
2i

MPl

k−3/2

aη
(1 + ikη)e−ikηeij . (3.134)

It can be seen from the above that both curvature and tensor perturbations scale

as ∼ η−3 at the superhorizon scales, |kη| ≪ 1. This is in contrast with the case

of the standard inflation model in which the amplitudes of the perturbations freeze

out at the superhorizon scales.*5

Then, the power spectra of ζ and hij evaluated at the end of a contracting phase

(η = η∗) are obtained as

Pζ =
k3

2π2
|ζ|2 ≃ 1

8π2M2
Plϵ

1

a2(η∗)η2∗
, (3.136)

Ph =
k3

2π2
|hij |2 ≃ 2

π2M2
Pl

1

a2(η∗)η2∗
, (3.137)

giving us the tensor-to-scalar ratio

r :=
Ph
Pζ

≃ 16ϵ = 24, (3.138)

where I used H = 2/(3t). We have r = O(10) since the usual slow-roll parameter

is ϵ = O(1) as opposed to inflation, ϵ ≪ 1. Therefore, the model presented here is

excluded. However, several ways to obtain r ≪ 1 in matter-dominated contracting

models have been explored so far. We introduce two examples based on a single-field

model in the next section.

Before moving to the next section, we also refer to the primordial non-Gaussianity.

The successful point of the above example is to be able to generate a small scalar

non-Gaussianity. In Ref. [54], it has been found that the non-linearity parameter is

*5 One may think that the observed value of the amplitude of ζ, i.e., Pζ = O(10−9) requires

some fine-tuning for the amplitude at the initial time. However, the amplitude in the sub-

horizon scales behaves as

k3/2|ζ| = O
(

k

aMPl

)
. (3.135)

In a contracting universe, the physical wave number kphys = k/a is sufficiently below the

Planck scale, i.e., kphys ≪ MPl, and thus the very small amplitude of ζ in the past infinity

can be naturally obtained.
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fNL = O(ϵ) = O(1) at the local and equilateral configurations while the standard

inflation models predict fNL ≪ 1 due to the slow-roll suppression. Therefore, we

need to discuss whether or not r can be ≪ 1 while fNL remains O(1). In light of

this, we introduce the predictions from some bounce models below.

Growth of the curvature perturbation

Only the contracting phase has been focused on so far. In Ref. [52], it has been

investigated whether or not the growth of the curvature perturbation during a

bouncing phase can reduce the tensor-to-scalar ratio. Here, let us suppose that the

curvature perturbation grows during the bouncing phase as

ζ(ηb) = ζ(η∗) + ∆ζ, (3.139)

where ηb is the time of the end of a bouncing phase. By assuming that the ampli-

tudes of the tensor modes do not change during the bouncing phase, the tensor-to-

scalar ratio is modified as

r(ηb) = r(η∗)|1 +O(∆ζ/ζ(η∗))|−2. (3.140)

Therefore, the growth such that ∆ζ/ζ(η∗) ≫ 1 can realize r(ηb) ≪ 1 even though

one has r(η∗) = O(10). However, the growth of ζ can enhance the amplitude of

the scalar non-Gaussianity. Actually, in Ref. [52], it has been found that fNL has

a lower bound which is particularly proportional to (∆ζ/ζ(η∗))
5/2 ≫ 1, and the

resultant fNL satisfies fNL ≥ O(102). We thus face the another problem, a large

scalar non-Gaussianity.

Small propagation speed of the curvature perturbation

The different approach to obtain a small r has been explored by invoking the

k-essence field as the matter field driving the matter-dominated contraction of the

universe [53]. Let us begin with the k-essence theory. In this theory, the Friedmann

and evolution equations are given, respectively, by

E = 2XKX −K − 3M2
PlH

2 = 0, (3.141)

P = K +M2
Pl(3H

2 + 2Ḣ) = 0. (3.142)

The arbitrary function K(ϕ,X) modifies the coefficients in the quadratic action of

the curvature perturbation as

GS =
XKX + 2X2KXX

H2
, FS =M2

Pl

(
− Ḣ

H2

)
=
XKX

H2
, (3.143)
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where we used the background equations. For simplicity, we consider the case in

which the propagation speed of the curvature perturbation, c2s := FS/GS , is a

constant. In this case, the equation of motion for the canonically normalized ζ is

modified as

d2u

dη2
+

(
c2sk

2 − 2

η2

)
u = 0. (3.144)

Here, the equation for the tensor mode does not change. After similar calculations

with the case of the canonical scalar field model, we can obtain

Pζ =
1

8π2M2
Plϵcs

1

a2∗η
2
∗
, (3.145)

and Eq. (3.137). Finally, the tensor-to-scalar ratio can change as

r = 24cs, (3.146)

which gives us the possibility to have r ≪ 1 by the small propagation speed, cs ≪ 1

(, or equivalently |KX | ≪ |XKXX |).
As the next step, we consider the scalar non-Gaussianity. In Ref. [53], the non-

linearity parameter fNL for the local and equilateral configurations has been evalu-

ated as

fNL ∼ O(c−2
s ), (3.147)

indicating that fNL ≫ 1 for cs ≪ 1. Thus, similarly to the first example, a small r

can be obtained while a small fNL cannot.

In light of these results, it is important to investigate whether one can realize a

small r and a small fNL or not. We investigate how general the inconsistency with

CMB observations is in more general theories in the next Chapter.
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Chapter 4

Primordial Non-Gaussianities in

General Bounce Cosmology

This chapter is cited from, S. Akama, S. Hirano and T. Kobayashi, “Primor-

dial non-Gaussianities of scalar and tensor perturbations in general bounce cos-

mology: Evading the no-go theorem,” Phys. Rev. D 101, no.4, 043529 (2020)

doi:10.1103/PhysRevD.101.043529 [arXiv:1908.10663 [gr-qc]] [55]. Copyright (2020)

by the American Physical Society.

The matter-dominated contracting (or bounce) universe can be mimicked by a

canonical scalar field and this model can generate a scale-invariant curvature per-

turbations [56, 57, 52]. However, as explained so far, this model yields a too large

tensor-to-scalar ratio and thus is excluded [52] (see, however, Refs. [58, 59]). One

may use a k-essence field to reduce the tensor-to-scalar ratio by taking a small sound

speed, but then this in turn enhances the production of non-Gaussianity, making the

model inconsistent with observations [53]. At this stage, it is not evident whether or

not this “no-go theorem” holds in more general scalar-tensor theories. (The scalar-

tensor theory is a generic term for theories of single or multiple scalar fields and the

gravitational field)

The purpose of the present chapter is clarifying to what extent the previous no-go

theorem (which was formulated in the context of a k-essence field minimally coupled

to gravity as an extension of Ref. [52]) holds in more general setups. To do so, we

consider a general power-law contracting universe in the Horndeski theory [21], the

most general second-order scalar-tensor theory, and evaluate the power spectra and

the bispectra of scalar and tensor perturbations generated during the contracting
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phase. Throughout the paper we assume that the statistical nature of these primor-

dial perturbations does not change during the subsequent bouncing and expanding

phases. (In some cases in matter bounce cosmology, this has been justified. See,

e.g., Ref. [60].) In calculating tensor non-Gaussianity we explore peculiar signatures

of a contracting phase as compared to inflation, and show that the two scenarios

can potentially be distinguishable due to the non-Gaussian amplitudes and shapes.

This chapter is organized as follows. In the next section, we introduce our setup

of the general contracting cosmological background. In Sec. 4.3, we evaluate the

power spectra for curvature and tensor perturbations, and derive the conditions

under which they are scale-invariant. In Sec. 4.4, we calculate primordial non-

Gaussianities of curvature and tensor perturbations, and investigate whether a small

tensor-to scalar ratio and small scalar non-Gaussianity are compatible or not in the

Horndeski theory. We also discuss how one can distinguish bounce cosmology with

inflation based on tensor non-Gaussianity. The conclusion of this paper is drawn in

Sec. 4.5.

4.1 Setup

We begin with a spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric

ds2 = −dt2 + a2(t)δijdx
idxj , (4.1)

where the scale factor describes a contracting phase,

a =

(
−t
−tb

)n
=

(
−η
−ηb

)n/(1−n)
(0 < n < 1) , (4.2)

with dη = dt/a. Here, we denoted the time at the end of the contracting phase as

tb(< 0) and ηb(< 0), and we normalized the scale factor so that a(tb) = 1 = a(ηb).

The two time coordinates are related with

−η =
(−tb)n

1− n
(−t)1−n, (4.3)

where t and η coordinates run from −∞ to tb and ηb, respectively. In this paper, we

do not assume n to take any particular value, so that our setup includes models other

than the familiar matter bounce scenario [22]. Note, however, that it will turn out

that models with different n are related to each other via conformal transformation

(see Sec. 4.2.3).
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We work with the Horndeski action which gives the most general second-order

scalar-tensor theory, and hence a vast class of contracting scenarios reside within

this theory. Therefore, the Horndeski theory is adequate for studying generic prop-

erties of cosmological perturbations from contracting models. Note, however, that

nonsingular cosmological solutions suffer from gradient instabilities if the entire his-

tory of the universe were described by the Horndeski theory [42, 61, 46, 45, 47] as

seen in Chapter 3. We circumvent this issue by assuming that beyond-Horndeski

operators come into play at some moment, but at least the contracting phase we

are focusing on is assumed to be described by the Horndeski theory.

The Friedmann and evolution equations are written, respectively, in the form

E :=
5∑
i=2

Ei = 0, P :=
5∑
i=2

Pi = 0, (4.4)

where Ei = Ei(H,ϕ, ϕ̇) and Pi = Pi(H, Ḣ, ϕ, ϕ̇, ϕ̈) come from the variation of the

action involving Gi, whose explicit expressions are given in Appendix A. Here a dot

stands for differentiation with respect to t and H := ȧ/a. In this paper, we do not

consider any concrete background models, but just assume that each term in the

background equations scales as

Ei, Pi ∝ (−t)2α, (4.5)

where α is a constant to be specified below. This scaling is reasonable as far as

one focuses on one phase, e.g., only the phase of the matter-dominated contraction,

ekpyrotic contraction, etc. The impact of spatial curvature and anisotropies is

discussed in Appendix B.

4.2 Scale-invariant power spectra

Some functions appeared in the coefficients of the quadratic actions can be written

in terms of the partial derivatives with respect to X and H as

Σ = X
∂E
∂X

+
H

2

∂E
∂H

, (4.6)

Θ = −1

6

∂E
∂H

. (4.7)

(The explicit expressions for Θ and Σ are given in Appendix C.) As inferred from

Eqs. (4.5), (4.6), and (4.7), it is natural to assume that Σ ∝ (−t)2α and Θ ∝
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(−t)2α+1. In addition, the time dependences of GT and FT can be approximately

written as GT ,FT ∼ E4/H2, E5/H2,P4/H
2,P5/H

2. These imply

GT , FT , GS , FS ∝ (−t)2(α+1) ∝ (−η)2(α+1)/(1−n). (4.8)

Under these assumptions, the propagation speed of the curvature perturbation,

c2s = FS/GS , and that of the tensor perturbations, c2t = FT /GT , are constant. Note
that only α = −1 is possible if ϕ is minimally coupled to gravity.

Let us move to derive a relation between α and n by imposing that the primordial

curvature and tensor perturbations have scale-invariant power spectra.

4.2.1 Curvature Perturbation

The mode function uk(η) of the canonically normalized perturbation,

uk =
√
2a(FSGS)1/4ζk, obeys

u′′k +

[
c2sk

2 − 1

η2

(
ν2s −

1

4

)]
uk = 0, (4.9)

where a prime denotes differentiation with respect to η and

νs :=
−1− 3n− 2α

2(1− n)
. (4.10)

The positive frequency solution is then given by

ζk =
1√

2a(FSGS)1/4
·
√
π

2

√
−csηH(1)

νs (−cskη). (4.11)

Here we chose the initial condition as

lim
η→−∞

uk =
1√
2k
e−icskη. (4.12)

similar to the case of inflation. The power spectrum of the curvature perturbation

and its spectral index are parametrized as

Pζ ∝ k3−2|νs|. (4.13)

ns − 1 = 3− 2|νs|. (4.14)

Let us focus on the exactly scale-invariant spectrum, which corresponds to

νs =
3

2
⇒ α = −2, (4.15)

νs = −3

2
⇒ α = 1− 3n. (4.16)
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On superhorizon scales, csk|η| ≪ 1, we have ζk ∝ |η|νs−|νs|. Therefore, the pertur-

bations freeze out on superhorizon scales in the former case (as in the inflationary

universe), while they grow as ζk ∝ |η|−3 in the latter case (as in the contracting

universe). In this paper, we consider the growing superhorizon perturbations having

a scale-invariant spectrum, which is a characteristic feature of contracting models.

Note that the Planck results [4] require a slightly red tilted spectrum, ns ≃ 0.96.

This can be obtained by slightly detuning the relation (4.16) between n and α,

though for simplicity in this paper we only consider the exactly scale-invariant case.

Taking α = 1− 3n, the scale-invariant power spectrum can now be derived as

Pζ =
1

8π2

1

FScs
1

η2

∣∣∣∣
t=tb

=
1

8π2

(
1− 1

n

)2
H2

FScs

∣∣∣∣∣
t=tb

, (4.17)

where the time-dependent quantities are evaluated at the end of the contracting

phase.

4.2.2 Tensor Perturbations

The mode function v
(s)
k (η) of the canonically normalized perturbations, v

(s)
k =

a(FTGT )1/4h(s)k /2, obeys

v
(s)
k

′′
+

[
c2tk

2 − 1

η2

(
ν2t −

1

4

)]
v
(s)
k = 0, (4.18)

where νt = νs. The positive frequency solution is then given by

h
(s)
k =

2

a(FTGT )1/4
·
√
π

2

√
−ctηH(1)

νt (−ctkη), (4.19)

with the initial condition being

lim
η→−∞

v
(s)
k =

1√
2k
e−ictkη. (4.20)

The behavior of the tensor perturbations is essentially the same as that of ζk. For

α = 1 − 3n (νt = νs = −3/2), hk grows on superhorizon scales as hk ∝ |η|−3 and

the tensor power spectrum is scale invariant.

For α = 1− 3n, we have the scale-invariant power spectrum

Ph =
2

π2

1

FT ct
1

η2

∣∣∣∣
t=tb

=
2

π2

(
1− 1

n

)2
H2

FT ct

∣∣∣∣∣
t=tb

, (4.21)

where time-dependent quantities are evaluated at t = tb.
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The tensor-to-scalar ratio is given by

r =
Ph
Pζ

= 16
FS
FT

cs
ct

∣∣∣∣
t=tb

, (4.22)

which is constrained as Eq. (3.63).

For example, in the case of matter contracting models within the k-essence theory,

we have n = 2/3, α = −1, ct = 1, and FS = (3/2)FT =const. Therefore, the

tensor-to-scalar ratio is

r = 24cs, (4.23)

which can satisfy the upper bound on r only for cs ≪ 1. However, as argued in

Ref. [53] and introduced in Chapter 3, cs ≪ 1 implies large scalar non-Gaussianity,

and hence bounce models within the k-essence theory are ruled out. In the next

section, we revisit this issue and study whether or not upper bounds on the tensor-

to-scalar ratio and non-Gaussianity can be satisfied at the same time in a wider

class of theories.

4.2.3 Conformal Frames

At this stage it is instructive to perform a conformal transformation and clarify

the relation among models with different n.

Let us consider a conformally related metric

d̃s
2
= Ω2(t)

(
−dt2 + a2δijdx

idxj
)
, Ω ∝ (−t)α+1. (4.24)

In this tilde frame, the time coordinate and the scale factor are given respectively

by

α = −2 ⇒ −t̃ ∝ ln(−t), ã ∝ eH̃t̃, (4.25)

α ̸= −2 ⇒ −t̃ ∝ (−t)α+2, ã ∝ (−t̃)(n+α+1)/(α+2). (4.26)

where dt̃ = Ωdt and ã = Ωa. By inspecting the quadratic action for scalar and

tensor perturbations we see that in the tilde frame all the four coefficients reduce

to constants.

We find that the case of νs = νt = 3/2 (α = −2) can be regarded as de Sitter

inflation in the tilde frame (see, e.g., Ref. [62]).

In the case of νs = νt = −3/2 (α = 1− 3n), we have

ã ∝ (−t̃)2/3, (4.27)
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which describes a matter-dominated contracting universe. Therefore, the dynamics

of cosmological perturbations in our contracting models (with general n) is equiv-

alent to that in the more familiar matter-dominated contracting model. However,

it should be emphasized that the magnitudes of the coefficients in the perturbation

action are still arbitrary even in the tilde frame.

4.3 Primordial non-Gaussianities

4.3.1 Scalar Perturbations

The cubic Lagrangian of the curvature perturbation can be written in the form [63,

64, 65]

L(3)
ζ = a3GS

[
Λ1

H
ζ̇3 + Λ2ζζ̇

2 + Λ3ζ
(∂iζ)

2

a2
+

Λ4

H2
ζ̇2
∂2ζ

a2
+ Λ5ζ̇∂iζ∂iψ + Λ6∂

2ζ (∂iψ)
2

+
Λ7

H2

1

a4

[
∂2ζ (∂iζ)

2 − ζ∂i∂j (∂iζ∂jζ)
]
+

Λ8

H

1

a2
[
∂2ζ∂iζ∂iψ − ζ∂i∂j (∂iζ∂jψ)

]]
+ F (ζ)ES , (4.28)

where ψ := ∂−2ζ̇ and Λi are dimensionless coefficients. The complete form of the

cubic Lagrangian is summarized in Appendix C. Based on the scaling argument

similar to that in the previous section, it can be seen that the coefficients Λi are

constant.

The last term in Eq. (4.28) can be eliminated by means of a field redefinition*1

ζ → ζ − F (ζ). (4.30)

In Fourier space, this redefinition is equivalent to

ζ(k) → ζ(k)− 3(1− n)

n

∫
d3k′

(2π)3

[
B +

A

2

(
k′ · (k− k′)

k′2
− (k · k′)(k · (k− k′))

k2k′2

)]
× ζ(k′)ζ(k− k′) + · · · , (4.31)

*1 The field redefinition induces the additional contribution from the quadratic action to the

cubic one as

δS
(2)
ζ ⊃ −

∫
dtd3xa3ESF (ζ), (4.29)

which has an inverse sign compared to the last one in Eq. (4.28).
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where

A :=
HGS
ΘGT

∂Θ

∂H
− HGS

G2
T

∂GT
∂H

= const, (4.32)

B :=
HGTGS
ΘFS

= const. (4.33)

Here we approximated the time derivative of the curvature perturbation on super-

horizon scales as

ζ̇ ≃ −3(1− n)

n
Hζ (4.34)

which can be derived from the form of the superhorizon mode, ζ ∝ (−t)−3(1−n),

and ignored sub-leading contributions denoted by the ellipsis (· · · ).
The bispectrum Bζ is defined by

⟨ζ̂(k1)ζ̂(k2)ζ̂(k3)⟩ = (2π)3δ (k1 + k2 + k3)Bζ , (4.35)

where we write

Bζ := (2π)4
P2
ζ

k31k
3
2k

3
3

Atotal, (4.36)

and evaluate the amplitude Atotal. In our setup, Atotal reads

Atotal = Aoriginal +Aredefine, (4.37)

where Aoriginal and Aredefine are the contributions respectively from the interaction

Hamiltonian and from the field redefinition (4.31):

Aoriginal =
1

8

[(
9(1− n)

n
Λ1 − Λ2 +

Λ5

2

)∑
i

k3i +
Λ6

2

∑
i≠j

k2i kj

+
1

2k21k
2
2k

2
3

(
Λ6

∑
i

k9i − (Λ5 + Λ6)
∑
i ̸=j

k7i k
2
j − Λ6

∑
i ̸=j

k6i k
3
j

+ (Λ5 + Λ6)
∑
i ̸=j

k5i k
4
j

)]
, (4.38)

Aredefine =
3

8

(1− n)

n

[
(A− 4B)

∑
i

k3i +
A

4

∑
i ̸=j

k2i kj

− A

4

1

k21k
2
2k

2
3

(∑
i ̸=j

k7i k
2
j +

∑
i̸=j

k6i k
3
i − 2

∑
i ̸=j

k5i k
4
j

)]
. (4.39)

One can check that the result of the calculation of the primordial bispectra involving

the procedure of the field redefinition is identical to that involving boundary terms
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in the cubic action with the linear equation of motion ES = 0 being imposed. (See

Refs. [66, 67, 68].) The explicit form of the boundary terms is given in Appendix C.

Based on the above result we also evaluate the nonlinearity parameter. At the

squeezed limit (k1 ≪ k2 = k3), the equilateral limit (k1 = k2 = k3), and the folded

limit (k1 = 2k, k2 = k3 = k), the parameter is given respectively by

f localNL =
5

12

[
9(1− n)

n
Λ1 − Λ2 + 3(A− 4B)

1− n

n

]
, (4.40)

f equilNL =
5

12

[
9(1− n)

n
Λ1 − Λ2 +

Λ5

2
+

Λ6

2
+

(
9

2
A− 12B

)
1− n

n

]
, (4.41)

f foldedNL =
5

12

[
9(1− n)

n
Λ1 − Λ2 −

8

5
Λ5 +

16

5
Λ6 − 12B

1− n

n

]
. (4.42)

In the case of the matter contracting models within the k-essence theory, these

are written as

f localNL =
5

12

[
−6c2s

λ

M2
PlH

2
− 15

2
+

9

4c2s

]
, (4.43)

f equilNL =
5

12

[
−6c2s

λ

M2
PlH

2
− 15

2
+

87

32c2s

]
, (4.44)

f foldedNL =
5

12

[
−6c2s

λ

M2
PlH

2
− 15

2
+

24

5c2s

]
, (4.45)

where λ := X2G2XX + (2/3)X3G2XXX . These results reproduce those in [53, 54].

In order for these nonlinearity parameters to be ≲ O(1), one requires c2s = O(1).

In the context of k-essence, this leads to r > O(10), which is ruled out. Instead one

may take c2s ≪ 1 to have r < 0.064, but then the nonlinearity parameters are too

large to be consistent with observations:

f localNL , f equilNL , f foldedNL ∼ 1

c2s
=

(
24

r

)2

> O(105), (4.46)

indicating that any matter bounce models in the k-essence theory are excluded.

Although small r is incompatible with small scalar non-Gaussianity in the k-

essence theory, this is not always the case in the Horndeski theory. Thanks to a

sufficient number of independent functions, one can make r small while retaining

A, B, and Λi less than O(1). We will discuss this point in more detail in the next

subsection.
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4.3.2 Example

Let us consider a concrete Lagrangian characterized by

G2 =
M2

Pl

µ2
e−2ϕ/µg2(Y ), G3 =

M2
Pl

µ
g3(Y ),

G4 =
M2

Pl

2
, G5 = 0, (4.47)

where Y := Xe2ϕ/µ. We seek for a solution of the matter-dominated contracting

universe, H = 2/3t, with a time-dependent scalar field,

ϕ = µ ln(−Mt). (4.48)

It then follows that Y = Ȳ :=M2µ2/2 = const. This indeed solves the background

equations provided that the functions g2(Y ) and g3(Y ) satisfy

g2(Ȳ ) = 0, (4.49)

g′2(Ȳ ) + 2Ȳ g′3(Ȳ ) =
4

3
, (4.50)

where a prime in this subsection denotes differentiation with respect to Y .

Let us further impose that

Ȳ g′3(Ȳ ) = δ1 − 1, (4.51)

Ȳ
[
g′′2 (Ȳ ) + 2Ȳ g′′3 (Ȳ )

]
=

1

3
(21δ1 + 5δ2 − 14) , (4.52)

where δ1 and δ2 are some small positive numbers, δ1 ∼ δ2 ≪ 1. We then have

FS ≃ 3

5
δ1M

2
Pl, GS ≃ 3

5
δ2M

2
Pl, (4.53)

and a small tensor-to-scalar ratio can be obtained, r = 16δ
3/2
1 δ

−1/2
2 ≪ 1, while

c2s = δ1/δ2 = O(1), which cannot be achieved in the k-essence theory.

A would-be dangerous contribution to fNL comes from Λ1:

Λ1 = − 4

25δ2

[
8 + Ȳ 2

(
g′′′2 − 12g′′3 + 2Ȳ g′′′3

)]
+O(1). (4.54)

This can be made safe if one requires

Ȳ 2
[
g′′′2 (Ȳ )− 12g′′3 (Ȳ ) + 2Ȳ g′′′3 (Ȳ )

]
= δ3 − 8, (4.55)

where δ3(≲ δ1) is another small number. All the other terms give at most O(1)

contributions.
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To sum up, by introducing the functions g2(Y ) and g3(Y ) satisfying the condi-

tions (4.49), (4.50), (4.51), (4.52), and (4.55), one has r ≪ 1 and fNL ≲ 1 simultane-

ously. Clearly, this is indeed possible. One can thus circumvent the no-go theorem

presented in [53] by appropriately choosing the functions in the Lagrangian which

is more general than the k-essence theory. Here, one should note that in the present

case O(0.01) fine-tuning is required for the parameters. However, our aim is to give

a proof of concept. It would therefore be interesting to explore more natural models

without fine-tuning based on some symmetry argument.

4.3.3 Tensor Perturbations

The interaction Hamiltonian, Hint, is given by

Hint = −
∫

d3xL(3)
h , (4.56)

where [39]

L(3)
h = a3

[
µ

12
ḣij ḣjkḣki +

FT
4a2

(
hikhjl −

1

2
hijhkl

)
hij,kl

]
, (4.57)

with µ := −(1/2)∂GT /∂H which scales as µ ∼ (−t)3+2α, as seen from Eq. (4.8). The

first term, ḣ3, is the new contribution due toG5X ̸= 0, while the second one, which is

of the form h2∂2h, is identical to the corresponding term in general relativity except

for the overall normalization. We attach the label “new” (respectively, “GR”) to

the quantities associated with the former (respectively, latter) interaction.

Similarly to the case of the curvature perturbation, the bispectrum is defined by

⟨ξ̂s1(k1)ξ̂
s2(k2)ξ̂

s3(k3)⟩ =(2π)3δ (k1 + k2 + k3)
(
Bs1s2s3(new) + Bs1s2s3(GR)

)
, (4.58)

where

Bs1s2s3(new) = (2π)
4 P2

h

k31k
3
2k

3
3

As1s2s3
(new) , (4.59)

Bs1s2s3(GR) = (2π)
4 P2

h

k31k
3
2k

3
3

As1s2s3
(GR) , (4.60)

and we evaluate the amplitudes As1s2s3
(new) and As1s2s3

(new) . In our setup we obtain

As1s2s3
(new) =

3

16

1− n

n

Hµ

GT

∣∣∣∣
t=tb

F (s1k1, s2k2, s3k3)
∑
i

k3i , (4.61)

As1s2s3
(GR) =− 1

128
c2tη

2
b (s1k1 + s2k2 + s3k3)

2F (s1k1, s2k2, s3k3)
∑
i

k3i , (4.62)
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Figures 4.1 and 4.2 show that both A+++
(new) and A+++

(GR) have peaks at the squeezed

limit*2. Note that As1s2s3
(GR) has a specific scale-dependence c2tk

2
i η

2
b . This has been ob-

tained in the context of matter bounce cosmology driven by a scalar field minimally

coupled to gravity [69]. However, this factor makes the detection more challeng-

ing [70].

Fig.4.1 A+++
(new) (1, k2/k1, k3/k1) (k1/k2)(k1/k3) as a function of x = k2/k1 and

y = k3/k1. We take n = 2/3 and Hµ/GT |tb = 1. The plot is normalized to 1

for the equilateral configuration, x = 1 = y.

Now let us compare the above results with the prediction from generalized G-

inflation [20]. The amplitudes of non-Gaussianities of tensor perturbations in (quasi-

de Sitter) inflation are given by [39]

As1s2s3
(new) =

Hµ

4GT
k21k

2
2k

2
3

K3
F (s1k1, s2k2, s3k3), (4.63)

As1s2s3
(GR) =

A
2
(s1k2 + s2k2 + s3k3)

2F (s1k1, s2k2, s3k3). (4.64)

Let us first look at their shapes. As shown in [39], A+++
(new) of inflation models has a

peak at the equilateral limit. This is in contrast with the case of contracting models.

On the other hand, A+++
(GR) has a peak at the squeezed limit both in inflation and

contracting models. Therefore, the detection of the equilateral-type tensor non-

Gaussianities would rule out our contracting models.

*2 The shape function, S(k1, k2, k3) introduced in Chapter 2, is corresponding to

As1s2s3
(GR,new)

/(k1k2k3).
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Fig.4.2 A+++
(GR) (1, k2/k1, k3/k1) (k1/k2)(k1/k3) as a function of x = k2/k1 and

y = k3/k1. We take c2tη
2
b (k1 + k2 + k3)

2/128 = 10−6. The plot is normalized

to 1 for the equilateral configuration, x = 1 = y.

Next, let us compare the amplitudes. Squeezed tensor non-Gaussianity from

inflation has the fixed amplitude, as Eq. (4.64) is independent of the functions

in the Horndeski action. This is not the case for squeezed non-Gaussianity from

contracting models, as is clear from Eqs. (4.61) and (4.62), whichever is dominant.

Finally, notice that the non-Gaussian amplitudes (4.61) and (4.62) agree with

those obtained in a kind of non-attractor inflation models, where tensor perturba-

tions grow on superhorizon scales during inflation due to non-attractor dynamics

of the non-minimally coupled inflaton [71]. This is because both our contracting

models and the non-attractor phase of inflation are conformally equivalent to the

matter-dominated contracting scenario.
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Chapter 5

Non-Bunch-Davies Effects on Tensor

Non-Gaussianities from Inflation

This chapter is cited from, S. Akama, S. Hirano and T. Kobayashi, “Pri-

mordial tensor non-Gaussianities from general single-field inflation with

non-Bunch-Davies initial states,” Phys. Rev. D 102, no.2, 023513 (2020)

doi:10.1103/PhysRevD.102.023513 [arXiv:2003.10686 [gr-qc]] [72]. Copyright

(2020) by the American Physical Society.

The inflationary perturbations have been studied mainly by assuming the Bunch-

Davies initial state [30]. However, in principle, the initial state is not necessarily

given by the Bunch-Davies one, and the validity of the assumptions on the ini-

tial state must be tested against observations in the end. Deviations from the

Bunch-Davies state mean that the initial state is excited, i.e., there exist particles

initially. In this case, the particles present initially can interact with each other at

early times, leading possibly to the generation of non-Gaussianities on subhorizon

scales. Therefore, assuming non-Bunch-Davies initial states would result in novel

non-Gaussian signatures compared to the standard case of the Bunch-Davies initial

state.

The nature of primordial perturbations from non-Bunch-Davies initial states has

been explored so far in the literature [37, 8, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,

83, 84, 85, 86, 87, 88, 89, 90, 9, 91, 92, 93, 94, 95, 10]. In particular, it has been

found that the non-Gaussianity of the curvature perturbation at the squeezed and

flattened configurations can be enhanced compared with those in the case of the

Bunch-Davies state [8, 73, 74, 75, 78, 81, 82, 85, 90, 95]. It is therefore natural to
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ask whether or not the non-Gaussianities associated with the tensor modes can be

enhanced as well. There have already been several studies regarding tensor non-

Gaussianities from non-Bunch-Davies initial states [9, 10]. To address this question

in more detail, in this paper we investigate the auto-bispectra of tensor modes

and the cross-bispectra involving one tensor and two scalar modes in more general

gravity theory than in the previous literature.

One naively expects that higher-derivative interactions have more impacts on non-

Gaussianities due to non-Bunch-Davies initial states. Generalizing the underlying

gravity theory yields such higher-derivative interactions. As a framework including

higher derivative interactions, we use an effective description of scalar-tensor gravity,

writing down the operators composed of the geometrical quantities such as extrinsic

and intrinsic curvature tensors [96, 97]. Based on this effective description, in the

present paper we will estimate the size of tensor non-Gaussianities from non-Bunch-

Davies initial states in general single-field inflation models.

This chapter is outlined as follows. In the next section, we consider general

quadratic and cubic actions for tensor modes and introduce non-Bunch-Davies ini-

tial states from a Bogoliubov transform of the usual Bunch-Davies modes. In Sec.

5.2, we calculate the auto-bispectrum of the tensor modes, and investigate whether

the enhanced non-Gaussian amplitudes can be obtained or not. We then study

in Sec. 5.3 the cross-bispectrum involving one tensor and two scalar modes, and

discuss how it can be enhanced compared with the case of the Bunch-Davies initial

state. A summary of the present paper is given in Sec. 5.4.

5.1 Tensor modes

5.1.1 General quadratic and cubic interactions

In the present paper, we investigate the properties of the tensor modes with non-

Bunch-Davies initial states in order to see whether the tensor non-Gaussianities

could be enhanced or not. Although we also study the cross-bispectrum with the

scalar modes briefly, here we only summarize the quadratic and cubic interactions

of the tensor modes.

To derive the generic action for the tensor modes during inflation, it is convenient

to employ the ADM decomposition with uniform inflaton hypersurfaces as constant

time hypersurfaces and write down the possible operators composed of the extrinsic
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curvature tensor Kij and the intrinsic curvature tensor R
(3)
ij of the constant time

hypersurfaces. First, the operators having the dimension of mass squared are

LGR ⊃ K2
ij , K

2, R(3), (5.1)

where K is the trace of Kij . All these terms are present in general relativity. Then,

one can consider the leading-order corrections to Eq. (5.1):

Lcor ⊃ K3
ij , KK

2
ij , K

3, KijR
(3)
ij , KR

(3). (5.2)

One may anticipate that these corrections play a crucial role in the generation of

non-Gaussianities. Therefore, in the present study, we consider the Lagrangian up

to this order, and evaluate the contributions on the non-Gaussian amplitudes from

these correction terms.

More specifically, we consider the following wide class of the ADM action,

S =

∫
dtd3x

√
γNL, (5.3)

where γ is the determinant of the spacial metric γij , N is the lapse function, and

L =M4
0 (t,N) +M3

1 (t,N)K +M2
2 (t,N)

(
K2 −K2

ij

)
+M2

3 (t,N)R(3)

+M4(t,N)
(
K3 − 3KK2

ij + 2K3
ij

)
+M5(t,N)

(
KijR

(3)
ij − 1

2
KR(3)

)
, (5.4)

withMi(t,N) being a function having the dimension of mass. Here we have included

the lower-order terms M4
0 and M3

1K, though they do not contribute to the action

for the tensor modes. Equation (5.4) is nothing but the Lagrangian of the so-called

Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theory [96], and it includes the Horndeski

theory as a subclass. By introducing a Stückelberg field ϕ, one can restore the full

4D covariance.

At the level of the background, we may always reparameterize the time coordinate

so that we hereafter take N = 1 and write Mi(t,N(t)) = Mi(t). Since
√
γ and the

trace part K do not involve hij , the terms such as M4
0 , M

3
1K, and M2

2K
2 in the

Lagrangian do not contribute to the dynamics of the tensor perturbations.

Substituting the above metric into Eq. (5.4), the action for the tensor perturba-

tions up to cubic order in hij can be obtained as [20, 39]

Sh = S
(2)
h + S

(3)
h , (5.5)
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where

S
(2)
h =

∫
dtd3xa3

M2
T

c2h

[
ḣ2ij −

c2h
a2

(∂khij)
2

]
, (5.6)

S
(3)
h =

∫
dtd3xa3

[
M2
T

4a2

(
hikhjl −

1

2
hijhkl

)
∂k∂lhij +

M4

4
ḣij ḣjkḣki

]
(5.7)

=: −
∫

dtHint,

with

M2
T := 2M2

3 + Ṁ5, (5.8)

c2h := −2(M2
2 + 3HM4)/M

2
T . (5.9)

The interaction Hamiltonian Hint is introduced for later convenience. We assume

that MT ∼ MPl. The terms in the first line in Eq. (5.7) are present in general

relativity, while the one in the second line is a new operator introduced as a result

of the extension of general relativity with M4(t) ̸= 0. For example, this operator is

obtained from the so-called G5 term in the Horndeski theory [39]. One might think

that the third line in Eq. (5.4) could also lead to a new cubic operator, but it turns

out that this can be integrated by parts to yield the same terms as in the first line

in Eq. (5.7).

5.1.2 Non-Bunch-Davies initial states

We now move to the Fourier domain,

hij(t,x) =

∫
d3k

(2π)3
h̃ij(t,k)e

ik·x. (5.10)

In the standard setup, one expands the quantized tensor modes as

h̃ij(t,k) =
∑
s

[
uk(t)e

(s)
ij (k)a

(s)
k + u∗k(t)e

(s)∗
ij (−k)a

(s)†
−k

]
, (5.11)

The equation of motion for the mode function uk is derived from Eq. (5.6) as

d

dt

(
a3M2

T

c2h
u̇k

)
+ aM2

T k
2uk = 0. (5.12)

We solve Eq. (5.12) under the assumption that M2
T , c

2
h = const in the de Sitter

background, H = const. Then, the mode function with the Bunch-Davies initial

state is obtained as

uk =

√
π

a

ch
MT

√
−ηH(1)

3/2(−chkη), (5.13)
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We write the state annihilated by â
(s)
k as |0a⟩: â(s)k |0a⟩ = 0.

In this thesis, we instead expand h̃ij as

h̃ij =
∑
s

[
ψ
(s)
k e

(s)
ij (k)b

(s)
k + ψ

(s)∗
k e

(s)
ij

∗
(−k)b

(s)†
−k

]
, (5.14)

where ψ
(s)
k is a Bogoliubov transform of the Bunch-Davies modes,

ψ
(s)
k = α

(s)
k uk + β

(s)
k u∗k. (5.15)

The Bogoliubov coefficients are normalized as |α(s)
k |2 − |β(s)

k |2 = 1 and the creation

and annihilation operators satisfy

a
(s)
k = α

(s)
k b

(s)
k + β

(s)
k

∗
b
(s)†
−k , (5.16)

b
(s)
k = α

(s)∗
k a

(s)
k − β

(s)∗
k a

(s)†
−k . (5.17)

We write the state annihilated by b
(s)
k as |0b⟩:

b
(s)
k |0b⟩ = 0. (5.18)

Nonvanishing β
(s)
k coefficients indicate that the tensor modes get excited from the

Bunch-Davies vacuum, a
(s)
k |0b⟩ ̸= 0.

Let us assume that the deviations from the Bunch-Davies initial states are char-

acterized by some small, real parameters as

β
(s)
k = δ

(s)
1 (k) + iδ

(s)
2 (k), (5.19)

α
(s)
k = 1 + iδ

(s)
3 (k), (5.20)

where δ
(s)
1 ∼ δ

(s)
2 ∼ δ

(s)
3 ≪ 1. This is a reasonable assumption because the mag-

nitude of β
(s)
k has an upper bound in order for the inflationary background not to

be spoiled by the excited tensor modes, which is typically given by |β(s)
k | ≲ 10−6

as argued in Appendix D. The assumption on the form of α
(s)
k [Eq. (5.20)] follows

from |α(s)
k |2 − |β(s)

k |2 = 1.

5.1.3 Primordial power spectrum

The two-point correlation function is defined by

⟨0b|h̃ij(k)h̃kl(k′)|0b⟩ = (2π)3δ(3)(k+ k′)Pij,kl, (5.21)
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where

Pij,kl :=
∑
s,s′

[
ψ
(s)
k ψ

(s′)∗
k e

(s)
ij (k)e

(s′)∗
kl (k)

]
. (5.22)

Using Eqs. (5.13)–(5.15), we obtain the power spectrum Ph as

Ph :=
k3

2π2
Pij,ij =

1

π2

H2

M2
T ch

∑
s

∣∣∣α(s)
k − β

(s)
k

∣∣∣2 , (5.23)

evaluated at the time of horizon crossing, chk = aH. Its tilt is then derived as

nt :=
d lnPh
d ln k

≃ −2ϵ− sh − 2mT +
d

d ln k

∑
s

∣∣∣α(s)
k − β

(s)
k

∣∣∣2 , (5.24)

where

ϵ := − Ḣ

H2
, sh :=

ċh
Hch

, mh :=
ṀT

HMT
, (5.25)

are assumed to be small. To leading order in β
(s)
k we have |α(s)

k − β
(s)
k |2 ≃ 1 −

2Re[β
(s)
k ], and so

nt ≃ −2ϵ− sh − 2mT − 2
∑
s

dRe[β
(s)
k ]

d ln k
. (5.26)

This is a rather straightforward generalization of previous results, simultaneously

taking into account the different effects on the spectral tilt: the time variation of the

inflationary Hubble parameter, the speed of gravitational waves, and the effective

Planck mass, as well as the k-dependence of the Bogoliubov coefficients. Note that

in principle the sign of each term in Eq. (5.26) is not constrained. In particular, a

blue tensor spectrum can be obtained as a consequence of a time-dependent speed

of gravitational waves [98, 99, 100, 101, 102] and/or k-dependent β
(s)
k [103] even if

the null energy condition is preserved, ϵ > 0.

5.2 Auto-bispectrum

Let us now calculate the tensor three-point correlation functions with non-Bunch-

Davies initial states. Since the cubic interaction (5.7) is composed of the two dif-

ferent contributions, i.e., the one present in general relativity and the new one be-

yond general relativity, we write the bispectrum as Bs1s2s3(GR) +Bs1s2s3(new) , where Bs1s2s3(GR)
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and Bs1s2s3(new) are originated from the former and the latter, respectively. The auto-

bispectrum (evaluated at t = tf ) is defined by

⟨ξs1(tf ,k1)ξ
s2(tf ,k2)ξ

s3(tf ,k3)⟩ = ⟨Ωb|ξs1(tf ,k1)ξ
s2(tf ,k2)ξ

s3(tf ,k3)|Ωb⟩ (5.27)

= (2π)3δ(k1 + k2 + k3)
(
Bs1s2s3(GR) + Bs1s2s3(new)

)
,

(5.28)

with ξs(t,k) = h̃ij(t,k)e
(s)∗
ij (k) and

|Ωb⟩ = T exp

(
−i
∫
Hint(t

′)dt′
)
|0b⟩, (5.29)

and the three-point correlation function can be calculated as

⟨ξs1(tf ,k1)ξ
s2(tf ,k2)ξ

s3(tf ,k3)⟩

= −i
∫ tf

ti

dt′⟨0b|[ξs1(tf ,k1)ξ
s2(tf ,k2)ξ

s3(tf ,k3),Hint(t
′)]|0b⟩. (5.30)

In terms of the conformal time defined by dη := dt/a, we take ηf = 0. As for the

initial time, we do not simply take η0 → −∞, but we keep it finite, ηi = η0 (< 0),

where η0 is associated with the cutoff scale M∗ as M∗ = k/a(η0) ≃ (−kη0)Hinf ,

because the physical momentum k/a is larger than M∗ for η < η0.

Before moving to an explicit calculation of the bispectrum (5.30), we comment

on the crucial difference between the calculation with the Bunch-Davies state and

that with non-Bunch-Davies initial states. This difference explains the reason why

we keep η0 finite. Formally, Eq. (5.30) includes an integral of the form:

S(k̃) :=

∫ 0

η0

dη(−η)neichk̃η, (5.31)

where n = 1 for the standard cubic term with two spatial derivatives and n = 2 for

the ḣij ḣjkḣki term.

In the case of the Bunch-Davies initial state in which there are only the positive-

frequency modes participating in this integral, we have k̃ = kt with

kt := k1 + k2 + k3 > 0, (5.32)

and so

S(k̃) ∝ 1

(ichk̃)n+1
, (5.33)

because the exponential function rapidly oscillates for |chk̃η| ≫ 1. In contrast to

this standard case, in the case of non-Bunch Davies states, we have both positive
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and negative frequency modes in the integral, leading to k̃ = −km + km+1 + km+2

with m being defined modulo 3. Note that k̃ exactly vanishes at the flattened

configuration, km = km+1 + km+2. For this configuration, the exponential function

no longer oscillates even for η ∼ η0, and thus the integral reads

S(k̃) ≃ (−η0)n+1

n+ 1
, (5.34)

which depends explicitly on η0. For the other configurations, the results of the

integral are identical to Eq. (5.33). In this section, we therefore need to calculate

the primordial bispectra in the two different cases separately, the non-flattened and

flattened configurations.

Throughout this paper, we specify the exact flattened configuration as

k0 := k1 − k2 − k3 = 0. (5.35)

5.2.1 Non-flattened configurations (k0 ̸= 0)

We first focus on the non-flattened configurations, i.e., k0 ̸= 0. Assuming the de

Sitter background and MT , ch, M4 = const, the two contributions in the bispec-

trum (5.28) respectively read

Bs1s2s3(GR) = Re
[
B̃s1s2s3(GR)

]
(s1k1 + s2k2 + s3k3)

2F (si, ki), (5.36)

Bs1s2s3(new) = Re
[
B̃s1s2s3(new)

]
F (si, ki), (5.37)
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where

B̃s1s2s3(GR) =
2H4

c2hM
4
T

1

k31k
3
2k

3
3

[
Πi

(
α
(si)∗
ki

− β
(si)∗
ki

)]
×
{(

α
(s1)
k1

α
(s2)
k2

α
(s3)
k3

+ β
(s1)
k1

β
(s2)
k2

β
(s3)
k3

)
I0(k1, k2, k3)

+

[(
α
(s1)
k1

α
(s2)
k2

β
(s3)
k3

+ β
(s1)
k1

β
(s2)
k2

α
(s3)
k3

)
I1(k1, k2, k3)

+ (k1, s1 ↔ k2, s2) + (k1, s1 ↔ k3, s3)

]}
, (5.38)

B̃s1s2s3(new) =
192M4H

5

M6
T

1

k1k2k3

[
Πi

(
α
(si)∗
ki

− β
(si)∗
ki

)]
{(

α
(s1)
k1

α
(s2)
k2

α
(s3)
k3

+ β
(s1)
k1

β
(s2)
k2

β
(s3)
k3

)
1

k3t

−
[(
α
(s1)
k1

β
(s2)
k2

β
(s3)
k3

+ β
(s1)
k1

α
(s2)
k2

α
(s3)
k3

)
1

(−k1 + k2 + k3)3

+ (k1, s1 ↔ k2, s2) + (k1, s1 ↔ k3, s3)

]}
, (5.39)

and

I0(k1, k2, k3) := −kt +
k1k2k3
k2t

+
k1k2 + k2k3 + k3k1

kt
, (5.40)

I1(k1, k2, k3) := k1 + k2 − k3 +
k1k2k3

(k1 + k2 − k3)2
+

−k1k2 + k2k3 + k1k3
k1 + k2 − k3

. (5.41)

These expressions are a generalization of Ref. [39], and reproduce the previous

results by taking the Bunch-Davies states (α
(s)
k = 1 and β

(s)
k = 0). Note that we

have derived the auto-bispectrum from the ḣij ḣjkḣki term for the first time in the

context of the non-Bunch-Davies states.

Taking into account the smallness of β
(s)
k [Eqs. (5.19) and (5.20)], the resultant

bispectra to first order in β
(s)
k are given by

Bs1s2s3(GR) =
2H4

c2hM
4
T

1

k31k
3
2k

3
3

(s1k1 + s2k2 + s3k3)
2F (si, ki)

×
{(

1−
∑
i

Re[β
(si)
ki

]
)
I0(k1, k2, k3) +

[
Re[β

(s3)
k3

]I1(k1, k2, k3) + · · ·
]}

,

(5.42)

Bs1s2s3(new) =
192M4H

5

M6
T

F (si, ki)

k1k2k3

{
1−

∑
iRe[β

(si)
ki

]

k3t
−

[
Re[β

(s1)
k1

]

(−k1 + k2 + k3)3
+ · · ·

]}
,

(5.43)

where the ellipsis denotes permutations.
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Let us consider the squeezed configuration with kL := k3 ≪ kS := k1 = k2. In

the squeezed limit, the expressions in the curly brackets in Eqs. (5.42) and (5.43)

are written respectively as

{· · · } ≃ −3

2
kS

(
1− 4

3
Re[β

(s1)
kS

+ β
(s2)
kS

]
kS
kL

)
, (5.44)

and

{· · · } ≃ 1

8k3S

(
1− 8Re[β

(s1)
kS

+ β
(s2)
kS

]
k3S
k3L

)
. (5.45)

These equations show that the effect of nonvanishing β
(s)
k could be enhanced and

seen in the squeezed configuration. In particular, the generation of squeezed non-

Gaussianity from the ḣij ḣjkḣki term is in contrast with the standard case of the

Bunch-Davies state in which the bispectrum has a peak at the equilateral configu-

ration [39].*1

To see whether this enhancement effect is significant or not, let us take kS/kL ∼
102. The non-Bunch-Davies contributions in Eqs. (5.44) and (5.45) are then of

O(102|β(s)
kS

|) and O(106|β(s)
kS

|), respectively. As in Appendix D, the upper bound

on the Bogoliubov coefficients is obtained from the backreaction constraint, which

depends on the ratio M∗/MT (∼ M∗/MPl). If one takes M∗ ∼ MT ∼ MPl, one

has |β(s)
kS

| ≲ 10−6, so that the non-Bunch-Davies contribution in Bs1s2s3(GR) is small,

∼ 10−4, while that in Bs1s2s3(new) is of O(1). This can be larger if one assumes smaller

M∗. For example, one gets |β(s)
kS

| ≲ 10−2 if M∗ ∼ 10−2MT ∼ 10−2MPl. In this

case, the non-Bunch-Davies contribution in Bs1s2s3(GR) is of O(1) and that in Bs1s2s3(new) is

as large as O(104). Therefore, tensor squeezed non-Gaussianity could be generated

from the non-Bunch-Davies initial states, depending on the parameters.

5.2.2 Flattened Configuration (k0 → 0)

So far we have assumed that k0 = k1 − k2 − k3 ̸= 0. Let us now investigate the

flattened configuration, k0 ≃ 0, using Eq. (5.34). In this case, B̃s1s2s3(GR) and B̃s1s2s3(new)

*1 Squeezed tensor non-Gaussianities from the the ḣij ḣjkḣki operator has been found also in

the non-attractor inflation models [71] and bouncing models [55].
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in Eqs. (5.36) and (5.37) are given respectively by

B̃s1s2s3(GR) ≃ 2H4

c2hM
4
T

1

k31k
3
2k

3
3

[
Πi

(
α
(si)∗
ki

− β
(si)∗
ki

)]
×
[(
α
(s1)
k1

α
(s2)
k2

α
(s3)
k3

+ β
(s1)
k1

β
(s2)
k2

β
(s3)
k3

)
I0(k1, k2, k3)

− k1k2k3
2

c2hη
2
0

(
β
(s1)
k1

α
(s2)
k2

α
(s3)
k3

+ α
(s1)
k1

β
(s2)
k2

β
(s3)
k3

)]
, (5.46)

B̃s1s2s3(new) ≃ 192M4H
5

M6
T

1

k1k2k3

[
Πi

(
α
(si)∗
ki

− β
(si)∗
ki

)]
×
[(
α
(s1)
k1

α
(s2)
k2

α
(s3)
k3

+ β
(s1)
k1

β
(s2)
k2

β
(s3)
k3

)
1

k3t

+
i

6
c3hη

3
0

(
β
(s1)
k1

α
(s2)
k2

α
(s3)
k3

− α
(s1)
k1

β
(s2)
k2

β
(s3)
k3

)]
, (5.47)

where we used k0 ≪ ki, |chkiη0| ≫ 1, and |chk0η0| ≪ 1. In Ref. [10], the flattened

tensor non-Gaussianity has already been studied, but the interactions among the

different polarization modes have not been considered.

Similarly to the non-flattened configurations, we express the resultant bispectra

to first order in O(β
(s)
k ) as

Bs1s2s3(GR) ≃ 2H4

c2hM
4
T

1

k31k
3
2k

3
3

(s1k1 + s2k2 + s3k3)
2F (si, ki)

×
{(

1−
∑
i

Re[β
(si)
ki

]
)
I0(k1, k2, k3)−

k1k2k3
2

c2hη
2
0 Re[β

(s1)
k1

]

}
, (5.48)

Bs1s2s3(new) ≃ 192M4H
5

M6
T

F (si, ki)

k1k2k3

{
1−

∑
iRe[β

(si)
ki

]

k3t
− c3hη

3
0

6
Im[β

(s1)
k1

]

}
. (5.49)

Now we see that the primordial bispectra always vanish at the exact flattened

configurations, because F (si, ki) = 0 for k0 = 0. This universal feature can be

understood intuitively from the viewpoint of angular momentum conservation [104].

Although the expressions in the curly brackets could be enhanced by powers of

kiη0, it would be difficult to obtain large flattened non-Gaussianities due to this

universal factor.*2 This is in sharp contrast to the result of the similar analysis for

the curvature perturbation. However, this is not the case for the cross-interaction,

as shown in the next section.

*2 A different conclusion was obtained in [10] because the overall factor F (si, ki) was overlooked.
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5.3 Cross-bispectrum

In this section, we consider a scalar-scalar-tensor bispectrum, rather than a tensor-

tensor-tensor bispectrum, and explore the possibility of enhancing it with nontrivial

initial states of the tensor modes. The cross-bispectrum we will consider is defined

by

⟨ζ̃(0,k1)ζ̃(0,k2)ξ
(s)(0,k3)⟩ = (2π)3δ(k1 + k2 + k3)Bsζζh. (5.50)

For the Lagrangian (5.4), the quadratic action for the curvature perturbation in

the unitary gauge, ζ, takes the form [20]

S
(2)
ζ =

∫
dtd3x

a3M2
S

c2s

[
ζ̇2 − c2s

a2
(∂iζ)

2

]
, (5.51)

where we do not need the concrete expression for MS and cs in the present discus-

sion. These are time-dependent functions in general, but in the inflationary universe

we may assume that they are approximately constant. We assume that the Fourier

component of the curvature perturbation, ζ̃(t,k), can be written as

ζ̃ = ψkak + ψ∗
ka

†
−k, (5.52)

where

ψk =

√
π

2
√
2a

cs
MS

√
−ηH(1)

3/2(−cskη) (5.53)

is the Bunch-Davies mode function and the initial state is in a vacuum state an-

nihilated by ak. By assuming this we focus on the effect of the excited tensor

modes.

It has been found that the generic action [Eqs. (5.3) and (5.4)] introduces var-

ious cubic operators that are not present in the simple case where the inflaton is

minimally coupled to gravity [32]. Among such operators it is sufficient to con-

sider one representative term that is expected to be a dominant source of the

non-Gaussianities in order to see whether the bispectrum can be enhanced or not.

Naively, operators with many derivatives are important for the generation of non-

Gaussianities on subhorizon scales, and thus we focus on the following interaction

Hamiltonian:

Hζζh
int = −

∫
d3x

M2
SΛc

ac2sH
2
∂2hij∂iζ∂jζ, (5.54)
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where we assume that Λc = const. This term is indeed present in the general

Horndeski class of theories [65].

Similarly to the auto-correlation function, the cross-correlation function includes

the integral

Sc(k̃c) :=

∫ 0

η0

dη(−η)3eik̃cη, (5.55)

where

k̃c := chk3 − cs(k1 + k2). (5.56)

For the configuration satisfying k̃c = 0, the cross-bispectrum depends on η0 and

is enhanced by powers of kiη0 due to the excited tensor modes. Note that this

configuration depends on the propagation speeds. For given cs/ch (< 1), one has a

one-parameter family of different shapes satisfying k̃c = 0 away from the flattened

configuration.

In the same way as the previous calculations, we derive the cross-bispectrum to

first order in β
(s)
k3

:

Bsζζh = Bsζζh,(BD)

∣∣∣
k̃c=0

{
1− Re[β

(s)
k3

] +
(2/5)k1k2

2k21 + 5k1k2 + 2k22
c4s(k1 + k2)

4η40Re[β
(s)
k3

]

}
,

(5.57)

where Bsζζh is the cross-bispectrum in the case of the Bunch-Davies initial state.

This quantity is obtained in [65] as

Bsζζh,(BD) =
H4Λc

M2
SM

2
T c

4
sch

· kt
16k31k

3
2k

3
3

· (k1 − k2 − k3)(k1 + k2 − k3)(k1 − k2 + k3)

[cs(k1 + k2) + chk3]4

×
{
c2s[cs(k1 + k2) + 4chk3](k

2
1 + 3k1k2 + k22) + c2hk

2
3[4cs(k1 + k2) + chk3]

}
.

(5.58)

From the above result we see that the non-Bunch-Davies contribution is of

O(β
(s)
k c4sk

4
i η

4
0).

In the actual observables, we anticipate that this non-Bunch-Davies enhancement

will be softened by (at least) one power of |kη0| due to the angular averaging [8].

Let us therefore estimate roughly how large β
(s)
k (cskiη0)

n could be. As argued in

Appendix D, the Bogoliubov coefficients have an upper bound from the backreaction

constraint, which depends on the cutoff scale. We also have |cskiη0| ≲ csM∗/Hinf .

Combining these, we find

β
(s)
k (cskiη0)

n ≲ cns

c
1/2
h

MPlM
n−2
∗

Hn−1
inf

. (5.59)



Chapter 5 Non-Bunch-Davies Effects on Tensor Non-Gaussianities from Inflation 67

Even for n = 2 the upper bound is typically larger than O(1). We thus conclude

that initially excited tensor modes can leave a potentially observable imprint in the

cross-bispectrum*3.

*3 In the present chapter, we have considered the scalar-scalar-tensor bispectrum, but initially

excited scalar modes would be able to enhance the scalar-tensor-tensor bispectrum as well.
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Chapter 6

Conclusions

In Chapter 2, we have briefly reviewed the standard Big Bang cosmology and

its problems, and then introduced the early universe models, inflation and bounce

models.

In Chapter 3, we have briefly reviewed the cosmological perturbation theory, and

applied to inflation and alternatives. In the case of inflation, the model can be

easily consistent with the observations, and thus we have calculated the primordial

power spectrum and the primordial non-Gaussianities. In particular, we have shown

that the amplitudes and the shapes of non-Gaussianities are useful to discriminate

the models. As for the alternatives to inflation, we have explained the generic

instabilities of the non-singular cosmological solutions and also introduced how to

evade those. As different problems, we have also introduced the inconsistency with

the observations, i.e., a large tensor-to-scalar ratio or a large scalar non-Gaussianity.

In Chapter 4, we have studied the primordial power spectra and the bispectra of

scalar and tensor perturbations generated during a general contracting phase in the

Horndeski theory. It can be shown that under certain conditions the power spec-

tra of scalar and tensor perturbations are scale invariant. We have found that the

previous no-go theorem [53] prohibiting the simultaneous realization of small tensor-

to-scalar ratio and small scalar non-Gaussianity in matter bounce cosmology driven

by a k-essence field no longer holds in more general setups. A concrete example

with small r and small fNL has been presented. Then, we have found that the non-

Gaussianities of tensor perturbations from the contracting universes have two spe-

cific features which are in contrast with the predictions from generalized G-inflation.

First, our contracting models predict only squeezed-type non-Gaussianities, while

inflation can in principle generate both squeezed- and equilateral-type ones. Second,
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the squeezed-type non-Gaussian amplitude from inflation is model-independently

fixed, while that from the contracting scenario is model-dependent. We thus con-

clude that our general bounce model can be distinguished from generalized G-

inflation by combining the information of the non-Gaussian amplitudes and shapes.

In Chapter 5, we have considered primordial tensor perturbations with non-

Bunch-Davies initial states. Employing a general scalar-tensor theory, we have

described non-minimal couplings between gravity and the inflaton. First, we eval-

uated the size of tensor three-point functions and showed that the squeezed non-

Gaussianities in particular from the newly introduced operator in non-minimally

coupled theories can potentially be enhanced. In contrast to the case of the scalar

three-point functions [8], the tensor three-point function always vanishes at the

flattened momentum triangles. This is as it should be, as can be seen from the mo-

mentum conservation argument [104]. Next, we have studied the cross-bispectrum

involving one tensor and two scalar modes. We have found that the enhancement

due to the non-Bunch-Davies effect can be large at non-trivial triangle shapes.

Throughout this thesis, we have calculated the primordial tensor non-Gaussianity.

It would therefore be interesting to investigate how such non-Gaussian signature is

imprinted e.g. on CMB bispectra [70, 105], which we leave for further studies. Also,

it would be important to estimate the non-Gaussian amplitudes and shapes from

different early universe models, e.g., Galilean Genesis [106].

Note that a part of the above is cited from, S. Akama, S. Hirano and T. Kobayashi,

“Primordial non-Gaussianities of scalar and tensor perturbations in general bounce

cosmology: Evading the no-go theorem,” Phys. Rev. D 101, no.4, 043529 (2020)

doi:10.1103/PhysRevD.101.043529 [arXiv:1908.10663 [gr-qc]] [55], and S. Akama,

S. Hirano and T. Kobayashi, “Primordial tensor non-Gaussianities from general

single-field inflation with non-Bunch-Davies initial states,” Phys. Rev. D 102, no.2,

023513 (2020) doi:10.1103/PhysRevD.102.023513 [arXiv:2003.10686 [gr-qc]] [72].

Copyright (2020) by the American Physical Society.
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Appendix A

Background Equations

This chapter is based on S. Akama, S. Hirano and T. Kobayashi, “Primor-

dial non-Gaussianities of scalar and tensor perturbations in general bounce cos-

mology: Evading the no-go theorem,” Phys. Rev. D 101, no.4, 043529 (2020)

doi:10.1103/PhysRevD.101.043529 [arXiv:1908.10663 [gr-qc]] [55]. Copyright (2020)

by the American Physical Society.

For a flat FLRW universe the gravitational field equations read [20]

E :=

5∑
i=2

Ei = 0, P :=

5∑
i=2

Pi = 0, (A.1)

where

E2 = 2XG2X −G2, (A.2)

E3 = 6Xϕ̇HG3X − 2XG3ϕ, (A.3)

E4 = −6H2G4 + 24H2X(G4X +XG4XX)− 12HXϕ̇G4ϕX − 6Hϕ̇G4ϕ, (A.4)

E5 = 2H3Xϕ̇(5G5X + 2XG5XX)− 6H2X(3G5ϕ + 2XG5ϕX), (A.5)

and

P2 = G2, (A.6)

P3 = −2X(G3ϕ + ϕ̈G3X), (A.7)

P4 = 2(3H2 + 2Ḣ)G4 − 12H2XG4X − 4HẊG4X − 8ḢXG4X

− 8HXẊG4XX + 2(ϕ̈+ 2Hϕ̇)G4ϕ + 4XG4ϕϕ + 4X(ϕ̈− 2Hϕ̇)G4ϕX , (A.8)

P5 = −2X(2H3ϕ̇+ 2HḢϕ̇+ 3H2ϕ̈)G5X − 4H2X2ϕ̈G5XX

+ 4HX(Ẋ −HX)G5ϕX + 2
[
2(HX)· + 3H2X

]
G5ϕ + 4HXϕ̇G5ϕϕ. (A.9)

The scalar-field equation follows from the above two equations.
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Appendix B

Spatial Curvature and Anisotropies

in a Contracting Background

This chapter is based on S. Akama, S. Hirano and T. Kobayashi, “Primor-

dial non-Gaussianities of scalar and tensor perturbations in general bounce cos-

mology: Evading the no-go theorem,” Phys. Rev. D 101, no.4, 043529 (2020)

doi:10.1103/PhysRevD.101.043529 [arXiv:1908.10663 [gr-qc]] [55]. Copyright (2020)

by the American Physical Society.

In the simple, standard case of a scalar field minimally coupled to gravity, spatial

curvature and anisotropies in the Friedmann and evolution equations evolve in pro-

portion to a−2 and a−6, respectively. As a result, it has been known that a contract-

ing universe is plagued with the instability associated with large anisotropies [107].

Some resolutions of the problem have been proposed so far. See, e.g., Refs. [108,

23, 109, 24, 110]. However, the impact of spatial curvature and anisotropies has not

been clear yet in more general cases where the scalar field is nonminimally coupled

to gravity. Hence, we investigate the evolution of spatial curvature and anisotropies

in a general contracting background in the Horndeski theory.

First, we investigate the impact of spatial curvature (denoted hereafter as K).

To do so, we consider open (K < 0) and closed (K > 0) universes in the Horn-

deski theory. In the presence of spatial curvature, the background equations reduce

to [111, 48]

E + EK = 0, P + PK = 0, (B.1)
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where

EK = −3GT
K
a2
, PK = FT

K
a2
. (B.2)

It can be seen from the scaling argument that EK/E , PK/P ∝ (−t)2(1−n), which
implies that the relative magnitudes of the curvature terms decrease with time so

that the effect of the spatial curvature on the background equations can be neglected

in our setups.

Next, let us consider the effect of anisotropies on the contracting background by

investigating an anisotropic Kasner universe whose metric is written as

ds2 = −dt2 + a2
[
e2(β++

√
3β−)dx2 + e2(β+−

√
3β−)dy2 + e−4β+dz2

]
. (B.3)

The differences between the expansion rates in different directions, β±, obey [111,

112]

d

dt

{
a3
[
GT β̇+ − 2µ

(
β̇2
+ − β̇2

−

)]}
= 0, (B.4)

d

dt

{
a3
[
GT β̇− + 4µβ̇+β̇−

]}
= 0. (B.5)

Since we have O(GT ) ≳ O(µH), the nonlinear terms can be ignored as long as

initially small anisotropies are considered, β̇± ≪ H. Then, these equations can be

integrated to give β̇± ∝ (a3GT )−1 ∝ (−t)−(2+2α+3n). We thus see that β̇±/H ∝
(−t)−(1+2α+3n), which decreases with time if 1 + 2α + 3n < 0 and increases if

1 + 2α + 3n > 0. The case of α = −2 (νs = νt = 2/3) corresponds to the former,

while α = 1−3n (νs = νt = −2/3) to the latter. This result implies the contracting

background we are considering requires some mechanism to evade the unwanted

growth of anisotropies. In the present paper, we simply assume that the contracting

universe enjoys a bounce before the anisotropies spoil its background evolution.
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Appendix C

Cubic Action for Scalar

Perturbations in the Horndeski

Theory

This chapter is based on S. Akama, S. Hirano and T. Kobayashi, “Primor-

dial non-Gaussianities of scalar and tensor perturbations in general bounce cos-

mology: Evading the no-go theorem,” Phys. Rev. D 101, no.4, 043529 (2020)

doi:10.1103/PhysRevD.101.043529 [arXiv:1908.10663 [gr-qc]] [55]. Copyright (2020)

by the American Physical Society.

Substituting the perturbed FLRW metric into the Horndeski action, expanding

it to cubic order in perturbations and using the background equations, we obtain

the cubic action for scalar perturbations [63, 64, 65]:

S
(3)
ζ =

∫
dtd3xa3L(3), (C.1)
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where

L(3) = GT
(
−9ζζ̇2 +

2ζ̇

a2
(
ζ∂2χ+ ∂iζ∂iχ

)
+

1

a4
(∂iχ)

2
∂2ζ +

1

2a4
ζ
((
∂2χ

)2 − (∂i∂jχ)
2
))

− GT
δn

a2

(
(∂iζ)

2
+ 2ζ∂2ζ

)
+

FT
a2
ζ (∂iζ)

2
+ 3Σζδn2 + 2Θδn

(
9ζζ̇ − ζ∂2χ− ∂iζ∂iχ

)
+ µ

(
2ζ̇3 − 2

a2
∂2χζ̇2 +

ζ̇

a4

((
∂2χ

)2 − (∂i∂jχ)
2
)
+ 4δnζ̇

∂2ζ

a2

− 2δn

a4
(
∂2ζ∂2χ− ∂i∂jζ∂i∂jχ

))
+ Γ

(
3δnζ̇2 − 2

a2
δnζ̇∂2χ

+
1

2a4
δn
((
∂2χ

)2 − (∂i∂jχ)
2
))

+ Ξδn2

(
ζ̇ − ∂2χ

3a2

)
+ (Γ− GT )

δn2

a2
∂2ζ

− 1

3
(Σ + 2XΣX +HΞ) δn3. (C.2)

From the first-order constraint equations we have

δn =
GT
Θ
ζ̇, (C.3)

χ =
1

aGT

(
a3GSψ − aG2

T

Θ
ζ

)
, (C.4)

where ∂2ψ = ζ̇. Substituting these solutions into the cubic action, we obtain

S
(3)
ζ =

∫
dtd3xa3GS

{
Λ1

H
ζ̇3 + Λ2ζζ̇

2 + Λ3ζ
(∂iζ)

2

a2
+

Λ4

H2
ζ̇2
∂2ζ

a2
+ Λ5ζ̇∂iζ∂iψ

+ Λ6∂
2ζ (∂iψ)

2
+

Λ7

H2

1

a4

[
∂2ζ (∂iζ)

2 − ζ∂i∂j (∂iζ∂jζ)
]

+
Λ8

H

1

a2
[
∂2ζ∂iζ∂iψ − ζ∂i∂j (∂iζ∂jψ)

]}
+

∫
dtd3xF (ζ)ES , (C.5)
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where

Λ1 = H

[
GT
Θ

(
GS
FS

+ 3
GT
GS

− 1

)
+

ΞGT
3Θ2

(
3
GT
GS

− 1

)
+ 2µ

(
1

GS
− 1

GT

)
+

Γ

Θ

(
3
GT
GS

− 2

)
+

2

3

G3
T

Θ3GS
(Σ−XΣX)− H

3

G3
TΞ

Θ3GS

]
, (C.6)

Λ2 = 3− HGTGS
FSΘ

(3− gT + fS + fΘ) , (C.7)

Λ3 =
FT
GS

+
HGT
Θ

(1 + gT + gS − fΘ)−
HG2

T

GSΘ
(1 + 2gT − fΘ) , (C.8)

Λ4 = H2

[
Ξ

3

G3
T

GSΘ3
+ 6µ

GT
GSΘ

+ (3Γ− GT )
G2
T

GSΘ2

]
, (C.9)

Λ5 = −1

2

GS
GT

− H

2

ΓGS
GTΘ

(3 + gT − fΓ + fΘ)− µH
GS
G2
T

(3 + 2gT − fµ) , (C.10)

Λ6 =
3

4

GS
GT

− GS
4GT

ΓH

Θ
(3 + gT − fΓ + fΘ)− µH

GS
G2
T

(
3

2
+ gT − 1

2
fµ

)
, (C.11)

Λ7 =
H2

6

[
G3
T

GSΘ2
− HΓG3

T

GSΘ3

(
1− 3gT + 3fΘ − fΓ + 3

ΘFS
HG2

T

)
− 6µH

G2
T

GSΘ2

(
1− 2gT − fµ + 2fΘ + 2

ΘFS
HG2

T

)]
, (C.12)

Λ8 = H

[
−GT

Θ
+
µH

Θ

(
4 + 2fΘ − 2fµ + 2

ΘFS
HG2

T

)
+H

ΓGT
Θ2

(
1− 1

2
gT − 1

2
fΓ + fΘ +

ΘFS
HG2

T

)]
, (C.13)

F (ζ) = −GTGS
ΘFS

ζζ̇ − 1

2

(
ΓGS
ΘGT

+ 2µ
GS
G2
T

)(
∂iζ∂iψ − ∂−2∂i∂j (∂iζ∂jψ)

)
+

1

4a2

(
ΓGT
Θ2

+
4µ

Θ

)(
(∂iζ)

2 − ∂−2∂i∂j (∂iζ∂jζ)
)
, (C.14)

ES = −2
[
∂t

(
a3GS ζ̇

)
− aFS∂2ζ

]
. (C.15)
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Here we defined

Θ := −ϕ̇XG3X + 2HG4 − 8HXG4X − 8HX2G4XX + ϕ̇G4ϕ + 2Xϕ̇G4ϕX

−H2ϕ̇(5XG5X + 2X2G5XX) + 2HX(3G5ϕ + 2XG5ϕX), (C.16)

Σ := XG2X + 2X2G2XX + 12Hϕ̇XG3X + 6Hϕ̇X2G3XX − 2XG3ϕ − 2X2G3ϕX − 6H2G4

+ 6
[
H2(7XG4X + 16X2G4XX + 4X3G4XXX)−Hϕ̇(G4ϕ + 5XG4ϕX + 2X2G4ϕXX)

]
+ 2H3ϕ̇

(
15XG5X + 13X2G5XX + 2X3G5XXX

)
− 6H2X(6G5ϕ + 9XG5ϕX + 2X2G5ϕXX), (C.17)

Γ := 2G4 − 8XG4X − 8X2G4XX − 2Hϕ̇(5XG5X + 2X2G5XX) + 2X(3G5ϕ + 2XG5ϕX),
(C.18)

Ξ := 12ϕ̇XG3X + 6ϕ̇X2G3XX − 12HG4 + 6

[
2H(7XG4X + 16X2G4XX + 4X3G4XXX)

− ϕ̇(G4ϕ + 5XG4ϕX + 2X2G4ϕXX)

]
+ 90H2ϕ̇XG5X + 78H2ϕ̇X2G5XX

+ 12H2ϕ̇X3G5XXX − 12HX(6G5ϕ + 9XG5ϕX + 2X2G5ϕXX), (C.19)

and

gT =
ĠT
HGT

, gS =
ĠS
HGS

, fS =
ḞS
HFS

, fΘ =
Θ̇

HΘ
, fΓ =

Γ̇

HΓ
, fµ =

µ̇

Hµ
.

(C.20)

Note that we can write the Eqs. (C.18), (C.19) as

Γ =
∂Θ

∂H
, Ξ =

∂Σ

∂H
. (C.21)

It is therefore natural to assume that these quantities scale as

Γ ∝ (−t)2+2α, Ξ ∝ (−t)1+2α. (C.22)

In Eq. (C.5), we neglected some boundary terms having the form of a total time

derivative. They are given by

SB =

∫
dtd3x

d

dt

[
−a3GTG

2
S

ΘFS
ζζ̇2 + a3

G2
S

2G2
T

(
2µ+

ΓGT
Θ

)(
ζζ̇2 − ζ(∂i∂jψ)

2
)

− aGS
2Θ

(
4µ+

ΓGT
Θ

)(
ζζ̇∂2ζ − ζ∂i∂jψ∂i∂jζ

)
+

9a3

2
(A3 − 2HGT − 2µH2)ζ3 + a

(
G2
T

Θ
−B5

)
ζ(∂iζ)

2

− G2
T

6aΘ2

(
6µ+

ΓGT
Θ

)(
ζ(∂i∂jζ)

2 − ζ(∂2ζ)2
)]
, (C.23)
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where

A3 = −
∫ X

G3X′
√
2X ′dX ′ − 2

√
2XG4ϕ, (C.24)

B5 = −
∫ X

G5X′
√
2X ′dX ′. (C.25)
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Appendix D

Backreaction constraint on β
(s)
k

This chapter is cited from, S. Akama, S. Hirano and T. Kobayashi, “Pri-

mordial tensor non-Gaussianities from general single-field inflation with

non-Bunch-Davies initial states,” Phys. Rev. D 102, no.2, 023513 (2020)

doi:10.1103/PhysRevD.102.023513 [arXiv:2003.10686 [gr-qc]] [72]. Copyright

(2020) by the American Physical Society.

If a scalar field is minimally coupled to gravity, the energy-momentum tensor of

tensor perturbations is derived by expanding the Einstein tensor to second order in

hij . Even if the scalar field is non-minimally coupled to gravity, one may proceed

essentially in the same way and expand the field equations to second order in hij to

estimate the energy density of tensor perturbations. This is how one can evaluate

the backreaction of excited tensor modes to the homogeneous background. The

effective energy density of subhorizon tensor perturbations is thus given by

ρh ∼ M2
T

a2c2h
h′ij

2 ∼M2
T

(∂ihjk)
2

a2
, (D.1)

where a dash stands for differentiation with respect to η. The backreaction can

safely be ignored if

⟨0b|ρ̂h|0b⟩ ≲ Ē , (D.2)

where Ē is the homogeneous part of the field equation, which can be estimated

naively as

Ē ∼M2
PlH

2
inf , (D.3)

where Hinf is the inflationary Hubble parameter and MPl ∼MT .
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The backreaction from the excited modes of tensor perturbations can be estimated

at η = η0 from

⟨0b|ρ̂h|0b⟩ ∼
M2
T

a2c2h
⟨0b|ĥ′2ij |0b⟩ ∼

ch
a4(η0)

∫ M∗a(η0)

0

|β(s)
k |2k3dk, (D.4)

where we discarded the vacuum energy. Then, by requiring that

ch
a4(η0)

∫ M∗a(η0)

0

|β(s)
k |2k3dk ≲M2

PlH
2
inf , (D.5)

one can save the inflationary background from being spoiled by the backreaction.

To derive a more explicit constraint, we need to assume the momentum depen-

dence of the Bogoliubov coefficients. Here, let us suppose that β
(s)
k is of the form

β
(s)
k ∼ β exp

[
− k2

M2
∗a

2(η0)

]
(D.6)

as a simple model, where β is a constant parameter. Substituting this into Eq. (D.5),

we obtain

|β|2 ≲ 1

ch

(
MPl

M∗

)2(
Hinf

M∗

)2

. (D.7)

As is explained in the main text, the deviation of the tensor power spectrum from

the standard Bunch-Davies result is at most of O(|β(s)
k |) ≪ 1, and thus we may use

Ph ∼ H2
inf/(chM

2
T ). Then, the constraint (D.7) can be rewritten as

|β|2 ≲ Ph
M2

Pl

M2
∗

M2
T

M2
∗
∼ rPζ

M2
PlM

2
T

M4
∗

≲ 10−11M
2
PlM

2
T

M4
∗

. (D.8)

For example, if we take M∗ ∼ MPl ∼ MT , then we have |β| ≲ 10−6, while if we

assume that the cutoff scale is much smaller, say, M∗ ∼ 10−2MPl ∼ 10−2MT , the

bound is looser, |β| ≲ 10−2.
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