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Abstract

Recent observational progress about strong gravitational fields heralds the ar-

rival of an era where we can observe phenomena happening around a compact

object in various ways such as electromagnetic wave and gravitational wave ob-

servations. To investigate the motion of test particles around a compact object is

one of the most fundamental problems for revealing the nature of the gravitational

field generated by a compact object and relates to predicting various phenomena

occurring around compact objects.

In this thesis, we focus on circular orbits of test particles. The appearance of

the circular orbits around black holes is different from the case of the Newtonian

potential. For timelike geodesics, the unstable circular orbits appear near a black

hole. Also, the circular orbits are formed even for null geodesics. It is known

that these circular orbits around black holes relate to the strong gravitational

phenomena, for example, a black hole shadow, an accretion disk, etc.

We study the effect of a second compact object on the circular orbits. In

particular, we investigate how stable circular orbits around a main compact object

appear by using the Majumudar–Papapetrou dihole spacetime, which consists of

the two extremal Reissner–Nordström black holes. While the parameter range of

the separation of the two black holes is divided due to the appearance of stable

circular orbits, this division depends on its mass ratio. We show that the mass ratio

range separates into four parts, and we find three critical values as the boundaries.

We also study the escape probability of a photon emitted from the circular

orbit of a (near-)extremal Kerr black hole. The escape probability evaluated at

the innermost stable circular orbit (ISCO) decreases monotonically as the black

hole spin increases. In the extremal black hole case, even if the orbital radius of

the light source is arbitrarily close to the ISCO radius, which coincides with the

horizon radius, the escape probability remains a nonzero value. We also see that

the distant observer can observe blueshift photons.
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Chapter 1

Introduction

General relativity is a theory of gravity proposed by Albert Einstein in 1915 [1,

2]. Nowadays, general relativity is widely accepted as the most straightforward and

most beautiful theory of gravity that describes the dynamics of our Universe, the

interaction between matter and gravity, and so on. Experiments and observations

show that some effects that are not explained by Newtonian gravity, such as the

perihelion shift of mercury, can be described by general relativity [3]. General

relativity describes interactions between matter fields and gravity fields via the

Einstein equation. Roughly, the Einstein equation means that if matter exists, it

generates gravity fields.

A black hole is one of the solutions of the Einstein equation, where the non-

linearity of gravity is most noticeable. Karl Schwarzschild discovered the first

black hole solution so-called the Schwarzschild black hole [4]. It describes the

gravitational field around a spherically symmetric non-rotating point mass source.

After some decades of it, Roy Kerr provided the rotating black hole solution [5].

The properties of these black hole solutions themselves were studied well. It is

known that there is a singularity at the core of these black holes, and it is covered

by the event horizon.

Black holes are the most compact celestial objects, and they are believed to

be very common in the universe. Indeed, the existence of black holes has been

supported by a lot of observations. The first such observation is the quasar ob-

servation. A quasar is a celestial object that emits enormous energy from a very

compact region, and it is thought that black holes are necessary to explain this
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observation. Also, there is a supermassive black hole at the center of most large

galaxies, which is thought to be the origin of high energy phenomena such as a

black hole jet. Recent observational progress, such as the first direct detection

of gravitational waves by LIGO/Virgo collaboration [6] and the first image of the

shadow of M87 galactic center (M87*) [7–12], have made the existence of black

holes more confident.

Because black holes are invisible themselves, when we want to obtain the prop-

erties of a black hole from a observation, we need to predict phenomena occurring

around a black hole and observable quantities. Investigating particle motions in a

black hole spacetime is one of the fundamental way of such predictions, and reflects

the properties of a black hole, for example, the mass and the angular momentum.

Indeed, the observations of S2 that is one of the stars orbiting around Sagittar-

ius A∗ shows excellent agreement with the geodesic motion in the Schwarzschild

spacetime. The mass of the supermassive black hole located at the center of our

galaxy has been estimated from the observation of S2 as 4 × 106M⊙ (see, for

example [13–16]).

Circular orbits of test particles are related to various phenomena that occur

around a black hole. In a black hole spacetime, even a photon is deflected its

orbit due to the strong gravity fields around a black hole. Furthermore, at a

certain radius, a photon can take a circular orbit. It is well known that a circular

photon orbit relates to the formation of a black hole shadow. For timelike particles,

the strong gravitational field around a black hole limits the region where timelike

particles can take stable circular orbits. It can be said that the strong gravitational

field around a black hole causes this limitation because, in Newtonian gravity, a

timelike particle can take a circular orbit at an arbitrary radius except for the

origin. The sequence of stable circular orbits plays a key role in the context of

the formation of a accretion disk and the gravitational waves from a binary black

hole. There is a typical radius that timelike particles cannot take stable circular

orbits inside it. The typical radius is known as the innermost stable circular orbit

(ISCO). The ISCO also relates to astrophysical phenomena because it is identified

as the inner edge of a standard accretion disk model [17] and a compact binary

switches the stage of the evolution from the inspiral phase to the merging phase

there [18,19].

Recently the existence of binary black holes has been strongly supported by
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direct observation of gravitational waves supports. The LIGO Scientific and Virgo

collaborations have already detected gravitational waves from 10 binary black

hole mergers and a binary neutron star merger in the first and second observing

runs [20]. Furthermore, this year, the result of the First-half observing run were

announced and 39 new gravitational wave events have been added [21]. These

results indicate that binary black hole systems are quite common in the universe.

In realistic cases, there exist other objects or matter distributions around bi-

nary compact objects. In Newtonian gravity, there are Poincaré’s three-body prob-

lem and the Kozai mechanism as traditional problems for revealing interactions

between two gravitational sources and a third body. In the relativistic context,

many works investigating the three body problem have been done so far, for ex-

ample, the relativistic three body problem [22, 23], the resonance in a compound

extreme mass ratio inspiral/massive black hole binary [24], and the gravitational

wave emission induced by a third body [25–29], etc.

Actual binary black hole systems is dynamical systems so that one needs to use

the numerical method to analyze the phenomena in such systems. For example,

the study of the shadow of a binary black hole requires a fully nonlinear analysis of

the numerical relativity [30]. On the other hand, a perturbative approach, which

perturbatively takes into account the dynamics of a binary black hole, is also used

to provide a qualitative understanding of the phenomenon. This approach is valid

if a timescale of a target phenomenon is sufficiently shorter than the dynamical

timescale of a binary black hole. In this approach, we need to consider a static

system before introducing dynamic properties. To this end, we employ some sta-

tionary (or static) dihole spacetime as a toy model. There are some exact dihole

spacetime solutions of the Einstein equation (or the Einstein–Maxwell equation)

such as the Weyl spacetime [31], the Majumdar–Papapetrou spacetime [32–34], the

double-Kerr spacetime [35], etc. Such stationary dihole spacetime can reproduce

the specific features of phenomena around a binary black hole. For instance, the

eyebrows structure of the binary black hole shadow also appears in the (quasi)static

dihole spacetime [36–40].

The first aim of this thesis is to study the effect of a second compact object

on the circular orbits of test particles. We expect that the circular orbits exhibit

nontrivial appearance under the influence of a second compact object. For this pur-

pose, we adopt the Majumdar–Papapetrou (MP) dihole spacetime, which consists
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of two extremal Reissner–Nordström black holes. In some previous works, several

properties of circular orbits in the MP dihole spacetime were reported: there are

multiple marginally stable circular orbits of massive particles [41] and the stable

circular photon orbit appears [42]. Our studies [43,44] have been strongly inspired

by [41]. The authors of [41] investigated circular orbits around the axis of sym-

metry of the MP dihole spacetime in the equal mass and the different mass cases.

They classified a parameter range of the MP dihole spacetime focusing on the cir-

cular orbits’ appearance when varying the mass of two black holes. However, their

analysis had been incomplete, and they missed some distinctive appearances of cir-

cular orbits. In contrast, we study circular orbits in the MP dihole spacetime with

equal mass and different mass cases and completely classify the parameter ranges

of the separation and the mass ratio according to the appearance of the circular

orbits. For the equal mass case where the MP dihole spacetime is characterized

only by the separation parameter, we find the parameter range of the separation

is divided into five parts by four critical values. Since two of these critical values

were already reported in [41], we discover two new critical values. At each critical

value, the behavior of stable circular orbits drastically changes. We also show

the positions of marginally stable circular orbits, ISCOs, and the stable/unstable

circular photon orbit for the whole range of the separation parameter. We also

investigate the different mass MP dihole spacetime. In this case, the MP dihole

spacetime is characterized by not only the separation parameter but also the mass

ratio parameter. As the result of our analysis, we divide the mass ratio parameter

range into four parts and obtain three critical values as the boundaries. Further-

more, we find some specific behaviors of the circular orbits that do not appear in

a single black hole case.

In last year, a very impressive observational result was announced. It is the first

image of the black hole shadow of M87∗ obtained by the Event Horizon Telescope

(EHT) Collaboration [7–12]. The EHT results of the shadow distinguish between

conflicting mass measurements, favoring that estimated from stellar dynamics [45]

rather than that estimated from gas dynamics [46] and suggest that a supermassive

black hole may exist at the center of the galaxy. However, the possibility that

the central dark object is a horizonless compact object has not yet been ruled

out [11,47,48]. In order to distinguish M87∗ is a black hole or a black hole mimicker,

it is necessary to observe the vicinity of the event horizon precisely. Naively, it
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seems difficult to observe the near-horizon area of a black hole because in the

near-horizon area, the gravity is extremely strong and nothing can escape from

the event horizon.

However, according to recent theoretical research progress, in principle, it is

possible to overcome this difficulty if a black hole is rapidly rotating. Since the

observations of the black hole jet generally expect that M87∗ has relatively high

spin [49] or might be a rapidly rotating black hole [50,51], it is meaningful to pursue

phenomena near the horizon of a near-extremal Kerr black hole. It has been shown

that some observable features such as bright border of the shadow edge appear in a

near-extremal Kerr black hole [52,53]. More recently, it was explicitly shown that

in the extremal Kerr spacetime, for a light source at rest with respect to the locally

nonrotating observer, the escape probability of a photon becomes a nonzero value

in the limit as the source position approaches the horizon [54, 55].1 Furthermore,

the probability becomes zero in the same limit in the subextremal case, but in the

near-extremal case, nonzero value is still achieved just before the horizon. These

results indicate that the vicinity of a rapidly rotating black hole is more visible

than that of a slowly rotating one.

In general, a light source near a black hole is expected to move relative to

the horizon. The second aim of this thesis is to clarify the escape probability

of a photon from a light source circularly orbiting near a rapidly rotating black

hole. The motion of a light source affects the photon escape probability and

the initial energy injection to a photon. In particular, sources moving on stable

circular orbits often exist in nature and further provide natural initial conditions

for optically observable phenomena [57, 58]. For instance, the apparent shape of

the innermost edge of a standard accretion disk surrounding a black hole appears

as a closed curve [59–64]. Furthermore, the ISCO radius coincides with the horizon

radius in the extremal Kerr spacetime [65, 66], so that the study of revealing the

photon emitted from the ISCO can reach infinity in the (near-)extremal Kerr black

hole has the insights for the observability of the near-horizon region. One of the

additional features of a source on the ISCO in the extremal Kerr spacetime is that

the relative velocity to the extremal horizon can get arbitrarily close to half of the

speed of light [65]. Emission from this light source yields the boost of each photon

and photon concentration in the forward direction of the source by the relativistic

1Ratio of photons trapped by a black hole was also discussed in Ref. [56].
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beaming. Therefore, it can be expected that the escape probability of a photon

emitted from the ISCO of a rapidly rotating black hole becomes relatively large

owing to the boost effect. In fact, we show that in the extremal Kerr black hole,

the escape probability of a photon for the light source orbiting on the ISCO is

54.6%. This value is greater than 29.1% that is the escape probability for the

light source at rest with respect to a locally nonrotating observer obtained in [55].

This amplification of the escape probability comes from the boost effect due to the

light source’s circular motion. We also show that the photons emitted forwardly

get blueshifted for a distant observer.

This thesis is based on our works [43, 44, 67] during doctoral course. The

contents of this thesis are as follows:

Chapter 2

We briefly review circular orbits of test particles in the Schwarzschild space-

time and the Kerr spacetime. We introduce an effective potential for a test

particle and see that the positions of the circular orbits correspond to the

local extrema of an effective potential. In the Kerr spacetime, we also see

the position of the circular orbit depends on the Kerr parameter, and the

radii of the circular photon orbit and the ISCO coincide with the horizon

radius in the extremal black hole limit.

Chapter 3

We study the effect of a second compact object on the circular orbits using

the Majumdar–Papapetrou dihole spacetime, which consists of two extremal

Reissner–Nordström black holes. We show that the sequence of the sta-

ble circular orbit depends on the separation and the mass ratio. We also

show that some properties that do not appear in a single black hole arise

in the Majumdar–Papapetrou dihole spacetime. This chapter is based on

K. Nakashi and T. Igata, “Innermost stable circular orbits in the Majumdar-

Papapetrou dihole spacetime,” Phys. Rev. D 99, no.12, 124033 (2019) [43]

and K. Nakashi and T. Igata, “Effect of a second compact object on stable

circular orbits,” Phys. Rev. D 100, no.10, 104006 (2019) [44].

Chapter 4

We estimate the escape probability of a photon from the vicinity of the event
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horizon of the (near-)extremal Kerr black hole. We consider an isotropically

emitting particle on the circular orbit as a light source. In the extremal black

hole, even if the orbital radius of the light source is arbitrarily close to the

ISCO radius, which coincides with the horizon radius, the escape probability

approaches nonzero value. We also show that such photons that have escaped

from the vicinity of the horizon reach infinity with sufficient energy to be

potentially observed. This chapter is based on T. Igata, K. Nakashi and

K. Ogasawara, “Observability of the innermost stable circular orbit in a

near-extremal Kerr black hole,” Phys. Rev. D 101, no.4, 044044 (2020) [67].

Chapter 5

We summarize the conclusions and the discussions.

In this thesis, we use the following conventions: the metric signature (−,+,+,+);

the units in which G = 1 and c = 1.
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Chapter 2

Geodesics and Circular orbits in

black hole spacetimes

In this chapter, we briefly review circular orbits of particles around two famous

black hole spacetimes, i.e, the Schwarzschild spacetime and the Kerr spacetime.

2.1 Schwarzschild spacetime

2.1.1 Nature of the Schwarzschild spacetime

The metric of the Schwarzschild spacetime is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (2.1)

f(r) = 1− 2M

r
(2.2)

where M is the mass of the black hole. We set M = 1 in what follows. Due to

the static and spherical symmetries of the Schwarzschild spacetime, there are two

Killing vectors ξµ = (∂t)
µ and ψµ = (∂ϕ)

µ. The Schwarzschild metric is singular

at r = 2 and r = 0. At r = 0, the spacetime geometry is singular. Indeed, the

Kretschmann invariant RµνρλR
µνρλ diverges at r = 0.

We show that the singularity of the Schwarzschild metric at r = 2 is just coordi-

nate singularity by investigating the causal structure of the spacetime. Because of

the spherical symmetry, the two-dimensional (t, r) part is important for analyzing

the causal structure.
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First, we introduce the Eddington–Finkelstein coordinates u and v as

u = t− r∗, (−∞ < u <∞) (2.3)

v = t+ r∗, (−∞ < v <∞) (2.4)

where r∗ is the tortoise coordinate expressed as

r∗ =

∫
dr

f(r)
= r + 2 log

∣∣∣r
2
− 1

∣∣∣ , (2.5)

where we set an integration constant so that r∗ = 0 at r = 0. The singularity

at r = 2 corresponds to r∗ = −∞. The ingoing radial null particles move along

v = const. line, while the outgoing radial null particles move along u = const. line.

In the Eddington–Finkelstein coordinates, the metric (2.2) becomes

ds2 = −2e−r/2

r
e(v−u)/4dudv. (2.6)

Since the tortoise coordinate can be expressed in terms of the Eddington–Finkelstein

coordinate as r∗ = (v − u)/2, the singularity at r = 2 is still singularity.

Next, we introduce the new coordinates for r > 2 so-called the Kruskal coordi-

nates U and V as

U = −e−u/4, V = ev/4. (2.7)

In terms of these coordinates, the metric becomes

ds2 = −32

r
e−r/2dUdV. (2.8)

This metric is regular at r = 2. This means that the singularity at r = 2M in

Eq. (2.2) is just a coordinate singularity. Initially the metric is defined for U < 0

and V > 0, but it can be extended for U > 0 and V < 0. The relation between

(U, V ) and r is given by

UV = −
(r
2
− 1

)
er/2. (2.9)

In the Kruskal coordinates, r = const. curves appear as UV = const. curves. For

example, r = 2 becomes UV = 0 and r = 0 becomes UV = 1. Figure 2.1 shows

the Kruskal diagram. In Fig. 2.1, the region I corresponds to the original exterior
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Figure 2.1: Kruskal diagram

region r > 2. A radially infalling observer in region I can enter the region II. Once

the observer enters the region II, the observer cannot escape from this region. In

this sense, we can interpret that the radius r = 2 is a horizon. In the Schwarzschild

spacetime, the radius r = 2 is the event horizon and the Killing horizon. In fact,

it is known that the Killing vector ξµ is null on the r = 2 surface and tangent to

the horizon generator.

2.1.2 Geodesics in the Schwarzschild spacetime

The Lagrangian of a freely falling particle is given by

L =
1

2
gµν ẋ

µẋν =
1

2

[
−f(r)ṫ2 + ṙ2

f(r)
+ r2θ̇2 + r2 sin2 θϕ̇2

]
, (2.10)

where the dot denotes the derivative with respect to an affine parameter. The

θ-component of the Euler–Lagrange equation becomes

θ̈ = ϕ̇ sin θ cos θ − 2ṙθ̇

r
. (2.11)

This equation means that the orbits that travel on the equatorial plane θ = π/2

at the initial moment ti remain to be restricted to the equatorial plane because
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θ̈(ti) = 0 for such orbits. For this reason, we focus on the orbits moving on the

equatorial plane without loss of generality.

Since the spacetime is static and spherical symmetry, the Lagrangian is inde-

pendent of the coordinates t and ϕ. Thus, there are two conserved quantities as

follows

E = f(r)ṫ, L = r2ϕ̇. (2.12)

These quantities are the particle’s energy and the particle’s angular momentum,

respectively. We assume that the worldline is parametrized so that gµν ẋ
µẋν = −κ,

where κ = 1 for a timelike particle and κ = 0 for a massless particle. From this

normalization and Eqs. (2.12), we introduce the effective potential V (r) as

ṙ2 + V (r) = E2, (2.13)

V (r) = f(r)

(
κ+

L2

r2

)
. (2.14)

We consider a circular orbit with constant r. A particle in a circular orbit

must satisfy the following conditions: (a) ṙ = 0 and (b) r̈ = 0. The condition (a)

together with Eq. (2.13) leads to

V (r) = E2. (2.15)

Conditions (a),(b), and Eq. (2.15), together with the equation of motion for radial

direction imply

Vr = 0, (2.16)

where Vr = dV (r)/dr. The location of a circular orbit corresponds to that of

a stationary point of the effective potential at which the values of the effective

potential are positive.

For massless particles (κ = 0), the condition (2.16) has only one root

rpc = 3. (2.17)

This is the radius of the circular photon orbit. The stability of the circular photon

orbit is unstable because Vrr(rpc) < 0. For timelike particles (κ = 1), the effective

potential becomes

V (r) = 1− 2

r
+
L2

r2
− 2L2

r3
. (2.18)
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Note that 2/r and L2/r2 terms are the Newtonian effect and the centrifugal force

effect, respectively, while 2L2/r3 term can be interpreted as the general relativity

effect. Because of this general relativity effect, the effective potential has a local

maximum, which corresponds to an unstable circular orbit. It is said that the

unstable circular orbit around the Schwarzschild black hole reflect the nonlinear

effect of the gravity because the unstable circular orbit does not appear in Newto-

nian gravity. The inner boundary of the existence range of unstable circular orbits

is the circular photon orbit: r = 3. The condition (2.16) has the roots

rtc± =
L2 ±

√
L2(L2 − 12)

2
. (2.19)

We note that the larger root rtc+ is a local minimum of the effective potential,

while the smaller root rtc− is a local maximum. The radius of the circular orbit

for a timelike particle depends on the angular momentum. In the case of L2 = 12,

the radii of the stable and the unstable circular orbits coincide with each other,

and then the radius is given by

rI = 6. (2.20)

This radius is the minimum radius of a stable circular orbit. There is no stable

circular orbits inside it, and it is called the innermost stable circular orbit (ISCO).

The ISCO often plays key roles for some astrophysical phenomena. For example,

it is expected to be the inner edge of an accretion disk [17], and also an inspiralling

compact binary transits into the merging phase there [18,19].

2.2 Kerr spacetime

2.2.1 Nature the Kerr spacetime

The metric of the Kerr spacetime in the Boyer–Lindquist coordinate {t, r, θ, ϕ}
is given by

ds2 = −Σ∆

A
dt2 +

Σ

∆
dr2 + Σdθ2 +

A

Σ
sin2 θ

[
dφ− a(r2 + a2 −∆)

A
dt

]2
, (2.21)

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr, A = (r2 + a2)2 −∆a2 sin2 θ, (2.22)
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where M is the mass of the black hole and a is the Kerr parameter defined as the

magnitude of the angular momentum of the black hole divided by the mass. As in

the case of the Schwarzschild spacetime, we set M = 1 in what follows. Because

of the stationary and axisymmetry of the Kerr spacetime, there are two Killing

vectors ξµ = (∂t)
µ and ψµ = (∂ϕ)

µ. The metric (2.21) has two singularities such

that ∆ = 0 and Σ = 0. The former singularity is just coordinate singularity and

the roots of ∆ = 0 correspond to the outer/inner horizon:

r± = 1±
√
1− a2. (2.23)

From this expression, we can read that there exist the horizons for a2 ≤ 1. We

assume 0 ≤ a ≤ 1 throughout this thesis. Since the later singularity corresponds

to the curvature singularity, the Kerr spacetime is truly singular at Σ = 0.

To discuss the nature of the Kerr spacetime in more detail, we consider two

specific observers: a static observer and a stationary observer. The four-velocity

uµ of a static observer is proportional to the Killing vector ξµ:

uµ =
ξµ√

−gµνξµξν
. (2.24)

Note that orbits of the static observers are not geodesics. At spatial infinity, the

four-velocity of a static observer is timelike. However, in the Kerr spacetime, there

is a surface on which the four-velocity of a static observer becomes null. This sur-

face is called the ergosurface. Static observers cannot exist inside the ergosurface

because the four-velocity (2.24) is spacelike. The position of the ergosurface is

obtained from gµνξ
µξν = gtt = 0 as

rE(θ) = 1 +
√
1− a2 cos2 θ. (2.25)

Next, we consider a stationary observer whose four-velocity is given by

uµ =
ξµ + Ωψµ√

−gϕϕ(Ω2 − 2ωΩ + gtt/gϕϕ)
, (2.26)

where Ω = dϕ/dt and ω = −gtϕ/gϕϕ, respectively. The condition for the presence

of the timelike stationary observer restricts the range of the angular momentum

of the observer. The allowed range is given by

Ω− < Ω < Ω+, (2.27)

18



where

Ω± = ω ±
√
ω2 − gtt

gϕϕ
. (2.28)

The boundary values Ω± are coincide with each other when ∆ = 0. As we men-

tioned above, the roots of ∆ = 0 are outer/inner horizon of the Kerr spacetime.

Thus, the vector ξµ + Ωψµ becomes null at these horizons and the stationary

observer cannot exist between these horizons. We find that the vector

χµ = ξµ + ΩHψ
µ, (2.29)

is null on the outer horizon, where

ΩH =
dϕ

dt

∣∣∣∣
r=r+

=
a

r2+ + a2
, (2.30)

is the angular velocity of the black hole horizon. Because the vector χµ is a linear

combination of two Killing vectors, it is also a Killing vector. In addition, the

vector χµ is the horizon generator. The remarkable difference between static and

stationary black holes is that for static black holes, ξµ becomes null on the event

horizon, while for stationary black holes, ξµ is null on the ergosurface and χµ

becomes null on the event horizon.

It is worth to mention the circularity of the Kerr spacetime. A stationary and

axisymmetric spacetime is said to be circular if the two-dimensional planes orthog-

onal to two commuting Killing vector fields associated with the stationarity and

axisymmetry are integrable. An asymptotically flat, stationary, and axisymmetric

spacetime is circular if and only if the following circularity conditions are satisfied

ψµRµ[ν ψρ ξλ] = 0, ξµRµ[ν ξρ ψλ] = 0, (2.31)

where ψµ and ξµ are a spacelike Killing vector whose orbits are closed and an

asymptotically timelike Killing vector, respectively. Because the Kerr spacetime is

a Ricci flat, the circularity conditions are automatically satisfied: the Kerr space-

time is circular. In general relativity, it is shown that the circularity condition

holds for the asymptotically flat spacetimes in vacuum system (see, e.g., [68, 69]),

the Einstein real scalar system [70], and Einstein–Maxwell system [71]. Yet, in

modified gravity theories, it is not obvious whether spacetimes satisfy the circular-

ity condition or not. If we can observe the effect of non-circularity, it suggests the
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violation of general relativity because the circularity condition should hold for gen-

eral relativity. We have discussed the possibility of the violation of the spacetime

circularity in two string-inspired gravity theories [72]. We have shown that in both

gravity theories, up to linear order in the coupling constant and quadratic order

in the spin, regular non-circular black hole solutions do not exist at least around

the Schwarzschild spacetime. Our results suggest the non-existence of rotating

non-circular black holes in these gravity theories.

2.2.2 Equatorial geodesics

To see behaviors of circular orbits of test particles, we focus on the orbits in

the equatorial plane: θ = π/2. Then, the Lagrangian for a test particle becomes

2L = −
(
1− 2

r

)
ṫ2 +

r2

∆
ṙ2 − 4a

r
ṫϕ̇+

[
r2 + a2 +

2a2

r

]
ϕ̇2, (2.32)

where dot denotes the derivative with respect to an affine parameter. Due to the

stationarity and the axisymmetry of the Kerr spacetime, there are two constants

of motion as follows

E = −kt =
(
1− 2

r

)
ṫ+

2a

r
ϕ̇, (2.33)

L = kϕ = −2a

r
ṫ+

(
r2 + a2 +

2a2

r

)
ϕ̇. (2.34)

These constants of motion E and L are the energy of a test particle and the angular

momentum of a test particle, respectively. By using these constants of motion, the

Hamiltonian is given by

2H = −E ṫ+ L ϕ̇+
r2

∆
ṙ2 = −κ, (2.35)

where κ = 1 for a timelike particle and κ = 0 for a massless particle. Solving

Eqs. (2.33) and (2.34) for ṫ and ϕ̇, we obtain

ṫ =
1

∆

[(
r2 + a2 +

2a2

r

)
E − 2a

r
L

]
, (2.36)

ϕ̇ =
1

∆

[
2a

r
E +

(
1− 2

r

)
L

]
. (2.37)
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Substituting these expressions into Eq. (2.35), we obtain the equation of motion

in the radial direction as

ṙ2 = E2 +
2

r3
(aE − L)2 +

1

r2
(a2E2 − L2)− κ∆

r2
. (2.38)

For null geodesics, κ = 0 and Eq. (2.38) becomes

ṙ2 = E2 +
2

r3
(aE − L)2 +

1

r2
(a2E2 − L2). (2.39)

For convenience in the below discussion, we calculate r̈

r̈ = − 3

r4
(aE − L)2 − 1

r3
(a2E2 − L2). (2.40)

The conditions determining the radius of the circular photon orbit rpc are ṙ = 0

and r̈ = 0. The radii of circular photon orbits are given by

r∓pc = 2

[
1 + cos

(
2

3
cos−1 (∓a)

)]
, (2.41)

where the upper sign and lower sign correspond to the direct orbits and the ret-

rograde orbits, respectively. For a = 0, r+pc = r−pc = 3, which corresponds to the

circular photon orbit in the Schwarzschild spacetime, while for a = 1, r+pc = 4

(retrograde orbit) or r−pc = 1 (direct orbit). The all circular photon orbits in the

Kerr spacetime are unstable. We note that the coordinate value of rpc for the

extremal black hole coincides with the horizon radius.

For timelike geodesics, κ = 1 and Eq. (2.38) can be written as

ṙ2 + Veff(r) = E2, (2.42)

where

Veff(r) = − 2

r3
(aE − L)2 − 1

r2
(a2E2 − L2) +

∆

r2
. (2.43)

is the effective potential. The conditions determining the radius of a circular orbit

rtc are ṙ = 0 and r̈ = 0. These conditions imply that for a circular orbit

Veff(rtc) = E2 ≥ 0,
dVeff
dr

(rtc) = 0, (2.44)
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respectively. By solving these equations for E and L, we find

Etc =
r
3/2
tc − 2r

1/2
tc ± a

r
3/4
tc (r

3/2
tc − 3r

1/2
tc ± 2a)1/2

, (2.45)

Ltc =
±(r2tc ∓ 2ar

1/2
tc + a2)

r
3/4
tc (r

3/2
tc − 3r

1/2
tc ± 2a)1/2

, (2.46)

where the upper sign and the lower sign correspond to the direct orbit and the

retrograde orbit, respectively. The circular orbits cannot exist for all values of r

because of the strong gravity effect. The existence range of the circular orbits are

determined by the following condition

r
3/2
tc − 3r

1/2
tc ± 2a ≥ 0. (2.47)

If this condition is satisfied, Etc and Ltc are real. The inner boundary of the

existence range of the circular orbits is the circular photon orbit rpc. Unlike the

circular photon orbits, the circular orbits of timelike particles exist not only unsta-

ble ones but also stable ones. The stable circular orbits satisfy d2Veff(rtc)/dr
2 ≥ 0.

This condition can be written as

r2tc − 3a2 − 6rtc ± 8ar
1/2
tc ≥ 0. (2.48)

When the equal sign holds, the root of the equation is the radius of the ISCO

because the position of the ISCO corresponds to the inflection point of Veff . The

ISCO radius in the Kerr spacetime is given by

rI =M{3 + Z2 ∓
√
(3− Z1)(3 + Z1 + 2Z2)}, (2.49)

where

Z1 = 1 +
(
1− a2

)1/3 [
(1 + a)1/3 + (1− a)1/3

]
, (2.50)

Z2 =
√

3a2 + Z2
1 . (2.51)

The stable circular orbits exist in the range r ≥ rI. For a = 0, rI = 6, while for

a = 1, rI = 9 (retrograde orbits) or rI = 1 (direct orbits). Note that similar to

the circular photon orbit, the coordinate value of rI coincides with the horizon

radius in the extremal black hole case. Figure 2.2 shows the radii of r±pc and rI as

functions of the Kerr parameter.
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Figure 2.2: Dependence of the radii of the circular photon orbit (solid line) and

the ISCO (dashed line) on the Kerr parameter. In the extremal black hole case

(a = 1), the coordinate values of these coincide with the horizon radius.

2.2.3 General geodesics

We discuss the general geodesic. We show that the separability of the Hamilton–

Jacobi equation in the Kerr spacetime. The separability of the Hamilton–Jacobi

equation was shown in [73]. The Lagrangian of a test particle is given by

2L = −
(
1− 2r

Σ

)
ṫ2 +

Σ

∆
ṙ2 + Σ θ̇2 − 4ar sin2 θ

Σ
ṫϕ̇+

A sin2 θ

Σ
ϕ̇2. (2.52)
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From this Lagrangian, we obtain the generalized momentum kµ and the Hamilto-

nian H as follows

−kt =
(
1− 2r

Σ

)
ṫ+

2ar sin2 θ

Σ
ϕ̇, (2.53)

kϕ = −2ar sin2 θ

Σ
ṫ+

A sin2 θ

Σ
ϕ̇, (2.54)

kr =
Σ

∆
ṙ, (2.55)

kθ = Σ θ̇, (2.56)

2H = gµνkµkν = − A

Σ∆
k2t +

∆

Σ
k2r +

1

Σ
k2θ +

4ar

Σ∆
ktkϕ +

∆− a2 sin2 θ

Σ∆sin2 θ
k2ϕ. (2.57)

The four constants of motion necessary to make the Hamilton–Jacobi equation

separable can be derived by the usual method. From the spacetime symmetry, we

can obtain the conserved energy E and the conserved angular momentum L as

kt = −E, kϕ = L. (2.58)

Since the Hamiltonian does not depend on an affine parameter λ explicitly, it is

constant:

H = −κ
2
, (2.59)

where κ = 0 for a null geodesic, while κ = 1 for a timelike geodesic. The Hamilton–

Jacobi equation is given by

2
∂S

∂λ
= gµν

∂S

∂xµ
∂S

∂xν
, (2.60)

where S is the Hamilton’s principle function. If there are separable solutions, the

Hamilton’s principle function can be written in terms of the known three constants

as follows

S = −1

2
κλ− Et+ Lϕ+ Sr(r) + Sθ(θ). (2.61)

Substituting Eq. (2.61) into Eq. (2.60), we obtain

∆

(
dSr

dr

)2

− 1

∆

[
(r2 + a2)E − aL

]2
+ κr2

=−
(
dSθ

dθ

)2

− (aE sin2 θ − L2)2 csc2 θ − κa2 cos2 θ. (2.62)
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Both sides are equal to a same constant because the left hand side is the function of

r, while the right hand side is the function of θ. By using the relations dSr/dr = kr

and dSθ/dθ = kθ, we have

∆ k2r −
1

∆

[
(r2 + a2)E − aL

]2
+ κr2 = −K, (2.63)

k2θ + (aE sin2 θ − L2)2 csc2 θ + κa2 cos2 θ = K, (2.64)

where K is a separation constant and this constant is the fourth constant. It can

be shown that K is constant because the Poisson’s bracket with the Hamiltonian

vanishes. In addition, the nontrivial constant K relates to the hidden symmetry in

the Kerr spacetime [74]. The Kerr spacetime has a conformal Killing tensor that

is a rank two symmetric tensor Kµν satisfying

∇(ρKµν) = 0. (2.65)

and in the Kerr spacetime, it is expressed as

Kµνdx
µdxν = Σ2dθ2 − a2 cos2 θgµνdx

µdxν

+ sin2 θ
[
(r2 + a2)dφ− adt

] [
(r2 + a2)dφ− adt

]
. (2.66)

By using the Killing tensor, the nontrivial constant K can be expressed as K =

Kµν k
µ kν .

From the above discussion, the Hamilton’s principle function is given by

S = −1

2
κλ− Et+ Lϕ

∫ r
√
R

∆
dr +

∫ θ √
Θdθ, (2.67)

where

R(r) =
[
(r2 + a2)E − aL

]2 −∆
[
κr2 +Q+ (L− aE)2

]
, (2.68)

Θ(θ) = Q− cos2 θ
[
a2(κ− E2) + L2 csc2 θ

]
, (2.69)

Q = K − (L− aE)2. (2.70)

Here, we introduce a constantQ, so-called the Carter constant. From Eqs. (2.58), (2.63),

and (2.64), we obtain the geodesic equations:

Σ ṙ = ±
√
R(r), (2.71)

Σ θ̇ = ±
√

Θ(θ), (2.72)

Σ ṫ = a(L− aE sin2 θ) +
r2 + a2

∆
[(r2 + a2)E − aL], (2.73)

Σ ϕ̇ = L csc2 θ − aE +
a

∆
[(r2 + a2)E − aL]. (2.74)
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• θ-motion

We discuss the θ-motion of a geodesic in the Kerr spacetime. Unlike the case of

the Schwarzschild spacetime, in the Kerr spacetime, a geodesic can deviate from

the equatorial plane. The geodesic motion in θ direction is characterized by the

value of the Carter constant Q. According to Eq. (2.72), the geodesic equation in

θ direction has real solutions only for Θ = Q− cos2 θ [a2(κ− E2) + L2 csc2 θ] ≥ 0.

When Q > 0, the function has a zero point at the points θ0 and π − θ0, and it is

positive in this interval containing the equatorial plane. This means the geodesics

can across the equatorial plane and they oscillate symmetrically. When Q < 0,

the a geodesic confined to a cone and cannot intersect the equatorial plane. When

Q = 0, real roots always exist for θ = π/2: this case corresponds to the equatorial

geodesics.

• r-motion (null geodesics)

Here, we discuss null geodesics because in Chapter 4, we use only null geodesics

for the analysis. We introduce two impact parameters as

b =
L

E
, q =

Q

E2
, (2.75)

Then the geodesic equations are written in terms b and q as follows

ktṫ =
1

Σ

[
a
(
b− a sin2 θ

)
+
r2 + a2

∆

(
r2 + a2 − ab

)]
, (2.76)

kr = ṙ =
σr
Σ

√
R, (2.77)

kθ = θ̇ =
σθ
Σ

√
Θ, (2.78)

kφ = φ̇ =
1

Σ

[
b

sin2 θ
− a+

a

∆

(
r2 + a2 − ab

)]
, (2.79)

where σr, σθ = ±, the dot denotes the derivative with respect to an affine param-

eter, and

R =
(
r2 + a2 − ab

)2 −∆
[
q + (b− a)2

]
, (2.80)

Θ = q − b2 cot2 θ + a2 cos2 θ. (2.81)

According to these geodesic equations, we can find that the null geodesics in the

Kerr spacetime are completely characterized by b and q.
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We focus on the spherical photon orbit [75]. The spherical photon orbit is

a characteristic orbit in the Kerr spacetime and relates various phenomena and

observations such as the black hole shadow. The locations of the spherical photon

orbits are determined by following two equations

R = 0,
dR

dr
= 0. (2.82)

Solving these equations for b and q, we obtain

bsp =
(rsp − 3)r2sp + a2(rsp + 1)

a(1− rsp)
, (2.83)

qsp = −
r3sp(rsp(rsp − 3)2 − 4a2)

a2(rsp − 1)2
. (2.84)

The radius of the spherical photon orbit is determined by these quantities implic-

itly. For qsp = 0, the radii of the spherical photon orbits are the roots of the

following equation

r3/2 − 3r1/2 ± 2a = 0. (2.85)

This is the equation giving the radius the circular photon orbit rpc. The radius is

given by Eq. (2.41). For q > 0, the radius of the spherical photon orbit is restricted

in the range r−pc < rsp < r+pc.
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Chapter 3

Effect of a second compact object

on stable circular orbit

The contents of this chapter is originally published as:

• K. Nakashi and T. Igata, “Innermost stable circular orbits in the Majumdar-Papapetrou dihole spacetime,”

Phys. Rev. D 99 (2019) no.12, 124033,

• K. Nakashi and T. Igata, “Effect of a second compact object on stable circular orbits,” Phys. Rev. D 100

(2019) no.10, 104006.

Copyright (2019) by the American Physical Society.

In this chapter, we study the effect of a second compact object on the stable

circular orbits using the Majumdar–Papapetrou (MP) dihole spacetime. We show

that in the MP dihole spacetime, the appearances of the circular orbits of test

particles are different from those of a single black hole. We classify the parameter

range of the separation and the mass ratio according to the qualitative changes

of the stable circular orbits in the MP dihole spacetime. We also discuss some

properties of the sequence of the stable circular orbits, which do not appear in a

single black hole, and the expected phenomena.
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3.1 Conditions for stable circular orbits in the

Majumdar–Papapetrou dihole spacetime

The metric and the gauge field of the MP dihole spacetime in isotropic coordi-

nates are given by

gµνdx
µdxν = −dt2

U2
+ U2(dρ2 + ρ2dϕ2 + dz2), (3.1)

Aµdx
µ = U−1dt, (3.2)

U(ρ, z) = 1 +
M+√

ρ2 + (z − d)2
+

M−√
ρ2 + (z + d)2

, (3.3)

where M± are each black hole mass located at z = ± d (d ≥ 0). Note that we

choose cylindrical coordinates on the spatial geometry, x = ρ cosϕ and y = ρ sinϕ,

where x, y are the Cartesian coordinates. We introduce a mass ratio parameter

ν :=
M−

M+

. (3.4)

We assume that the black hole mass M+ is equal or larger than another black hole

mass M−, i.e.,

0 ≤ ν ≤ 1. (3.5)

We use units in which M+ = 1 in what follows.

The Lagrangian of a particle freely falling in the MP dihole spacetime is given

by

L =
1

2

[
− ṫ2

U2
+ U2(ρ̇2 + ρ2ϕ̇2 + ż2)

]
, (3.6)

where the dot denotes derivative with respect to an affine parameter. Since the

coordinates t and ϕ are cyclic, the canonical momenta conjugate to them are

constants of motion:

E =
ṫ

U2
, L = ρ2U2ϕ̇, (3.7)

which are energy and angular momentum, respectively. We normalize the four-

velocity ẋµ so that gµν ẋ
µẋν = −κ, where κ = 1 for a timelike particle and κ = 0
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for a massless particle. Rewriting the normalization condition in terms of E and

L, we have

ρ̇2 + ż2 + V = E2, (3.8)

V (ρ, z) =
L2

ρ2U4
+

κ

U2
. (3.9)

We can view Eq. (3.8) as an energy equation and V as a 2D effective potential

of particle motion in the ρ-z plane. In terms of V , the equations of motion are

written as

ρ̈+
2Uz

U
żρ̇− 2Uρ

U
ż2 +

Vρ
2

= 0, (3.10)

z̈ +
2Uρ

U
żρ̇− 2Uz

U
ρ̇2 +

Vz
2

= 0, (3.11)

where Vi = ∂iV and Ui = ∂iU (i = ρ, z).

We focus on circular orbits with constant ρ and z. Then, the energy equa-

tion (3.8) immediately reduces to

V = E2. (3.12)

Hence, V must be positive for circular orbits. In addition, we find that constant

(ρ, z) can be a solution to Eqs. (3.10) and (3.11) when its position corresponds to

an extremum of V :

Vρ = 0, (3.13)

Vz = 0. (3.14)

We can rewrite the three conditions (3.12)–(3.14), respectively, as

E2 = E2
0(ρ, z) := V (ρ, z;L2

0), (3.15)

L2 = L2
0(ρ, z) := − ρ3U2Uρ

U + 2ρUρ

, (3.16)

Uz =
d− z

[ρ2 + (z − d)2]3/2
− ν(d+ z)

[ρ2 + (z + d)2]3/2
= 0. (3.17)

From Eqs. (3.15) and (3.16), both values of E2
0 and L2

0 depend on positions of

circular orbits and must be positive. The positivity of L2 leads to that of E2 as
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seen from Eq. (3.9), so that it is sufficient to pay attention only to the positivity

of L2.

Now we solve Eq. (3.17). If ν = 0, then we obtain the solution z = d. If

0 < ν ≤ 1, we find that from Eq. (3.17), the range of z is bounded in |z| < d.

Solving Eq. (3.17) for ρ2 in this range, we obtain the root

ρ20(z) =
(d− z)2/3(d+ z)2 − ν2/3(d+ z)2/3(d− z)2

ν2/3(d+ z)2/3 − (d− z)2/3
, (3.18)

for z ̸= d(1− ν)/(1 + ν). When z = d(1− ν)/(1 + ν) holds, then Eq. (3.17) leads

to z = 0, and hence ν = 1. Note that the root ρ0 is real and positive in the range

−d < z < −1−
√
ν

1 +
√
ν
d,

1− ν

1 + ν
d < z < d. (3.19)

As the radius increases, the curve 1 ρ = ρ0 approaches the line

z =
1− ν

1 + ν
d. (3.20)

On the other hand, the curves terminate on ρ = 0 at z = ± d (i.e., the horizons)

and

z = −1−
√
ν

1 +
√
ν
d. (3.21)

Note that we can find a circular orbit at a point in the ρ-z plane if it is located on

the curve ρ = ρ0(z) and satisfies E2
0 ≥ 0 and L2

0 ≥ 0.

To determine the stability of a circular orbit, we need further analysis. From

the standard linear stability analysis of circular orbits, we find that a circular orbit

is stable if and only if the orbit exists at a local minimum point of V . We call

such a circular orbit a stable circular orbit. On the other hand, a circular orbit is

unstable if and only if the orbit exists at a local maximum point of V or a saddle

point of V . We call such a circular orbit an unstable circular orbit. Here, we

introduce the Hessian of V and the trace of Vij = ∂i∂jV

h(ρ, z;L2) = detVij, (3.22)

k(ρ, z;L2) = TrVij. (3.23)

1Equations (3.18) and (3.20) indeed form hypersurfaces in the spacetime, while these form

one-dimensional curves in the ρ-z plane. The words “curve” and “line” used in this chapter mean

such one-dimensional curves in the ρ-z plane.
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In terms of these quantities, we can summarize the stability of circular orbits as

follows:

(i) A circular orbit is stable ⇐⇒ h > 0 and k > 0 at a stationary point of V ;

(ii) A circular orbit is unstable ⇐⇒ (h > 0 and k < 0) or h < 0 at a stationary

point of V .

When a sequence of stable circular orbits switches to a sequence of unstable circular

orbits at a radius, we call the circular orbit at the radius a marginally stable circular

orbit (MSCO), where V has an inflection point (i.e., h = 0). In particular, we call

the MSCO with the smallest value of the radial coordinate ρ the innermost stable

circular orbit (ISCO). To discuss the stability of circular orbits, we introduce the

Hessian h and the trace k evaluated at L2 = L2
0

h0(ρ, z) = h(ρ, z;L2
0)|Uz=0, (3.24)

k0(ρ, z) = k(ρ, z;L2
0)|Uz=0, (3.25)

where the restriction Uz = 0 means that the terms directly proportional to Uz have

been removed from the right-hand sides. Using h0 and k0, we specify the region

where the remaining conditions for stable circular orbits hold

D = {(ρ, z) |h0 > 0, k0 > 0, L2
0 > 0}. (3.26)

We can find stable circular orbits on the curve ρ = ρ0(z) included in the region D.

3.2 Equal mass case

In this section, we focus on the equal mass MP dihole spacetime: ν = 1. The

equal mass MP dihole spacetime depends on only the separation parameter d. In

this case, Eq. (3.17) reduces to

z
[
ρ6 − 3

(
d2 − z2

)2
ρ2 − 2

(
d2 + z2

) (
d2 − z2

)2]
= 0. (3.27)

This equation means that Uz always vanishes on the symmetric plane z = 0.

Focusing on the case where the inside of the square bracket vanishes, we find

another real root of Eq. (3.17)

ρ20 = 2(d2 − z2) cos

[
1

3
arccos

d2 + z2

d2 − z2

]
. (3.28)
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Hence, we obtain two curves z = 0 and ρ = ρ0(z) in ρ-z plane, where Uz vanishes.

Note that these curves intersect each other at (ρ, z) = (
√
2d, 0).

It is convenient to obtain the expressions L0, E0, and h0 evaluated at the

symmetric plane z = 0. To derive them in simpler forms, we use a new coordinate

R defined by

R(ρ) =
√
ρ2 + d2, (3.29)

where R ≥ d, which follows from ρ ≥ 0. In terms of R, we derive angular momen-

tum and energy for a circular orbit on z = 0, respectively,

L0(ρ, 0) =

√
2(R + 2)(R2 − d2)

R
√
F

, (3.30)

E0(ρ, 0) =
R
√
R3 + 2d2

(R + 2)
√
F
, (3.31)

where, without loss of generality, we have chosen the branch L0 ≥ 0, and

F (R) = R3 − 2R2 + 4d2. (3.32)

Note that these quantities diverge if F vanishes. Furthermore, in the range F < 0,

there is no circular orbit. In addition, the derivatives of L0(ρ, 0) and E0(ρ, 0) with

respect to R are given by, respectively,

dL0(ρ, 0)

dR
=

G√
2R2F 3/2

, (3.33)

dE0(ρ, 0)

dR
=

G

(R + 2)2
√
R3 + 2d2F 3/2

, (3.34)

where

G(R) = R6 − 6R5 + 3d2R4 + 22d2R3 + 16d4. (3.35)

These results mean that the monotonicity of angular momentum and energy for

a circular orbit switches at the points where G = 0. We find that, at least in the

region far enough from the center R ≫ d, the angular momentum L0(ρ, 0) and the

energy E0(ρ, 0) are real positive values and monotonically increasing with R. We

also derive h0 evaluated at z = 0

h0(ρ, 0) =
16(R2 − 3d2)G

R2(R + 2)6F 2
. (3.36)
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If F vanishes, this quantity diverges, which is similar to the behaviors seen in

L0(ρ, 0) and E0(ρ, 0). On the other hand, the Hessian h0(ρ, 0) vanishes at R =
√
3d

(i.e., ρ =
√
2d), where z = 0 and ρ = ρ0 intersect each other. In addition, h0(ρ, 0)

also vanishes for G = 0, which is similar to the behavior seen in Eqs. (3.33) and

(3.34). This fact implies that the monotonicity of angular momentum and energy

for a circular orbit switches at zeros of h0(ρ, 0). Taking into account h0(ρ, 0) > 0 for

R ≫ d, we find that both angular momentum and energy monotonically increase

with R on the sequence of stable circular orbits and monotonically decrease with

R on the sequence of unstable circular orbits.

We discuss the dependence of the positions of stable circular orbits on the

separation parameter d. Using the functions defined in the previous section, we

plot the sequence of stable circular orbits as illustrated in Figs. 3.1. On the basis

of these plots, dividing the range of d into five parts, we clarify the behavior of

stable circular orbits for each range of d in the following subsections. Furthermore,

we find the four critical values of d characterized by the behaviors of the sequence

of stable circular orbits and the angular momentum of a circular orbit.

A d > 1.401 · · ·

We focus on stable circular orbits in the case where the separation between the

dihole is large enough (i.e., d ≫ 1). Figure 3.1(a) shows a typical shape of the

sequence of stable circular orbits for a large value of d. As seen from the figure,

stable circular orbits exist on the line z = 0 in the range ρ ∈ (
√
2d,∞). The

end point (ρ, z) = (
√
2d, 0) is an MSCO because the sequence switches to that

of unstable circular orbits at this point, where h0 = 0. In addition, at this point

the sequence of stable circular orbits bifurcates into the curve ρ = ρ0, where ρ0

is defined by Eq. (3.28). Finally it terminates near each black hole, which also

correspond to MSCOs, especially the ISCOs.

Even in the sequence on ρ = ρ0, the energy and the angular momentum of

stable circular orbits monotonically decrease as the radius decreases up to the

ISCOs. Note that, when d is large enough, a particle moving near each black holes

feels gravity of a single black hole. Indeed, in the limit as d→ ∞, the ISCO radius

measured by ρ approaches 3, which coincides with the ISCO radius of the single

extremal Reissner–Nordström black hole spacetime.
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As the value of d decreases from a large value, the ISCOs approach the inter-

section of z = 0 line and ρ = ρ0 line. When the value of d reaches 1.401 · · · , the
three MSCOs merge at a point on z = 0 [see Fig. 3.1(b)]. As a result, the sequence

of stable circular orbits only appears on the line z = 0.

B d = d0 = 1.401 · · ·

We find the critical value d = d0 at which the three MSCOs degenerate [see

Fig. 3.1(b)]. We expand ρ0 in Eq. (3.28) around z = 0 up to O(z2),

ρ0 =
√
2d− 7

9
√
2d
z2 +O(z4). (3.37)

Substituting this expression into h0, we expand it around z = 0 again,

h0(ρ0, z) =
768

(
54d2 − 33

√
3d− 26

)
d2

(
9d− 2

√
3
)2 (

3d+ 2
√
3
)6 z2 +O(z4). (3.38)

As already discussed above, these results imply that there exists an MSCO at the

point (ρ, z) = (
√
2d, 0). Furthermore, since the condition of the multiple root is

d2h0(ρ0, z)/dz
2 = O(z2), i.e., 54d2 − 33

√
3d− 26 = 0, we obtain the critical value

d0 as

d0 =
11 +

√
329

12
√
3

= 1.401 · · · . (3.39)

Thus, in the case d = d0, we find stable circular orbits on z = 0 plane in the range

ρ ∈ (
√
2d0,∞) and the ISCO at (ρ, z) = (

√
2d0, 0).

C d0 > d > 0.9713 · · ·

If we make d smaller than d0, the sequence of stable circular orbits still appears

only on z = 0 plane in the range ρ ∈ (
√
2d,∞) [see Fig. 3.1(c)], so that it is

sufficient to analyze circular orbits on it. The end point (ρ, z) = (
√
2d, 0) corre-

sponds to the unique MSCO, especially the ISCO. When the value of d reaches

0.9713 · · · , the region D becomes marginally connected at the intersection point

of the lines z = 0 and h0 = 0 [see Fig. 3.1(d)]. This intersection point is not an

MSCO because the sequence of stable circular orbits does not switch to that of

unstable circular orbits here. As a result, there exists the unique MSCO in the

range d0 ≥ d ≥ 0.9713 · · · .
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D d = d∗ = 0.9713 · · ·

We seek the exact critical value d = d∗ at which the region D is marginally

connected at the intersection point of the lines z = 0 and h0 = 0 [see Fig. 3.1(d)].

In other words, the function h0 has a saddle point at this point. We use this

condition to derive d∗ in what follows. From the explicit form of h0(ρ, 0) given in

Eq. (3.36), we find that the condition h0(ρ, 0) = 0 holds at (R, z) = (
√
3d, 0), but

the Hessian h0 does not have a stationary point there. Therefore, we focus on the

other branch

G = 0, (3.40)

where G is defined by Eq. (3.35). A point satisfying this equation can be a sta-

tionary point of h0 if dh0(ρ, 0)/dR = 0, which reduces to

R3 − 5R2 + 2d2R + 11d2 = 0, (3.41)

where we have used Eq. (3.40). Solving Eqs. (3.40) and (3.41) for d and R simul-

taneously, then we obtain the solutions

d∗ =
50(7 +

√
129)

(13 +
√
129)

√
710 + 70

√
129

= 0.9713 · · · , (3.42)

R∗ =
−19 + 3

√
129

4
= 3.768 · · · . (3.43)

The value of ρ corresponding to these solutions is given by

ρ∗ =
5

512
(20291− 1667

√
129) = 3.641 · · · . (3.44)

The inverse of d∗ coincides with the critical values M∗ mentioned in Ref. [41].

Note that the linear stability of a circularly orbiting particle at (ρ, z) = (ρ∗, 0) is

undetermined, but the analysis of the allowed region of the particle motion shows

it nonlinearly stable.

E d∗ > d > 0.5433 · · ·

If we make d smaller than d∗, the region D is separated into two regions [see

Fig. 3.1(e)], and then two sequences of stable circular orbits appear on the line

z = 0. The outer sequence appears from infinity to an MSCO, while the inner
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sequence appears between another MSCO and the ISCO. Therefore, three MSCOs

appear in total as the boundaries of these sequences. Their radii except for the

ISCO radius are given as real roots for Eq. (3.40), and the ISCO radius is ρ =
√
2d.

As the value of d gradually decreases, the two sequences tend to separate from

each other. In addition, the energy at the MSCO next to the ISCO increases.

Remarkably, it reaches the energy level of a rest particle at infinity (i.e., E = 1)

at d = 0.7567 · · · . Hence, for d ≤ 0.7567 · · · , stable circular orbits with E0 ≥ 1

exist until the inner sequence disappears. Note that we do not observe such a

phenomenon in the Kerr spacetime. Since circular orbits with E0 ≤ 1 occur more

naturally, the sequence with E0 > 1 does not contribute to phenomena such as

accretion disk formation around the dihole.

Also, in this parameter range of d, an interesting feature arises. As the value

of d decreases, the radius of the MSCO located next to the ISCO approaches

the radius of the circular photon orbit, and eventually, the MSCO radius can be

arbitrary close to the radius of the circular photon orbit. As a result, the angular

frequency of a timelike particle on the MSCO can be comparable with that of the

circular photon orbit. This feature does not appear in a single black hole case.

Furthermore, it is known that the frequency of the circular photon orbit relates to

the frequency of the quasinormal mode [76]. Thus, in the MP dihole spacetime,

resonant excitation of a quasinormal mode that is a characteristic mode of the MP

dihole spacetime may be happened by a timelike particle.

When the value of d reaches 0.5433 · · · , the MSCO next to the ISCO is no

longer a circular orbit because infinitely large angular momentum and energy are

required to keep it a circular orbit [see Fig. 3.1(f)]. In the following subsection, we

find the critical value of d from the behavior of L2
0.

F d = d∞ = 0.5433 · · ·

As mentioned in the previous subsection, one of the three MSCOs located

next to the ISCO disappears in the limit as d ↘ 0.5433 · · · . If a timelike particle

circularly orbited at this limiting radius for d = 0.5433 · · · , the angular momentum

L2
0 would diverge. Therefore, to find the exact critical value d∞, we analyze the

behavior of L2
0(ρ, 0), which is given by Eq. (3.30). Notice that this expression and
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Eq. (3.36) diverge if the following condition is satisfied:

F = 0. (3.45)

It is worth pointing out that this condition is equivalent to that of the existence

of circular photon orbits (see Appendix A). Since F (R) has a local minimum at

R = 4/3 and its extreme value takes the form F (4/3) = 4(d2− 8/27), we find that

the divergence of L2
0 appears only at ρ = ρ∞ for d = d∞, where

d∞ =
2
√
6

9
= 0.5433 · · · , (3.46)

ρ∞ =
2
√
30

9
= 1.217 · · · , (3.47)

where ρ∞ corresponds to R = 4/3. At d = d∞, hence the inner sequence of stable

circular orbits on z = 0 plane exist in the range ρ ∈ (
√
2d∞, ρ∞). The inverse of

d∞ coincides with M̄ mentioned in Ref. [41].

For d > d∞, the angular momentum L2
0(ρ, 0) is positive and finite everywhere.

This means that there exist stable/unstable circular orbits with arbitrary radii on

z = 0 plane. On the other hand, for d ≤ d∞, there exists no circular orbit of a

massive particle on z = 0 plane in the range ρps ≤ ρ ≤ ρpu because L2
0 can be

negative or infinitely large there, where ρps and ρpu are defined in Eqs. (A.4) and

(A.5).

G d∞ > d > 0.3849 · · ·

If we make d smaller than d∞, there still exist the two sequences of stable

circular orbits on z = 0 plane [see Fig. 3.1(g)]. The outer sequence exists from

infinity to an MSCO. The inner sequence exists in the range ρ ∈ (
√
2d, ρps), where

ρ =
√
2d is the ISCO radius and ρ = ρps is the radius of the stable circular photon

orbit, defined by Eq. (A.5) in Appendix A. The ISCO radius is smaller than the

radius of the stable circular photon orbit. Note that L2
0 diverges in the limit as

ρ → ρps on the inner sequence, which is consistent with the appearance of the

stable circular photon orbit.

As the value of d approaches 0.3849 · · · , the value ρps approaches
√
2d. When

d = 0.3849 · · · , the inner sequence disappears [see Fig. 3.1(h)].
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H d = dc = 0.3849 · · ·

We seek the exact critical value of d = 0.3849 · · · at which the inner sequence

of stable circular orbits just disappears. The value of L2
0 at (ρ, z) = (

√
2d, 0) is

given by

L2
0(
√
2d, 0) =

8 (d+ 3dc)
2

3
√
3 (d− dc)

, (3.48)

where

dc =
2
√
3

9
= 0.3849 · · · . (3.49)

This result together with Eq. (3.36) means that, even if d arbitrarily approaches

to dc from above, the point (ρ, z) = (
√
2d, 0) is necessarily an MSCO. If d = dc,

then L2
0 at (ρ, z) = (

√
2dc, 0) diverges, so that the inner sequence of stable circular

orbits disappears. Consequently, we can identify dc with the numerical critical

value d = 0.3849 · · · . Thus, the location of the ISCO changes discontinuously at

d = dc. Note that, however, the circular photon orbit exists there.

I dc > d ≥ 0

If we make d smaller than dc, the single sequence of stable circular orbits

appears on z = 0 plane from infinity to the ISCO. As the value of d approaches 0,

the ISCO radius monotonically increases. For d = 0, the MP dihole becomes the

single extremal Reissner–Nordström black hole with mass equal to 2 in our units.

Then, the sequence of stable circular orbits exists from infinity to the ISCO radius

equal to three times its mass. Therefore, we find the ISCO at ρ = 6 as shown in

Fig. 3.1(i). Note that z = 0 plane at d = 0 is no longer special because spherical

symmetry is restored.
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Figure 3.1: Positions of stable circular orbits of massive particles in ρ-z plane

of the MP dihole spacetime with equal mass M+ = M− = 1 for the separation

range 0 ≤ d ≤ 5. The solid black lines represent the curves satisfying Uz = 0 (i.e.,

z = 0 and ρ = ρ0). The shaded regions show the region D, where h0 > 0, k0 > 0,

and L2
0 > 0 are satisfied. The sequence of stable circular orbits is the solid black

curves included in the region D. The solid blue lines are the boundary of D where

h0 = 0, L2
0 > 0, and k0 > 0. The dashed blue lines are the boundary of D where

h0 > 0, k0 > 0, and L2
0 diverges. The red dots are the positions of ISCOs. The

green dots are the positions of marginally stable circular orbits (MSCOs) except

for the ISCO. The orange triangles and dots are the positions of unstable circular

photon orbits and stable ones, where L2
0 diverges.

40



se
p
ar
at
io
n

M
S
C
O
s

n
(M

S
C
O
s)

IS
C
O
s

n
(I
S
C
O
s)

A
.

d
>
d
0
=

1.
40
1
··
·

(ρ
0
,z
)
w
h
er
e
h
0
(ρ

0
,z
)
=

0,
|z
|≤

d
3

(ρ
0
,z
)
w
h
er
e
h
0
(ρ

0
,z
)
=

0,
z
̸=

0
2

B
.

d
=
d
0

(√
2d

0
,0
)

1
(√

2d
0
,0
)

1

C
.

d
0
>
d
>
d
∗
=

0.
97
13

··
·

(√
2d
,0
)

1
(√

2d
,0
)

1

D
.

d
=
d
∗

(√
2d

∗,
0)

1
(√

2d
∗,
0)

1

E
.

d
∗
>
d
>
d
∞

=
0.
54
33

··
·

(ρ
,0
)
w
h
er
e
h
0
(ρ
,0
)
=

0
3

(√
2d
,0
)

1

F
.

d
=
d
∞

(ρ
,0
)
w
h
er
e
h
0
(ρ
,0
)
=

0,
0
≤
L
2 0
<

∞
2

(√
2d

∞
,0
)

1

G
.
d
∞
>
d
>
d
c
=

0.
38
49

··
·

(ρ
,0
)
w
h
er
e
h
0
(ρ
,0
)
=

0,
0
≤
L
2 0
<

∞
2

(√
2d
,0
)

1

H
.

d
=
d
c

(ρ
,0
)
w
h
er
e
h
0
(ρ
,0
)
=

0
1

(ρ
,0
)
w
h
er
e
h
0
(ρ
,0
)
=

0
1

I.
d
c
>
d
≥

0
(ρ
,0
)
w
h
er
e
h
0
(ρ
,0
)
=

0
1

(ρ
,0
)
w
h
er
e
h
0
(ρ
,0
)
=

0
1

T
ab

le
3.
1:

P
os
it
io
n
s
in
ρ
-z

p
la
n
e
an

d
th
e
n
u
m
b
er
s
of

th
e
m
ar
gi
n
al
ly

st
ab

le
ci
rc
u
la
r
or
b
it
s
(M

S
C
O
s)

an
d
th
e
in
n
er
m
os
t

st
ab

le
ci
rc
u
la
r
or
b
it
s
(I
S
C
O
s)
fo
r
ea
ch

ra
n
ge

of
th
e
se
p
ar
at
io
n
p
ar
am

et
er
d
.
T
h
e
it
em

n
(M

S
C
O
s)
in
d
ic
at
es

th
e
n
u
m
b
er

of
th
e
M
S
C
O
s,
an

d
th
e
it
em

n
(I
S
C
O
s)

in
d
ic
at
es

th
e
n
u
m
b
er

of
th
e
IS
C
O
s.

41



With the transition of the sequence of stable circular orbits, the numbers of

MSCOs changes. We have summarized them in Table 3.1. The number of the

MSCOs increases due to the bifurcation or the separation of the sequence. The

radii of MSCOs and the ISCOs are plotted as a function of d in Fig. 3.2. The

ISCO radius, shown by red lines, can be smaller than the ISCO radius in the

single extremal Reissner–Nordström black hole spacetime. The location of the

ISCO changes discontinuously at d = dc.

For an equal mass MP dihole with arbitrary separation, we have found stable

circular orbits far from the dihole on the symmetric plane. These orbits balance

by Newtonian gravitational force and centrifugal force. Near the dihole, however,

stable circular orbits may balance by other mechanisms. As in the case of a fa-

miliar Schwarzschild black hole, a particle in the vicinity of the horizon feels the

higher-order relativistic effect. On the other hand, since there is no horizon on

the symmetric plane of this dihole spacetime, the centrifugal barrier of a particle

inevitably diverges at the center. As a result, a radial stable equilibrium point

appears by balancing the relativistic higher-order gravitational force and centrifu-

gal force. Furthermore, if this point is also in a region bounded in the vertical

direction, a stable circular orbit occurs. This mechanics is similar to that of the

appearance of stable circular orbits near the 5D black ring [77, 78]. This suggests

that the phenomenon occurs universally in the spacetime where there is no horizon

at the center of the system.

We briefly mention unstable circular orbits for massive particles. For an ar-

bitrary value of d > 0, there exists the sequence of unstable circular orbits on

the symmetric plane in the range ρ <
√
2d, which are radially stable but verti-

cally unstable. The sequence further appears between the pair of MSCOs on the

symmetric plane for d∞ < d < d∗ [see Fig. 3.1(e)], while it appears between the

outermost MSCO and the unstable circular photon orbit for 0 ≤ d ≤ d∞ [see

Figs. 3.1(f)–3.1(i)]. In addition, we also find unstable circular orbits on ρ = ρ0

for d > dc. They appear between the ISCO(s) and the unstable circular photon

orbits. On these sequences, the energy and the angular momentum monotonically

increase as the radius decreases.
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Figure 3.2: Dependence of the radii of marginally stable circular orbits and cir-

cular photon orbits on the separation parameter d in the Majumdar–Papapetrou

dihole spacetime with equal unit mass. The green and red solid lines mark the

radii of the marginally stable circular orbits (MSCOs) and innermost stable cir-

cular orbits (ISCOs), respectively. The orange dashed lines and the orange solid

line are the unstable circular photon orbits and the stable circular photon orbits,

respectively. For dc < d ≤ d∞, the radius of the ISCO is smaller than that of

the stable circular photon orbit. At d = dc, a discontinuous transition of ISCO

position occurs.

3.3 Different mass case

In previous section, for the equal mass MP dihole spacetime, we have divided

the range of the separation parameter d into five parts based on qualitative differ-

ences of the sequence of stable circular orbits and simultaneously have determined

the four critical values as the boundaries of the ranges: d0, d∗, d∞ and dc. In this

section, we show that this division depends on its mass ratio and the mass ratio

range separates into four parts, and we find three critical values as the boundaries.
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A 1 > ν > ν∞ = 0.7698 · · ·

We consider sequences of stable circular orbits for various values of d in the

MP dihole spacetime with mass ratio ν ≃ 1 but ν ̸= 1. We show sequences of

stable circular orbits for several values of d in the case ν = 0.9 in Fig. 3.3. On

the basis of these typical plots, we discuss some qualitative properties of stable

circular orbits and critical values of d. Specific numerical values for critical values

d0, d∗, d∞, and dc in this subsection are those for ν = 0.9.

For a large value of d, we have two sequences of stable circular orbits on both

sides of the dihole [see Fig. 3.3(a)]. The sequence on the large black hole side

exists from infinity to the ISCO near the large black hole. On the other hand,

the sequence on the small black hole side is restricted within a finite region. The

inner boundary near the small black hole corresponds to the ISCO, and the outer

boundary to an MSCO. As the value of d approaches a critical value d0(= 2.111 · · · )
from above, the MSCO and the ISCO on the small black hole side approach each

other. At d = d0, these merge into one, and then the sequence on the small

black hole side just disappears [see Fig. 3.3(b)]. If d becomes smaller than d0,

the sequence on the small black hole side no longer exists. We can interpret this

disappearance as a consequence of relativistic effects because the corresponding

sequences in Euler’s three-body system, which is governed by Newtonian gravity,

always exist for arbitrary values of d.

In the range d0 ≥ d > d∗(= 0.9252 · · · ), there exists a sequence of stable

circular orbits only on the large black hole side, which appears from infinity to the

ISCO [see Fig. 3.3(c)]. At d = d∗, the boundary of the region D touches the curve

ρ = ρ0 [see Fig. 3.3(d)]. This implies that two sequences of stable circular orbits

are marginally connected at a point.

In the range d∗ ≥ d > dc(= 0.4679 · · · ), two sequences of stable circular orbits

appear [see Figs. 3.3(d)–3.3(g)]. The outer sequence exists from infinity to the

outermost MSCO. On the other hand, the behavior of the inner sequence divides

this range of d into two parts. For d∗ ≥ d > d∞(= 0.5198 · · · ), the inner sequence

exists between an MSCO and the ISCO. However, at d = d∞, the outer MSCO

disappears because infinitely large energy and angular momentum would be re-

quired for a massive particle [see Fig. 3.3(f)]. In other words, a circular photon

orbit appears there. For d∞ ≥ d > dc, the inner sequence appears between the
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stable circular photon orbit and the ISCO [see Fig. 3.3(g)]. At d = dc, the stable

circular photon orbit and the ISCO merge into one, and then the inner sequence

just disappears [see Fig. 3.3(h)]. In the range dc ≥ d ≥ 0, there only exists a

sequence of stable circular orbits, which appears from infinity to the ISCO [see

Fig. 3.3(i)].

Consequently, we divide the range of d into five parts on the basis of typical

behaviors of the sequence of stable circular orbits and introduce four critical values

of d as the boundaries of these ranges as we have done in the case ν = 1. Note

that, however, each meaning of critical values is slightly generalized from those of

ν = 1. Here, let us summarize how we define the four critical values:

(i) d = d0: The sequence of stable circular orbits on the small black hole side

disappears.

(ii) d = d∗: The sequence of stable circular orbits on the large black hole side is

divided into two parts.

(iii) d = d∞: A stable circular photon orbit appears at the outer boundary of the

inner sequence of stable circular orbits on the large black hole side.

(iv) d = dc: The inner sequence of stable circular orbits on the large black hole

side disappears.

In the following, according to the difference in the appearance of these critical

values, we classify the range of the mass ratio ν into four parts. In each range

of ν, we discuss the behavior of the sequence of stable circular orbits depending

on d. Figure 3.8(a) shows the dependence of the radii of the MSCOs, the ISCOs,

and the circular photon orbits on d in the case ν = 0.9. In the range dc < d ≤
d∞, the radius of the ISCO (red solid line) is smaller than the one of the stable

circular photon orbit (orange solid line in the middle of the three). In addition,

the discontinuous transition of the position of the ISCO occurs at d = dc. These

phenomena are also seen in the equal mass MP dihole spacetime [43].

B ν = ν∞ = 0.7698 · · ·

If we decrease the value of ν from ν = 1, then at

ν = ν∞ :=
4
√
3

9
= 0.7698 · · · , (3.50)

45
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�

�

0 2 4 6 8 10 12 14

-6

-4

-2

0

2

4

6

�

z

�

�

0 2 4 6 8 10
-4

-2

0

2

4

�

z

�

�

0 1 2 3 4 5 6
-2

-1

0

1

2

�

z

�

�

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

�

z

��

�

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

�

z

�

�

�

0 1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

�

z

�

�

�

0 1 2 3 4 5 6

-0.5

0.0

0.5

�

z �

�

0 1 2 3 4 5 6 7

-0.4

-0.2

0.0

0.2

0.4

�

z�

�

0 1 2 3 4 5 6

-0.5

0.0

0.5

�

z

\nu=0.9

d d d

d d d

d d d

d0

d* d∞

dc

Figure 3.3: Sequences of stable circular orbits in the MP dihole spacetime with

mass ratio ν = 0.9. The green dots indicate the position of marginally stable

circular orbits, and the red dots indicate the position of the innermost stable

circular orbits. The orange dots show the positions of stable circular photon orbits,

and the orange triangles show those of unstable ones.

the stable circular photon orbit no longer appears for any value of d. In other

words, the critical value d∞ disappears at ν = ν∞. We can interpret that the

gravity of the small black hole is not sufficiently strong to make a photon orbit

circular in the region far from the large black hole even if two black holes get close
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Figure 3.4: Sequences of stable circular orbits in the MP dihole spacetime with

mass ratio ν = ν∞ = 0.7698 · · · . The roles of each element in these plots are the

same as those in Fig. 3.3.

each other. In what follows, we consider sequences of stable circular orbits in the

case ν = ν∞.

For d > 1/2, the behavior of sequences of stable circular orbits is similar as

that discussed in the previous subsection. Indeed, we find two critical values

d0 = 2.269 · · · and d∗ = 0.8740 · · · . We note that, however, qualitative differences

from the case in the previous subsection appear at d = 1/2. In the limit as d↘ 1/2,

we find that the MSCO and the ISCO at the boundaries of the inner sequence

merge into one at (ρ, z) = (2
√
2/3, 1/6) = (0.9428 · · · , 0.1666 · · · ) (see Fig. 3.4).

Simultaneously, infinitely large energy and angular momentum are required for a

massive particle to orbit circularly here. In other words, here is a stable/unstable

circular photon orbit. These behaviors mean that dc and d∞ are degenerate at

d = 1/2, that is, d = dc = d∞ = 1/2.

In the range d < 1/2, there is only a single sequence of stable circular orbits

that appears from infinity to the ISCO, which is the same as that discussed in the

previous section.
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C ν∞ > ν > ν∗ = 0.5306 · · ·

We consider sequences of stable circular orbits for various values of d in the

case where ν∞ > ν > ν∗ = 0.5306 · · · . We can see typical sequences of stable

circular orbits for ν = 0.7 in Fig. 3.5. On the basis of these plots, we discuss the

appearance of critical values d0, d∗, and dc in this range. Specific numerical values

for these critical values in this subsection are those for ν = 0.7.

For a relatively large value of d, a sequence of stable circular orbits appears

from infinity to the ISCO on the large black hole side, while a sequence appears

between an MSCO and the ISCO on the small black hole side [see Fig. 3.5(a)].

When d becomes smaller and smaller, at d = d0(= 2.285 · · · ), the sequence on

the small black hole side disappears [see Fig. 3.5(b)]. When d becomes smaller

and smaller yet, at d = d∗(= 0.8520 · · · ), the sequence on the large black hole

side is divided into two parts. In the range d∗ ≥ d > dc(= 0.6454 · · · ), there are

two sequences, the inner and the outer. As a result, we find three MSCOs as the

boundaries of these sequences, and the innermost one corresponds to the ISCO. At

d = dc, the inner sequence disappears. Note that the critical value d∞ no longer

exists in this range of ν. In the range 0 ≤ d < dc, we find a single sequence that

appears from infinity to the ISCO. The dependence of the radii of the MSCOs,

the ISCOs, and the circular photon orbits on d in the case ν = 0.7 is shown in

Fig. 3.8(b). The parameter range of d is divided by d0, d∗, and dc into four parts.

The discontinuous transition of the ISCO on the large black hole side still occurs

at d = dc. For any value of d, stable circular photon orbits do not exist.

D ν = ν∗ = 0.5306 · · ·

We focus on sequences of stable circular orbits for various values of d in the

case ν = ν∗ = 0.5306 · · · . For large d, we can see similar behavior of the sequences

of stable circular orbits as is shown in the previous subsection. Indeed, we obtain

the critical value d0 = 2.189 · · · . We should note that the inner sequence of stable

circular orbits appearing at (ρ, z) = (2.279 · · · , 0.3637 · · · ) for d = d∗ = 0.8327 · · ·
disappears as soon as it appears [see Fig. 3.6(d)]. This means that the critical

values d∗ and dc are degenerate. Consequently, we have no inner sequence of

stable circular orbits on the large black hole side.
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Figure 3.5: Sequence of stable circular orbits in the MP dihole spacetime with

mass ratio ν = 0.7. The roles of each element in these plots are the same as those

in Fig. 3.3.

E ν∗ > ν > ν0 = 0.0110134 · · ·

Let us consider sequences of stable circular orbits for various values of d in the

case where 0 < ν < ν∗. Observing typical sequences for ν = 0.3 in Fig. 3.7, we

discuss the appearance of the critical value d0 in this range. The specific numerical

value of d0 in this subsection is that for ν = 0.3.
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Figure 3.6: Sequences of stable circular orbits in the MP dihole spacetime with

mass ratio ν = ν∗ = 0.5306 · · · . The roles of each element in this plot are the same

as those in Fig. 3.3.

For a large value of d, we find two sequences of stable circular orbits on both

sides of the dihole [see Fig. 3.7(a)]. On the large black hole side, the sequence

appears from infinity to the ISCO. On the small black hole side, the sequence

appears from the outer MSCO to the ISCO. If d becomes smaller and reaches d =

d0(= 1.762 · · · ), the sequence on the small black hole side disappears. Therefore,

there still exists the critical value d0 [see Fig. 3.7(b)]. In the range d < d0, however,

any qualitative change of the sequence of stable circular orbits does not occur on

the large black hole side. The dependence of the radii of the MSCOs, the ISCOs,

and the circular photon orbits on d in the case ν = 0.3 is shown in Fig. 3.8(c). The

parameter range of d is divided by d0 into two parts. The discontinuous transition

of the position of the ISCO on the large black hole side no longer occurs because

there are no separated sequences of stable circular orbits on the large black hole

side.

F 0 ≤ ν ≤ ν0

We mention the sequence of stable circular orbits in the range 0 ≤ ν ≤ ν0.

When the value of ν reaches ν0 from above, the critical value d0 is equal to zero.

This means that the sequence on the small black hole side does not vanish unless

the two black holes coalesce into one. If we make the value of ν smaller than ν0,

any critical values of d do not appear. According to Fig. 3.8(d), where we set
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Figure 3.7: Sequence of stable circular orbits in the MP dihole spacetime with

mass ratio ν = 0.3. The roles of each element in these plots are the same as those

in Fig. 3.3.

ν = 0.01, for d > 0, both the large and the small black holes have the sequence of

the stable circular orbits; i.e., two MSCOs—one of these is also the ISCO—always

appear on the small black hole.

Let us summarize the behaviors of stable circular orbits in the different mass

MP dihole spacetime. When ν ≃ 1 but ν ̸= 1, the sequence of the stable circular

orbits changes as d varies in common with the case of ν = 1, but we have gen-

eralized the definitions of the critical values of d to be valid for the case of the

different mass MP dihole from those in the equal mass MP dihole spacetime [43].

When the value of d is relatively large, the sequence of stable circular orbits on the

large black hole side exists from infinity to the ISCO while that on the small black

hole side is restricted to a finite range. At d = d0, the sequence on the small black

hole side disappears. This phenomenon occurs due to the relativistic effect of the

appearance of the ISCOs. Since the radius of the outer MSCO on the small black

hole side decreases faster than the one of the ISCO as d decreases, the positions

of the MSCO and the ISCO coincide with each other at d = d0, and then the

sequence on the small black hole side disappears [see the green and red dashed

lines in Figs. 3.8(a)–3.8(c)]. For d < d0, the sequence of stable circular orbits

appears only on the large black hole side. When d = d∗, the sequence on the large

black hole side is marginally connected at a point. In the range dc < d < d∗, two

sequences of the stable circular orbits appear on the large black hole side. The

outer boundary of the inner sequence is an MSCO in d∞ < d < d∗, while a stable
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Figure 3.8: Dependence of the radii of MSCOs and circular photon orbits on the

separation parameter d in the MP dihole spacetime with mass ratio: (a) ν = 0.9,

(b) ν = 0.7, (c) ν = 0.3, and (d) ν = 0.01. The green and red solid lines show

the radii of MSCOs on the large black hole side, and the green and red dashed

lines show those on the small black hole side. In particular, the red lines indicate

each ISCO. The orange solid lines show the radii of circular photon orbits on the

large black hole side, and the orange dashed lines show those on the small black

hole side. The dashed green and red lines merge at d = d0 and then the sequence

of the stable circular orbits on the small black hole side disappears. In cases (a)

and (b), the green solid lines emerge at d = d∗, and the outer exist in the range

dc < d < d∗. In case (a), the inner exists in the range d∞ < d < d∗, while in

case (b), the one exists in the range dc < d < d∗. In case (a), the stable circular

photon orbits appear on the large black hole side in dc < d < d∞ whereas they

do not in the other cases. In case (d), the sequence on the small black hole side

always exists because there is no critical value of d.

circular photon orbit in dc < d ≤ d∞. Finally, for 0 ≤ d ≤ dc, since the inner

sequence vanishes, we have a single connected sequence from infinity to the ISCO
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Figure 3.9: Dependence of critical values of the separation d on the mass ratio ν.

The blue, orange, red, and green lines show d = d0, d∗, d∞, and dc, respectively.

The parameter range of ν is divided into four parts, and the appearance of the

critical values changes drastically at the boundaries, ν = ν∞, ν∗, and ν0. At

ν = ν∞, the critical values d∞ and dc degenerate each other. At ν = ν∗, the

critical values d∗ and dc coincide with each other. At ν = ν0, the critical value d0

disappears.

on the large black hole side.

We have also revealed the dependence of the sequence of stable circular orbits

on ν. Figure 3.9 shows the relation between ν and the critical values of d. For

ν > ν∞ = 0.7698 · · · , the sequences of the stable circular orbits are qualitatively

the same as these of the case ν ≃ 1. At ν = ν∞, the two critical values d∞ and dc

merge with each other, so that the parameter range of d is divided into four parts.

At ν = ν∗ = 0.5306 · · · , the critical values d∗ and dc coincide with each other. For

ν < ν∗, the sequence on the large black hole side does not separate into two parts.

The remaining critical value d0 also disappears when ν = ν0 = 0.01101 · · · . When

we make the value of ν smaller than ν0, the sequences of stable circular orbits on

both sides do not vanish until the two black holes merge into one [see Fig. 3.8 (d)].
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Chapter 4

Observability of the innermost

stable circular orbit in a

near-extremal Kerr black hole

The contents in this chapter originally published as:

T. Igata, K. Nakashi and K. Ogasawara, “Observability of the innermost stable circular orbit in a near-extremal

Kerr black hole,” Phys. Rev. D 101 (2020) no.4, 044044.

Copyright (2020) by the American Physical Society.

In this chapter, we investigate a photon escape probability from a light source

on the innermost stable circular orbit (ISCO) in a (near-)extremal Kerr black hole.

In particular, we show that in the extremal black hole, the escape probability of

a photon approaches a nonzero value, even if the orbital radius of a light source

is arbitrary close to the ISCO radius that coincides with the horizon radius. The

analysis method we use in this chapter is applicable when the geometrical optics

approximation is valid. This means the results are applicable when the wavelength

of electromagnetic waves emitted from a light source is sufficiently less than the

gravitational radius of a black hole. We do not consider the effect of a light

polarization.
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4.1 Avoidance cone in the Schwarzschild black

hole

In this section, we discuss an avoidance cone in the Schwarzschild black hole.

The null geodesics emitted to the inside of the avoidance cone must fall into the

black hole. Thus, the null geodesics emitted to the outside of it can escape to the

infinity. The discussion is based on [79].

We assume that a light source emits photons isotropically and is being at rest

with respect to the event horizon of the Schwarzschild spacetime. We consider the

null geodesics in the equatorial plane because the background spacetime possesses

spherical symmetry. With this assumptions, we can parameterize the spatial part

of a geodesic by the angular coordinate ϕ: x = x(ϕ). The unit tangent three

vector e to a null geodesic is given by

e =

[
f(r)−1

(
dr

dϕ

)
+ r2

]−1/2(
dr

dϕ
, 0, 1

)
, (4.1)

where f(r) = 1 − 2/r. We define the half-angle of the cone Ψ, which consists of

a emitted null geodesic and the radial axis, as the inner product of the tangent

vector e and the unit vector er = (
√
f, 0, 0):

cosΨ = (e, er) =
dr/dϕ√

fr2 + (dr/dϕ)2
. (4.2)

From this expression, we have

tan2Ψ = f(r)r2
(
dr

dϕ

)−2

. (4.3)

Combining the geodesic equations, we obtain(
dr

dϕ

)2

=
r4

b2
− fr2, (4.4)

where b = L/E is an impact parameter. The value of the impact parameter

corresponding to the circular photon orbit is bpc = 3
√
3. Substituting this value

and Eq. (4.4) into Eq. (4.3), we obtain the half-angle of the avoidance cone

tanΨ =

√
r/2− 1

(r/3− 1)
√
r/6 + 1

. (4.5)
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From this equation, when r → ∞, Ψ → 3
√
3/r. For r = 3, that is the radius of the

circular photon orbit, Ψ = π/2, while for r = 2, Ψ = π. Therefore, the amplitude

of the avoidance cone increases as the radius of the source decreases. In terms of

the escape cone, the amplitude of the escape cone decreases as the radius of the

source decreases, and eventually, the escape cone disappears at the event horizon.

4.2 Escape probability of photon from vicinity

of black hole horizon

4.2.1 Conditions for photon escaping

We review conditions for a photon escaping from the vicinity of the horizon

to infinity [55]. To derive them, we analyze the null geodesic equation in radial

direction (2.77), which is rewritten as

ṙ2 +
r(r − 2)

Σ2
(b− b1)(b− b2) = 0, (4.6)

where

b1(r) =
−2ar + [r∆(r3 − qr + 2q)]

1/2

r(r − 2)
, (4.7)

b2(r) =
−2ar − [r∆(r3 − qr + 2q)]

1/2

r(r − 2)
. (4.8)

We call bi (i = 1, 2) the effective potentials for photon’s radial motion. The allowed

parameter range of b for a positive energy photon is

b ≤ b1 for rh < r < 2, (4.9)

b2 ≤ b ≤ b1 for r ≥ 2. (4.10)

Since the photon escaping is governed by the potential barrier, the extremum

points of bi (i = 1, 2) should be clarified. Solving dbi/dr = 0 for q, we obtain a

common equation

q = f̃(r) ≡ r2

a2

[
−4(1− a2)r

(r − 1)2
+ 3 + (3− r)(r − 1)

]
. (4.11)
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Figure 4.1: Relation between the impact parameter q and the radii ri (i = 1, 2) of

extremum points of the effective potentials bi(r). The function f̃ is shown by black

lines, which are solid outside the horizon and dashed inside it. The left panel (a)

is a subextremal case (a = 0.999), and the right panel (b) is the extremal case

(a = 1).

It is sufficient to investigate the region where f̃(r) ≥ 0 because the light source

we discuss is located on the equatorial plane, and therefore, from Eqs. (2.78) and

(2.81), a photon must initially satisfy Θ = q ≥ 0.

First we consider the subextremal Kerr spacetime: 0 < a < 1. Figure 4.1(a)

shows a typical shape of f̃(r) in this case. This figure shows that Eq. (4.11) has

two roots r1, r2 outside the horizon, which are restricted in the range

rh < r−pc ≤ r1 ≤ 3 ≤ r2 ≤ r+pc, (4.12)

where r = 3 is a local maximum point of f̃ , and r±pc are radii of circular photon

orbits given by Eq. (2.41). When a photon stays at the top of an extremum point

of b1 (b2), the orbit with constant radius r = r1 (r = r2) is called the spherical

photon orbit. Then, the photon must have

b = bsi ≡
2(1− a2)

a(ri − 1)
− (ri − 1)2

a
+

3

a
− a. (4.13)

Next, we focus on the case of the extremal Kerr spacetime: a = 1, for which

the first term in the square brackets of Eq. (4.11) vanishes. Therefore, Eq. (4.11)

reduces to

q = r3(4− r). (4.14)
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Figure 4.2: Typical shapes of the effective potentials bi (i = 1, 2) and parameter

ranges of b for escaping photons. The radius r∗ indicates the radial position of the

source.

Figure 4.1(b) shows the shape of f̃ in the extremal case. In contrast to the subex-

tremal case, the number of roots of Eq. (4.11) depends on q. Outside the horizon,

there exists a single root r2 for 0 ≤ q ≤ 3, while there exist two roots r1, r2 outside

the horizon for 3 < q < 27, where the boundary values of the ranges come from

f̃(rh) = 3 and f̃(3) = 27.

Let us consider escape conditions for a photon in terms of (b, q). Classifying

the radial position r of a light source based on relations with the extremum point

r1 and the horizon rh, we clarify the parameter range of (b, q) for a photon that can

escape from the vicinity of the horizon to infinity. We also determine the marginal

pairs of (σr, b) for a photon that cannot marginally escape. In the following part,

it is assumed that r < 3.

Case a.—We consider the case r1 < rh < r, which we define as Case a. Note

that this inequality appears only for the extremal case because r1 > rh always
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holds for the subextremal case [see Fig. 4.1 and Eq. (4.12)]. The first inequality

r1 < rh leads to 0 ≤ q < 3. In this range of q, we have typical plots of b1, b2

and marginal parameter values of b, as shown in Fig. 4.2(a). From this plot, the

allowed range of b for a photon escaping can be read as follows: if σr = + (i.e.,

radially outward emission), a photon with bs2 < b ≤ b1 (i.e., the bounded range

between the blue lines) can escape to infinity. Even if σr = − (i.e., radially inward

emission), a photon with 2 < b < b1 (i.e., the bounded range between the red

lines) can do so. Hence, we find that the marginal parameter values of b are given

by (σr, b) = (+, bs2), (−, 2).
Case b.—We consider the case rh ≤ r1 < r, which we define as Case b. The

corresponding range of q is 3 ≤ q < f̃ for a = 1 and 0 ≤ q < f̃ for 0 < a < 1.

Figure 4.2(b) shows typical plots of bi in these ranges of q. If σr = +, a photon

with bs2 < b ≤ b1 (i.e., between the blue lines) can escape infinity, while if σr = −,

a photon with bs1 < b < b1 (i.e., between the red lines) can do so. Hence, we find

that marginal parameter values of b are given by (σr, b) = (+, bs2), (−, bs1).
Case c.—We consider the case rh < r ≤ r1, which we define as Case c. Then,

the parameter range of q is restricted to f̃ ≤ q < 27. Figure 4.2(c) shows typical

plots of bi in this ranges. Only if σr = +, a photon can escape to infinity, and it

must then have bs2 < b < bs1 (i.e., between the red and blue lines). Hence, we find

that marginal parameter values b are given by (σr, b) = (+, bs1), (+, b
s
2).

The allowed parameter values of (b, q) for escape from the vicinity of the horizon

are summarized in Tables 4.1 and 4.2.

59



C
as
es

q
b
(σ

r
=

+
)

b
(σ

r
=

−
)

M
ar
gi
n
al

p
ai
rs

of
(σ

r
,b
)

(a
)
r 1
<
r h
<
r

0
≤
q
<

3
bs 2
<
b
≤
b 1

2
<
b
<
b 1

(+
,b

s 2
)
an

d
(−
,2
)

(b
)
r h

≤
r 1
<
r

3
≤
q
<
f̃

bs 2
<
b
≤
b 1

bs 1
<
b
<
b 1

(+
,b

s 2
)
an

d
(−
,b

s 1
)

(c
)
r h
<
r
≤
r 1

f̃
≤
q
<

27
bs 2
<
b
<
bs 1

n
/a

(+
,b

s 2
)
an

d
(+
,b

s 1
)

T
ab

le
4.
1:

(a
=

1)
A
ll
ow

ed
p
ar
am

et
er

va
lu
es

of
(b
,q
)
fo
r
es
ca
p
e
fr
om

th
e
v
ic
in
it
y
of

th
e
h
or
iz
on

in
th
e
ex
tr
em

al

K
er
r
sp
ac
et
im

e.

C
as
es

q
b
(σ

r
=

+
)

b
(σ

r
=

−
)

M
ar
gi
n
al

p
ai
rs

of
(σ

r
,b
)

(b
)
r h

≤
r 1
<
r

0
≤
q
<
f̃

bs 2
<
b
≤
b 1

bs 1
<
b
<
b 1

(+
,b

s 2
)
an

d
(−
,b

s 1
)

(c
)
r h
<
r
≤
r 1

f̃
≤
q
<

27
bs 2
<
b
<
bs 1

n
/a

(+
,b

s 2
)
an

d
(+
,b

s 1
)

T
ab

le
4.
2:

(0
<
a
<

1)
A
ll
ow

ed
p
ar
am

et
er

va
lu
es

of
(b
,q
)
fo
r
es
ca
p
e
fr
om

th
e
v
ic
in
it
y
of

th
e
h
or
iz
on

in
a
su
b
ex
tr
em

al

K
er
r
b
la
ck

h
ol
e
sp
ac
et
im

e.

60



4.2.2 Escape cone, escape probability, and redshift

We focus on a light source circularly orbiting a rotating black hole on the

equatorial plane θ = π/2. The energy E and angular momentum L of a source in

a direct circular orbit of radius r are given by [65]

E =
r3/2 − 2r1/2 + a

r3/4(r3/2 − 3r1/2 + 2a)1/2
, (4.15)

L =
r2 − 2ar1/2 + a2

r3/4(r3/2 − 3r1/2 + 2a)1/2
. (4.16)

We restrict the orbital radius r of the source in the range r ≥ rI, where rI is the

ISCO radius,

rI = 3 + Z2 − [(3− Z1)(3 + Z1 + 2Z2)]
1/2 , (4.17)

Z1 = 1 + (1− a2)1/3
[
(1 + a)1/3 + (1− a)1/3

]
, (4.18)

Z2 = (3a2 + Z2
1)

1/2. (4.19)

Note that rI approaches rh as a approaches the extremal value 1. In the extremal

case, rI coincides with the horizon radius, i.e., rI = rh = 1 (see Fig. 2.2).

To describe a photon emission from the source, we introduce a frame {e(0), e(1), e(2), e(3)}
associated with rest frame of the source,

e(0) = −Edt+ Ldφ, (4.20)

e(1) =
r√
∆
dr, (4.21)

e(2) = rdθ, (4.22)

e(3) =

√
∆

r3/4(r3/2 − 3r1/2 + 2a)1/2
[
(r3/2 + a)dφ− dt

]
, (4.23)

which is a tetrad only on circular orbits of a timelike particle in the equatorial

plane. We note that the direction of travel of a source is e(3) direction. Then, the
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Figure 4.3: Definition of photon emission angles at a light source.

tetrad components of kµ at the source position are k(a) = kµe(a)µ|θ=π/2, where

k(0) =
b− a− r3/2

r3/4(r3/2 − 3r1/2 + 2a)1/2
, (4.24)

k(1) =
σr
r

√
R

∆
, (4.25)

k(2) = σθ

√
q

r
, (4.26)

k(3) =
bE − L√

∆
. (4.27)

We parametrize the spatial direction of photon emission by two angle param-

eters (α, β) as follows:

cosα sin β =
k(1)

k(0)
, cos β = −k

(2)

k(0)
, sinα sin β =

k(3)

k(0)
, (4.28)

where β is the polar angle measured from the direction −e(2) to the direction

of k (projection of kµ normal to e(0)), and α is the azimuthal angle measured

from the direction e(1) to the projection of k on the plane spanned by {e(1), e(3)}.1

1The angles α and β are related to the directional cosines Ψ and Θ of a beam of radiation

with respect to ϕ-direction and θ-direction in Ref. [57] as

Θ = β, cosΨ = sinα sinβ. (4.29)
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Figure 4.3 shows the relation between k and (α, β). Solving these relations for

(α, β) and using the null condition, we have

cosα =
k(1)√

(k(1))2 + (k(3))2
, sinα =

k(3)√
(k(1))2 + (k(3))2

, (4.30)

cos β = −k
(2)

k(0)
, sin β =

√
(k(1))2 + (k(3))2

k(0)
. (4.31)

As a result, a pair (b, q) has a one-to-one relation to a pair of emission angles

(α, β). Hence, the allowed parameter ranges of (b, q) for photon escape restrict the

range of (α, β).

We now relate marginal parameter values for photon escape to (α, β). Let S be

the complete set of emission angles (α, β) at which a photon can escape to infinity.

We call S the escape cone of a photon. If a photon has emission angles of the

boundary values of S, it cannot escape to infinity anymore. We call the set of all

critical emission angles ∂S; this set can be explicitly specified in terms of marginal

parameter values that determine given in Tables 4.1 and 4.2 as follows:

∂S =
⋃
i=1,2

{
(αi, βi)

∣∣ 0 ≤ q ≤ 27
}
, (4.32)

where, in the extremal case, we have defined

(
α1, β1

)
≡



(
α1(a), β1(a)

)
≡

(
α, β

)∣∣
σr=−
b=2

for 0 ≤ q < 3,

(
α1(b), β1(b)

)
≡

(
α, β

)∣∣σr=−
b=bs1

for 3 ≤ q < f̃ ,

(
α1(c), β1(c)

)
≡

(
α, β

)∣∣σr=+
b=bs1

for f̃ ≤ q ≤ 27,

(4.33a)

(4.33b)

(4.33c)

(
α2, β2

)
≡

(
α, β

)∣∣σr=+
b=bs2

for 0 ≤ q ≤ 27, (4.34)

and in a subextremal case,

(
α1, β1

)
≡


(
α1(b), β1(b)

)
≡

(
α, β

)∣∣σr=−
b=bs1

for 0 ≤ q < f̃ ,

(
α1(c), β1(c)

)
≡

(
α, β

)∣∣σr=+
b=bs1

for f̃ ≤ q ≤ 27,

(4.35a)

(4.35b)
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(
α2, β2

)
≡

(
α, β

)∣∣σr=+
b=bs2

for 0 ≤ q ≤ 27. (4.36)

Figure 4.4 shows the critical emission angles for photon escape. The red,

green, blue, and orange lines show the critical angles (α1(a), β1(a)), (α1(b), β1(b)),

(α1(c), β1(c)), and (α2, β2), respectively. Note that the region containing the co-

ordinate origin bounded by critical angles corresponds to an escape cone. Fig-

ures 4.4(a)–4.4(c) show escape cones in the cases r = 2.98, 2.6, rI(= 2.32 · · · ),
respectively, for a = 0.9. The horizon radius is rh ≃ 1.43 · · · . The area of the

escape cones becomes smaller as the light source position approaches the ISCO.

Figures 4.4(d)–4.4(f) show escape cones in the cases r = 2.98, 2, rI(= 1.18 · · · ),
respectively, for a = 0.999. The horizon radius is rh = 1.04 · · · . As in the case

for a = 0.9, the area of the escape cones becomes smaller as r approaches the

ISCO radius. Comparing photon emissions from the ISCO, we can see that the

area of the escape cone in the case of a = 0.999 is smaller than that of a = 0.9.

Figures 4.4(g)–4.4(i) show escape cones in the cases r = 2.98, 2, 1.001, respectively,

for a = 1. The area of the escape cones becomes smaller as r decreases. It must

be noted that, according to Fig. 4.4(i), even if the radial coordinate value of an

emission point is sufficiently close to the horizon, r = 1, the escape cone still oc-

cupies over half of the unit sphere, indicating that more than half of the photons

isotropically emitted from a circularly orbiting source can escape to infinity. In

particular, as the entire region for which 0 ≤ α < π is included in the escape cone,

all photons emitted forwardly from the source can escape to infinity.

We now assume that photon emission is isotropic and then evaluate the escape

probability; this is identified with the solid angle of an escape cone divided by 4π:

P =
1

4π

∫
S

dαdβ sin β. (4.37)

In subextremal cases, in terms of critical angles, the escape probability P can be

written as

P = 1− 1

2π

∫ r

r−pc

dr1
dα1(b)

dr1
cos β1(b) −

1

2π

∫ 3

r

dr1
dα1(c)

dr1
cos β1(c) −

1

2π

∫ r+pc

3

dr2
dα2

dr2
cos β2.

(4.38)

We note that the light source position satisfies r−pc < rI ≤ r < 3, where the first

equality r−pc < rI is always satisfied in the subextremal case. All the integrands in
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Figure 4.4: Escape cone of a photon emitted at a source circularly orbiting a rotat-

ing black hole. The first, second, and third lines show the cases a = 0.9, a = 0.999,

and a = 1, respectively. The red, green, blue, and orange lines show (α1(a), β1(a)),

(α1(b), β1(b)), (α1(c), β1(c)), and (α2, β2), respectively. The area containing the origin

bounded by the colored lines corresponds to the escape cone of a photon.

the last three terms coincide with each other,

dα1(b)

dr1
cos β1(b)

∣∣∣∣
r1=x

=
dα1(c)

dr1
cos β1(c)

∣∣∣∣
r1=x

=
dα2

dr2
cos β2

∣∣∣∣
r2=x

≡ g̃(x). (4.39)

Hence, we have

P = 1− 1

2π

∫ r+pc

r−pc

g̃(x)dx. (4.40)

In the extremal case, we can also write P in terms of critical angles as follows:

P = 1− 1

2π

∫ rh

0

dr1
dα1(a)

dr1
cos β1(a) −

1

2π

∫ r+pc

rh

dxg̃(x). (4.41)

We note that the value of the escape probability in the subextremal case coincides

with the one in the extremal case in the extremal limit: a → 1. Since in the
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subextremal case, the effective potentials b1 and b2 that are governing the photon

escape in the radial direction approach those of the extremal case as a approaches

1, , the case (b) contains the equivalent effect of case (a) in the extremal limit.

Furthermore, in the extremal limit, r−pc coincides with the horizon radius. There-

fore, in the subextremal case, the escape probability coincides with that of the

extremal case in the extremal limit.

Figure 4.5 shows the dependence of the escape probability P on the orbital

radius r of a circularly orbiting source. The pink, gray, orange, blue, green, and

red lines show the cases a = 0.9, 0.95, 0.98, 0.999, 0.99999, and 1, respectively. All

P values decrease monotonically as r decreases toward rI. Furthermore, the value

of P evaluated at r = rI decreases monotonically as a approaches 1. For example,

in the Thorne limit a = 0.998 [80], the value of P evaluated at the ISCO is

P (rI) = 0.5880 · · · , (4.42)

where rI = 1.236 · · · . These results are consistent with a naive expectation that

P becomes smaller as r approaches rh. However, it is worth noting that P (rI)

does not approach zero as a approaches 1. Even if a photon is emitted from the

source circularly orbiting a near-extremal Kerr black hole with the orbital radius

r = rI ≃ rh, the escape probability is about 55%. For the extremal case, in the

limit as r approaches rI (i.e., the horizon radius rI = rh = 1), P takes a nonzero

value 2,

lim
r→1+

P = 0.5464 · · · . (4.43)

This indicates that more than half of photons emitted in the vicinity of the horizon

escape to infinity without falling into the central black hole. It is worth comparing

these results with those obtained in [55]. The authors of [55] assumed a different

situation from us for a light source: the right source is at rest with respect to

a locally nonrotating observer, i.e., a non-angular momentum observer. In that

2The analytic expression of the escape probability at the ISCO in the extremal case have been

obtained in [81]. The value is given by

P =
5

12
+

arctan
√
5/3√

5π
= 0.5464 · · · .
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Figure 4.5: Dependence of the escape probability P on the orbital radius r of

a circularly orbiting source. The pink, gray, orange, blue, green, and red lines

correspond to the cases a = 0.9, 0.95, 0.98, 0.999, 0.99999, and 1, respectively. The

left end point on each line corresponds to ISCO for subextremal cases, and the left

end point for a = 1 is r = 1.001.

case, for the extremal Kerr black hole, the escape probability of a photon from a

light source located at arbitrary close to the event horizon is 29.1%. This indicates

that the escape probability is sensitive to the light source’s motion. In particular,

combining their result and our result that the photon escape probability from the

ISCO in the extremal case is 54.6%, we can state the circularly orbiting light

sources are more visible than the light source at rest with respect to the non-

angular momentum observer.

We now evaluate the frequency shift of photons escaping from the ISCO to

infinity. The redshift factor z̃ measured by a static observer at infinity is given by

1 + z̃ = −k(0). (4.44)

Figures 4.6(a)–4.6(c) show the density contour plots of z̃ for photons emitted from

the front hemisphere of the source, which corresponds to the cases in Figs. 4.4(c),

4.4(f), and 4.4(i), respectively. The gray dashed lines show the contours of z̃ =

0, and the red/blue regions show the emission angles with which a photon is

redshifted/blueshifted. As a increases, the emission angles indicating blueshift
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Figure 4.6: Density contour plot of the redshift factor z̃ in the ranges 0 ≤ α ≤ π

and 0 ≤ β ≤ π (i.e., front side emission). The gray dashed lines indicate the

contour z̃ = 0. The red and blue regions denote redshift and blueshift, respectively.

decrease, but more than half of the hemisphere still shows blueshift.3 This means

that blueshifted photons reach to a observer at infinity, even if the orbital radius

of the light source is sufficiently close to the horizon radius. Therefore, combined

with the escape probability results, this implies that, in principle, photons escaping

from the vicinity of the black hole horizon certainly transport the information of

the near-horizon region and relativistic phenomena to distant observers.

3In the extremal Kerr geometry, it is known that z̃ varies smoothly with the directional

cosine Ψ with respect to ϕ-direction, and there always exists the range of Ψ where z̃ shows a net

blueshift [57].
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Chapter 5

Conclusions and discussions

In this thesis, we have studied circular orbits of test particles around compact

objects and its observability. In particular, we have discussed circular orbits of

massive and massless particles in the Majumdar–Papapetrou dihole spacetime,

and the escape probability of photons from the vicinity of the event horizon of a

near-extremal Kerr black hole.

In chapter 2, we have reviewed circular orbits of particles around the Schwarzschild

spacetime and the Kerr spacetime. Investigating circular orbits around a compact

object is the most fundamental problem to know properties of the gravitational

field generated by the compact object, and it is widely applicable from theoretical

issues to observational issues. We have seen that the strong gravity field deflects a

particle’s orbit. In a black hole spacetime, there are some characteristic radii for

particle motion, e.g, the circular photon orbit and the innermost stable circular

orbit (ISCO). In the Kerr spacetime, the positions of such characteristic radii of

circular orbits depend on the Kerr parameter defined as the magnitude of the an-

gular momentum of the black hole divided by the black hole mass. We have seen

that the radii of the circular photon orbit and the ISCO coincide with the horizon

radius in the extremal limit.

In chapter 3, we have investigated the effect of a second compact object on

the stable circular orbits using the Majumdar–Papapetrou dihole spacetime. The

Majumdar–Papapetrou dihole spacetime is an exact solution of a two-parameter

family in Einstein–Maxwell theory and consists of two extremal Reissner–Nordstöm

black holes. In Majumdar–Papapetrou dihole spacetime, the positions of circular
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orbits deviate from those of a single black hole case due to the second compact ob-

ject. We have completely classified whole parameter ranges of the separation and

the mass ratio according to the appearance of circular orbits. For the equal mass

Majumdar–Papapetrou dihole spacetime, we have divided the parameter range of

the separation d into five parts based on qualitative differences of the sequence of

stable circular orbits and simultaneously have determined the four critical values as

the boundaries of the parts: d0, d∗, d∞ and dc. The inverses of two critical values d∗

and d∞ coincide with the critical valuesM∗ and M̄ mentioned in [41], respectively.

The number of the marginally stable circular orbits increases due to the bifurca-

tion or the separation of the sequence. The ISCO radius can be smaller than that

in the single extremal Reissner–Nordström black hole spacetime. The location of

the ISCO changes discontinuously at d = dc. For the different mass Majumdar–

Papapetrou dihole spacetime, while the parameter range of the separation of the

two objects is divided due to the appearance of stable circular orbits, this division

depends on its mass ratio. We have shown that the mass ratio range separates

into four parts and found three critical values as the boundaries: ν∞, ν∗, and ν0.

In the context of the quasinormal mode, the frequency is known to correspond to

the orbital frequency of the unstable circular photon orbit. Since our results show

that the orbital frequency can be comparable to that of a circular massive particle

orbit, we can expect that the resonant excitation of the quasinormal mode that is

characteristic mode of the dihole spacetime occurs [82].

We should discuss a possible implication for a more realistic binary black hole

system. The Majumdar–Papapetrou dihole spacetime we have used in the back-

ground is static, but a realistic binary system is a dynamic system. This fact

does not imply that our analysis is meaningless. Let us consider an example. For

simplicity, here, we assume that two black holes are equal mass, the second black

hole takes the Kepler motion with the zero eccentricity around a main black hole,

and a test particle circularly orbits a main black hole on the ISCO. In the present

case, the orbital periods for both the second black hole Tb and the test particle TI

are determined by the Kepler orbital period. The orbital period is proportional to

r3/2, where r is the distance between the main black hole and an orbiter. Applying

values of the ISCOs in the MP dihole spacetime, the value of the separation pa-

rameter is d ≥ 6.33 ∼ 31.8 for the orbital period of a test particle to become more

than 10 ∼ 100 times that of the binary black hole: Tb/TI ≥ 10 ∼ 100. Therefore,
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the classifications of circular orbits in the Majumdar–Papapetrou dihole spacetime

with d ≥ 6.33 ∼ 31.8 may be a criterion for investigating the initial conditions for

phenomena occurring around a slowly evolving binary black hole. If we focus on

circular photon orbits, we may extend the validity range of the separation param-

eter. Though it is interesting to take into account the dynamic features, we will

analyze this topic in future work.

In chapter 4, we have analyzed the escape probability of photons from a cir-

cularly orbiting light source in a near-extremal Kerr black hole to discuss the

observability of the near-horizon region. Because, in particular, the ISCO radius

is very close to the horizon radius in a near-extremal Kerr spacetime, the escape

probability of a photon from the ISCO indicates the observability of the near-

horizon region. The observability is essential for distinguishing whether or not the

central object is a black hole. We have shown that the escape probability evaluated

at the ISCO decreases monotonically when the Kerr parameter approaches the ex-

tremal value. Despite the fact that the ISCO radius eventually coincides with the

horizon radius in the extremal case [65, 66], the probability take a nonzero value

54.6% even in the limit of the ISCO. This value is larger than the escape probabil-

ity 29.1% for the case where assumes the light source at rest with respect to the

locally nonrotating observer. We have also found that photons emitted from the

front side of the source get blueshifted for distant observers even if the emission

point is sufficiently close to the ISCO in the extremal Kerr black hole. From these

results, we conclude that, in principle, the near-horizon region of a rapidly rotating

black hole is observable.

Our results provide insight into optical phenomena such as the observation of

a black hole shadow. The ISCO is often identified as the innermost edge of the

accretion disk or is considered as the position where the phase of accretion flow

switches. However, in any case, the orbit is located in the immediate vicinity of

the near-extremal rotating black hole. Photons emitted from this region contain

information on the near-horizon region and phenomena and certainly transport it

to infinity. Finally, the information can be obtained from photons that appear as

the edge of the black hole shadow to a distant observer. From this, if a black hole

is rapidly spinning, in principle, signs of near-horizon physics will be detectable

on the edge of the shadow.
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Appendix A

Circular photon orbits in the

equal mass

Majumdar–Papapetrou dihole

spacetime

We review circular photon orbits in the MP dihole spacetime with equal unit

mass M± = 1. The effective potential for null particles is given by Eq. (3.9) with

κ = 0. As is the case with timelike particles, the condition Vz = 0 is equivalent to

Uz = 0 and has solutions ρ = ρ0 and z = 0. We focus on circular photon orbits

on ρ = ρ0. To investigate their positions, we solve Eq. (3.27) again for z and find

real roots z0(ρ). The line z = z0 corresponds to the line ρ = ρ0. We consider the

condition Vρ = 0 on z = z0:

Vρ(ρ, z0(ρ)) = 0. (A.1)

The real solutions of this equation express the radii of the unstable circular photon

orbits. They only exist for d ≥ dc but not for d < dc. The dependence of the radii of

circular photon orbits on the separation parameter d is shown in Fig. 3.2 by orange

dashed lines. In the limit as d→ ∞, the circular photon orbit radius measured by

ρ approaches 1, which coincides with that of the single Reissner–Nordström black

hole spacetime.

Next we focus on circular photon orbits on z = 0 plane. The condition Vρ = 0

72



leads to (
ρ2 + d2

)3/2
= 2

(
ρ2 − d2

)
. (A.2)

This equation has real roots only for ρ > d. We can rewrite Eq. (A.2)

F = 0, (A.3)

where F is defined by Eq. (3.32). In the range ρ > d, the roots of this cubic

equation for ρ2 are given by

ρ2pu =
4− 3d2

3
+

8

3

√
1− 3d2 cos

[
1

3
arccos

27d4 − 36d2 + 8

8 (1− 3d2)3/2

]
, (A.4)

ρ2ps =
4− 3d2

3
+

8

3

√
1− 3d2 cos

[
4π

3
+

1

3
arccos

27d4 − 36d2 + 8

8 (1− 3d2)3/2

]
. (A.5)

Note that ρpu and ρps correspond to the unstable circular photon orbit and the

stable one, respectively (see Fig. 3.2). These roots are real only for d ≤ d∞,

which is found from the discriminant of Eq. (A.3). Hence, for d > d∞, there

exist unstable circular photon orbits only on ρ = ρ0 line [see Figs. 3.1(a)–3.1(e)].

When d = d∞, an additional circular photon orbit appears at (ρ, z) = (ρ∞, 0) [see

Fig. 3.1(f)], where ρ∞ is given by Eq. (3.47). The condition for the existence of the

multiple root ρpu = ρps also leads to the values of d∞ and ρ∞. For dc < d < d∞,

unstable circular photon orbits exist on ρ = ρ0 and at (ρ, z) = (ρpu, 0), and stable

circular photon orbits exists at (ρ, z) = (ρps, 0) [see Fig. 3.1(g)]. When d = dc,

three circular photon orbits degenerate at (ρ, z) = (
√
2dc, 0) [see Fig. 3.1(h)]. For

d < dc, there is no stable circular photon orbit but there are two unstable circular

photon orbits on z = 0. The outer one is radially unstable but vertically stable,

while the inner one is radially stable but vertically unstable (see also Ref. [40]).

For d = 0, we obtain ρpu = 2 and ρps = 0, which coincide with the radius of

the unstable circular photon orbit and the horizon radius of the single extremal

Reissner–Nordstöm black hole with mass 2, respectively.
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