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0. Introduction

There exists a lifting from modular forms of half integral weights on I'5(4) into Siegel
modular forms of even integral weights of degree two called the Saito-Kurokawa lifting.
Many Authors including Kurokawa [Ku], Maass [Mal], Eichler-Zagier [EZ], Andrianov
[An], Kojima [Koj], studied the lifting from various points of views such as the Maass
space, the associated L-function, the connection with Jacobi forms and the Weil represen-
tation. In particular Maass and Eichler-Zagier ([Ma2], [EZ]) established the whole feature
of the theory of Saito-Kurokawa lifting. Moreover in [MRV] Manickam-Ramakrishnan-
Vasudevan studied the lifting with square free odd levels.

Recently Duke-Imamoglu [DI] reconstructed this lifting with the help of the converse
theorem of Imai [Im] and some results of Katok-Sarnak [KS]. This will be ()ne; of the rare
cases in which the converse theorem of Imai proved to be of use.

On the other hand not so much is known on Saito-Kurokawa lifting in the case of
weight k being odd except the misterious work of Maass [Ma3]. Our aim of this paper is
to establish a kind of Saito-Kurokawa lifting in odd weight cases by using the method of
Duke-Imamoglu. It will be natural in this case that we should use Siegel modular foms on
the congruence group 1"( )(4) with a non-trivial character m0d4 We construct two kinds
of liftings from elliptic cusp forms of half-integral weight k — 5 to Siegel modular forms of

degree two of weight k on I"O( )(4) and study a relatlonshlp of these two liftings. We also
study these liftings by means of Eichler-Zagier [E-Z] where Jacobi forms are effectively
used.

In his article [Ib2] written in Japanese Ibukiyama exhibited a good introductory expo-
sition of the converse theorem and the method of Duke-Imamoglu. To complete this work
we owe much to his exposition.

1. Saito-Kurokawa lifting for odd weights

1.1. Maass spaces and Saito-Kurokawa lifting. In the sequel we assume that k
is an odd positive integer and use the notation e(z) = exp(2mwiz). Let §),, denote the Siegel
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upper half space of degree n on which the real symplectic group Sp, (R) acts in a usual

manner; for M = (i 2) € Sp,(R) and Z € $H,, set

MZ=@@Z+b(cZ+d) e, and J(M,Z)=cZ+d.

If n = 1, we write § for ;. Let I, denote the Siegel modular group Sp, (Z) and FO(")(4)
the subgroup of I}, consisting of M € I',, whose left lower blocks ¢(M) are congruent to 0
mod 4. In the case of n = 1 we write (4) instead of 1’0(1) (4) following the usual notation.

From now on we consider only the cases of n = 1, 2. Let x be a Dirichlet character
mod4. Let Mk(Po(z) (4), x) denote the space of holomorphic functions F on $; satisfying
the condition

F(MZ) = x(M)detJ(M, Z)*F(Z) forall M = (‘C’ Z) e 7@,
where we put x (M) = x(detd) by abuse of notation. To describe Fourier expansions
of modular forms F € Mk(FO(z) (4), x) we define S(Z) (resp. S5(Z)) to be the set of
integral (resp. half-integral) symmetric matrices of size two. Each F € Mk(FO(Z) @, x)
has a Fourier expansion of the form
FZ)y= ) a@eT2),
TeS}(Z),T=0

where T > 0 means that T is semi-positive definite. :

We now introduce the Maass space Ma(k, x) to be the subspace of My (1’0(2) @), x)
consisting of F € Mk(l"om (4), x) whose Fourier coefficients a(T) satisfy the Maass rela-

tion
m r/2) Z k—1 1 F/Zd
a = x(d)d" a ' 2
| (r/2 n 0<d ar) r/2d mn/d
‘ m r/2 «
forany T = 72 n € S2 (Z), T =0, T # 0. Here, (m, r, n) denotes the greatest

common divisor of m, r, n. This type of Maass subspace with a Dirichlet character has
been introduced by Kojima [Koj] if k is even. Moreover we define another Maass subspace
Ma(k, x) by putting

Ma(k, x) = Mak, x) N {F e M @), x) ‘ F <z+ (1(/)2 1(/)2>> - F(Z)} .

The condition of F € Ma(k, x) amounts to saying that F € Mk(I"O(Z) (4), x) has a Fourier
expansion .
F(Zy= Y ae(TZ)
TeS$,(Z),T>0
whose Fourier coefficients satisfy the Maass relation

_ 1 r/d
a(':l ;)z Y x@ad 1a(r/d mn/d2> ((m, r,n) # (0,0,0)).

0<d | (m,r,n)
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Our aim of this paper is to characterize these Maass subspaces in terms of Saito-Kurokawa
lifting.

1.2. Construction of lifting, First we define certain spaces of modular forms of
half intrgral weights. For the function w!/2 (w # 0) we choose the branch with —7 <
argw < 7. Let0(z) = ),z e(n?z) (z € ) be the usual theta series. This theta series
enjoys the the transformation formula

0(Mz)/0(z) = j(M,z) forany M = (i z) e To(4),

where j (M, z) is characterized by
; — (&)1 1/2
(1.1) i) = (5)eg' cz+ ).

Here (%) is Shimura’s resideu symbol on whose precise definition we refer the reader to
[Sh] and &4 = 1 (resp. &4 = i) according to d = 1 mod 4 (resp. d = 3mod 4).

Let My_1/2(I'0(4)) be the space of elliptic modular forms of weight k —1/2 on I (4).
Namely, Mi—1,2(I'9(4)) consists of holomorphic functions f on §) verifying the conditions

() f(Mz)=j(M,2)*71 f(z) forall M € Tp(4).

(i1)  f(z) is holomorphic at any cusps of Ip(4).
Let Sk—1/2(I'0(4)) denote its subspace consisting of cusp forms. Moreover, M, ,j_ | /2(F0 @)
denotes the Kohnen plus space consisting of f € Mi_1/2(I'0(4)) whose Fourier coeffi-
cients a(n) at the infinity have to satisfy the condition

a(n) =0 if (~1)*n=1,2mod4

([Koh]). Finally let S,'f_l /2(1"0(4)) denote the subspce of M,;"_l /2(F0(4)) consisting of
cusp forms. Since we assume k to be odd, the Fourier coefficients a(n) of each f €
M ,(To(4)) vanish if n = 2, 3mod 4.

In this subsection we form liftings from the space Sx_1,2(I0(4)) to the Maass space
Ma(k, x) and also to Ma(k, x). Let ¢ € Sg_1/2(I'5(4)) and its Fourier expansion be

o0

p(r) =Y _c(n)e(nt).

n=1

We denote by S>(Z)* (resp. S3(Z)™) the subset of S>(Z) (resp. S (Z)) consisting of pos-
itive definite symmetric matrices. Now we define functions ¢(T') on S, (Z)* and b(T) on
S5 (Z)* from the Fourier coefficients of ¢ by putting

. detT
c(r;l ;) = Z X(d)dk_lc< :3;2 )

O<d | (m,r,n)

and

det2T
(fh 72)-, 5 a5,

0<d | (m,r,n)
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respectively. It is not difficult to see that there exists a positive constant M (depending on
@, ¥) such that

¢ 2

‘We note here that the identities

(1.2) < M(mn)kt1/2 .

< M(mn)+1/2, ib (:72 r:lz)

cUTU) =¢(T) and b(UTU) = b(T)

follow from the definition of ¢(T") and b(T').
Then Saito Kurokawa liftings ¢(¢) and 7(¢) in our setting are given by

W) 2Z)= Y c(D)e(TZ), Up)2Z)= Y, bDer(TZ),

TeS,(Z)* TeS; L)+

where Z € $),. Due to the estimates (1.2) above these ¢(¢)(Z) and 7(¢)(Z) define holo-
morphic functions on ;. Then the following theorem holds.

THEOREM 1.1. If ¢ is a modular form of half-intrgral weight in S;_1,2(I'0(4)),
then ((p) € Ma(k, x), i(p) € Ma(k, x).

The proof of the theorem is reduced to the following Theorem 1.2 which is one of our
main results and will be proved later.
Let ¢ € Sg—1/2(I9(4)) and define a new modular form v by putting

—k 1
(1.3) V() = V2(-1)'T 47—k(l)7 ¢(—E).

Then it is known and easy to see that ¢ € S;_1/2(I0(4)). Here we set

1.4 F(Z)=up)(Z) and G(Z)=1(¥)(2).
THEOREM 1.2. Under the notation above the transformation formula

(1.5) | F(—(42Z)™") = det (2Z—Z>k G(Z)

holds and moreover if ¥ € S,':'_l /2(1" o4), then

=a(7)
F(—(4Z) ') =det = F(Z), namely, F=G.

Here we give a proof of Theorem 1.1 with the help of Theorem 1.2.

Proof of Theorem 1.1.  Our task is to prove the modularity of F

(1.6) F(MZ) = x(M)detJ(M, Z)*F(Z)



Saito-Kurokawa Lifting for Odd Weights 163

forany M € 1‘0(2) (4). Since the congruence subgroup FO(Z) (4) is generated by the following
three kinds of elements

(s = (102 f2) ' € @), (‘(j ,U°_1> (U € GLy(2)),

v(4s) = (iﬁ 102) (s € $2(2))

(see [Ib1], Lemma 2.1), we have only to prove for these generators. The transformation
formulas (1.6) for M = t(s'), ([é ,UO_1> are valid from the definition (1.4) of F.
Let M = v(4s) (s € S2(Z)). Then
F(v(@4$)Z) = F(— (-4GZ + 1/91)Z2™H™).
Making use of (1.5) in Theorem 1.2 we have
—2(Z + (1/4)1)Z7!
i

k
F(v(4s)Z) = det( ) G(—(Z+ (1/H1)Z7h)

—k
= det(4sZ + 1)* det (12-?-) G(—(42)"! —5).

Here we have, by the deﬁnifion (1.4) of G,
G(—(42)' —5) =G(-(42)™H.

Using again (1.5) in Theorem 1.2 in an opposite direction, we get
» 27 \*
G(—(@4Z)y ") =det| — ) F(2Z).
i

Therefore,

F(v(4s)Z) = det(dsZ + 1,)*F(Z),
which proves (1.6) for M = v(4s). The Maass relation for F immediately follows from
the definition of F = 1(p). Hence, F € Ma(k, x). Moreover Theorem 1.2 implies that
G = (p) € My(Ip(4), x) and hence that G € Mal(k, X)- O

We prove Theorem 1.2 by using the method of Duke-Imamoglu, but the proof will be
postponed until the next subsection. We have to make some preparatory arguments.

First we give a definition of Maass wave forms and explain how we regard them so-
called Grossen characters on P,, the symmetric space of positive definite real symmetric
matrices of size two. A function v : § — C is called a Maass wave form of weight 0, if v
satisfies the following three conditions

() v(Mz) =v(z) (VM € SL2(Z))
(ii) v is a C*®-function on $) with respect to x, y which verifies a differential equa-

tion Av = —Av with some A € C, where A = y2 (zic_ZZ + 53y2—z> is a SLy(R)-invariant
differential operator on $).
(iii) There exists a certain « > 0 with the growth condition v(x + iy) = O(y%)

(y = 00).
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A Maass wave form v is called a common eigen form, if it is an eigen form of all Hecke
operators T}, whose definition we refer to [KS], p. 199.

Let PS, denote the subset of P, consisting of Y € P, whose determinants coincide
with 1. Then each element g € SL;(R) acts on PP, and alsoon P S, viaY — ’g“1 Y g‘1 and,
as is well-known there exists a natural diffeomorphism from the upper half plane $) onto
‘PS> which is compatible with the action of SL,(R). Namely if we put, for z = x+iy € 9,

y~! —xy~!
Y = (—xy“ yx? +y2)) ’

then Y(z) € PS, and moreover Y (gz) = ‘g~ 'Y (z)g~!. Via this diffeomorphism each
Maass wave form v can be identified with a function on PS; and with the one on P, by a
natural extension. We may call such function on P, a Grossen character of Maass. Namely,
a function u : P, — C is called a Grossen character of Maass, if it satisfies the following
two conditions

(i) u(Y)=u(¥)foranyc>0andY € P;. .

(i) for some Maass wave form v, u(Y) = v(z) (Y € PSy,z € $), where Y is
corresponding to z by ¥ = Y (2).
A Maass wave form v of weight 0 (and accordingly the corresponding u) is called even, if
it satisfies

v(—z) =v(z) (resp. u(?) =u(Y)),

where ¥ = ! IpY Iy with Iy = ((1) _?1 . On the contrary a Maass wave form v of weight
0 is called odd, if v(—z) = —v(z). In this case a Grossen character u corresponding to v is

also called odd. For a general theory of Maass’ Grossen characters we refer to [Mal].
Moreover we have to introduce Maass wave forms of weight 1/2 to describe the Maass
wave form version of the Shimura correspondence. For r € C let 7" denote the C-linear
space consisting of functions g : $) — C satisfying the following three conditions:
(1) Each gis a C*°-function of x and y verifying the transformation formula

9(Mz) = g(z)j (M, 2)|cz +d|~'/?

for all M € Ip(4) and it has the growth condition at any cusps of I(4); namely there
exists a > 0 such that for all M € SL,(Z)

lgM2)| = 0(y%) (y = 00).

(i) g has a Fourier expansion of the form

(1.7) 9() =) B(n, y)e(nx),

neZ

where the Fourier coefficients B(n, y) for n # 0 are given by
B(n, y) = b(n) Wsignn/4,ir/2(4my|nl) .

Here W, g is the usual Whittaker function.
(iii) Ifn = 2,3 mod4, then necessarily B(n, y) = 0.



Saito-Kurokawa Lifting for Odd Weights 165

The next theorem describes the Shimura correspondence from the space of Maass
wave forms of weight O to the space of Maass wave forms of weight 1/2. This has been
proved by Katok-Sarnak [KS], Theorem in the case of v being cusp forms and by Duke-
Imamoglu [DI] in the case of v being a constant function or Eisenstein series.

For Y € P, we denote by zy the point z in § determined by Y (z) = 1

detY
THEOREM 1.3 (Katok-Sarnak, Duke-Imamoglu). Let v be an even common eigen
Maass wave form of weight 0 and assume that Av = —(% + r2)v with some r € C. Then

there exists g € T," such that concerning the Fourier coefficints b(—n) of g for positive n
we have

b(—n) = n~* > ve)lAwT|™ (1 € Z>0),
TeS;(Z)*/SLy(Z),det2T =n

where T runs through all the SLy(Z)-equivalence classes of elements of S (Z)*+ with
det2T = n and AutT = {U € SLo(Z)|'UTU = T} is the unit group of T.

1.3. Proof of Theorem 1.2. Now we give a proof of our Theorem 1.2.

Let 9(z) = Y - c(n)e(nz) be a Fourier expansion of ¢ € Sx—1/2(I9(4)). Then ¥ is
given as before by (1.3) and has a Fourier expansion of the form: ¥ (z) = ZZ‘;I a(n)e(nz).
Recalling the the definition of F(Z), G(Z), we have

FZ)=up)Z) = Y, cDet(TZ)

TeSHZL)T

G(2)=1¥)2Z) = Z a(Te(t(T 2)),

TeS§(Z)+
where ¢(T) and a(T) are given by
m r _ k—1 detT
(1.8) c(r n) = Y  x@d c(——d2 )
0<d | (m,r,n)
and

det2T
(1.9) a<r'72 ’f): 3 x(d)dk_1a< e(tjz )

0<d | (m,r,n)

respectively.

Now take any even Grossen character u on P and let v be a Maass wave form cor-
responding to u with Av = —-(% + r2). Then there exists a Maass wave form g of weight
1/2 belonging to the space T, which corresponds to v by the Shimura correspondence
(Theorem 1.3). We compute Mellin transforms of F and G. Set

(1.10) &(G,u;s) = [ G (%) (det Y)Y u(Y)dv(Y),
R

where R denotes a fundamental domain of SL;(Z) in P, and

dv(Y) := (detY) " 2dyjidyndyn, (Y = (i)
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is an invariant volume form on P,. Making use of some results in Maass [Mal], § 10, we
have

L Lo
£(G,u;5) =2x' =51 <s -7t %) r <s - 1) Dy(G,u;s),

where D (G, u, s) denotes the Koecher-Maass series attached to G with u:

DZ(G u S) = M
res;@)TsLo@ AMMI@etT)
Moreover we set
o bk = [ 7 (%) (et ¥ u(¥)du(¥)
and
Dy(F,u,s) = c(T)u(T)

TeSy(Z)t/SLy(Z) |Aut(T)|(det T)*

Then similarly,

£ (F, us s) = 2n 1202 <s 1y Z) r (s I Z) Dy(F,u,s).
4 2 2
We see easily from the estimate (1.2) that D>(G, u, s) and D> (F, u, s) are absolutely con-
vergent if Re(s) is sufficiently large and accodingly that & (G, u; s) and & (F, u; s) are
also absolutely convergent and indicate holomorphic functions in the same region of s.
Since a(IpT Ip) = a(T), it follows that, if u is an odd Grossen character, D, (G, u, s)
and D, (F, u, s) are identically zero. So we have only to consider the case of u being even
(and accordingly v even).
Let Prim; (Z)™* denote the set of positive definite primitive half-integral symmetric
matrices of size 2. Using the expression (1.9) of a(T"), we have

X, aleTo)u(eTy)
Aut(eTo) |(deteTp)s

Dy(G,u,s) =
Toe Prim3(Z)*+ /SLy(Z) e=1 |

i 3 X(d)dk_la(det(2eTo)/d2)u(To)

25
Toe Prim}(Z)*+/SLy(Z) e=1 0<d |e |Aut(To)|e* (det To)*

= ek a(det@mTo))u(mTo)
2.2 > x(dd lAut(mTo)|(det mTo)®

a(det2T)u(T)
|Aut(T)|(det T)s

d=1 m=1 TyePrim}(Z)*/SLy(Z)

=L2s—k+1,%).
TeS3(Z)t/SLo(Z)
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By using Theorem 1.3 we easily have

a(det2T)v(zT)

Dy(G,u,s) =4#LQ2s—k+1,x) |Aut(T)|(det 2T)"

TeS5(Z)*/SLa(Z)

X, a(n)b(—n)

Consequently,

1 ir 1 ir

c o) — 122545 s— -+ = |M[s— = — =

i E(G,u;s) =2 “m (s 4+ 2) s 172
: . a(n)b(—n)
><L(2s—k+1,)()z —
n=1

Similarly we have

o
(n)b(—4n)
Do(F,u,s) = 232L(2s —k + 1, ol =)
2(F, u, s) 2s —k+ x)'; ~ 57
and
1 i 1 i
E(F, u;s) = 2n1/2(n_2s23/2)1"(s -7+ %)F(s abie %)
(1.13)

. a(n)b(—4n
xL(2s — k + 1,;02%
n=1

To express the right hand sides of the above identities (1.12), (1.13) as a kind of
Rankin-Selberg convolution we recall real analytic Eisenstein series on I'p(4). Let I

denote the subgroup of Ih(4) consisting of matrices (1 '11) (n € Z). If we set

0

k
Ex(zs)= Y. X(d)(cz+d)(ImMz)s,

MeTo\To(4) lez + 4

then this series converges absolutely for Re(s) > 1 and becomes the Eisenstein series on
I'h(4) with x at cusp co. Moreover we define the Eisenstein series at cusp 0 by putting

k 1
Eoz,s) = (é—i) oo (—E,s> .

Multiplying the gamma factor we set
Eoo(z,5) = 2%m 7' (s + k/2)L(2s, X)Eco(2, 5) ,
Eo(z,s) = 2375 (s + k/2)L(2s, x)Eo(z, 5) .

It is known and easy to see that these Eisenstein series can be analytically continued to
meromorphic functions of s which satisfy the functional equation

(1.14) Eoo(z,8) = (=i)Eo(z,1 —5).
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For g € T,* we define a new modular form go by

Z\—1/2
0@ =v2(3) =174
Then it has a Fourier expansion of the form ([DI], [Ib2])
90(z) = Y B(4m, y/4)e™™

meZ
where B(n, y)’s are Fourier coefficients of g given in (1.7).

We set
k_1 ~ dxdy
AP, g, 5) = Y2 Y (D) 9(2) Exo(z, $)—
: k_1 ~ dxdy
Aco(9, 90, 5) = Y2 419(2)90(D) Eco(z, ) —5— -
To(M\$H y

Unfolding the integral (1.15) faithfully, we have

oo pl
Aso(¥, g, 5) =275 (s + k/2)L(2s, x) X f f Y1y (2)g(2) d;fy
0 JO

= 23775(s + k/2)L(2s, x)(dm) 3 +1 (Zl %) 1k, r:s),

where we put
o0 d
Ik,ris) = f Y e W n () 2
0 y

It is known and easy to compute from a certain integral expression for W_j4,;r/2(y) that

I(k,r;s).__r(s-l_% %—%)F(s+§—i7’_%)

(see [Ib2], Appendix). Therefore,
(1.16)

k ] 3 k ] 3
Ao 9.5) = 23Sn—S<4n)—S—%+%r<s P4 T —)F(s ML -)

2 4

>, a(n)b(—n)

xL(2s, X)<X; stk/2=5/4 | *
n—

We see from this expression that A (v, g, s) is absolutely convergent for Re(s) suffi-

ciently large. Define a positive constant c(k) by

(k) = 231227 1/4—K/2

Comparing the right hand sides of the both identities (1.12), (1.16), we have

k—1

1.17) £(G,u,5) = c()2' Ao <1/f, 98— T) .



Saito-Kurokawa Lifting for Odd Weights 169

In a manner similar to the above argument we get

2 2 4

o a(n)b(—4n)
x L(2s, x)(Z; 7:1:/5:'574')

k ir 3 k ir 3
Aoo(®, 4o, 8) =23sn_s(4n)_s_§+%1"(s 4o+ —)F(s TR A —)

n=

and accordingly

3_ k-1
(1~18) §2(F7 u, S) = C(k)22 SAOO (¢» 90,8 — T) .

By the property of Ex(z, s) and by a usual procedure of treating with Rankin-Selberg
convolution we see that the functions A (¥, g, s) and Aso (@, go, s) can be continued
to meromorphic functions in the whole s plane which are holomorphic in Re(s) > 1/2.
Moreover these integrals are absolutely convergent where the Eisenstein series Eoo(2,.5)
0 -1/2

2 0 ) A direct computation shows that

has no poles. Set oy = (

IM(022) %~ 1 0(022)90(022) Eoo (022, 8) = ()2 1y 1 =34 (2) g(2) Eo(z. ) .

Replacing z with o7 = —1/4z, one has
_3 k_1 ~ dxd
Atpoms) = (27 [ @ Sy
To(\9H y
Thus with the help of (1.14) we have the functional equation
(1.19) Aco(@, 90,8) = 272 Ao (¥, 9. 1= 5) .

Thanks to this functional equation A (¥, g, s) and A (@, 9o, s) can be entire functions
of s. Furthermore with the help of a standard argument using Phragmén-Lindelof theorem
we observe that these functions are bounded in any vertical strip.

PROPOSITION 1.4. The functions & (F, u; s) and (G, u; s) can be analytically
continued to entire functions of s and are bounded in any vertical strip. Moreover they
satisfy the functional equation

E2(F,u;8) =62(G,us k —s).

Proof. The analytic continuation and the boundedness of & (F, u; s) and & (G, u; s)_
are easily derived from those of A (¥, g, 5) and Aso (@, go, s) With the use of the identities
(1.17) and (1.18). The desired functional equation also follows from (1.17), (1.18) and
(1.19). a

The final step is to employ Imai’s theorem [Im] to prove the transformation formula

k
(1.20) F(-@42)™Y = det(zl—,z) G(2).

The converse theorem [Im] of Imai (Kaori Ohta) in our situation is reformulated as follows.
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THEOREM 1.5. Assume k is a positive odd integer. Let a(T) and c(T) be functions
on S3(Z)* and Sy(Z)™, respectively satisfying the following conditions

1) aCtUTU)=a(T),c(CUTU) =.c(T) forany U € GL,(Z).

(ii) There exist some positive constants M, c such that

c(m r) a(m r/2>‘<M(mn)c.
ron

r/2 n
Define holom»orphic functions F(Z), G(Z) by putting

< M(mn)°¢,

F(Z)== Z c(Te(tr(T Z))
TeS,(Z)+

G(Z)== Z a(T)e(t(TZ)) .
TeS;(Z)+ '

Associate the integrals £,(G, u, s), £&(F, u, s) for any even Gréssen character u by
(1.10) and (1.11), respectively.

Assume moreover that £,(F, u, s) and &,(G, u, s) can be analytically continued to en-
tire functions of s which are bounded in any vertical strip and that the functional equation

E2(F,u;5) =6(G,u k —s)
holds. Then we have the transformation formula
F@iY™1/2) = det(Y)*G(iY/2) (Y € P2)

which in turn is nothing but the identity

k
F(—(42)"1 = det (272) G(2).

REMARK. As is pointed out in [Ib2], the assumptions of the theorem are a little
different from those of Imai [Im]. We follow the reformulation of [DI], Theorem 2. But no
proof is given there. Ibukiyama [Ib2] gave a proof to reformulate the converse theorem in
the manner given in [DI].

We continue the proof of Theorm 1.2. In our stuation F = t(¢) and G = i(y). For
these F and G we have proved that all the assumptions in Imai’s theorem hold. Hence we
obtain the desired transformation formula (1.20).

The rest we have to do is to prove F =G if ¢ € S,'C"_l/Z(Fo(4)). Let ¢ =

> o2, a(n)e(nz) € S,:r_l/z(l“o(4)), where a(n) = 0if n = 2,3mod4. In this case ¢
determined by (1.3) has the following Fourier expansion ([Koh])

¢(z) =) _a(@n)e(nz),
n=1

which implies that c¢(n) = a(4n). Hence we see from (1.8) that

m o ry\ _ k—1 det2T _ m r
C(r n>_ Z x(d)d a( d2 =4\ n)-
0<d | (m,r,n)




Saito-Kurokawa Lifting for Odd Weights 171

r/2 € S;(Z)“‘, det(2T) = 4mn —r? = 0, 3mod 4. Therefore a(T) = 0

m
ForT = (r 2
if  is odd. Consequently F = G follows. Thus we have completed the proof of Theorem

1.2.

REMARK. It is likely that F = ((¢) and G = T(3) are cusp foms, but we cannot
prove at present.

2. Eichler Zagier’s method

In this section we study our liftings by means of Jacobi forms due to Eichler-Zagier
[EZ]. We continue the assumption that & is a positive odd integer.

2.1. Jacobi forms. First we define the C-linear space Ji ,, (I9(4), x) of Jacobi
forms of weight k and index m on I((4) with x a non-trivial character mod 4 following
[E-Z]; namely any holomorphic function ¢ (7, z) on § x C is in the space Ji , (Io(4), x),
if and only if ¢ satisfies the following three conditions

J4) @, z4+ At +p) = e(—A2mt —2Aamz2)$(1,z) (YA, u € Z)
J-i) ¢M(z,2) = x (@) (ct+d)e ( g;";f,)mr, 2) (VM - (j z) € r0(4)),
where M(t, z) = (Mt, z(ct +d)™ V).

(iii) ¢ is holomorphic at any cusps of I(4), namely, for each M = (i Z) €

SLy(Z), ¢ | M has a Fourier expansion of the form

@M= Y cne(gTrz).

n,reZ,4n>Nr?

where (¢ | M)(t,z) = (ct +d)%e ("%) ¢(M(z, z)) and N, a natural number is suit-

ably chosen for each M.
In this section we consider only the case of m = 1. Each ¢ € Ji,1(Ip(4), x) has a
Fourier expansion of the form

@.1) p(r,2)= Y. c et +r7).

n,reZ,4n>r?

If we define theta series 6;(t, z) (j = 0, 1) by putting

0j(r,2) =) _eln+j/2t+2(n+j/22),

nez

then as usual any ¢ € Ji,1(J0(4), x) can be written in a linear combination of the theta
series:

(22) ¢(t, 2) = ho(1)b(z, 2) + h1()01(7, 2) .
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The theta transformation formula for the theta series is well-known; for any M = (‘; Z) S
SLy(Z),

Oo(M(, 2)) o2 12 bo(z, 2)
2.3 =el|— a)y'"“um ,
@3) (el M(x, z))) e ( crra) TTDTUM g 0 o)
where the branch of (ct + d)!/2 is chosen in the same manner as in (1.1) and U(M) is a
certain unitary matrix of size two depending on M. We set as in [AB]

w(M) =detU(M),

which is independent of the choice of the branch above. In particular if M € I(4), then it
is known that

(2.4) (ct+d)'PUM) = (N%’ K u(A(d), z))"

Here j(M, 1) is Shimura’s factor of automorphy given by (1.1) and u(M, 7) is also a
factor of automorphy on I'h(4) with weight 1/2. We know by [AB] that if we write M =

a b
(c d) € Ip(4), then

(2.5) , (M) = x(d)e(b/4).
It is immediate to see from (2.2), (2.3) and (2.4) that for any M € Ip(4)
(2.6) ho(Mt) = j(M, )* 'ho(r) and hi(M7)u(M, 1) = x(M)(ct + d)*h1(2).
We have, by (2.4) and (2.5), !
X (M) (et + A M, ©)7 ! = e(—b/4)j (M, T)* 1.

So let M}, P (I'o(4)) denote the space consisting of holomorphic functions f satisfying
the conditions

() fMr)=jM, D)* e(=b/4)f(r) (VM € [H(4)).

(i) f is holomorphic at any cusp of Ip(4).

According to (2.2), (2.6) and the definitions of My_1/2(I0(4)), M{_, /2(F0(4)), the
direct sum decomposition of the space Ji,1(/5(4), x) holds true:

PROPOSITION 2.1. The space Jp1(I0(4), x) is isomorphic to the direct sum
Mi_12(I0(4) B MI::k—l/Z(FO(4)) via the linear map oy : ¢ — (ho(t), h1(7)).

2.2. Lifting. Foreach¢ € Ji,1(I0(4), x) and for a natural number m the operator
V., called Eichler-Zagier’s operator is defined in a manner similar to [EZ] by

2
@l Vi) (@, ) =m=1 Y x(a)(ct+d)_ke<— e >¢(Mf o )

Melo@\M} ct +d ct+d
det M=m

where

detM #0, c =0mod4, (a,2) = 1} .
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The well-definedness of the operator is easily verified and the transformation formula (J-ii)
for ¢|x,1 Vin above can be proven without difficulty. Moreover we may rewrite

b
QD @GhaV@=mt 3 3 x(a)d_k¢>(m+ ,’"Z),

O<alm bmodd d
(a,2)=1

where we put d = m/a. Then the transformation formula (J-i) for ¢|z,1V;n can be easily
derived from this expression. Hence, ¢|x,1 Vi, is a Jacobi form of Ji », (I'(4), x).

Let ¢ (7, z) have the Fourier expansion of the form (2.1). Then as is easily seen from
(2.7), ¢lk,1 Vm has the Fourier expansion

@8) @hkiVw@ = . ( > x@d e (T ;)>e(nr+rz)..

n,reZ 0<d| (m,r,n)
4mn—r220

The following theorem is fundamental concerning the Maass space Mal(k, x)-

THEOREM 2.2. The space Ji,1(I'o(4), x) of Jacobi forms corresponds bl]ectzvely
to the Maass subspace M a(k, x) via the linear map 1 : Jy,1(I'v(4), x) — M a(k, x) given
by

I(¢) (i i) = ¢o(7, 2) +mZ=1(¢|k,1Vm)(T’ ems) (¢ € Jr,1(To(4), X))'.
Here we have

2/ (k) Lk, &
¢o(7,2) = (( /D ni) ey +Z<Z x(d)d"") e(nr)) c(0,0),

n=1 \O<d|n

where c(0, 0) is the first Fourier coefficient of ¢.

Proof. For M = (‘cl Z) € I'p(4), we write M (resp. M) instead of the matrix
1 a b
a b ) 1
| ely,"4) resp. d

c d , 1

Set, for simplicity, Z = (i i) € $7. Then by a direct computation,

2
1$)(MLZ) = po(M(z, 2)) + Z<¢|k Vi) (M (2, 2)e (ms“ - d)

= 4o(M(z, 2)) + x @) (cT + Z<¢|k 1)z, De(me)

m_
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‘We note here that ¢o(t, z) coincides with the Eisenstein series

x(d)

Ex(T, x) = Crtaf

Meluo\Ip(4)
up to some constant factor. Namely,

/DT (k) Lk, )
k

¢0(t9 Z) = Ek(Ta X) : C(O, 0) .

Therefore,
L) (MLZ) = x(@)(cT + d)}1($)(2)
= x(M1)det(J (M1, 2))"1()(Z) .
On the other hand, in view of the Fourier expansion (2.8) of ¢|x,1 Vi, we may write
2.9)

1$)(Z) = a(0) + > ( > x@dle (ﬂ 5)) e(mt +rz+n7),

2 9
0<d| (m,r,n) d d

.

m,n,reZ,4mn—r?>0
(m,n,r)#(0,0,0)

where a(0) is given by

k-1
2(0) = @/9) Fgck)L(k,X)

g _(V O . _ (0 1
V_<O V) with V._(1 o)

Set, for simplicity, F(Z) = I(¢)(Z). By the symmetry of (2.9) with respect to ¢ and t, we
have

c(0,0).
Next take

F(V'Z)=F(VZV)=F(2).
Therefore for any M € IH(4),
F(M*Z)=F(V'M, V!Z)

= F(M,V*Z)

= x(M1)detJ(My, VEZ)*F(V'Z)

= x(M1)(c¢ + D)} F(2),
from which we get the desired transformation formula

F(M*tZ) = x(MY)detJ(M™*, Z)¥F(Z).

Since I’O(Z) (4) is generated by the following elements

ML, M*(MeD@). 1) €@, (’é ,UO_I) (U € GLx),

we may conclude that [(¢) = F € My(I\”(4), x). Itis easy to see from (2.9) that the
Maass relation for /(¢) holds and hence that [(¢) € Mal(k, x).
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Conversely take any F(Z) = ZTesg(Z), 70 a(T)e(tr(T Z2)) € ﬁa(k, x). If we put

¢(r,2) = Z a (r;Z rr/12> e(nt +rz),

n,reZ
4n—r?>0

then, ¢ € Jr.1(I0(4), x) and the Maass relation for F implies that F = [(¢). O
Finally we consider the restriction of / to o} ! (My—1,2(I'0(4))) via the isomorphism
ok : Ji, 1 (T0(4), X) = Mi—12(10(4) & Mi_y ,(To(4)) .

Take any ¢ € o} ' (My—1/2(I0(4))) and write ¢ = ¢(t)60(7, z) with ¢ € Mi—1/2(To(4)).
We define the map L Mi_12(Ip(4)) — Ma(k, x) by putting

Fp)=1(9).
Then the following proposition is immediate to see.

PROPOSITION 2.3. The map 1% induces an isomorphism from My_1 2(T'o(4)) onto
the Maass subspace Ma(k, x). Moreover | % restricted to Sk—1 /2(I9(4)) coincides with the
previous lifting 1. Namely, if ¢ € Sk—1,2(I'0(4)), then I*(p) = 1(p).
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