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1. Introduction

Let E be an elliptic curve defined over a number field K, and let E(K) be its Mordell-
Weil group, which is a finitely generated abelian group. In this paper, we study the elliptic
curve defined over Q of the form

qu:y2=x3+pqx,
where p and g are distinct odd primes. Especially we are concerned with determining the
rank and the structure of the Mordell-Weil group E 4 (Q).

It is very difficult to determine the Mordell-Weil rank for a general elliptic curves
and, there is no established algorithm to find it. As for the above type curves there is an |
approach given in the book of Silverman [Sil].

Set

ED:y2=x3+Dx,
where D is a fourth power free integer. Then it holds
rank(Ep(Q)) < 2#{l prime; [ divides 2D} — 1.
If D is an odd prime p, the rank of E,(Q) is much more restricted:

0 if p=7, 11 (mod 16)
rank(E,(Q)) + dimy TI(E,,/@)[2] = { 1 if p =3,5, 13, 15 (mod 16)
2 if p=1(mod8).

Here we use the following notation:

— III(E,/Q) is the Shafarevich-Tate group of E,/Q,

— M{[u] is defined to be the kernel of u for a group homomorphism p : M — M/,

— dimjy V is the dimension of an F;-vector space V.

In case D is a composite of two different odd primes p and g, the general information
tells only

rank(qu(Q)) <5.
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But if we put some additional conditions, we can determine the rank(E ,4(Q)) as the fol-
lowing.

THEOREM 1. Ifthe Legendre symbol (q/p) = —1 and g — p = £6 (mod 16), then
Epg(@) ={0,0,0}=Z/2Z, and TK(Ep/Q)[2]=0.

If p and g are twin prime numbers, then E,,(Q) has a non-torsion point (1, (p +
q)/2). Moreover we have

THEOREM 2. Let p and q be twin prime numbers with (q/p) = —1. Then we have
the following.
(@) Epg(Q)=Z xZ/2Z, and II(E e /Q)[2] = 0.
(b) A generator of the free part of Epq(Q) is (1, (p + q)/2).
©) All mtegral poznts on E 'pq are .
(1 ip;“q> . ( ﬂ:@) ., and (0,0).

REMARK. We will discuss the case that p and g are twin prime numbers with
(g/p)=1in Section 6. For example, we have the following.

THEOREM 3. For (p,q) = (311, 313), or (521, 523), we have the same result as
Theorem 2 except that : ‘ . '
' III(qu/Q)[Z] Z/2Z x Z/2Z

and we obtain III(E »4 /Q) is finite. F urther if the (full version of) Birch and Swmnerton-
Dyer conjecture (see Section 6) is true, then WI(Epq /Q) = Z/2Z x Z/2Z.

To proceed our study, we use the two-descent method, which we recall in the next
section.

2. Two-descent method

In this section, we prepare fundamental concepts and tools according to [Sil]. Let E
and E’ be elliptic curves defined over a number field K. Let ¢ : E — E’ be an isogeny
defined over K, and E[¢] its kernel. If L is a field contalmng K, the exact sequence of
G (= Gal(L/L))-modules

0— E(L[¢] — E(L) —> E’ (L) —0 .
gives rise to the short exact sequence in cohomology '
0 — E'(L)/$(E(L) > H'(GL, E(L)[¢]) — WC(E/L)[¢] — 0.

Here we use the fact that H!(Gr, E(L)) is isomorphic to the Weil-Chatelet group
WC(E/L), which consists of certain equivalence classes of (smooth) curves C /K together
with a simply transitive algebraic action of E on C defined over K. (See [Sil, Chap. X,
3.6].) We shall apply this situation to L = K or L = K, (the completion of K at a (finite
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or infinite) place v of K). If we fix an embedding K C K,, then the inclusions Gg, C Gk
and E(K) C E(K,) give the following commutative diagram.

0> EK)/GEK) - H Gk EBIB) - WCE/KB] —0

| l l

vav o

0~ [1, E'(Kv)/$(E(Kyp)) H_) [1, H' Gk, E(K)l¢) — [I, WC(E/Kv)[¢] — 0.
We define the ¢-Selmer group S® (E/K) to be the kernel of the homomorphism

HY Gk, E(K)[¢]) — [1, WC(E/Ky), and the Shafarevich-Tate group III(E/K) to be

the kernel of the homomorphism WC(E/K) — [1, WC(E/K,). By definition, the se-

quences

0 — E'(K)/¢(E(K)) = SO (E/K) — II(E/K)[¢] > 0, ¢))
0— E(K)/¢(E'(K)) — S@(E’/K) — II(E'/K)[$] = O ?))
are exact, and S@ (E/ /K) are finite ([Sil, Chap. X, 4.2]), where ¢ is the dual isogeny of
¢. If deg ¢ = m, we also use the following exact sequences:
E'(K)[¢] E(K) ¢ EK) E(K)
— —>

N — = -0, 3)
#(E(K)[m]) #(E(K)) m(E(K)) ¢(E'(K))

0 — II(E/K)[¢] — II(E/K)[m] — LI(E'/K)[$] . )
Take the elliptic curves E and E’ as
E=Ela,bl: y*=x3+ax*+bx )
E' =E'[a,b]: Y%= X3—2aX?+ (a* - 4b)X,

where a, b € Rk (=the ring of integers of K) with b(az( — 4b) # 0, and take the isogény
¢ as
¢ E—>E (x,) > (/2% yb—x%)/x%) ©6)

with the kernel E(K)[¢] = {0, (0,0)}. (O = Og denotes the id_entity element of E.) As
G g-modules, we have E(K)[¢] = ur(= {£1} C K*) since E(K)[¢] C E(K), so we get
the isomorphism

H'(Gk, E(K)[¢]) = H (Gk, u2) = K*/K*?

by Hilbert’s theorem 90. Using this isomorphism, we have the following (cf. [Sil, Chap.
X, 4.9]):

THEOREM 4 (Descent via TWo—Isogeny). Let E/K, E'/K and ¢ be the elliptic
curves and the two-isogeny defined as above (5) and (6), and let

S = {all infinite places of K} U {all finite places of K dividing 2b(a* — 4b))
K(S,2) ={d € K*/K*%; ord,(d) = 0 (mod?2) forall v ¢ S}.
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(Here ord, means the normalized valuation for a finite place v.) Then, there is an exact
sequence

0— E'(K)/$(E(K) — K(S,2) — WC(E/K)¢]
Op +—> 1
0,0) +—> a?—4b
P=(X,Y) — X(P#0,(0,0)
d — {Ca/K},

where Cy/K is the curve given by the equation
Cq :dw? = d* — 2adz* + (a® — 4b)z*.
The ¢-Selmer group is then
SE/K) = {d € K*/K*?; Cq(Ky) # D forallv € S}.

The map

¥ :Cy— E

(2. w) > (d/2%, —dw/z?)
has the property that if P € C4(K), then

S(W(P)) =din K*/K*?.

In this paper, we treat the case @ = 0, b = pq (and K = Q), where p, g are distinct
odd primes. We denote E[0, D] (resp. E'[0, D]) by Ep (resp. E},), for short.

To compute the Selmer groups, we often use Hensel’s lemma (cf. [Sil, Chap. X, exer.
10.12]):

LEMMA 1. Let R be a complete ring for a discrete valuation v, F (X1, -+ , XN) €
R[Xy,---,Xn], (a1, ,an) € RY, and suppose

U(F(a],"‘ aaN)) > 2v (aa_;(al"" ’aN)>

for some 1 <i < N. Then F(Xy, -, Xn) = 0 has a root in RN

3. Computation of S¥)(E,,/Q), S (E, /@)

Let E = Epg and E' = E;,q‘ In this section, we compute the Selmer groups
S@ (E/Q) and S@) (E'/Q), where ¢ is the isogeny given by

¢:E—>E (x,9) > */x% y(pg — x*)/x?),
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and ¢ is its dual isogeny. In this case, by Theorem 3, we have the following natural
identifications:

SOE/Q) = {d € Q(S,2); Ca(Q)) # 0 (VI € )},

S("A’)(E’/Q) ={d € Q(S,2); C;(Q) # B (VI € S)}.
Where

§ ={0,2, p,q}
0(S,2) ={+1,+2,+p, +q, £2p, £2q9, £pg, £2pq} C Q*/Q*2
Cq: dw?=d*—4pgz*
C,: dw?=d*+ pqZ*,
and we put Qo = R.

PROPOSITION 1. The notation is as above. Then, we have the following:
(1.1) 1,—pq € SP(E/Q). |
(1.2) The following equivalences hold.
(@ —1e€SPE/Q)ifandonlyifp=gq =1 (mod4).
(b) peSPE/Q)ifandonlyif (p/q) = (—q/p) = 1.
() 2e SP(E/Q)ifandonlyif (2/p) = (2/q) =1,and pg = 1,9, 15 (mod 16).
(d) -2 € SY(E/Q) if and only if (-2/p) = (=2/q) = 1, and pqg = 1,3,9
(mod 16).
() 2p € SY(E/Q) if and only if 2p/q) = (-2q/p) = 1l,and p —q = 0,2,8
(mod 16). R
@.1) {1, pg} C SY(E'/Q) C{L,p.q, pq}.
(22) p € SY(E'/Q) if and only if (p/q) = 1, and one of the following conditions
holds.
- p or q is congruent to 1 (mod 8), or
- p + q is congurent to 0 or 4 (mod 16).
Where (x/x) is the Legendre symbol.

_ Note. Since the condition on p and ¢ is symmetric, the groups S@(E/Q) and
S@(E’/Q) can be determined completely from Proposition 1.

Proof. The method is the same as that in [Sil, Chap. X, 6.2], so we compute some
parts in the proposition.

By Theorem 4, (1, 1) is quite trivial. Let d € Q(S,?2). Itiseasy to see that C4(R) # @.
Hence, d is in S (E/Q) if and only if C4 (Qp) C4(Qy) and C4(Q2) are not empty.

d=-1 C_j:-w?>=1- 4pq2
If (zo, wo) € C—1(Q@p), then it is easy to see that ordpzo, ordpwo > 0 and so w0 = —
(mod p). Conversely, by Hensel’s lemma, any solution to w? = —1 (mod p) lifts to a point

in C_1(Qp). Therefore
C_1(Qp) #0 < p =1 (mod4).
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Similarly, .
C_1(Qy) #90 < q =1 (mod4).
From above, to see whether —1 is in S (E/Q) or not, we may assume that p = ¢

(mod4). If (zg, wo) € C—1(Q2), then we must have ordowg < 0, and s = —ordyzg >
(so ordawg = 1 — 2s). If we write

O =

20 =2"%z1, wo = 21" w; (21, w1 € @2, ordpzy = ordyw; = 0),
then we have
2 — 245—2 _ qul4-

Hence, the condition that C_1(Q2) # { is equivalent to the condition that there exists
s € Z, s > 0 such that

—1=2%"2_ pg (mod8),

by Hensel’s lemma. (Note that z1, w; are 2-adic units.) If pg = 1 (resp. pg = 5) (mod 8),
the last congruence has a solution s = 2 (resp s = 1). Hence we have (1.2a)

d=p Cp:w = p—d4qz*.

If (z0, wo) € Cp(Qy), then ord, zo, ordqwd > 0 and w(z) = p (mod g). Conversely, a
solution to w? = p (mod q) lifts to a point of C(Qy). Therefore

14
Co Q) #9 & (3) =1.
Similarly, . : \
CprQp) # 0 & (_Tf’) =1.
We must determine whether C,(Q>) is empty or not, under the assumption that (p/q) =
(—q/p) = 1(so we have p = 1 (mod4)) or p = g = 3 (mod4). Let (z9, wp) € Cp(Q2).
Then there are three cases which we must consider: :
(i) ordowg > 0, ordyzg >0
(i) ordowg =0, s =ordyzo >0 :
(iii), ordowo <0, —s =ordzzp <0, ordowo=1—2s
It is easy to see that the case (i) cannot occur..
- Case (ii): Put z9 = 2%, with a non-negative integer s. Then we have

=p-— p4s+2 24 ,
where z; is a 2-adic unit or 0, and wo is a 2-adic unit. If p = 1 (mod 4), the following table
gives solutions (z1, wo, ) of the congruence

wt = p —2%%2gz} (mod$8),

and the solutions lift points in C,(Q>) by Hgﬁsel’s lemma.

1 (mod8) | (1,1,1)
5 (1,1,0)
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Hence, we see that C,(Q2) # @ if p = 1 (mod 4).
Case (iil): Ifwesetzo =25z, wo = 2172
s € Z, s > 0), then we get

wi (21, w1 € Qs ordyz; = ordrw; = 0;
w12 — 243—2p _ q214 .
If p = q = 3 (mod 4), the following table gives solutions (z1, wi, s) of the congruence
b =2%"2p — ga* (mod8),

and the solutions lift points in Cp(Q2).

p=3 (mod8) || (1,1,1)
7 (1,1,2)

So, we obtain that C,(Q2) # @ if p = g = 3 (mod 4). After all, we have
(E) =1 ('_‘1) =1=Cp(@) #0
q p

peSPE/Q & (5) = (‘—") =1.
q p
This proves (1.2b). Similar calculations for other d € Q(S, 2) give the desired result. [

Theorem 1 follows easily from Proposition 1 and exact sequences (1) through (4).

and

4. The proof of Theorem 2(a), (b)

PROOF (of Theorem 2(a), (b)). (a) Let E = Ep; and E' = E;,q. Without loss of
generality, we may assume g = p + 2. Then we have (2/p) = (¢/p) = —1, so we have

SPE/Q) = (1,-pq,—2p,2q) =Z/2Z xZ/2Z, and
SO (E'/Q) = (1, pa} =27/
, 'By Proposition 1. Hence we obtain inequalities

dimy E’(Q)/¢(E(Q)) <2, dim EQ)/$(E'@Q)) <1. )

from the exact sequences (1) and (2).
Let r be the rank of E(Q). Since the torsion subgroup of E(Q) is {O, (0 ONEZ/2Z)
by [Sil, Chap. X, 6.1], we have

dimy E'(Q)[$1/¢(E@)[2]) = 1, dimy E(Q)/2(E(@)) =7 +1. ®

Using (7), (8) and (3), we have r < 1. In fact, we obtain r = 1 since E(Q) contains a
non-torsion point Pop = (1, (p+q)/2). Then III(E /Q)[2] = 0 can be proved easily by (1),
(2) and (4). So we obtain (a). ‘

(b) Let P be a generator of free part of E(Q) and put P’ = P + (0, 0). From (a),
the integral point Py is a multiple of P or P’, thus P or P’ is also an integral point by [Sil,
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Chap. IX, exer. 9.12]. We may suppose that Py is a multiple of P. By (2) and the injection
(in fact, isomorphism)

§:EQ)/$(E'Q) — SPE'/Q) =11, pg} C Q*/Q*
0O —1
0,0) + pq
0=y ~x(Q%#0,0,0),

®

any integral point has the form (42, v) or (pqu?, v) (u,v € Z). We need the following
claim.

CLAIM. If Q = 3, v) € E(Q) (u,v € Z,u # 0), then u = £1, hence Q = +P,.

Proof (of the claim). Since Q € E(Q), we have v = ul(u* + pq). Then, ut + Pq
becomes a square, we can write 12> = u* 4+ pg with a positive integer ¢, and we get (f —
u?)(t + u?) = pq. Since p, g (p < q) are primes, we obtain

() t—u*=1and t+u?=pq, or
() t—ul=pandrt+u’=gq.

In the case (i), we have 2u? = pq — 1 and (2u)2 = 2pq — 2 = —2 (mod p), hence
(—=2/p) = 1. On the other hand, we also have (2/p) = —1 by assumption, we must obtain
p = 3 (mod 8). Using 2u? = pgq — 1 again, we have 2u?=3-(34+2)—1=6(mod8). It
is easy to see that it is impossible. In the case (ii), we get Wl =q—p=2,2=p+q,
thus u = £1.

We return to the proof of Theorem 2. If P is of the form (u2, v), then we have nothing
to prove from above claim. It suffices to show that P can not be of the form ( pqu?,v). If
P is of the form (pqu?, v) and if we can write Py = mP with m € Z (We may assume
m is positive.), then m must be even. Otherwise, we write m = 2k + 1 (k € Z), and
get (1, (p +q)/2) = Py = 2kP + P = ¢(¢(kP)) + (pqu?, v), hence we would have
1 = pgq in @*/Q*? by using the homomorphism & in (9), which leads a contradiction.
Since m is even, m P’ = mP = Py, thus P’ is an integral point. On the other hand, since
P' = P +(0,0) = (1/u?, %), we get u> = 1 from above claim, and P’ = + Py, which is
impossible because m is even. O

REMARK. When p, g are twin prime numbers with (g/p) = 1, similar argument
of above proof gives 1 < r < 3, where r = the rank of Ep;(Q). In this case, the sign of
the functional equation of the L-series L(E g, s) is —1 by Proposition 1 and the result of
Birch and Stephens [BS], so we can expect r is odd. Both the cases r = 1 and r = 3 can
occur (see Section 6 and 7).

REMARK. Using an argument similar to the above proof, we can generalize Theo-
rem 2:
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THEOREM 5. Let p and q be distinct odd prime numbers with the properties that

® @/p)=-1,
(i) (g —p)/2l=1(mod8), and
(iii)) 2|g — p| is a square .

(For example, (p, q) = (11, 29), (23, 601), (419, 997), etc.) Then we have
EpQ)=Z xZ/2Z

with generators Py = (|q — pl/2, ~/2lq — pl(p + q)/4) and (0, 0).
Further, integral points are =Py and (0, 0) only.

REMARK. Suppose that we knew, a priori, that the group III(E,,/Q) were finite,
or more generally, that its 2-primary component were finite. Then the existence of the
Cassels-Tate pairing ([Ca], [Ta]) would imply that dimyIII(E 4 /Q)[2] is even. Hence, it
is easy to prove that if p, g are distinct prime numbers with (g/p) = —landg — p = +2
(mod 16), then the rank of E 4 (Q) is 1 if the 2-primary component of III(E 4 /Q) is finite.

5. Integral points

Let p and g = p + 2 be twin prime numbers with (g/p) = —1. In this section, we
prove Theorem 2(c):
All integral points on the curve

E:y2=x3+pqx

are (1, £(p + ¢)/2), (pq, =pq(p + ¢)/2) and (0, 0).

By the argument of the proof of Theorem 2(a) (b), it suffices to consider integral points
(x, y) of the form x = pqU? and y = pqUT, where U and T are positive integers. So
we must solve the equation

(T —1)(T +1)=pqU* (U, T€Z;UT>0). (10)

Let (U, T) = (v,t) be a solution, we want to show that u = 1. There are several
cases which we must consider:
Case 1, ¢ is even.

(L) t—1=uf, t+ 1= pqus;
(1.2) t—lzpu‘f,. t+1=qu‘2‘;
(13) t—1=gquf, t+1=puj;
(14) t—1=pqu}, t+1=uj,

where, in each case, 11 and uj are relatively prime positive odd integers.
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Case 2, t is odd.

Q1) t¥l=2u, t+1=28pquj;
(22) tF1=2puj, t+1=_38quj;
23) tFl=2qu}, t+1=38puf;
Q4 tF1=2pquj, t+1=28uj,
where, u3 and u4 are relatively prime positive integers with u3 odd, and u4 even.

LEMMA 2. The cases (1.1), (1.3), (1.4), (2.2), and (2.3) cannot occur.

Proof. If the case (1.1) can occur, then we have pqug —u‘l‘ = 2, and hence (-2/q) =
1. However, since p or g = p + 2 is = 1 (mod 4), we have

(©)-()-()-()--

It contradicts the assumption on p and g. Impossibility of (1.4) is quite similar.

If the case (1.3) occur, then we have pu% — qu‘l‘ = 2. Since u; and u, are odd, we
must obtain p — ¢ = 2 (mod 8). This is impossible because g — p = 2.

If the case (2.2) occur, we have 4qui — pug = =1 and so we obtain (+q/p) =

(Fp/q) = 1. But, since (q/p) = (p/q). = —1, we must have (£1/p) = (F1/q) = —1.
It is clearly impossible. Similarly, (2.3) does not occur. O

For the case (1.2), we have qu‘z‘ — pu‘l‘ = 2, which has a solution #; = up = 1 that
gives the desired point (4, 1) = (1, (p + ¢q)/2). The following proposition is a special case
of the result of Siegel [Sie]:

PROPOSITION 2. Letp and q = p + 2 be as above, and suppose that
pg > (188-4-2%2 (= 144769024) .
Then the equation - ‘ , ‘ v o
qU3 —pUt =2 (U1, U2 €Z,> 0)
has the only solution (U1, Up) = (1, 1).
This proposition is also used to prove the next two lemmas.
LEMMA 3. Under the assumption in Proposition 2, the case (2.4) does not occur.

Proof. If the case (2.4) occur, then we must obtain 4u2 — pqu‘31 = 1 since u3 is odd
and pg = 3 (mod4). This means that (U, T) = (u3, ZuZ) is a solution of the equation (10)
with even 7. By Lemma 2 and Proposition 2, we have 2u§ = (p + q)/2. Hence we have
(p/q) = 1, which gives a contradiction. O

LEMMA 4. Under the assumption in Proposition 2, the case (2.1) does not occur.

Proof. If (2.1) is satisfied, we obtain 4pqui - u‘3t = =+1. By the consideration in
modulo 8, we must have

4 pqui - ug =-1
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andr+ 1= 2u§, t—1= 8pquj, and u4 is even. Because u3 is odd, we easily obtain
ui+1=20u? and u?—1=28uf,

for some positive integers o, B, us, ug such that o = pq, u4 = usue, and such that us is
odd and ug is even with (s, ug) = 1. Eliminating u%, we have

4 4
aus — Bug=1.

Since us is odd and ug is even, @ = 1 (mod 8). So we have « = 1 because p, g = p + 2,
and pq is not congruent to 1 modulo 8 by the assumption that (g/p) = (2/p) = —1.
Hence we get

ué — Dl +1) = pqug, (11)

which means (U, T) = (ug, u%) is a solution of the equation (10) with odd 7. From (11),
we see that us < ug, so we have :

u§<u5u6=u4<8pqui=t—l,

and u§ < t. Lemma 2, Lemma 3, and the infinite descent argument gives the desired result.
‘ O

Proof of Theorem 2(c). If pg > 144769024, Theorem 2(c) is true by the above
argument. On the other hand, if pg < 144769024, we can use the algorithm of Gebel,
Peth6 and Zimmer [GPZ] or Smart [Sm].

By the proof of Theorem 2(b), it suffices to show that if integral points Q € E of the
form

Q=M(1,¥) +(0,0),
where M is an integer, then M = +1. (We may assume M is positive.) The algorithm of
Gebel, Pethdand Zimmer [GPZ] gives an upper bound on M. In our case, we can check
that M is at most 5 for each p, ¢ = p + 2 with (g/p) = —1 and pg < 144769024, and

then, by direct computation, we have the desired result M = 1. O

6. Special values of L-series and the conjecture of Birch and Swinnerton-Dyer

In this section, we give some examples such that the group E, (Q) has rank one and
the group III(E p, /Q) is non-trivial for twin prime numbers p, ¢ with the Legendre symbol
(g/p) = 1. First, we recall the definition and facts about L-series L(E, s) for an elliptic
curve E over Q briefly. For more details, see [Sil].

Let E/Q be an elliptic curve. We set

— Rg: the elliptic regulator of E(Q)/Eors(Q) computed using the canonical height
pairing.

— Ng: the conductor of E/Q.

— $2g: the real period of E.
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For each rational prime /, let ¢; denote the number of connected components, rational
over F, of the closed fiber of the Néron model of E at /, and put

1—al=5 +1'"2 if E has good reduction at / ,

Li(E.s) = 1-1—° if E has split multiplicative reduction at [,
DR I +17¢ if E has non-split multiplicative reduction at / ,
1 if E has additive reduction at / ,
where

a=1+1—#E(F).
The L-function is defined by the Euler product

L(E,s) =[] Lu(E,5)™",
I

which is convergent and gives an analytic function for fe(s) > 3/2 by the Hasse-Weil
bound |g;| < 2+/1.

CONIJECTURE 1 (Hasse-Weil). If we put
A(E,s) = N}/*@n)°T'(s)L(E, s),

then A(E, s) has an analytic continuation to the entire complex plane and it satisfies the
functional equation

A(E,s) =e¢A(E,2 —5)
with ¢ = +1.

The above ¢ is called the sign of the functional equation of L(E, s).

If E/Q is modular (i.e. E/Q is parametrized by modular functions), then the above
conjecture is known to be true. In our case E = Ep which has complex multiplication by
the ring of Gaussian integers, Shimura’s result (cf. [Shi], [Shi2]) gives that Ep is modular.

The Birch and Swinnerton-Dyer conjecture gives a misterious relation between an
analytic object L(E, s) and arithmetic objects E(Q), III(E/Q), etc.

CONIJECTURE 2 (Birch and Swinnerton-Dyer). Assuming the analytic continuation
for L(E,s), we have

(a) ordg—1L(E,s) = therank of E(Q) (= r, say).

(b) limy (s — )"L(E, s) = 2 Re#(E/Q) []; c1/ #Ewors (Q))*.

In particular, the above conjecture (b) says that

(bg) If L(E, 1) # 0, then the rank of E(Q) is zero and

L(E, 1) (#Ewors(Q))?
QE Hl C]
(b;) IfL(E,1)=0and L'(E, 1) # 0, then the rank of E(Q) is one and

L'(E,1) (#Ews(@))?
2Qph(P) Tl

= #III(E/Q) . (12)

= #III(E/Q), (13)
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where A(P;) is the height of a generator Pj of a free part of the Mordell-Weil group E(Q).
(See [Sil]).
On the Birch and Swinnerton-Dyer conjecture, known results is as follows.

FACT 1 (Coates and Wiles, Rubin) ([CW], [Ru], [Ru2]). Let E/Q be an elliptic

curve with complex multiplication. Suppose that L(E, 1) # 0. Then ‘
(i) E(@Q) and III(E/Q) are finite.

(ii) The l-part of both sides of (12) in (bg) are equal for each prime | > 5, and the
3-part of bothsides of (12) in (bg) are equal if E /Q doesn’t have complex multiplication by
Z[(—1++/=3/21.

FACT 2 (Gross and Zagier, Kolyvagin) (IGZ], [Kol]). Let E/Q be a modular elliptic
curve, and assume L(E, s) has simple zero at s = 1. Then E(Q) has rank 1 and III(E /Q)
is finite.

Next, we give a method to compute the quantities as above for E = Epq. (p, g are
distinct odd prime numbers.)

The real period §2g,, is given by

2, = V2
B = (p) 1 FAGM(V2, 1)’

where AGM means the arithmetic geometric mean of Gauss (c.f. [Cre]).
The quantities Ng,, and ¢; can be computed by Tate’s algorithm [Ta2].

Np = 26p2¢% if pg =1 (mod4),
P 25p%q? if pg =3 (mod4),

1 ifl#£2,p,q,
o — 2 ifl=p,q,
"1 1 ifl=2and pg=1 (mod4),

2 if /=2 and pg =3 (mod4).
Since Ep, has complex multiplication by Z[+/—1], we have
1 ifl=2,p,q,
l—aql=S+1""% if1#2,p,q,

where a; can be computed as follows.
If/ =3 (mod4) and [ # p, g, then

Li(Epg,s) = {

a =0.
Ifl =1 (mod4)and ! # p, q, factor [ in Z[+/—1]:
I =X with A =1 (mod2 +2/-1).

—Pq —Pq\ s
o) ()5
A ), A ),

Then
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where (c/A)4 is the 4’h—power residue symbol. (see [IR].)

For a method to compute heights (and hence the regulator R Epg ), see [Cre] or [Sil2].
To compute L(Epq, 1) and L'(Epg, 1), we use the following formula. (See [Ma])

FACT 3. LetE / Q be a modular elliptic curve,
L(E ) = Z apn™*

its L-function, € the sign of functional equation for L(E,s), then

2nn
L(E, 1)_2Z—e (m)

L(ED=2) ‘;—”H (j’%)

n=1

H(s) = /oo @dx

We use the following approximation of L(E, 1) and L'(E, 1). (See Gebel and Zimmer

ife =1, and

if e = —1 where

[GeZi].)
Put "
an —2nn
Sm =2 —ex
" ,; n P ( ~/NEg >
and "
a 27n
s =2 “H ( )
m r; n ~NEg
If e =1, then
|IL(E, 1) — Spu| < 107%
for
VN
E —log(1 — exp(—=27/v/N5))) .
If e = —1, then
IL'(E,1) =S| <107*
for

i |
m > T max(4, 210g2 + klog 10 — log(1 — exp(~27/v/NE)} .
Tn

Here the integrals H (27n/+/Ng) must be approximated to within an error of size 107% /(8m).
The sign ¢ can be computed by the result of Birch and Stephens [BS] (and Proposition
1): If we write #S@) (E ;4 /Q) = 2™ and #S@(E),, /@) = 22, then

&= (_1)r1+r2—2 .
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EXAMPLES. , ,
(i) p = 311, g = 313. This is the smallest example which satisfies the following
property: :
D, q are twin prime numbers with (g/p) = 1, E,,4(Q) has rank one (not three) and
III(E 4 /Q) is a non-trivial finite group.
Since & = —1, L(Epq, 1) = 0 and

Sy, = 9.06556996293884

for m = 2200000 (with error less than 10~3). Hence it follows from Fact 2 that E g (@)

has rank 1. Then the same argument of the proof of Theorem 2(b) shows that a generator

of the free partis (1, (p+¢q)/2) = (1, 312). (Further, when we use the algorithm in [GPZ],

all integral points of E 4 are (1, £312), (97343, £30371016) and (0, 0).)
One can compute

fz((l, 312)) = 2.698945375060464 ,  §2g,, = 0.20993315682460675255 .
Then the left hand side of (13) is

L'(Epg. 1) (#Epgior(Q))*
22g,,h((1,312))  Tla

= 4.000000000000436984 .

So we can expect that #III(E p; /Q) = 4. From the facts that the rank of E,4(Q) is 1,
and Proposition 1, the following commutative diagram with exact rows and columns gives
#III(Epq/Q)[2] = 4.

0

|

E}pq (@)[81/9 (Epg(@)12]) i
0= EL@)/¢(Ep (@) =, SO (Epg/Q) — M(Epg /@] — 0

l

0— Epg(Q)/2Epg(Q) SD(Epg/Q) — MI(Ep,/QI2] — 0

l L

N 85 . R
0> Ep@/$(E,@) —> SOE, /0 — IE,,/QP] —0

3
—>

0

(i) p = 521, ¢ = 523. Similar coniputations as example (i) gives the following
quantities. (The sign ¢ of functional equation is —1, and L(E g4, 1) = 0.)

Sy, = 7.676167412213061
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for m = 6300000 (with error less than 1073). (So we have L'(E pg» 1) # 0, the rank of
Epg(Q)is 1, and #(E e /Q)[2] = 4.)
fz((l, 522)) = 2.955984075921569, g, = 0.1623014369973387089046592 .
Then the left hand side of (13) is
L'(Epg, 1) (#Epgos(@))°
202g,,h((1,522)) L

and we can also expect that #III(E 4 /Q) = 4. ;
Theorem 3 follows from the above computations. (For integral points, using the algo-
rithm in [GPZ], we can obtain the desired result.)

= 3.999999999999961364 ,

7. Tables

In the following tables, we compute the various invariants for the elliptic curves E =
E,, for primes p, g with p < g < 100.

Table 1. rank(Epqg(Q)) =0, Sha =1

p.q L(Epg, 1)
13,7 2.401 29,19 | 1.531 || 59,37 | 1.085 || 73,47 | 0.969 || 89,31 | 1.023
17,7 2.245 41,3 | 2.227 || 61,7 | 1.631 || 79,37 | 1.009 || 89,83 | 0.800
17,11 2.006 41,19 | 1.404 || 61,23 | 1.212 || 79,41 | 0.983 | 97,7 | 1453
19,3 5.398 43,5 | 1.937 || 67,13 | 1.365 || 79,53 | 0.922 || 79,23 | 1.079
19,13 1.871 43,37 | 1.174 || 71,13 | 1.346 || 83,13 | 1.294 || 97,59 | 0.853
23,7 4.164 47,5 | 1.894 || 71,17 | 1.258 || 83,73 | 0.841
23,17 1.668 47,41 | 1.119 || 71,61 | 0914 || 89,3 | 1.835
29,3 2.428 53,31 | 1.165 || 73,31 | 1.075 || 89,19 | 1.157

Table 2. rank(Epg(Q)) =0, Sha =9

p.q | L(Epg, 1)
67,41 9.220 67,61 | 8.348 (| 97,71 | 7.327

Table 3. rank(Epq(Q)) =0, Sha = 4.0

p.q | L(Epg, D)
29,13 3.366 47,7 | 3.483 || 59,19 | 2.563 || 73,17 | 2.499 || 83,67 | 1.718
29,23 5.837 47,23 | 2.587 || 59,43 | 2.090 || 73,19 | 4.861 || 89,41 | 1.908
31,7 3.865 47,31 | 2.401 || 59,53 | 3.967 || 79,23 | 2.272 || 89,79 | 3.240
37,11 6.605 53,5 | 3.676 || 61,5 | 3.549 || 79,31 | 2.108 || 97,11 | 5.190
37,13 3.167 53,29 | 2.369 || 67,11 | 2.847 || 79,73 | 3.404 || 97,43 | 3.691
41,31 | 4.968 53,37 | 2229 || 71,23 | 2.333 || 83,3 | 3.734
43,19 2774 59,3 | 4.067 || 71,47 | 1.952 || 83,29 | 4.235
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Table 4. rank(Epq(Q)) =0, Sha = 16.0

p.q L(quv 1)

83,19 9.415

83,59

7.092

89,73 | 6.608

Table 5. rank(Epq(Q)) =1, L' (Epg. 1) #0

p.q | x(P) L'(Epg,1) | Sha

53 |1 4276 | 10 || 43,31 | & 3234 | 1.0

7.3 | % 6238 | 10 || 47,3 | 22 8.758 | 1.0
7,5 |1 4612 | 1.0 || 47,11 | ZELGIEIIITABY | 28976 | 1.0
11,7 | $88 12269 | 1.0 || 47,13 | 1418 14.037 | 1.0
13,11 | 1 4663 | 1.0 || 47,17 | 17 10.545 | 4.0
17,3 | 25 8364 | 1.0 | 47,19 | 1£2 3.730 | 1.0
17,5 | & 5.651 10 || 47,29 | 9 4.128 | 1.0
17,13 | 52 10812 | 40 || 47,43 | 2 27.667 | ?
19,5 | & 8730 | 10 | 53,3 |25 6.540 | 1.0
19,7 | 7 4287 10 || 53,7 | 2 7615 | 1.0
23,3 | B 7128 | 10 || 53,17 | 45 22.944 | 40
23,5 |9 5580 | 1.0 | 53,19 | 1952273722 27.953 | 1.0
23,11 | 8§ 4.467 10 | 53,23 | P 11.240 | 1.0
23,19 | L& 94014 | 1.0 | 53,41 | B8 4342 | 1.0
29,11 | 9 4904 | 10 | 59,7 | B2 6470 | 1.0
29,17 | 42 5341 | 10 || 59,13 | T2 16.159 | 1.0
31,3 | 14 5917 | 1.0 || 59,23 | SEAIRSIAL | 25682 | 1.0
3,11 | B3%8 10296 | 1.0 || 59,29 | 72428 15.831 | 1.0
31,13 | 9 4770 | 1.0 || 59,31 | S 9319 | 1.0
31,17 | 8 9359 | 1.0 || 59,47 | 3%F® 6.460 | 1.0
31,19 | 8 7955 | 1.0 || 61,11 | 25 4969 | 1.0
31,29 | 1 4157 | 10 || 61,17 | B® 25997 | 1.0
373 | 2 9249 | 1.0 | 61,31 | 138 7787 | 1.0 |
37,7 | § 7823 | 10 || 61,41 | g 17.865 | 4.0
37,17 | 2 4824 | 1.0 || 61,43 | 9 3.808 | 1.0
37,19 | 9 4467 | 10 || 61,47 | 471891841 20386 | 1.0
37,23 | ¥ 17759 | 10 || 61,59 | 1 3.596 | 1.0
41,5 | 20 10050 | 40 || 67,5 | 18 9171 | 1.0
41,7 | 10638 | 10 || 67,7 | 3 6.900 | 1.0
41,11 | 225 8230 | 10 || 67,23 | & 3038 | 1.0
41,13 | 2 4905 | 1.0 || 67,31 | 3PHI00B668 | 19733 | 1.0
41,29 | 284 8917 | 10 || 67,37 | & 5781 | 1.0
41,37 | 340 15342 | 40 || 67,47 | 12 2817 | 1.0
43,7 | Y2 9.936 | 1.0 || 67,53 | 136112 13.420 | 1.0
3,13 | 3 7007 | 10 || 71,3 | 5551 | 1.0
43,23 | % 3327 | 10 || 71,5 | & 11.286 | 1.0
43,20 | BB206000L | 28336 | 10 || 71,11 | 1GP 7.341 | 1.0

39
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Table 6. rank(Epq(Q)) =1, L’(qu, 1) # 0 (continued)

pq | x(P) L'(Epg,1) | Sha
2275385401 : 9
7119 o0 13206 | 1.0 | 83,23 3 o 2910 | 1.0
71,37 % 11126 | 1.0 || 83,31 OB 14.632 | 1.0
TLAL | Bt 17274 | 1.0 || 83,37 e 15.488 | 1.0
71,43 | 24 6454 | 10 | 83,47 | 30 9.348 | 1.0
71,53 | 9 3636 | 1.0 | 83,53 13326 13912 | 1.0
225 16220506545961
71,59 | 2 2770 | 1.0 || 83,71 | 16220300343861 | 13249 | 1.0
71,67 | 2 37.501 ? 118379 | ? 37.839 | 2
- 361 1
73,5 | 8L 5084 | 10 || 89,7 | % 9.041 | 1.0
73,7 | 33 12450 | 1.0 | 89,11 | 11 11.001 | 4.0
361 '37746167851681
73,11 3. 8234 | 10 | 89,13 T [ 19850 | 10
73,13 4879 | 1.0 || 89,23 | 19166057228 35.893 | 1.0
, 3 ) 122202680625
73,29 | YPISELRIIBI | 23278 | 1.0 | 89,29 | &L 4443 | 10
73,37 | 3B 15190 | 4.0 || 89,37 | 13446889 9.306 | 1.0
3374569 5405043361
73,43 | 38 16242 | 1.0 || 89,43 | 0L 20822 | 1.0
73,53 | 128 4158 | 10 | 89,53 | 8580 16.963 | 4.0
© 201276047978041 / 496175625
73,59 | Sarresaesinets MS77 | 10 89,59 | Gty 21812 | 1.0
73,61 | 8259 | 40 | 89,61 | 3H9CL 6.775 | 1.0
79,3 | S8 13131 | 10 || 97,3 | 3 ' 14.550 | 4.0
625 6355441
oL e 4665 | 1.0 || 97,5 o 13422 | 1.0
79,13 | 2881 18150 | 1.0 || 97,13 | 1901 8.878 | 1.0
79,17 | 3% 8.935 10 || 97,19 | B4l 12434 | 1.0
4553685361 2809
79,19 | 435508301 13265 | 1.0 | 97,29 | 22 4061 | 1.0
79,29 | 25 4063 | 10 || 97,31 | 2k 29.476 | 4.0
79,43 | 1554030250081 15500 | 1.0 || 97,37 | 1% 4209 | 1.0
192721 508016448
79,59 | 12721 5533 | 10 || 97,53 | 3P0I648 31682 | 4.0
79,619 3521 | 1.0 || 97,61 | ? 41.047 | 2
79,67 | 105185489 9213 | 1.0 || 97,67 | 3429 6.402 | 1.0
83,5 | 132l 11.746 | 1.0 || 97,79 | 9 13.235 | 4.0
| 403225 6962448042451225
83,7 | 4932 9.846 | 1.0 || 97,83 | §252448U21223 | 31049 | 1.0
83,17 | 17 10134 | 40

In tables, Sha is the conjectural value of the order the Shafarevich-Tate group. Note
that if L(E, 1) # 0.then the result of Rubin says that the /-part of III = the I-part of Sha
for all odd primes [, hence Sha is the correct value of III in Tables 1 and 2.

In Tables 5, 6, 7 and 8, x(P) (or x(P;)) is the x-coordinate of a set of generator(s) P
(or P;’s) for the free part of the Mordell-Weil group E(Q).

In Tables 5 and 6 we could not find a rational point of E for the four cases (p, q) =
(47,43), (71, 67), (83,79) and (97, 61), but the results of Gross-Zagier and Rubin give
rank(E(Q)) = 1. _

In Table 9, we could not determine the rank of E(Q), but if the Birch and Swinnerton
conjecture is correct, we have rank(E(Q)) = 2 and P;, P, are generators of the free part.
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Table 7. rank(Epq(@)) = 2, LD (Epg, 1) # 0 (Sha = 1.0)

P.q_| x(P),x(Py) | LD (Epg, 1)/2
11,3 | 4,16 8.234 61,29 | 16, 2% 26555
9 19044 83521
1,5 | 5. % 10.865 61,37 | 1944 83 71393
13,3 | 3,27 8.659 61,53 | 246 2209 14.209
13,5 |4, & 13.884 67,3 | 100, 2 28.784
25 8464 9 324
19,11 | 3, 8484 10.773 67,19 | 3. 3% 19.120
23,13 | 13, 555 19.068 67,29 | 1421, % 24.536
81 289 ; 225 102400
2.5 | 16 5 20.758 67,43 T mr 35305
29,7 | 7,12 11.667 67,59 1586 10.826
31,5 |5, %8 18.873 71,7 | §. % 39.929
31,23 | 131, 13924 19.255 71,29 | 29, 343549 26.205
121 64 100 2765569
37,5 | 2, 5 18.152 71,31 | 10, 27636 57.132
37,29 | 156, 8 14.975 73,3 | 12,48 17.171
36 24964 . 225 2412
41,17 | 35, 2458 46.184 73,67 | 223, 2L 37.986
43,3 | 64,100 19.323 79,5 | 45, 280 26.816
43,11 | §, 136 11.403 79,7 | 36, 3% 18.769
17 . 25 8248384 229552801
4‘3, . g Y %09 27,28 i .;?ﬁ 197!;6089 1153677920836 e
53,11 | 11, % 12.521 83,11 | 36, 1% 17.233
' 625 841 41 81
53,13 % 19796 || 83,41 ESE 19.989
$.43 | 2 N 41346 8,43 5P, oot 35.012
53,47 | 47, $3833222 43544 83,61 | 61, 11218 22530
59,5 | 5, %2 20.496 89,47 | 188, 2L0681 37752
59,17 | 1.3 22.037 89,67 | 268, 289 21.354
61,3 | 3,75 12.482 97,17 | 184,65 28.252
729 11449 657721 21325924
S 22.902 97,41 | STl 21323924 98.399
61,19 | 171, 22 22326
Table 8. rank(Epq(Q)) =3, L (Epg, 1) # 0(Sha = 1.0)
p.q_| x(P), x(P), x(Py) | LO(Epq, 1)/6
49 121 1369
19,17 | 17, %, 29.495 73,71 | 71,1, 38 68.659
41,23 | 23, 2, 260 41.820 89,5 | 20,80, %2 48.759
59,41 | 41,1925 4561 52.764 89,71 | 284, 121 3635 | 63141
361 2809 1692 86903
73,23 | 92,381 B2 71.640 97,47 | 47,1822 86903 | 59,432

Table 9. rank(Epq(Q)) =7, ords—1 L(Epgq, s) = 2 (Sha = 4.0)

p.q_| x(P).x(Py) | LD (Epg. 1)/2
73,41 | 16, 164 23.239 97,73 | 22, 30276 | 48.933
89,17 | 68,36 27.621 97,89 | 356,4 22.929

41
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