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Several mathematicians have given holomorphic differential operators & on
automorphic forms F on bounded symmetric domains D such that the restriction of
9F on some bounded domain 4 of lower dimension in D is also automorphic (cf.
[51, [7], [11], [12], [2], [3]). The aim of this paper is to give a characterization of
such holomorphic linear differential operators with constant coefficients in symplectic
cases by using harmonic polynomials on R, or pluri-harmonic polynomials on matrix
arguments with some invariance property.

For any natural number m, we denote by H,, the Siegel upper half space of
degree m. We shall treat the following two kinds of pairs (D, 4) of domains:

(I) D=H,and 4=H, x---xH, withn=n,+.--+n,
(I1) D=(H,) and 4= H, (diagonally embedded in D).
The case (I) contains the cases treated by Eichler-Zagier [7] (n=r=2),
Bocherer-Satoh-Yamazaki [2] (n>2,r=2 with certain vector valued weights),
Ibukiyama-Zagier [8] (n=r>2), and the case (II) contains the Rankin-Cohen
operators in Cohen [5], and Choie-Eholzer [4], Eholzer-Ibukiyama [6] (r=2,n=1, 2,
>3, respectively), and Satoh’s operators in [12]. These two cases are in a sense
“dual” to each other. Our theorems assert that, in the above two cases, everything
is reduced to the representation theory of the orthogonal groups. Our differential

operators & are expressed as Q(%), where Q are obtained from pluri-harmonic

polynomial maps which are characterized by some invariance property (cf. §1,
Theorems 1 and 2). The polynomial maps Q will be given explicitly in several cases
in section 3. It is plausible that whole theory might be generalized for any dual
reductive pairs or any tube domains.

This paper is organized as follows: In section 1, after reviewing some standard
notions, we shall state our main results Theorems 1 and 2. In section 2, we shall give
proofs of these theorems. In section 3, we shall give several explicit examples of the
differential operators we are concerned with.

This work is motivated by Zagier’s interest in differential operators and triple
L function. During his stay in Kyushu University in fall in 1990, he convinced
me earnestly that this problem is very important. Without his strong interest in

103



104 T. IBUKIYAMA

this problem, this work would not have been done. The author would like to thank
him for this point and also for several discussions. He also thanks the Max Planck
Institute for Mathematics for the kind hospitality while he was revising the paper.

1. Main results

1.1. Notation
First, we shall fix some notation. For any natural integer n, let Sp(n, R) be the
usual split symplectic group of size 2n. This group acts on H, in the usual way by

gZ=(AZ+B)YCZ+D)™ ',
where g=< /Cl i)eSp(n, R). Now, let (z, V) be an irreducible finite dimensional

rational representation of GL(n, C). For any Ze H, and any g=</c1 ﬁ), we write

Jjdg, Z)=1CZ + D). For any V_-valued function F on H,, and any element g € Sp(n, R),
we write

(FlLaDZ)=jd9. Z)" 'F(9Z).

In particular, when 7 is a power of the determinant, that is, when ©(CZ+ D)=
det(CZ+D)* for some natural number k, we write F|[g]=F].[9] as usual.
More generally, for a fixed natural number r, let n;, - - -, n, be natural numbers
and for each j with 1<j<r, let (r;, V) be an irreducible representation of
GL(n;, C). Take an irreducible representation (z, V) of GL(n,, C)x - -- x GL(n,, C)
defined by 1=71,® ---®r1, and V.=V, ®---®V,. For any g=(g,, ', 9g,)€
Spny, R)x - - - xSp(n,, R), and Z=(Z,, - -+, Z,)e H, x - - - x H, , we write

j‘t(g7 Z)zrl(CIZI+D1)® e ®Tr(CrZr+Dr) s

A; B

where we write g,-=< > for each i with 1 <i<r. For any V,-valued function F(Z)

i i

onZeH, x---xH, and any ge Sp(n;, R)x - - - x Sp(n,, R), we write

(FlLgD(Z)=jdg, Z)" 'F(gZ) .

When 7;=det" for each i with 1<i<r, we write F|,, ... ,,[g]1=F|.[g]. We say that
afunctionon H, x -.- x H, is C*,ifitisa C* function as a function ofz;= i+ 1)
components of real symmetric matrices X; and Y, where Z;=X;+iY;e H, (1<j<r).
For any discrete subgroup I' of Sp(n;, R)x - - - x Sp(n,, R) with covolume finite, we
say that a C* function F transforms like a modular form of weight z, if F|.[y]=F
for any yeI'. Now, we fix a natural number »n and r, and choose natural numbers
ny, * -, m,s0 that ny + - - - +n,=n. For any matrix M= (my,); <, <,€ M,(C), and any
pair of integers (i, j) with 1 <i, j<r, we denote by M,; the submatrix (m,,) of M with
nt--4n_+1<k<n +---+mandn;+---+n;_+1<I<n;+--- +n; Thatis,
we write M=(M;);.; ;<, by submatrices. For the sake of simplicity, we sometimes
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write M;=M; for each i with 1 <i<r. Now, we put
G(”la T, nr)=SP(nls R) X Sp(nZ’ R) Xooee X Sp(nn R)

and we regard it as a subgroup of Sp(n, R) by the “diagonal embedding” i, where
the group homomorphism 1 of G(ny, - - -, n,) into Sp(n, R) is defined by

— (Aij) (Bij)
1g1, > 9r) ((Cij) (Dij)>eSp(n, R)

with gi=<g" zi) and 4;;=B,;;=C;;=D,;;=0 for pairs (i, j) with i #j.
1.2. Pluri-harmonic polynomials

We review pluri-harmonic polynomials of matrix arguments. Let m and d be
natural integers and let P be a C-valued polynomial of md variables x;; (1 <i<m,
1<j<d) regarded as a function of X=(x;,)e M, ;=M,, (C). For each i, j with
1 <i, j<m, denote by 4, ; the following differential operator:

d 62

4, .= _—
v=1 0x;,0x},

LJ
A polynomial P(X) on M, , is called harmonic if )" | A, P=0, and it is said to be
pluri-harmonic if 4; ;P=0 for each pair (i, j) with 1<i, j<m. This is equivalent to
say that P(4X) is harmonic for any 4 € GL(m, C) (cf. Kashiwara and Vergne [9]).
We denote by #,, ; the space of all pluri-harmonic polynomials on M,, ;. The group
GL(m, C) x O(d) acts on M,, ; by: P(X)— P(AXB) for Ae GL(m, C) and Be O(d). The
irreducible decomposition of J#,, , has been given in Kashiwara and Vergne [9]. They
have shown there for example that each irreducible component has multiplicity one,
and if an irreducible representation t® A of GL(m, C) x O(d) appears in J#,, ,, then
the representation t of GL(m, C) is uniquely determined by the representation A of
O(d) and vice versa. (cf. Kashiwara and Vergne loc. cit. (5.7), (6.14).) We denote
this 7 by ©(4). It is also clear that pluri-harmonic polynomials in each irreducible
representation space in J#, , are homogeneous. Now, assume that an irreducible
representation 7 ® A appears as an irreducible component of J,, ,. We denote by V,
the representation space of 7. Then, pluri-harmonic polynomials maps P of M,, , to
V. such that P(aX)=1(a)P(X) form a vector space of dimension dim A. We denote
this vector space by #,, 41, A)=#(z, A).

1.3. Invariant pluri-harmonic polynomials and Theorems

We first treat the case (I) in the introduction. Fix ny, - - -, n, withn=n;+--- +n,
as in the introduction. Also put D=H, and 4=H, x --- x H,. We fix a natural
number d. Let 4; be an irreducible representation of O(d) which appears in J#,_,. We
take the tensor representation A=4; ® - - - ® 4, of the direct product O(d)" of r copies
of O(d). We can take the representation space of A as the tensor product
V(A)=H#(t(1), 1) ® - - - ® #(t(4,), 4,). We fix a basis of V(A). Then, each element
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of V(A)is regarded as a vector each of whose component is a polynomial P(X, - - -, X))
of X;e M, , (1<i<r) such that P is pluri-harmonic for each X; (1<i<r). Besides,
the above polynomial P is a linear combination of products P, (x;) - P, (X,) of
polynomials P, such that each P, is homogeneous and pluri-harmonic. We denote
by A4(O(d)) the image of the diagonal embedding of O(d) into O(d)". Now, assume
that the restriction of A to 4(O(d)) contains the trivial representation of A(O(d)).
(The multiplicity of the trivial representation is not necessarily one, even if it is
not zero.) We denote by # = #,™.. , (A) the isotypic component of the trivial repre-
sentation of 1| A4(O(d)). This space consists of polynomial maps P(X;, ---, X))
of (Xy, ", X)eEM, 4% -+ xM, 4 to V=V((1)® ---®V(t(4,)) such that the
following three conditions are satisfied.

(1) P(X,, -, X,) is pluri-harmonic for each X; (1<i<r).

) P(Xg, -, X,9)=PX,, -, X,) for each ge O(d).

(3) Pla Xy, a,X)=(11(a)® - - @1la)PX,, -+, X)) for each

a;eGL(n;, C)(1<i<r).

Now, denote by X the n x d-matrix defined by:

X,
X,
XV

" where X;e M, , as before. From now on, we assume that d>n. Then, by virtue of
- Weyl [13], any O(d)-invariant polynomial of the components of X is a polynomial
of the components of the nxn symmetric matrix X'X, and n(n+1)/2 different
components of X'X are algebraically independent. Hence, under the assumption
that d>n, for each element Pe # ™, there exists a unique polynomial map Q of the
set of nx n symmetric matrices to ¥ such that P(X,, - - -, X,)=Q(X'X). We call Q
the associated polynomial of P. For Z=(z;;){ <x.,<n€ H,, We put

0 _( 1+6, 0 >

0z 2 0zy)
For the case (I) in the introduction, we consider the commutation relation below.
For each i=1, - - -, r, we take a finite dimensional irreducible representation (t;, V)
of GL(n;, C) and put V= _, V... We take an even natural number d=2k and put
1;=1;®@det". We put n=)""_, n; as before. We take a polynomial map Q of the set
of n x n symmetric matrices to ¥, and put 2= Q(%).

CoNDITION 1. For any C*® function F on H,, and any element g=(g, ", g,) €

G(ny, -, n,), we get

(ResDF))|:, -0 [9]=Res (2 (F|:[4])) -

(Here we denote by Res, the restriction of maps to 4.)
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THEOREM 1. Suppose that d>n. Let Q be a polynomial map from the set of

0z
satisfies the commutation relation, Condition 1, if and only if the polynomial P on M,, ,
defined by P(X)= Q(X'X) belongs to # "™ = A, , (A ® - - - ® A,), where A, is such that
t,=1(4;) for each i.

. . . . . 0
n x n symmetric matrices to V. Then the associated differential operators 9 = Q( )

COROLLARY 1. Assumptions and notation being as above, assume that a V-valued
C* function F on H, transforms like a modular form of weight k with respect to a
discrete subgroup I of Sp(n, R). Then, the function Res (D F) transforms like a modular
form on A of weight det*t, ® - - - ®det*t, with respect to T nG(ny, -+, n,). In
particular, if F is a holomorphic modular form, that Res (2F) is also a holomorphic
modular form.

Next, we shall treat the case (II) in the introduction. Put D=H, and 4=H,,
and regard 4 as a subset of D through the diagonal embedding. For each i with
1 <i<r, we fix natural numbers d; such that d;>n. Put d=d, + - - - +d,. We regard
the group K=0(d,)x - -- x O(d,) as a subgroup of O(d) through the “diagonal”
embedding:

k, 0 « 0
0 ky 0 - 0
0d)x - x0d)elky, - k)—| : 0 . :leod).
Lo 0
0 0 -« 0 k

Take a representation T ® A of GL(n, C) x O(d) which appears in J, ;. We denote by
H"™=H#"d,, -, d;A) the subspace of #(t, 1) consisting of pluri-harmonic
polynomial maps P in #(z, ) which is invariant by the action of K, namely
P(Xk,, -+, X,k,)=P(X,, -+, X,) for all k;e O(d,)) (1<i<r). If the restriction of A
to K has the trivial representation as an irreducible component of multiplicity /, then
the dimension of # ™ is I. For each i with 1 <i<r, denote the n x d; matrix argument
by X,. By virtue of H. Weyl [13], for each element P e # ™, there exists a polynomial
map Q such that Q(X1X;, -+, X;X,)=P(X,, - -, X,). We call Q the associated map
of P.

Now for the case (II), we consider the commutation relation below. Let (z, V)
be a finite dimensional irreducible representation of GL(n, C). Let Q be a polynomial
map of r product of the space of # x n symmetric matrices to V. Define a differential

0 0
operator 9 by 9= Q< A 5z
put d;=2k; and d=2k. We regard Sp(n, R) as a subgroup of Sp(n, R)" through the
diagonal embedding.

). We assume that each d; (1<i<r) is even and

ConpITION 2. For any C* function F(Z,, ---,Z,) on H, and any element
ge Sp(n, R), we get the following commutation relation.
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ResA(g(F|k1, i LD = (Res (D F)) ldetk®r[g] s

where Res , is the restriction of the maps to A.

THEOREM 2. Notation being as above, we assume that d;>n for each i. We
take X;e M, ; (1<i<r) and define a map P by P(X,, ---, X,)=0(X1 X, - - -, X} X)).
Then 9 satisfies the above commutation relation, Condition 2, if and only if P is a
pluri-harmonic polynomial map belonging to # ™ = #'™"(d,, - - -, d,; 1), wheret=1(}).

Corollary 2. Notation and assumptions being the same as above, we get following
results:

(1) If a function F on H}, transforms like a modular forms of weight (k,, - - -, k,)
with respect to some discrete subgroup T of Sp(n, R)', then Res (ZF) transforms like
a modular form of weight det* ®t with respect to T n A(Sp(n, R)), where A(Sp(n, R)) is
the image of Sp(n, R) in Sp(n, R). under the diagonal embedding 1.

(2) Let I be a discrete sybgfoup of Sp(n, R). For each i with 1 <i<r, let F{(Z;)
be a C-valued modular form on H, of weight k; with respect to I'. Take the product
FZ,,  -,Z)=F(Z))x---xF(Z,). Then, Res(2F) is a modular form on H, of
weight det* ®t with respect to I'.

ReMARK. Of course, these theorems can be applied also for modular embedd-
ings, if we change the coordinates according to the embedding. Also we can get
differential operators on Jacobi forms, using the Fourier-Jacobi expansion.

2. Proofs

2.1.

In this section, we prove Theorems 1 and 2. The idea of the proofs of both
theorems is based on the following two facts. Firstly, for any natural number » and
d with d>n, let Y be a n x d matrix whose components are algebraically independent
nd variables over C. For each i with 1 <i<n, denote by y; the i-th row vector of Y.
Then, by virtue of the invariant theory on the orthogonal groups (H. Weyl, loc.cit.),
the n(n+ 1)/2 inner products (in the usual sense) (y;, ;) (1 <i<j<n) are algebraically
independent over C. Secondly, we have the following transfomation formula for
harmonic polynomials and besides we can show a lemma which asserts the converse.

LemMmA 1 (Kashiwara-Vergne [9]). For any pluri-harmonic polynomial P(X)
on M, , and Ze H, and any Ye M, , we get
J eiTr(‘XY)e% Tr('XZX)P(X)dXz(2n)nd/2(det(z/i))—%e% Tr(tY(-Z~ 1)Y)P(_Z— 1 Y),
Mo
where dX is the usual Lebesque measure on M, (R), and by det(Z/i)> we mean the
branch which is 1 for Z=il,.

LemMma 2. We fix any homogeneous polynomials P(X) and P,(X) of variable
XeRY. We assume that the following equality
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e
RN

is satisfied for any vector Y=(y,, - - -, yy) € RN. Then we get P,(X)= P,(X) and besides
this is a harmonic polynomial.

=(Q2n)N2e= 5 P,(iY)

Proof of Lemma 2. This lemma seems more or less known (cf. Kashiwara and
Vergne loc. cit. p. 4), but we give here a proof for the reader’s convenience. We
write the total degree of P,(X) by deg(P;). For X="(x,, - - -, xy) € RY, write P,(X) as

Pi(X)=) c(a)x*,

where o runs over multi-indices (o, - -, ay) such that a,+ - - - +ay=deg P, with
>0, and we write x*=]] Y, x#. We calculate the left hand side. First we get
‘XX 1 & 'YY
2 j=1 2

Hence, for a fixed Y, by changing the variable X into X+iY, we get

_tX
e 2
RN +iy

Here the integrand is holomorphic with respect to X and e(—'XX/2) tends rapidly
to zero when X tends to + oo. Hence the integral remains unchanged if we replace
the path R¥+iY of the integral by RY. Now we can calculate the integral term by
term. First of all, we have

P (X+iY)dX=(2n)V2P,(iY)

if [is even

J e—%xledx___{ 2 2 . . >
e 0 if /isodd.

Hence, we get

Y (o) H e Ex; (oc;+iy;)™ n dx;

3 RN

N a
=ZC(OC I—.[ Z < >(ly )“J ﬁjz(ﬂ;‘*‘l)/zr(w)
o j= 0,Bj:even B

By our assumption, this is equal to (2m)¥2P,(iY). Since we assumed this equality for
all YeR", this is a polynomial identity. By definition, the right hand side is
homogeneous with respect to y;. On the left hand side, the terms of highest degree
with respect to Y come from those with ;=0 for all j. We get 2"/2I'(1/2)=(2m)'/2.
Hence, comparing the terms of highest degree with respect to Y of both sides, we
get P,(iY)=P,(iY). Besides, the terms of deg P—2 of the left hand side with respect
to Y, that is, those terms with ;=2 for one j and $,=0 for all the other / (1<j,I<N)
vanishes identically. Also we have 2%2I'(3/2)=22I'(1/2)=(2m)"/?. Hence we get
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N
De()iy)¥~2 1 @)m=0,

I=1,1#j

=deg P. This means that P,(X) is

||[\/_]z

-3
where the sum is over indices such that Y7

harmonic. q.e.d.

2.2. Proof of Theorem 1
First for a polynomial map Q of nxn symmetric matrices to ¥V associat-

]1]

ed to an invariant pluri-harmonic polynomial P, we put 9=Q<aiz>' We show

that 2 satisfies the commutation relation in Theorem 1. Let F be as in Theo-
rem 1. Then, by definition, F|,[g]=deg(CZ+D) *F(9Z). We must calculate
Res(2(det(CZ+ D) *F(gZ))) for any geG=G(n,,n,, ---,n,). Obivously, it is
sufficient to show the commutation relation for generators of G. It can be easily
shown that the group G is generated by the following three kinds of elements.

1, B .
) u(B)z( 0" : ), where Be M(R), ‘B=B, and B;;=0 if i #j.

A
2 d(A)=<0 g1

0 1,
® p=<~1,, 0>'

Among the above elements, the commutation relation for elements of type (1) is

), where A€ GL(n, R) and 4;;=0 if i #].

trivial. As for elements of type (2), if we put W=A4Z'A, then we get ——‘Aa—W ,

and by our choice of Q, we get Q(%) ,(4)® - ® r,(‘A,)Q(a—W>. Hence we get

a d2 t 1 1 a t
Q<a—Z>(F(AZ’A)(detA)) <<? det(4,)"2t,(A; Y ><Q<6—Z>F>(AZ A).

To show the relation for p, we need some tricks. We denote by g multi-index
(Mij)1<i<j<n- We put |pu| =Z1sisjs,.l‘ij and denote by D, the following differential
operator

aﬂij

1<i<j<n 625‘;’1’

D,=

Then, it is clear that there exist V-valued functions Q,(Z) which does not depend on
F such that

D(det(—Z) " F(=Z~ )= X QuZ)D FN-Z7Y),
u"

where p runs over multi-indices such that | u| <deg(Q). So, the rough idea to prove
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the commutation relation is to find a function F'such that D, F are linearly independent
at any point Z (or over the ring of holomorphic functions) and satisfies the
commutation relation. If we put Fo(Z)=exp(4Tr( YZY)) for a matrix Y of size n x d
of independent variables, then

i \l#l
(gpFo)(Z)= (*‘) l_[ (Vi y)'FN(Z) s
2 1<i<j<n
and the polynomials y,,=l_[ 1 <i<j<n (Vi i)"Y (u: multi-indices) are linearly indepen-
dent over C. So, it is enough to show the relation only for F,. We calculate the
action of 2 on this F,. By Lemma 1, we get

D(F, |k[P]) = 12 ) ~ndi2 f eiTr(tXY)Q(e%Tr(cxzx))dX

My, q
“nd)2 i\ieee —nd/2 iTr(tXY) - Tr(tXZX) t
=i e (2n) e e2 oX'X)dX .
M, a4

We write Z,=(Z;;) where Z;;=0 for all i#j and Z;=Z;. Then, by the Fubini
Theorem and iterated use of Lemma 1, we get

Res (2(Fo|i[p])

degQ .
___ind/Z(zn)—nd/Z(%) ¢ J eiZfA. Tr(‘XiYi)e%Z,Z, Tr(‘X.inXi)Q(A/tX')dX'ldA/2 . er
Mn.d

degQ r ) »
> [ ] (det(—Z;)~Pex TV 20 N P(—Z5 1Y)
i=1

-

Il

("
2

i degQ . . »
(7) [] (der(—2) 5 XC2) x 0= 27 )@ -~ @7l =Z7 HH(Y))

1

det(—Z) T x(1(=ZTH® - - - @1 (—Z7 V)X (DFo)—Z5 1) .

I
-

1

1

Now we prove the converse. Let Q be a polynomial map of n x n symmetric matrices
0
oz
we shall show that Q is an associated polynomial of invariant pluri-harmonic
polynomial P. First, taking the element of type (1) above and F=F,, we see that

QAYA)=(1,(4)® - - ®1(A4)A(Y).

A fortiori, if we put P(X,, - - -, X,)=Q(X*X), then this P is homogeneous for each
X;. We shall show that P is pluri-harmonic for each X;. Taking the above relation
into account, the commutation relation for this Q and pe G and F, is written as

Yto V, and put 9= Q( ) Assuming that & satisfies the commutation relation,
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r .
f [T efTreXstg’ TreX,2,%0 p(xX ) dx
M

ma(R)J=1

l—[ (zn)njd/z det(zj/i)—d/Ze%Tr(th(—Zj' ‘)Yj)P(_Zl—- 1 Yy, o, —Z7 1 Yr) .
j=1

We put Z;=ia? for some positive definite real symmetric n x n matrices o; (1<j<r).
So changing the variable X; into a; '.X;, we get

r

; (@ lY ) L X _ _

J\ n e TrXje; " Yide = Tr(tx’x’)P(Oh 1X17 R er)dX
M a(R) J=1

= Plio o 1Y), iy (o) T (@ det(n) e T ke )
j=1

Hence, by iterated use of Lemma 2, we can show that P(a; 'Yy, - -, 'Y,) is
harmonic for each Y; for any ;. Hence P(X, - - -, X,) is pluri-harmonic for each X;
(1<j<r). Thus, Theorem 1 is proved.

2.3. Proof of Theorem 2
Define a function F\(Z,, - -+, Z,) on H}, by

Fi(Zy, -, Zr)zeizi,. Tr(YZ;Yy)

where Y;e M, ;, (1<j<r) are matrices of independent variables. Let P and Q be the
polynomial maps in Theorem 2 and assume that Pe # ™. The differential operator

@ is defined by@zQ(ai o aaz
1 r

). Then, the commutation relation for the elements

of the form <’g g>e Sp(n, R) is obvious as before. As for the inversion p(Z)= —Z"1!
(Ze H,), we get by Lemma 1 that

9(F1|k1,---,k,[p])=i""/2(2n)_""’2J e YNGF\)Z,, -+, Z)dX

My a

— ind/Z(zn) —ndj2 <i>degQ
2

XJ‘ eiT,(txy)Q(X—in, e X:Xr)Fl(Zlg cee Z,)dX
M, q

Denothing the variable on H, by Z, we get F,(Z, - - -, Z)=exp(+ Tr('YZY)), where
we put Y=(Y,, - -+, Y,). Applying Lemma 1 to P(X)=Q(X| X, - - -, X}X,), we get
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Res(2(F, ‘k,. —kLP])

nd/2 i \ke2 -1 -1 =4 -1 -1
=" > P(—Z 'Yy, -, —Z 'Y det Z/i) S F(—-2Z ', -+, —=Z7Y
: \degP
=<%> det(—Z)‘%(r(—Z“))P(Yl, Y,)Fl(—Z‘l, —Z‘l)
=det(—2) " 2((—Z WDF\)N-Z1, -+, —=Z7Y).

On the other hand, Z,F,; (u: multi-indices) are linearly independent over C.
Hence, for any C* function F on H,, we get

ResD(F|y,. .., [pD)=det(—=Z) (= Z YGF(—2Z7, -+, —=Z71).

The proof of the converse is almost similar to that of Theorem 1, or even easier, if
we use F. So, we omit the details here. Hence, Theorem 2 is proved.

3. Examples of invariant pluri-harmonic polynomials

In sections 1 and 2, we have shown that “invariant” pluri-harmonic polynomials
give the differential operators which satisfy the commutation relation and vice versa.
Here remains two problems.

(1) When do there exist “invariant” pluri-harmonic polynomials?

(2) How can one describe the “invariant” pluri-harmonic polynomials
explicitly?

In this section, we give partial answers to these questions.

3.1. Casel
3.1.1. The case r=2

Assume that representation 4, or 4, of O(d) appear in J#,, , or J,, 4, respectively.
We get " (A, ®A,)#, if and only if A, is equivalent to A,, and besides,
dim o, (A® A)=1 in this case. This fact is easily shown by Schur’s Lemma.

The case n=2, n;=n,=1 In this case, if d>3, then #™#0 if and only
if A; =7, =the v-th spherical representation p,, that is, the representation of O(d)
whose representation space is the space of harmonic polynomials of d variables of
homogeneous degree v. Now, for vectors x, ye R%, denote by (x, y) the usual inner
product and put n(x)=(x, x), n(y)=(y, y). Define the homogeneous polynomials

G, (s, m) of degree 2v of 2 variables as follows:

1 o0
T = Gji(s,mt”.
(1—2st+mt?)5" v;o (s, m)

The polynomials G;(s, 1) are called the Gegenbauer polynomials. In particular, when
d=3, those polynomials are the Legendre polynomials P,(s). For each v and each d,
the polynomial G;((x, y), n(x)n(y)) of total degree 2v of 2d variables gives the basis of
one dimensional space #; ;(p, ® p,). So, if F is a Siegel modular form of degree 2
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. . 1 2 .
of weight k=d/2, where we assume d is even, then <G;k <7 ai %)F(Z)) is
Zia z,0z 212=0

in the space of tensor products of modular forms of one variables of weight k+v.
This fact was essentially known by Eichler and Zagier (cf. [7] p. 28.)

Spherical case When n, n, and n, are general, then # ™30 for the repre-
sentation A which is not necessarily spherical. But, in the case that A= p,, for some
1, the description of J#,™ (p, ® p,) is easy. In fact, let u; (1 <i<n) be independent
variables. For each i with 1 <i<n, denote by x; a d-dimensional variable vector and
put X=%x,, - - -, x,). For each multi-index m=(m,, - - -, m,), denote by P,(X) the
coefficient of [ [_, u/™ of the polynomial

ni n ni n
G;(( Y owx, Y ujxj> , n( Y uixi>n< > ujxj>>.
i=1 j=n1t+1 i=1 j=ni+1

Then, P(X)=(P,(X)),, is a pluri-harmonic polynomial map which gives the basis of
A" (021 ® poy)- In this case, for Siegel modular forms on H, of weight k, ZF gives
an automorphic form on H,, x H,, of weight (det* Sym2!) ® (det* Symz!), where Sym;!
is the symmetric tensor representation of GL,, for each i=1, or 2. This operator is
the one which appears in Bocherer-Satoh-Yamazaki [2].

The case n=4, n, =n,=2 We assume that d>4. We treat the case t(4)=det".
Then we get operators to map Siegel modular form F on H, of weight k to a modular
form Res, (2F) on H, x H, of homogeneous weight k£ +v. This corresponds to the
case A=(v,v,0, ---,0), in Kashiwara-Vergne’s notation ([9] p. 27), where the
notation (v, v, 0, - - -, 0)is regarded as the Young diagram of SO(d) which corresponds
to the restriction of the representation A of O(d) to SO(d). For the sake of simplicity,
we write #,"(L® 1)=H#"(v). We have already explained that dim #"*(v)=1.
For each non-negative integer v, the space # ™(v) consists of (C-valued) pluri-
harmonic polynomials P(X, Y) of 4d-variables (X, Ye M, ;) such that P(AX, BY)=
det(A4)' det(B)*P(X, Y) and that P(Xg, Yg)=P(X,Y) for each ge O(d). Now, we
describe the basis of # (v). Put

J1=/1(X, Y) =det(X"Y),
fo=1(X, Y)=det(X'X)det(Y'Y),

X'X X'Y
f3=/5X, Y) =det< iy YtY)'

Let ¢ be a variable and put
Ao(X, Y, t)=1=2f,t+f>t*, and

RX, Y, )=(4o(X, Y, 1)+ /Ao(X, Y, 1)> —4f5t?)/2.
Then, the each coefficient G,(X, Y) of ¢* of the following formal power series
1

G(X, Y, 1)= i G(X, Y)'=
X, Y, 1) —4f512

v=0 RX, Y, 1)

5
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gives the basis of # ™(v). For example,
G(X, Y)=(d—3)det(X'Y)

(d—1)d—-3)

d-3 d—1
Gz(Xa Y)= 2 f12_

2 f2+ 2 f3

Since the calculation is slightly complicated, we sketch the proof. We must show
that G(X, Y, ) is pluri-harmonic for each X and Y. If we write X'X=R=(r;)),
Y'Y=S8=(s;) and X'Y=T=(t;;), then as for X, we get

0 0? 02 0?
A, =2d +4r, ——+4r +r
" 11 H arlzl . 01011, 2 a"122
2 2 52
481 —5 +25,, +55,
ot?, 0t,,0t,, 0t?,
2 2 2 52
+4t,, +4 +2 +2t,,

F12 31 .
or 10ty Ory,0t,, Or,0t,, Or,,0t,,

Since it is complicated to show the harmonicity of G(X, Y, t) directly, we use
the following formula of power series expansion.
e <2n+s> n
t
=1\ n

1
S1—4t(1+/1—41))28 -z

To apply this in our case, we can show the following identity.

p < A )
11 d-3 4 on
Ao(X, Y, t) >

=(132811— 2123151815+ 11252, — 1, det(S))

3nX2 3n- 1
x((4n+d 3)dn+d—1) ALK Y, ) n(4n+2d—10) XY +2n> ,

Taking both formula above into account, we see 4,,(G(X, Y,t))=0. In a
similar way, we can show 4,;;(G(X, Y, t))=0 and the pluri-harmonicity of G(X, Y, t)
for Y follows from the symmetry.

More generally, in the case r=2 and n=2n, =2n,, the polynomial det(X'Y)
gives always an invariant harmonic polynomial corresponding to t(g)=det(g). As for
this case, some related and a little more complicated operators were also introduced
by Bocherer [1] in fairly different formulation.

Next, we treat the case where n=4, n;=n,=2 and A=(2, 1,0, - - -, 0). In this
case, the base of # " is given by the vector (v,, v,), where
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nxy)  (xi, 1) (xX1,2)
vy =d(xy, y)det(X'Y)+| (x4, X3) (X3, 1) (X2, 02)
Vix1) ny)  (yl)

nx;)  (x3,y2) (x2,¥1)
vy =d(x,, y,)det(X'Y)+| (x4, X;) (x1,¥2) (x1, 1)
(y2, x2)  n(yz) (¥1,22)
The weight of Res,(ZF) is (det - Sym') ® (det - Sym?).

3.1.2. The case r=3

n=3, ny=n,=ny=1 This case is treated in [8] in detail. Here, 1,, 4,, 4,
are automatically spherical, if we assume # ™ #0. Hence, denote them by p,,, p,,
and p,,. Then H(p,,, pa,, pg,)# <, if and only if a;=v,+v;, a,=v3+v,, az=
v, +v, for some non-negative integers v,, v,, v;. Besides, under this condition,
dim #(p,,, p.,, P.,)=1. As for the generating function of the bases and many
other properties, see [8].
3.2. The case II

Spherical representation Take a spherical representation p, of SO(d). When
d,+ - - +d,=d, the restriction Res p, of p, to SO(d;) x - - - x S(d,) contains the trivial
representation as an irreducible component, if and only if v is even. If v=2/ for some
integer /, then the multiplicity of the trivial representation of Resp, is equal to

<r+11—2>. In particular, if r=2, then the multiplicity is one. If n=1 and r=2, then

for modular forms f of weight k£, and g of weight k£, on H,, our operators
Res,2(f(z,)f(z,)) are nothing but Cohen’s operators in [5]. When n=2 and /=2,
our operators are Satoh’s operators in [12]. The case where n, / general and r=2
was written in Eholzer and Ibukiyama [6].

We assume that n=1 now. Each element of #™(d,, d,; p,) is a harmonic
polynomial P of xeR¢ and a function of m, =n(x,), - - -, m,=n(x,), where x,e R%
(I1<i<r)and x='(x,, -, x,). Hence, writing the condition 4P =0 by the variables
m; (1<i<r), we get the following differential equations:

1 4 of r 0% f
—Af= d,' ——+2 m,———= 0
2 s i;1 om; i=Zl om?
Take a solution f(m,, - - -, m,) of the homogeneous degree / with respect tom, - - -, m,
and write it by the coefficients as follows:

f(ml’ ...’mr)—__ Z C(u'l’ '."ﬂr)mi“”'mﬂr'

gt e =1
Then, we have the following difference equation:

(1 +”r)(dr+2#r)c(/'tla T, tur— 1> “r+ 1)

r—1
= Z (d,+2/,tl)C(/,t1, T Hieas I"'i+19 Hiv1, "7 :ur)
i=1
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When r=2, by the above relation, we get Cohen’s operator explicitly.

The case »=2 and n general After this work had been finished, an explicit
formula for generalized Cohen’s operator was considered by Choie and Eholzer [4]
in case n=2 for C-valued Siegel modular forms of degree 2. This was generalized to
the case of general n by Eholzer and Ibukiyama [6]. So, we would like to add some
explanation on this. We take the representation (t, A) of GL(n)x O(2k) on the
pluriharmonic polynomials such that t(g)=det(g)’. In our setting, this case
corresponds to the differential operators on the product of two C-valued Siegel
modular forms of weight k, and k, of degree n to C-valued Siegel modular forms
of weight k, +k,+v. We consider the restriction of this representation (z, ) to
{1} x (0O(d,) x O(d,)). Under the assumption that d, >n and d, >n, the multiplicity of
the trivial representation in this restriction is one. Hence using this invariant
pluri-harmonic polynomial, we can construct the desired differential operators. If
d,, d,>2n, the assertion for multiplicity is almost a direct consequence of Koike and
Terada [10] p. 115 Corollary 2.6. The details was given in [6], as well as the
method to get explicit operators in this case.
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