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1. Introduction

More than twenty years ago H. Klingen [9] introduced a certain type of
Eisenstein series to produce holomorphic Siegel modular forms of degree n from
cusp forms of lower degree; these Eisenstein series are very useful analytical tool
to reduce questions about Siegel modular forms to questions about cusp forms. The
Fourier expansion of these Eisenstein series has been studied intensively over the last
ten years from various points of view (rationality properties, integrality properties,
explicit formulas, see e.g., [5], [7], [1], [11]).

The results mentioned above cover only the case of scalar-valued Siegel modular
forms. However one can also introduce and study such Eisenstein series in the theory
of vector-valued Siegel modular forms. We became interested in this problem because
of a conjecture formulated in [12] on the denominator of the Fourier coefficients of
certain vector-valued Eisenstein series of degree 2 (this conjecture will be settled in
section 5).

In this paper, we study the Fourier coefficient of vector valued Klingen-type
Eisenstein series of type det*® Sym'. For each n>1, let p, ,, be a representation
det*® Sym' of GL(n, C) and V its representation space. We denote the space of
V-valued Siegel modular forms (resp. cusp forms) of degree n and ‘weight’ p, ; , with
respect to I',=Sp(n, Z) by M, (V) (resp. S, ; (V)). Let Z be a variable on the Siegel
upper half plane H, of degree n. Let 1 <r<nand U be a representation space of p; ; ,.
Assume Uc V and '

a 0
pk,l,n( >u=det akpk,l,r(d)u
c d
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for all aeGL(n—r, C), de GL(r, C) and ue U. For such a pair (U, V), we define the
Klingen type Eisenstein series E(f, V)e M, , (V) attached to f'eS, ; (U) by

E(f, V)2)= PZ\F (f opr}|c19)(2) .

Here P,, is a certain parabolic subgroup of I', (see Sect. 4 for definition) and
pry: H,—H, is a projection defined by

(* *)
pr; =z
¥ Z

where z is of size r. We compute Fourier coefficients of E(f, V).

For a scalar valued case (i.e. /=0), this problem was solved in [1]. One of the
main tools is a nice decomposition of Siegel’s Eisenstein series shown by Garrett
[5]. We generalize his result to the space of vector valued modular forms of weight
det* ® Sym'. In this case however there is no Siegel Eisenstein series (the construction
above does not work for r=0, /> 0; moreover the constant term of any vector valued
modular form vanishes, see Weissauer [13, Satz 1]). To avoid this difficulty, we
construct, in the section 2, a differential operator whose pullback sends modular
forms to modular forms of lower degree. Next, we construct Poincaré series of vector
valued modular forms of weight det* ® Sym'. These results together with the coset
decomposition by Garrett [5, Sect. 2-3] yield the desired pullback formula.

Notation. We put I',=Sp(n, Z). Let p be a representation of GL(n, C) with a
representation space W. Let H, be the Siegel upper half plane of degree n and f a

. b
W-valued C*®-function on H,. For M =(a d)eSp(n, R), we put
c

(f |, MY2)=p((cZ+d)™ Nf(MLZ)))
where Ze H, and
M{(Zy=(aZ+b)cZ+d)™*.

The W-valued C®-modular form f of degree n and of weight p is a C*-function
from H, to W satisfying

floM=f

for all Ze H, and MeT,. The space of all such functions is denoted by M (W).
When p is a representation det*® Sym' of GL(n, C), we write |, and M 2(W) as |, ,,,
and M, (W), respectively. We note M°, (W)={0} unless nk=1Imod 2. We put

M, (W)={feMp, (W)| f is holomorphic on H, (and its cusp)}
and

Sk,l,n(W)={fEMk,l,n(W)|f is a cusp form.}
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We omit the subscript ‘,n” when there is no fear of confusion. For a vector space
W, we denote by W its /I-th symmetric tensor product. We identify W© with C.
Let x=(xy, - - *, x,) be a row vector consisting of n indeterminates. Through out this
paper, we put V=Cx; ® - - - @ Cx,. We identify V'® with C[x,, - - -, x,],, where the
subscript (/) stands for homogeneous polynomials of degree /. Then GL(n, C) acts
on V¥ by

(gv)x) = det g*v(xg)

for ge GL(n, C) and ve V. This is isomorphic to det* ® Sym' and we always use
this realization. We also identify C*(H,, V®) with C*(H,)[x,, * - *, X,]o)

2. Differential operators

Let Z=(z;;) be a variable on H,. For an integer />0 and a function

feC>(H,, V¥), we put
1 0
Df=<2_7ti—67f)[x] >

Nf=<—4i(1m zrv)m .
7T
and

8f =kNf +Df . @2.1)

Here, i=<1+—5”i> and A[x]=xA'x. (Since we are mainly concerned
0z 2 0zi)1<ij<n
with row vectors, this definition of A[x] is convenient.) Then, Df, Nf and é.f are

V*2._valued functions. For an integer />0, we put
km={k(k+1)--~(k+l—1) (>0)
1 (=0).
Note A"M=(—1)(—A—n+1)". We also have
n !
(A+BM=Y _ " ynpn-n
r=orl(n—r)!
and

n !

A (n=0)
0 (n#0).

(4—2r)(— A" A —-2n)" "= { 2.2)

r=orl(n—r)!
LEMMA 2.1. The operator J, ., satisfies

(6k+lf)|k,l+2M=6k+l(.f|k,lM) (2-3)
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for feC*(H,, V) and M eT,. Especially, it maps M2, (V®) to M2, 4, (V*+?). For
each integer 1>0, we have

Si=Y (k+l+r-i)m<’_)NiD'-i. (2.4)
i=0 1

Here by 6}, we mean the composition 6y 4;42,—2°" " ©0ks14+2°0k41-

Proof. Let f be a function in C*(H,, V). So f = f(Z, x) is a C®-function on
H, as a function in Z and is a homogeneous polynomial of degree / in x. Take a

. a
matrix M =<

b .
d> in I',. Now the operator |k,,M has the following form
c

(f],‘,,M)(Z, x)=det(cZ+d) ¥ f(MLZ), x(cZ+d)™ ).
It is easy to see that

D(f(M{Z), x(cZ+d)™ ")
=(DfNMLZ), x(cZ+d)~ ‘)—Ei—if(M<Z>, xcZ+d)"WeZ+d) " o)lx]
and
Ddet(cZ+d)*= —E%det(cZ+ d)H(Z+d) Olx] ..

Therefore we have

k+1
(Df le1s 2MNZ, )= D(f |s. M(Z, ) +2—;f|k,,M(z, 0)-(cZ+d) O[] .

On the other hand since
(Im M{Z)) ' =(Im Z) " [cZ+d]—2i(cZ+d)c,
we have

1
(Nf)|k,l+2M(Za x)=N(f|k,lM(Za x))_z_m.(ﬂk,lM)(Z’ x)(cZ+d) to[x].

By canceling out unnecessary terms, we obtain

(D+EA+DN) )14 2MZ, x)=(D +(k+DN)S i, MZ, x) -

This proves the first part.
An easy calculation shows that

D(Im 2)"[x] =%«Imzrltx])2 .

Since D is a derivation and N is essentially a multiplication,
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DN'=—IN'*'+N'D. 2.5)
Using induction on r, we have (2.4). [

It is remarkable that the differential operator acting on M2, (V") depends only
on k+1. We note that (2.1) and (2.4) do not explicitly contain n. Let G{¢) be a formal
power series of ¢ defined by

00 tl .
Gj(t)= l=0—l!j[l] 5]. .

Following Cohen [4, Sect. 7], we have

1

—eN S L
Gi()=e 1=ol!j[']D'

In what follows, we put n=p+q where p and g are positive integers. Let
Vi=Cx;® - @®Cx,and V,=Cx,,; ® - - ® Cx, be two subspaces of V. We note
that V{ and VY are subspaces of V¥ which are stable under the action of
GL(p)x GL(q). Let X be any map X: A—C*®(H,, V?) for any set 4. We define two
maps X;: A>C>(H,, V{) and X,: A-C*(H,, V) by

Xy@)xy, s xp)=(X(a))(x1, T, Xp 0,00, 0)
and
(Xl(a))(xﬂ*' FE x,,)=(X(a))(0, U ’Oa Xp+1s "7 xn) .

Let d* be the pullback of the diagonal embedding d: H,x H,—H,. Now, for
each />0, define an operator

LY : Hol(H,, C)— Hol(H, x H,, V®)

~ inductively by

[;' s} tl :
G DR TR

LEMMA 2.2.

1 1
LO=___g* D.D )(D—D,—D,)""%. 2.7
kW ogvgv!(l-zv)!(z—k—l)m( DU 1=D) @7

Proof. Since D; and D, commute,

& 1 141 = 1 141
<,§o l!kl'lD’t )(t;o nkmD"

1 1
ok o<z pl(r —2p) k™

(D T+D1)"2“(DTDL)">t' . 2.8)
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Since (2.6) uniquely determines L, we have only to verify that (2.7) satisfies (2.6).
The coefficient of ¢! on the right side is
1
o<j=ios<p=i-2jp(l—2j—p)!
y 1
0ca<ifl =k +1—p =20 (—k—i+p+2u+2)li—H
X (D +Dl)"(D1Dl)j(D—DT —Dl)l_Zj_" .

. L1
Using (2.2), we see this is —ITD’. O
Note the direct sum decomposition
1
VO=(, @ V)= @ V- vie
a=0

where * is a symmetric tensor product. We denote by =’ the projection V¥—
V@-v$~9. For feMap(H,, V"), define n'f by (n}fNZ)=ny(f(Z)). We have

o300 =0Tl 2.9
nl*t25, =8, k. (2.10)
Let fe C*(H,). For M =<: Z)eSp( p) and M ’=<Z:‘ 21>6Sp(q), we put
a 0b O 1 000
M, = (c) (1) 2 g eSp(n) and M= g ‘g (1) lg € Sp(n) .
0001 0 ¢ 0d
With this notation, we have
T d*(f | eM 1) = hd* )]0 s M (2.11)
Tod*(f le,1.eM ) = 0ed* )i1-0,eM " - (212
ProrosiTiION 2.3. Let fe C*(H,), M e Sp(p) and M' e Sp(q). Then
LNt o Mlir,eM =L |k 0 nMt |t 0,sM) - (2.13)
Especially if feM, o (C), then
LOfeM,, (VOYQ M, , (VD). (2.14)

Proof. We use induction on /. For /=0, this proposition certainly holds because
L©=d*. Let [>0. Multiplying d*e'N =¢'™*N) on both sides of (2.6), we have
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& t’ X X tt o tA
d* S — LY 5 30)
l=0]!k“ ; <AZO 1|(k+l)[l] k+”><}.;0l!(k+l)[;']6k+ll)t L™.

Hence there are constants ¢; ; ,€ C such that

8 =174 3 (bt dBa B0 @19
j a
By Lemma 2.2, (LY /)(Z)e V- V. Hence
LOf (a=1I)
vy

s 0 (a#l). (2-16)

We apply n?' on both sides of (2.15). Then,
1

LI

n2lg*st » 2 - 1—j

I npd*o f=LOf+ Zl Zocl,j,anl Okr1-jpOisi-j LO7Of
=1a=

l J

_ra

—L"f+,21 Z C1ja0k+1-j101 71—y B P TIf
=140

=LOF+ Y ey Ohei-2j10h41- 25 LTS
1<j<l2
by (2.9), (2.10) and (2.16). Hence (2.13) holds by induction hypotheses and (2.11)
and (2.12). Therefore, if f €M, , (C), then

L(l)f € Ml?:l,p( V(ll)) ® M:,)l,q(V(Zl)) .
By definition, L®’f is a holomorphic function on H, x H,, which proves (2.14). O
REMARK 2.4. Adding a certain term to D, we obtain a differential operator
acting on the space of Jacobi forms. We fix a positive integer m, which is an index.
For integers k, [ and m, an action Ik,,,,,, of the Jacobi group I'] of degree n can be
defined on C®(H,x C", V®). Let J2, u(V®) (resp. Jiyma(V?) be the set of
C=®-Jacobi forms (resp. holomorphic Jacobi forms) of ‘weight’ p; ; ,, index m and

degree n. These are straightforward generalization of those for scalar valued forms
stated in [14]. Let (¢,, - - *, {,) be a variable on C" and put '

1 0 1 1\*/ o 0
bs =<2_m'a_zf __<2m> (‘afxac)f >[ ]

i=(i...i>
o \a¢,  Cee,)

We use the same construction for other operators. After much more computation,
we can show that (2.3) with |, , instead of |, ; holds for any fe C*(H, x C") and

where
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MeT} and that (2.5) remains to be valid. So, we obtain the following differential
operators:

6k . Jl?,)l,m,n(V”)) - Jl?,)l+2,m,n(Vu+2))
and
LO: J,0m,n(C) — Jk,l,m,p(V(ll)) ® Ji,1, m, ol Vy).

3. The kernel function

In this section we describe explicitly certain vector valued Poincaré series. For
a symmetric positive definite matrix S, we denote by \/f the unique symmetric
positive definite matrix satisfying S=.,/S2 As is in the previous section, let
V=Cx;® - ®Cx,. Let y=(y,, -+, y,) be an another row vector consisting of
indeterminates and put U=Cy, @ - - - @ Cy,. Then inner product

(Z ax;, D, bixi>= Z ab;
i=1 i=1 i=1
induces an inner product of ¥® defined by

(0eg" -0y, By ﬁz)——Z l_[ (az(,), ﬂj)

I T j=1

where «;, f;€ V and 7 runs over the symmetric group of degree /. It is also denoted
by (, ). This is invariant under the action of unitary matrices by Sym’. We extend
this inner product V¥ x V®—C to the map V®-U® x V®—U® complex linearly by

(011, V) =(v4, Vy)u

for a monomial u of y,, -, y,. If ae V® and fe V®-U®, we understand (a, ) to
be (B, o). We fix an 1som0rphlsm o from V to U defined by a(x;)=y;, which 1nduces
an isomorphism (also denoted by ¢) from V¥ to U®. Note

(v, (x'y))=0(v)

for any ve V®. Put p, ,=det*® Sym'. We define the Petersson inner product of
fro9eM (V?) by

(s Gha= (P N/ Im Z)f(Z), pi.,(\/Im Z)g(Z)) det(Im Z) ™"~ *dZ
FH\HH
whenever this integral converges. We again extend it to the map
(s et MPL (VO x MP, (V®)-C*(H,, UY)>C=(H,, UY).

Define Poincaré series by
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Py lZ, W; Ve, Ua))= Z (Pk,t(Z— W)_l(xty)l>|k,zM,

Mel,
where we regard (x'y)' as a V®-U®-valued constant function.

PropoSITION 3.1. Letm=dim S, (V®)and f,, - - -, f,, be an orthonormal basis
of Si.1./(V?). Then,

P2, W: VO, UN=Cy,, ¥ 1(2)ol7507) 3.0

where

c., ”=2n(n_k+1)_,+1ink+,n”("“’/2 "1 [(2k—2n+2j—1)2k—n+j—2)" '
’ k+1—1j=1 (k—n—14+)I'Ck+j+1—n—1)
Proof. The equation (3.1) is equivalent to
(f(D), Py, Z, W; vo,u (l)))k,l= Cr,1.a0(f (W)
for all €S, (V?). Let S, be the generalized unit circle of degree n:
S,={S='SeM(n, C)|1,—S5>0}.
A computation similar to that in Klingen [10, Sect. 1] gives

(f(Z), P, Z, W; VO, U, ,
= mkr DiF Lynktly ((/Im w 1)'//k—n— 1,1,nPx, 1/ Im W)a(f (W)

where

'/’a,l,n =J' pa,l(ln_ SS)dS .
Sn

Changing the variable S to ‘USU, we see
lpa,l,n=pa,l(l]— l)wa,l,npa,l(U)

for any unitary matrix U. Since p,; is an irreducible representation of U(n, C), the
operator ¥, , , is a homothety by Schur’s lemma. That is, there exists a constant
Ca,1.n Satisfying ¥, , ,=c, ; ,Jd. Hence the proposition follows from
p* D2l [(2a+ 2+ 1)n+j+2a)"
a+n+lj<i @+)Hrl+n+j+2a+1)"

3.2)

ca,l,n=

We compute ¢, ; ,. Let g, be a row vector (1,0, - - -, 0) of length n.

ca,l,n=(‘/Ia,l,nxll9 xll)

=J det(1,— SS)%(1,— SS)[g,1)ds .
Sn
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v

S
We set S =< ! > By Hua [8, Sect. 2.3], especially by Theorem 2.3.2 there,
v

V4

ca,l,n =

T J det(l,,_l—S1§1—-'vl7)“((1,,_1——S1§1—‘vﬁ)[q,,_l])'dvds
a+1 1p-1-5:18; —tv5>0 (1+5(1”"1_Sl§1—tvﬁ)_1tv)a+2 '

== f det(l,_; —§,5,)**1
a+l1 1,-1—S:18:>0

x J (I —@'u)** 2y (1, —"ui) €, dudsS ,
1—-utu>0

where ¢, =./1,_,—5,5,¢,-,. Put

Pa,1,n =J‘ (1 - ﬁtu)a Syml(ln _tuﬁ)du .
1-utu>0

ueCn

Using Schur’s lemma again, there exists a constant d, , , satisfying ¢, , ,=d, JId.
Then,
I (1 —a'u)?* (& (1, —"uid}&, Ydu
1-wtu>0
=(<P2a+2,z,n— 15’1, ‘fl1)=d2a+2,z,n— 14, 51)1
=dyg+2,1,n-1((1n-1— S181)[gn-11)" -
Therefore,
T
ca,l,n=a+—lca+1,z,n—1d2a+2,z,n—1 . (3.3)
The value of 4, , , is calculated as follows:
da,l,n=((pa,l,nx19 xl)
= J 1 —aas o L —@u)(1,—"uit)[g,])' du
ueCn
2n a
=J . <1~ ) z,?) (1—23—13)dt,- - -dt,,
1- ). 12>0 j=1
TFa+1
e T@FD g, (34)
I'la+!l+n+1)
By Hua [8, (2.2.6)],
” 3.5)

ca,l,l =

a+l+1"
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Summing up (3.3)-(3.5), we obtain (3.2). []

4. The pullback formula

In this section, we prove a vector valued version of Garrett’s Pullback formula.
Let p and q be positive integers. To keep notation simple, we put

X=Xy, ", xp—r) ,
Xp=(Xp—ps1s """ Xp)
Xe=(6pa1s s Xpagor) s
Xp=(Xptg—r+1s " "5 Xptg)

and
Vip=Cx,;® - ®Cx,,
Vp=Cxpop 1@ @ Cx,,
Vep=Cxp1 @ - D Cxppyy s
Vp=Cxpigers1® - ®Cxpyy
for an integer r with 0 <r <min(p, g). Let 6 =0, be an automorphism of ¥® induced
from

Xjigq for p—r<j<p,
a(xj)={xj_q for p+q—r<j<p+gq,

X;j otherwise .

We note that ¢ exchanges V{ and V{. For feC>(H,, V{) we define o(f) by

(6(/)z)=0(f(2)). Let P,, be the subgroup of I', consisting of all elements whose

entries in last n+r rows and first n—r columns vanish. Then Siegel’s Eisenstein series
W(Z) of weight k and of degree n is

W(2)= Z (1|k,og)(Z)-

gePn, o\l'n

For k>n+ 1, this converges absolutely and uniformly on any compact set in H,. We
prepare a lemma on a certain finite sum whose proof presented here is due to Prof.
‘D. B. Zagier.

LEmMMA 4.1. For integers m>0 and k>2,
(2k—2)" _r
1+22=m AN — DK+ D m!
Proof. Denote the expression on the left by 4. Then




12 S. BOCHERER, T. SATOH and T. YAMAZAKI

(k+m—1)!A= {(2k+l—2)+<2k+l—3>}<k+m—1)
(k—1)! 1+2i=m 2k—2 2k—2 A

1+x m—1 ax
=ReSx=0l:m(1+x2)k+ 1__j|

xm+1

dt X
=Res,_of (1=2¢)"F—_ t=
’ o[( ) thJ < l+x2>

=2m<k+m—1>‘ -

m

LEMMA 4.2. Let p and q be positive integers and putn=p+gq. Let (a Z) erl,
c
and Ze H,. Let k>2 and I>0 be integers. Then

LO(det(cZ+d)™¥)

=d*u (det(cZ+d) (x4 x5 0 ONcZ+d) 10 0 xc xp)) 4.1
where
_( 1 >’ (2k—2)H
W=\ "o w

Especially, let M be a symmetric matrix of size 0 <r<min(p, q) and put

(et ) e )
0 M ‘Mo,

gﬁ='< L °>. 4.2)

e,

™

(We understand that ¢=0 for r=0.) Let [>0. Then,

e, 1Pk, (1, — MwsMz3) ™ (x5 (xp M) (r>0),

0 (r=0). 4.3)

L(l)(l |k, od iz, w)= {

zy 'z wy ‘w,
where z=("" " |eH, w= € H, and p,,, acts on V.
Z, Z3 Wy W,

Proof. For simplicity, we put

P=_(cZ+d) 10, x5 0 O)],
27i

0= (x4 x5 0 ON(cZ+d) 'O 0 xc xp),
2mi
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R="((cZ+d) 90 0 x¢ xp)],
2mi

1
S=—(cZ+d) )[x]
2mi
and
1
d=—det(cZ+d).
2mi

We actually prove the following equality

2 1 &2 @iy,
D's7*= R Wk, L et 4.4
l;ol!km ,;0,;‘0 (k+ 1)1 ( ) (4.4)
where
1 - -
W L= 2 (Dy+ D,y 4D, D Y570

o<uzr2 pl(r—2u) k™
Then (4.1) follows form it together with (2.6) and (2.8). It is easy to see that
D,P=—-P?, D,Q=-PQ, D,R=-0?,
DlP=—Q2’ DlQ=_RQ’ D1R=—R2
and
D6=4S, DS=—S?.
Hence the left hand side of (4.4) is
® 1
Y 7'—5"‘(—tS)’=6"‘exp('—tS). 4.5)
1=0 (.

We have
(DD )07 QY)=(k+ 1™ i (k+l+V)[“]<”><5_"Q’““(PR—Q2)“'v
v=0 v

and
(D;+D)y(6"*QIPR- Q%))
= Z (_l)r—sr—!(k+j+v)[r—s]5—ij(P+R)r—Zs(PR_Q2)v+s
O<s<r/2 (r—2s)!s!

by induction on u and r respectively. Using these formulas, we obtain
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W(k, I, r)= Z Z (k+l+]‘)[i](1_k_l_r+m_j)[r—2m]

0<j<r/2 j<sm<r/2

X Ay41,j(m)d~*Q' (P + Ry ~2"(PRy"

where
(@+2)"1—g—m—j)m=i=H
Aq,j(m)_ Z 1 . 1
O<usm-—j ulm—j—p)!
={ 1 for m=j,
0 for m<j.
Hence

Nr—il
Wik Ln=(—1y y *HHZ
o<j=r2 (r—2j)!;!

Therefore the right hand side of (4.4) is
o (k-2 & 1

5—k 1+2j P+ R r—2j _tl+r
1=o [N(k— 1" rgo osizs:r/z(r—ij)!j!(k+l)m A =)

5—le+2j(P+R)r—2j .

5 (2k—2)»—21)

o<j=u2 (u—2j)jUk — D™~k + p— 2/
=36"*exp(— (P + R)) exp(—2tQ)

by Lemma 4.1. This is equal to (4.5) because P+2Q+ R=S.

n=0

=05 exp(—«(P+R) i < >(‘IQ)“

Let gz be as in (4.2) and put J= E((Z) 0>+ 1,. We have
w

1 0 0 0
0 1 Mw, Mw,

=l'o o 1 o
Mz, Mz; O 1
and
1 0 0 O0y,1 0 0 0 1 0 0 O
0 1 0 o0|[lo 1 —Mmz, 0 I 0 1 0 Mw,
0 0 1 offo o 1 o] ]l0o 0 1 o
—Mz, —Mz; 0 1/7\0 0 0 1 \0 0 0 X

where X=1— Mz;Mw,. Therefore det J=det X. Since J is regular, so is X. Thus,
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0 0 0 0
Jtp| O —MwiXTIM 0 (X~ 1M)
0 0 0 0

0 X 'M 0 —X 'MzM
In view of these formulas, (4.3) follows easily from (4.1). O

REMARK 4.3. Lemma 4.2 also holds for k=1 if we define o, ; as
1\ 2Q2k—1t-H
——— )= (>0
O 1= < 27ri> N1 (¢>0)
1 (1=0).

Let S be the symmetric square operator acting on Sy ; ,( V"), which is defined by

§f=§detM"‘ Y flew

M 0
r'\T
gel,\ ,.<0 M_l)l'..

where M runs over all non-singular integral matrices of size n in elementary form.
By Garrett [5, Prop. in Sect. 4], a common eigenfunction of all Hecke operators is
an eigenfunction of S. Moreover, by [2, (6)], its eigenvalue A(f) is

{h)! f[ {(2k—2i)"'D ;(k—n)

where {(s) is the Riemann zeta function and D(s) is the standard L-function of f.
For simplicity we put N ; ,=dim S, , (V'?) for n>1.

ProposITION 4.4. Let p, g>1 be integers and ze H,, we H,. Let k>p+qg+1
and 1>2 be even integers. For 1<r<min(p, q), let {f; }1<j<n...., be an orthonormal
basis of common eigenfunction of Si.1. V). Then,

min(p,q Ni,1,r

)
(LOEE™ )z, w)=0%, 1 ; Cevr ; Af5 DES5,rn VINDE@OS,), VEDNW)  (46)

where 0 is an operator defined by (0f)z)=f(—2).
Proof. Let gz be as in (4.2). By the same computation as in Garrett [6, Sect. 5]

Z L(l)(l |k,ogn7)‘k,196(za w)

goerl,

=0y, det M-k< 2} Pk, l,r(z3 + Wa)(thxD)l Ik, 1, pg> |k, l,qM
gel,
0

M—l

~ (M
where M =< 0 ) By Proposition 3.1, this is
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—k = o) 14 P
o det M™Pyy (23, — W35 VR, V)1 M
Ni,1,r

=0y, det M~*Cy _Zl F./23) @00, )i, 1,aM)w3)
j=

Hence, as in [5, Sect. 5], we have

(LYEL*9)(z, w)

min(p, ) Ni,1,r

=0, Z Cet,r Z Z Uj,rprflk,zgg)(z)

r=1 J=1 goePp, A\Tp

x Y ((Seb(f;, Nprale. g )w)

QIEPq,r\rq

min(p, ) Ni, 1,r ‘

=ak,l Z Ck,l,r 'gl A(fi,r)E(.f;',r’ Vg)B)(Z)E(O.o(j;,r)s Vg}))(W) . D

r=1

5. The Fourier coefficients of vector valued Eisenstein series

In [1] Garrett’s pullback formula was used to compute Fourier coefficients of
Klingen type (scalar valued) Eisenstein series. In this section we show that our vector
valued version (4.7) of the pullback formula allows us to cover the case of vector
valued Eisenstein series as well by essentially the same method as in [1].

(5.1) We start from the degree n=p+ g Eisenstein sereis E(Z) with

Z U
Z= eH,, zeH,, ueC®»?_  weH
lu w n p q

and consider its Fourier-Jacobi expansion with respect to zeH,:

WZ)= ). ¢x(w, we(Rz)
R >0

where e(*)=exp(27i Tr(x)). Formula (13) of [1, §3] gives an explicit expression for

¢r(w, u) in the case of positive definite R= R®). It is convenient to write that formula

in the following form as a finite sum, using $R(Z) 1= ¢r(w, u)e(Rz) instead of ¢ g(w, u):

$R(Z) 1=¢g(w, we(Rz)= TZ af(T)‘/;T,w,(Z)
s 01
where
—af(T) is the T-Fourier coefficient of the Eisenstein series E?,
— T runs over all positive definite half integral p x p-matrices,
— w; runs over a set of representatives of Z%?/GL(p, Z),
— T and w, satisfy the additional condition T[w,]= R; this implies that the sum over
T and w, is actually a finite sum.
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The function @, (Z) has the following expansion:

Pro@=_ Y detjM,w)* Y dTM(Z['0;, ‘0]  (5.1)

MePg o\l w3eZ(aP)

(2;) primitive
where j ((a b), w) =cw+d.
c d

(5.2) Let p>g. Starting from any f €S, (V}), we want to compute the Fourier
coefficients of

o LOER Y=z, %)) = R(;) , 4R, [, x)e(Rz) . (52)

Here, we put x=(x;, - - -, x,) and y=(X, 41, * * *, X,+,). For positive definite R the
R-Fourier coefficient of (5.2) is given by the formula

(R, f, x)e(R2)=< [, (LYg)—Z, %)) (5.3)
= Y af(TKS, (L1 0 X —Z, %)) .

T,w1

We tacitly used that af(T) is a rational number and that ¢ ,,, (and not just ¢p) is
a modular form for the embedded group I}, as can be seen from the expansion (5.1).
Using the equivariance properties of the operator L®, we see that (5.1) implies

L1 o )zw= Y pi(M, W) (LYY, )z, M{WD) (54

MePg o\l

with

$%0D= Y dTZ['w, ‘o).

ws€ Zap
@y L.
primitive
@3

To compute dy(R, f)=d,(R, f, x), R”>0 from (5.3) and (5.4) we may now apply
the standard unfolding procedure to obtain

d/R, f,x)e(Rz)= Y. al(T)

T,

* J P/ VW), i s/ TNLOBY. o ) — 7, W) det(Y) "4~ 1dXdY
Pq, O\Hq

with w=X+iYe H,. Taking into account that
P, o\H,={w=X+iYeH,| X="Xmod 1, Y9 >0 reduced}

we may now use the Fourier expansion of f and LP?¢9 , to compute (5.5) further.
To expalin the Fourier expansion of L®@¢$% , we define a polynomial in
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VO VOltidi<i<j<n BY
LO(E)z, wy=PY(T,, t,, t,)e(T,z)e(t,w) (5.6)
where E, denotes the function
E(Z)=e(tZ), ZeH,, t='teC®™"
and we use the decomposition
T=<:];: Z) , T,="T,eC®?, 1,eC?”?, 1,="1,eC%?,
By the formula of Lemma 2.2, we may write down such polynomials quite explicitly:
PI(Ty, ty, 1)=PO(Ty, ty, 14, X, )

1 1

=zﬁio<2 <i v'(l—2v)'(2—k——l)[vl(Tl[x]t"'[y])v(zxt;y)l_ZV . ()

Using this notation, we can write down the Fourier expansion of LY@ , :

L2, )zw= Y PR o ,T'os, Tlw;De(R2)e(T[wsIw) . (5.8)

)
@y L
primitive
@3

The Fourier expansion of f will be denoted by

fw)= 3 b(S, y)e(Sw).

S@>0

Since we integrate over X="'Xmod 1, only those &(S) and those PO(R, w; T"w;, T[w;])
contribute to (5.5) which satisfy

S=T[w,] .
We obtain

d,(R, x)= 3, af(ﬂj
T,01 Y@>0 @3eZ:P)

Y:reduced (3;) primitive

01/ VT3], ), pr s/ YIPOR, 0, T'w3, T[], x, )

x exp(—4nTr(T[w;]Y)det(Y) 7~ 1dY (5.9)
=2 Y. al(T)
T, w4 w3eGL(q, Z)\Z(a: P

(00)) ;)primitive
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f P/ VT3], p)s pic s/ YIPOR, 0, T'w3, T3], x, y))
Y@ >0

x exp(—4n TH(T[w5]Y)) det(¥) "1~ 1dY .

Here we again use the unfolding procedure, the factor 2 comes in because —1, acts
trivially on Y. One should also notice that in (5.9) only matrices w; of maximal rank
actually occur.

To simplify (5.9) further, we introduce an operator of type

HY(S)= pr.(Y)exp(—Tr(SY))det(Y) 2~ 1dY (5.10)
Y@>0
where S is a positive definite matrix of size q. For basic properties of such integrals
we refer to Godement [6]. Instead of looking at the Fourier coefficients &(S, y) of f,
we consider now a kind of modified Fourier coefficients 4(S, y), defined by

B(S, y)= H{5)(4nS)b(S, y) (5.11)

as our basic object of interest. Using the fact that p, ,(\/7) is a hermitian operator,
we may summarize our computations as follows:

PROPOSITION 5.1. Let k and [ be even integers, k>n+1 withn=p+q, p>q and
S €81.{V) with Fourier expansion

S (Z)=§b(S, y)e(SZ).

Then, for RP>0, the Fourier coefficient d,R, f, x) of the function defined by (5.2) is
given by the formula

dR, f,x)=2 3, af(T) ) (B(T[w3], p), PYR, 0, T'ws, T[w;])) . (5.12)
T, w3eGL(q, Z)\Z(9: P)
($;) coprime
(5.3) In our formula (5.12) we use modified Fourier coefficients of f to compute
unmodified Fourier coefficients d(R, f, x). To get rid of this assymmetry we start

from

LEMMA 5.2. There is a non-zero constant y(k, 1, p) such that for all positive definite
T of size p we have

det(T)*~ T V2HPAnT)PT, T, T, x, y)=y(k, L, p)(x'y)’ (5.13)
(with x=(x,, - - -, Xp)3 y=0y "yp))-

t

z, 'z . '
Proof. For Z =< ! 2>EH2p with z,, z,€ H, we start from the well known

formula
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' pt1
Py det(zy +z,+'2,+2,+8) *= Y. det(TV~ 2 e(T(zy+z,+"2,+24) (5.14)
N T>0

where S runs through all integral symmetric matrices of size p and

p—1 v
afP =@mPe-V4Qui) P [T 1 (k—;).

v=0

We apply the operator L on both sides of (5.14). The right hand side yields

Z det(T)k—(p+l)/2P(l)(T’ T, Ta X, .V)e(T(Z1 +Z4)) .

T>0
The left hand side of (5.14) is equal to
0Pty 1 i (z1+24+S) Hx'p) (5.15)
S

This follows from (4.3) and the (elementary) formula

_ 0 —1\'
det(zy +z,+"2,+24) k=(1|k,0,2pg)|k,0,2p< 0 )

1
() 2
¢ 1y,)° 1, 0,
By [6, Exp. 10, p. 17] (5.15) equals

“l(cp)“k, 1Ck,1, p Z HE\(4rT) ™ e(T(zy +z,))(x'y)" .
T>0

with

The lemma (and also an explicit expression for the constant y(k, [, p)) follows by
comparing the Fourier coefficients. []J

To compute JP(R, f, x), we start from the observation that
P(l)(Ra QITW3, T[(D:;], X, .V)=Pa)(R, Rs Rs X, yw3w1_ 1) N

(Note that yw;w; ! has p columns.) Therefore a typical summand of c?p(R, f, x) looks
as follows:

B(TLws], y), HO@rR)POR, 0, T'0,, T[w3], X, )
=1(k, I, p) det(R) ** @+ D2(H(T[w,], y), (Fo] oy'y))
=y(k, I, p) det(R) ™+ @+ D2H(T ], x'woi ') .

(5.4) Let f be as before, but assume in addition that f is an eigenform for the Hecke
algebra associated to Sp(r, Q). It is clear from the pullback formula that the Fourier
coefficients of the Eisenstein series
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Eof, VIX2)=Y cy(R, f, x)e(R2)

are up to a non-zero constant equal to the numbers d,(R, f, x). We may now formulate
the main result of this section:

THEOREM 5.3. Let k, I, n, p, q be as in Proposition 5.1 and assume that
f €841,V is an eigen function of all Hecke operators. Then we have for all R® >0

ER, f,x)=24, (K, I, p)det(R)~** P+ /2

x Z af(T) Z E(T[w3], xorw;)

T, 01 »3eGL(g, Z\Z@: P)
(2;) coprime
1
%, 1C 1, qA(.f)
REMARK 5.4.

(1) Theorem 5.3, in particular the factor A(f) in the denominator, settles a conjecture
made in [12].
(2) By using the concept of “primitive” Fourier coefficients as in [3] one can get

With lk, lLq =

rid of the somewhat uncovenient condition “< ') primitive”. This will be left
w3
to the reader.
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