Straight and Strongly Straight Abelian p-Groups

by

Makoto Onishi

(Received December 16, 1988)

§ 0. Introduction and notations

The socles of abelian p-groups have been considered by several authors as sources of information concerning the structure of those groups (e.g. summable p-groups by K. Honda, and valued vector spaces by L. Fuchs). In 1983, K. Benabdallah and K. Honda introduced the concept of straight basis of a p-group, which is closely related to its socle. The concept of straight bases leads quite naturally to the two concepts of straight p-groups and strongly straight p-groups. In [1], it is proved that the generalized Prüfer group of length $\omega+1$ is straight. In [1] and [11], it is proved independently that any direct sum of cyclic p-groups is strongly straight. Moreover, in [1] and [9], it is proved independently that the direct sum of any torsion-complete p-group and any divisible p-group is strongly straight. In particular, K. Honda [9] discovered the following result: any torsion-complete p-group A has the normal straight basis

$$B = \{B(n)\}_{n \geq 0}, \quad B(n) = \{b_{ny}\}_{y \in \Gamma} \cup \left(\bigcup_{m \geq n} \{ p^m - n b_{mi} \}_{i \in I_m} \right),$$

such that

$$pb_{n+1} = b_{ny} + \sum_{i \in I_n} g_{yi} b_{ni} \quad (n \geq 0, y \in \Gamma, i \in I_n, g_{yi} \in N_p),$$

where $N_p = \{0, 1, 2, \ldots, p-1\}$ and $\bigoplus_{n \geq 0}(\bigoplus_{i \in I_n} \langle b_{ni} \rangle)$ is a basic subgroup of A. (Every b_{ny} and b_{ni} have the orders p^n and p^m, respectively.) Recently, H. K. Wimmer in [13] and [14] showed interesting applications of the concept of straight bases to linear algebra.

The main results of this paper are the next three theorems.

Theorem 3.5. p^{n+1}-injective p-groups are straight.

Theorem 4.3. Let A be a reduced strongly straight p-group such that $|A| = 2^n$ where p is the cardinality of a basic subgroup of A. Then, A is necessarily torsion-complete.

Theorem 5.3. There are separable straight p-groups which are quasi-complete.
but not strongly straight. In particular, there exist \(2^c\) (c: the cardinality of the continuum) pairwise non-isomorphic quasi-complete, straight \(p\)-groups with the same basic subgroup \(\bigoplus_{n \geq 0} Z(p^{n+1})\) and with the same socle; moreover, all of these are not strongly straight.

Particularly, Theorem 4.3 gives a partial solution to the characterization problem of strongly straight \(p\)-groups, which is a very difficult open problem.

Let \(p\) be an arbitrary but fixed prime. All groups considered in this paper are additively written abelian \(p\)-groups. For all notations and terminologies without explanations, we refer to [6]. However, as was done in [1], we fix a pair of non-zero elements of \(N_p\), \(r\) and \(s\), such that \(r + s = p\).

§ 1. Preliminaries

In [2], K. Benabdallah and K. Honda pointed out the following two important properties. If \(B\) is a straight basis of a \(p\)-group \(A\), then \(B\) is not only a set of generators of \(A\), but any non-zero element of \(A\) can be expressed uniquely as a linear combination of elements of \(B\) with non-negative integer coefficients smaller than \(p\). The other important property is that the relations between the elements of \(B\) give rise to a family of integers called an \(s\)-factor set which determines the group \(A\) up to isomorphism. Further, in [1], [2], [4], [9] and [11], various results have been obtained concerning straight bases, straight \(p\)-groups, and strongly straight \(p\)-groups. The paper [2] is not only the main source of these researches, but is quite indispensable for this paper. Therefore, in this section, we list necessary definitions and theorems in [2].

Throughout this section, let \(A\) be an arbitrary but fixed \(p\)-group.

NOTATIONS 1.1. Let \(B\) be a subset of \(A\) and \(n\) be any non-negative integer. We denote

\[B^n = \{ b \in B \mid b \neq 0 \}, \quad B(n) = \{ b \in B \mid o(b) = p^{n+1} \}\]

\[F_n(B) = \{ \sum ab \mid a \in N_p, b \in B(n) \},\]

where \(o(b)\) denotes the order of the element \(b\).

DEFINITION 1.2. A subset \(B\) of \(A^*\) is said to be a straight basis of \(A\) if \(B(n)\) is a maximal linearly independent subset of \(A(n)\) for every integer \(n \geq 0\).

LEMMA 1.3. For each \(n \geq 0\), the mapping \(\theta_n\) defined by: \(\theta_n(u + A[p^n]) = p^n u (u \in A[p^{n+1}])\), is an isomorphism between \(A[p^{n+1}]/A[p^n]\) and \(S_n = (p^nA)[p]\).

The following proposition is a useful characterization of straight bases.

PROPOSITION 1.4. Let \(B\) be a subset of \(A^*\). Then the following three properties are equivalent.

1°. \(B\) is a straight basis of \(A\).

2°. For all \(n \geq 0\), \(p^n(B(n))\) is a basis of \(S_n = (p^nA)[p]\).
3°. For all \(n \geq 0 \), \(\{ b + A[p^n] \mid b \in B(n) \} \) is a basis of \(A[p^{n+1}] / A[p^n] \).

Definition 1.5. For \(n \geq 0 \), let \(C^n \) be a basis of the elementary \(p \)-group \(S_n = (p^nA)[p] \). The family \(C = \{ C^n \}_{n \geq 0} \) is called a sequence of bases of the socle of \(A \). From Proposition 1.4, every straight basis \(B \) induces a sequence of bases of the socle of \(A \), \(C = C(B) \) such that \(C^n = p^n(B(n)) \). The basis \(B \) is then said to be associated with the sequence \(C \).

The next proposition is a significant property of straight bases which is used frequently in this paper.

Proposition 1.6. Let \(B \) be a straight basis of \(A \). Then every \(u \in A^* \) can be expressed uniquely as:

\[
u = f_0 + \cdots + f_n \quad (f_i \in F_i(B), i = 0, \ldots, n).
\]

Moreover, \(f_n \neq 0 \) if and only if \(o(u) = p^{n+1} \).

Corollary 1.7. Let \(B \) be a straight basis of \(A \). Then every \(u \in A^* \) can be expressed uniquely as a linear combination of elements of \(B \) with coefficients from \(N_p \).

Here we introduce an \(s \)-factor set which determines the group up to isomorphism. The \(s \)-factor set is one of the most important notions in [2], and we often use it in this paper.

Let \(B \) be a straight basis of \(A \) and write

\[
B(n) = \{ b_{n\lambda} \}_{\lambda \in \Lambda_n},
\]

for every \(n \geq 0 \). From Proposition 1.6, every \(n \geq 1 \) and every \(\lambda \in \Lambda_n \), the element \(pb_{n\lambda} \), being of order \(p^n \), is expressible uniquely as:

\[
pb_{n\lambda} = f_0^{n\lambda} + \cdots + f_{n-1}^{n\lambda} \quad (f_i^{n\lambda} \in F_i(B), f_{n-1}^{n\lambda} \neq 0).
\]

Furthermore, every \(f_i^{n\lambda} \) can be written uniquely as:

\[
(I) \quad f_i^{n\lambda} = \sum_{\mu} g_{i\mu}^{n\lambda} b_{\mu} \quad (g_{i\mu}^{n\lambda} \in N_p, \mu \in \Lambda_i).
\]

Definition 1.8. The family of elements of \(N_p \)

\[
(1.1) \quad \{ g_{i\mu}^{n\lambda} \mid n \in N, \ 0 \leq i < n, \ \lambda \in \Lambda_n, \ \mu \in \Lambda_i \}
\]

obtained from (I) is called the \(s \)-factor set of \(A \) relative to the straight basis \(B \).

Theorem 1.9. Two \(p \)-groups are isomorphic if and only if their \(s \)-factor sets with respect to some straight bases are identical.

Proposition 1.10. Let (1.1) be the \(s \)-factor set of \(A \) relative to a straight basis \(B \). Suppose that \(B \) is associated with a sequence of bases \(C = \{ C^n \}_{n \geq 0} \) of the socle of \(A \). Then, \(C^n = \{ c_{n\lambda} \}_{\lambda \in \Lambda_n} \) where \(c_{n\lambda} = p^n b_{n\lambda} \) (\(n \geq 0 \), \(\lambda \in \Lambda_n \)) and
\[c_{\lambda} = \sum_{\mu} g_{n-1,\lambda}^{n,\mu} c_{n-1,\mu} \quad (n \geq 1). \]

From Proposition 1.10, the set of vectors in \(N^{A_n}_{p^{n-1}} = V_n \)

\[\{v^{n,\lambda} = (g_{n-1,\lambda}^{n,\mu})_{\mu \in A_n \setminus n-1} ; \lambda \in A_n \} \]

is linearly independent in \(V_n \) considered as a vector space over the field of \(p \) elements. We say for shortness’ sake that the \(v^{n,\lambda} \)'s are independent modulo \(p \).

Theorem 1.11. A family of elements of \(N_p \) in the form of (1.1) is the \(s \)-factor set of some \(p \)-group relative to some straight basis if and only if it satisfies the following two conditions:

1°. For any fixed \(n, i, \lambda \in A_n, g_{n-1,\lambda}^{n,\mu} = 0 \) for almost all \(\mu \)'s.

2°. For any fixed \(n \), the set of vectors (II) is independent modulo \(p \).

Let \(B \) be a straight basis of \(A \) and let

\[\{g_{n,\lambda}^{\mu} \mid n \in N, 0 \leq i < n, \lambda \in A_n, \mu \in A_i \} \]

be the \(s \)-factor set of \(A \) relative to \(B \).

Definition 1.12. \(B \) is said to be a normal straight basis if \(g_{n,\lambda}^{\mu} = 0 \) (0 \(\leq i < n - 1 \), \(\lambda \in A_n, \mu \in A_i \)) for every \(n \geq 2 \). In other words,

\[pb_{n,\lambda} = \sum_{\mu \in A_n \setminus A_{n-1}} g_{n-1,\lambda}^{n,\mu} b_{n-1,\mu} \quad (n \geq 2, \lambda \in A_n). \]

A \(p \)-group \(A \) is called a straight \(p \)-group if there exists a normal straight basis for \(A \). Further, it is said to be a strongly straight \(p \)-group if, for any sequence of bases \(C \) of its socle, there exists a normal straight basis of \(A \) associated with \(C \).

Proposition 1.13. The direct sum of a family of straight \(p \)-groups is straight.

Proposition 1.14. Any direct summand of a strongly straight \(p \)-group is strongly straight.

Theorem 1.15. Let \(S_0 \) be an elementary abelian \(p \)-group and \(\{S_i\}_{i=1}^\infty \) a countable descending sequence of subgroups of \(S_0 \). Then there exists a straight \(p \)-group \(A \) such that \(S_n = (p^nA)[p] \) (\(n \geq 0 \)).

Definition 1.16. Let \(A \) and \(A' \) be \(p \)-groups. We say that \(A \) and \(A' \) are \(\omega \)-similar if there exists an isometry between their socles viewed as countably valued vector spaces, in other words, if there exists an isomorphism between \(A[p] \) and \(A'[p] \) which preserves heights. Note that we do not assume preservation of generalized heights.

The next theorem shows the importance of the two notions of straight \(p \)-groups and strongly straight \(p \)-groups.

Theorem 1.17. Let \(A \) be a strongly straight \(p \)-group and \(A' \) be a straight
group. If A and A’ are ω-similar, then they are isomorphic.

The following theorem is a remarkable information on the structure of strongly straight p-groups.

Theorem 1.18. Any strongly straight p-group A is a direct sum of a separable strongly straight p-group and a divisible p-group.

§ 2. On p^n-extensions of straight and strongly straight p-groups

The main purpose in this section is to prove Proposition 2.3, which is required in Theorem 3.4 of §3.

First we start with the following proposition.

Proposition 2.1. If A is a straight p-group, then pA is also straight. Moreover, if A is a strongly straight p-group, then so is pA.

Proof. Let B be a normal straight basis of A and write $B(n) = \{b_{n,\lambda}\}_{\lambda \in A_n}$ for every $n \geq 0$. From Definition 1.12, every $pb_{n,\lambda}$ $(n \geq 1, \lambda \in A_n)$ can be written uniquely as:

$$pb_{n,\lambda} = \sum_{\mu \in A_{n-1}} g_{n-1,\mu} b_{n-1,\mu} \quad (g_{n-1,\mu} \in N_p).$$

Hence, we have:

$$p(pb_{n,\lambda}) = \sum_{\mu \in A_{n-1}} g_{n-1,\mu}(pb_{n-1,\mu})$$

for every $n \geq 2$ and every $\lambda \in A_n$. Therefore, by Proposition 1.4 and Definition 1.12, it is straightforward to check that $pB = \{p(B(n))\}_{n \geq 1}$ is a normal straight basis of pA. Thus, if A is straight, then pA is also straight.

Next, suppose that A is strongly straight, and let $C' = (C^{k+1})_{k \geq 0}$ be an arbitrary sequence of bases of the socle of pA. Furthermore, let C^0 be any basis of $A[p]$. Clearly, $C^0 \cup C'$ is a sequence of bases of the socle of A. Since A is strongly straight, we have a normal straight basis B of A associated with $C^0 \cup C'$. As we have seen in the first part of this proposition, it follows that pB is a normal straight basis of pA associated with C'. Therefore, pA is strongly straight.

By Proposition 2.1 and mathematical induction, we obtain immediately the following corollary.

Corollary 2.2. Let n be any natural number. If A is a straight p-group, then p^nA is also straight. Moreover, if A is a strongly straight p-group, then so is p^nA.

Let n be any natural number. Then A' is said to be a p^n-extension of A, if A' is an essential extension of A such that $A = p^nA'$.

Proposition 2.3. Let A' be a p^n-extension of a p-group A. If B is a normal straight basis of A, then A' has a normal straight basis B' such that:
\[B'(0) = B(0), \quad p(B'(n)) = B(n-1) \quad (n \geq 1). \]

Therefore, if \(A \) is straight, then \(A' \) is also straight. Furthermore, if \(A \) is strongly straight, then so is \(A' \).

Proof. We put:

\[C^0 = B(0), \quad C^m + 1 = p^m(B(m)) \quad (m \geq 0). \]

Since \(A' \) is a \(p \)-extension of \(A \), it follows by Proposition 1.4 that \(\{C^k\}_{k \geq 0} \) is a sequence of bases of the socle of \(A' \). Using Theorem 1.15 and its proof, there exist a \(p \)-group \(G \) and a normal straight basis \(K \) of \(G \) such that:

1. \(\Phi^k G = \Phi^k A' \quad (k \geq 0), \)
2. \(K \) is a straight basis associated with \(\{C^k\}_{k \geq 0} \).

In view of the first proof of Proposition 2.1, \(pK \) is a normal straight basis of \(pG \). Therefore, by Proposition 1.10 and (2), it follows that the \(s \)-factor set of \(pG \) relative to \(pK \) and that of \(A \) relative to \(B \) are identical. Hence, from Theorem 1.9 and its proof, there is an isomorphism \(\Phi : pG \rightarrow A \) such that \(\Phi[pG] = 1 \) (identity map). By (1), \(G \) is a \(p \)-extension of \(pG \). Since \(A' \) is a \(p \)-extension of \(A \), there is an isomorphism \(\Phi^* : G \rightarrow A' \) such that \(\Phi^*[G] = 1 \) and \(\Phi^* \) is an extension of \(\Phi \). We put:

\[B' = \Phi^*(K). \]

Then it is easy to see that \(B' \) is a desired normal straight basis of \(A' \). Thus, if \(A \) is straight, then so is \(A' \).

Next, suppose that \(A \) is strongly straight, and let \(C = \{C^k\}_{k \geq 0} \) be an arbitrary sequence of bases of the socle of \(A' \). Since \(A' \) is a \(p \)-extension of \(A \), \(\{C^{m+1}\}_{m \geq 0} \) is a sequence of bases of the socle of \(A \). Since \(A \) is strongly straight, we have a normal straight basis \(B \) of \(A \) associated with \(\{C^{m+1}\}_{m \geq 0} \). By the first part of this proposition, \(A' \) has a normal straight basis \(B' \) where:

\[B'(0) = B(0), \quad p(B'(n)) = B(n-1) \quad (n \geq 1). \]

Clearly, \(C^0 \cup \{B'(n)\}_{n \geq 1} \) is a normal straight basis of \(A' \) associated with \(C \). Thus \(A' \) is strongly straight.

By Proposition 2.3 and mathematical induction, we obtain immediately the following corollary.

Corollary 2.4. Let \(n \) be any natural number and let \(A' \) be a \(p^n \)-extension of a \(p \)-group \(A \). If \(B \) is a normal straight basis of \(A \), then \(A' \) has a normal straight basis \(B' \) such that:

\[p^k(B'(k)) = B(0) \quad (0 \leq k < n), \]
\[p^k(B'(k)) = B(k-n) \quad (k \geq n). \]

Therefore, if \(A \) is straight, then \(A' \) is also straight. Furthermore, if \(A \) is strongly straight, then so is \(A' \).
PROPOSITION 2.5. Let A be a p-group and n an integer ≥ 1. If p^nA is straight, then A is also straight. Moreover, if p^nA is strongly straight, then so is A.

Proof. A can be written in the form

$$A = A_0 \oplus A'$$

where A_0 is an elementary p-group and A' is a p-extension of pA. If pA is straight, it follows by Proposition 2.3 that A' is straight. Therefore, A is straight by Proposition 1.13.

Next, suppose that pA is strongly straight, and let $C = \{C^n\}_{n \geq 0}$ be an arbitrary sequence of bases of the socle of A. Let C'^0 be any basis of $A'[p]$. We put:

$$C' = \{C'^0, C^1, C^2, \ldots, C^n, \ldots \}.$$

Then C' is a sequence of bases of the socle of A'. Since pA is strongly straight, it follows by Proposition 2.3 that A' is strongly straight. Hence, A' has a normal straight basis B' associated with C'. Clearly, $C'^0 \cup \{B'(n)\}_{n \geq 1}$ is a normal straight basis of A associated with C. Thus A is strongly straight.

By induction we obtain the results for p^nA.

By Corollary 2.2 and Proposition 2.5, we obtain immediately the following corollary.

COROLLARY 2.6. The direct sum of a strongly straight p-group and a bounded p-group is strongly straight.

§ 3. The structure of $p^{\alpha+1}$-injective p-groups

A p-group A is said to be $p^{\alpha+1}$-injective if

$$p^{\alpha+1}\text{Ext}(G, A) = 0 \quad \text{for all } p\text{-groups } G.$$

As is well known, the $p^{\alpha+1}$-injective p-groups A are characterized by $p^{\alpha}A \leq A[p]$ and $A/p^{\alpha}A$ is torsion-complete.

The main objective in this section is to prove that $p^{\alpha+1}$-injective p-groups are straight. Moreover, we shall state concretely the structure of $p^{\alpha+1}$-injective p-groups. To this end, we require a normal straight basis of the torsion-complete p-group, discovered by K. Honda [9].

First of all, we observe the following property on the socles of torsion-complete p-groups.

Let \tilde{V} be the torsion-complete p-group with the basic subgroup $V = \bigoplus_{n \geq 0} \langle b_n \rangle$, $o(b_n) = p^{n+1}$, $(n \geq 0, i \in I_n)$. Now, let X be the subset of $\tilde{V}[p]$ consisting of all elements of the form
\[
\left(- \sum_{i \in I_0} \lambda_i b_{0i}, - \sum_{i \in I_1} \lambda_i (p b_{1i}), \cdots, - \sum_{i \in I_n} \lambda_i (p^n b_{ni}), \cdots \right) \\
(n \geq 0, i \in I_m, \lambda_i \in \{0, 1\}).
\]

Throughout this paper, we shall use the above subset \(X \) for the torsion-complete \(p \)-group \(\widetilde{V} \).

We start with the following lemma.

Lemma 3.1. If \(P \) is a subslice of \(\widetilde{V} \) such that \(\widetilde{V}[p] \neq P \), then we can pick out a subset of \(X \) as the basis of a complement of \(P \) in \(\widetilde{V}[p] \).

Proof. Clearly, any element \(z \) of \(\widetilde{V}[p] \) can be written as:

\[
z = z_1 + 2z_2 + \cdots + (p-1)z_{p-1} \quad (z_i \in X, 1 \leq i \leq p-1).
\]

Therefore, \(X \) is a generating set of \(\widetilde{V}[p] \). Hence, the set \(\bar{X} = \{ \bar{x} = x + P \mid x \in X \} \) is a generating set of \(\widetilde{V}[p]/P \), let \(\{ \bar{x}_i \}_{i \in A} \) be a basis of \(\widetilde{V}[p]/P \) contained in \(\bar{X} \). Then \(\{ x_i \}_{i \in A} \) is the desired basis of a complement of \(P \).

Now, we clear up Corollary 1 in p. 452 of [12] which gives the isomorphism theorem on \(p^{o+1} \)-injective \(p \)-groups.

Lemma 3.2. Two \(p^{o+1} \)-injective \(p \)-groups are isomorphic if and only if they are \(o \)-similar.

Proof. Let \(A_1 \) and \(A_2 \) be \(p^{o+1} \)-injective \(p \)-groups, and suppose that \(A_1 \) and \(A_2 \) are \(o \)-similar. Thus there exists an isometry \(\theta : A_1[p] \rightarrow A_2[p] \). Then, for any basic subgroup \(V_1 \) of \(A_1 \), we can pick out a basic subgroup \(V_2 \) of \(A_2 \) such that \(\theta(V_1[p]) = V_2[p] \). Clearly, there exists an isomorphism \(\theta^* : V_1 \rightarrow V_2 \) such that \(\theta^* | V_1[p] = \theta \).

Obviously, \(\theta^* \) can be extended to an isomorphism \(\overline{\theta^*} : \overline{V_1} \rightarrow \overline{V_2} \). Since \(A_1 \) and \(A_2 \) are \(p^{o+1} \)-injective, there are epimorphisms \(\phi_k : A_k \rightarrow \overline{V}_k \) such that

\[
\ker \phi_k = p^o A_k, \quad \phi_k \mid V_k = 1_{V_k}
\]

for \(k = 1, 2 \) (use Corollary 1 in p. 250 of [5]). Put \(\phi^*_2 = \overline{\theta^*}^{-1} \phi_2 \). Then we have \(\phi^*_2 \theta^* = \phi_1 \) on \(V_1 \) and, moreover,

\[
\phi_1(A_1[p]) = \phi^*_2(A_2[p]).
\]

Therefore, by Lemma 1 in p. 450 of [12], \(\theta^* : V_1 \rightarrow V_2 \) can be extended to an isomorphism \(f : A_1 \rightarrow A_2 \) such that \(\phi_2 f = \phi_1 \).

Our converse assertion is obvious.

Also, Lemma 3.2 can be expressible as:

Corollary 3.3. Let \(A_1 \) and \(A_2 \) be \(p^{o+1} \)-injective \(p \)-groups, and let \(V_1 \) and \(V_2 \) be basic subgroups of \(A_1 \) and \(A_2 \), respectively. Moreover, let \(\theta : V_1 \rightarrow V_2 \) be an isomorphism. If there exists an isometry \(\theta^* : A_1[p] \rightarrow A_2[p] \) such that \(\theta^* | V_1[p] = \theta \), then \(\theta \) can be extended to an isomorphism from \(A_1 \) onto \(A_2 \).
THEOREM 3.4. Let A be a $p^{\omega+1}$-injective p-group, and let $V = \bigoplus_{n \geq 0} \bigoplus_{i \in I_n} \langle b_{ni} \rangle$ with $\alpha(b_{ni}) = p^{n+1}$ ($n \geq 0$, $i \in I_n$) be any basic subgroup of A. Then A has necessarily a normal straight basis $B = \{B(n)\}_{n \geq 0}$,

$$B(n) = \{b_{nk}\}_{\lambda \in A} \cup \{b_{ni}\}_{\mu \in M} \cup \left(\bigcup_{m \geq n} \{ p^m - n b_{mi} \}_{i \in I_m} \right) \quad (n \geq 0),$$

such that:

1°. $p^{\omega}A = \bigoplus_{\lambda \in A} \langle b_{0\lambda} \rangle$.

2°. i) $pb_{1\lambda} = b_{0\lambda} + \sum_{i \in I_1} (rg_{\lambda i})(pb_{1i})$,

ii) $pb_{n+1\lambda} = b_{n\lambda} + \sum_{i \in I_n} (sg_{\lambda i})b_{ni} + \sum_{i \in I_{n+1}} (rg_{\lambda i})(pb_{n+1i})$

$(n \geq 1, \lambda \in A, i \in I_m, g_{\lambda i} \in \{0, 1\})$.

iii) $pb_{n+1\mu} = b_{n\mu} + \sum_{i \in I_n} g_{\mu i}b_{ni}$ $(n \geq 0, \mu \in M, i \in I_m, g_{\mu i} \in N_p)$.

Proof. Since A is $p^{\omega+1}$-injective and V is a basic subgroup of A, it is easily seen that there is an epimorphism $\phi : A \to \tilde{V}$, which satisfies the following (1), (2) (use Corollary 1 in p. 250 of [5]).

(1) $\text{Ker } \phi = p^{\omega}A$.

(2) $\phi \mid V = 1_V$.

If $\phi(A[p]) = \tilde{V}[p]$, then $\text{Ker } \phi = 0$ and A is isomorphic to \tilde{V} which is a torsion-complete p-group. Hence, as was seen in [9], A has precisely a normal straight basis satisfying our theorem. Now, assume that

$$\phi(A[p]) \neq \tilde{V}[p].$$

Let $\{e_{\lambda i}\}_{\lambda \in \Gamma}$ be a basis of a complement of $V[p]$ in $\tilde{V}[p]$. Since $V[p] \leq \phi(A[p])$ by (2), we may assume that $\{e_{\lambda i}\}_{\lambda \in \Gamma}$ contains a basis of a complement P of $V[p]$ in $\phi(A[p])$.

Choose a proper subset M of Γ such that $\{e_{\mu i}\}_{\mu \in M}$ is a basis of P, and put $\Lambda = \Gamma \setminus M$.

By Lemma 3.1, we may suppose that $e_{0\lambda} \in X (\lambda \in A)$, since $\phi(A[p]) \neq \tilde{V}[p]$. Therefore, \tilde{V} has a normal straight basis $K = \{K(n)\}_{n \geq 0}$,

$$K(n) = \{e_{n\lambda}\}_{\lambda \in A} \cup \{e_{n\mu}\}_{\mu \in M} \cup \left(\bigcup_{m \geq n} \{ p^m - n b_{mi} \}_{i \in I_m} \right) \quad (n \geq 0),$$

as follows:

(3) i) $pe_{n+1\lambda} = e_{n\lambda} + \sum_{i \in I_n} g_{\lambda i}b_{ni}$ $(n \geq 0, \lambda \in A, i \in I_m, g_{\lambda i} \in \{0, 1\})$,

ii) $pe_{n+1\mu} = e_{n\mu} + \sum_{i \in I_n} g_{\mu i}b_{ni}$ $(n \geq 0, \mu \in M, i \in I_m, g_{\mu i} \in N_p)$.

Set
\[K'(n) = \{ p e_{n+1} \}_{\lambda \in \Lambda} \cup \{ e_{n\mu} \}_{\mu \in M} \cup \left(\bigcup_{m \geq n} \{ p^{m-n} b_{mij} \}_{i \in I_m} \right) \]

for every \(n \geq 0 \). By Proposition 1.4 and (3), it is straightforward to check that \(K' = \{ K'(n) \}_{n \geq 0} \) is a normal straight basis of \(\bar{V} \). Let \(E \) be a \(p \)-extension of \(\bar{V} \). Then, by Proposition 2.3, \(E \) has a normal straight basis \(T = \{ T(n) \}_{n \geq 0} \) such that

\[T(0) = K'(0), \quad p(T(n)) = K'(n-1) \quad (n \geq 1). \]

Now, for every \(n \geq 1 \), we can write \(T(n) \) in the form;

\[T(n) = \{ z_{n\lambda} \}_{\lambda \in \Lambda} \cup \{ u_{n-1\mu} \}_{\mu \in M} \cup \left(\bigcup_{m \geq n-1} \{ p^{m-n+1} u_{mij} \}_{i \in I_m} \right), \]

where

\begin{enumerate}
 \item \(p z_{n\lambda} = p e_{n\lambda} \quad (n \geq 1, \lambda \in \Lambda), \)
 \item \(p u_{n\mu} = e_{n\mu} \quad (n \geq 0, \mu \in M), \)
 \item \(p u_{n i} = b_{n i} \quad (n \geq 0, i \in I_n), \)
 \item \(p z_{n+1\lambda} = z_{n\lambda} + \sum_{i \in I_n} g_{\lambda i} (p u_{n i}) \quad (n \geq 1, \lambda \in \Lambda), \)
 \item \(p u_{n+1\mu} = u_{n\mu} + \sum_{i \in I_n} g_{\mu i} u_{n i} \quad (n \geq 0, \mu \in M). \)
\end{enumerate}

Now, for each \(\lambda \in \Lambda \), we define the elements \(u_{n\lambda} \) as follows:

\begin{enumerate}
 \item \(u_{0\lambda} = p e_{1\lambda} \quad (\lambda \in \Lambda), \)
 \item \(u_{n\lambda} = z_{n\lambda} + \sum_{i \in I_n} (r g_{\lambda i}) u_{n i} \quad (n \geq 1, \lambda \in \Lambda). \)
\end{enumerate}

Then, by i) and ii) of (4), we obtain

\begin{enumerate}
 \item \(p u_{1\lambda} = u_{0\lambda} + \sum_{i \in I_1} (r g_{\lambda i}) p u_{1 i} \quad (\lambda \in \Lambda), \)
 \item \(p u_{n+1\lambda} = u_{n\lambda} + \sum_{i \in I_n} (s g_{\lambda i}) u_{n i} + \sum_{i \in I_{n+1}} (r g_{\lambda i}) p u_{n+1 i} \quad (n \geq 1, \lambda \in \Lambda). \)
\end{enumerate}

(We recall our convention that \(s, r \in N_{p^r} \{ 0 \} \) such that \(s + r = p \). Designate by \(\tilde{x} \) the element \(x + \phi(A[p]) \) of \(E/\phi(A[p]) \) and set for every \(n \geq 0 \),

\[L(n) = \{ \tilde{u}_{n\lambda} \}_{\lambda \in \Lambda} \cup \{ \tilde{u}_{n\mu} \}_{\mu \in M} \cup \left(\bigcup_{m \geq n} \{ p^{m-n} \tilde{u}_{mij} \}_{i \in I_m} \right). \]

Then, \(L = \{ L(n) \}_{n \geq 0} \) is a normal straight basis of \(E/\phi(A[p]) \).

In fact, assume that
\[
\sum_{\lambda \in \Lambda} \alpha_\lambda (p^n u_{\lambda}) + \sum_{\mu \in M} \alpha_\mu (p^n u_{\mu}) + \sum_{m \geq n} \sum_{i \in I_m} \delta_m (p^m u_{mi}) \in \phi(A[p])
\]
\[
(\lambda \in \Lambda, \mu \in M, i \in I_m, m \geq n, \alpha_\lambda \in N_p, \alpha_\mu \in N_p, \delta_m \in N_p).
\]

Clearly, we have
\[
\sum_{\lambda \in \Lambda} \alpha_\lambda (p^{n+1} u_{\lambda}) + \sum_{\mu \in M} \alpha_\mu (p^{n+1} u_{\mu}) + \sum_{m \geq n} \sum_{i \in I_m} \delta_m (p^{m+1} u_{mi}) = 0.
\]

If \(n = 0 \), then, using i) of (3), ii) of (4), i) of (5) and the independence of \(K(0) \), it is straightforward to check that \(\alpha_\lambda = \alpha_\mu = \delta_m = 0 \) \((\lambda \in \Lambda, \mu \in M, i \in I_m, m \geq 0) \).

Now, let \(n \geq 1 \). Since \(p^{n+1} z_{\lambda} = 0 \) \((\lambda \in \Lambda) \), we obtain, by i) of (4), ii) of (5) and the independence of \(p^n(K(n)) \), \(\alpha_\mu = \delta_m = 0 \) \((\mu \in M, i \in I_m, m \geq n+1) \), and we can write \(\delta_m + \sum_{\lambda \in \Lambda} (\alpha_\lambda z_{\lambda}) = \delta_m p \) \((i \in I_m, \delta_m \in Z) \). Again, using i) of (4) and ii) of (5), it follows that
\[
\sum_{\lambda \in \Lambda} \alpha_\lambda (p^n e_{\lambda}) + \sum_{i \in I_m} \delta_m (p^m b_{mi}) \in \phi(A[p]).
\]
Moreover, by i) of (3), it holds
\[
\sum_{\lambda \in \Lambda} \alpha_\lambda e_{\lambda} \in \phi(A[p]).
\]
Since \(\{ e_{\lambda} \}_{\lambda \in \Lambda} \) is a basis of a complement of \(\phi(A[p]) \) in \(V[p] \), \(\alpha_\lambda = 0 \) \((\lambda \in \Lambda) \), and hence \(\delta_m = 0 \) \((i \in I_m) \). Therefore, for all \(n \geq 0 \), \(p^n(L(n)) \) is independent.

Next, let \(p^n x \in (p^n(E/\phi(A[p]))) \) for any \(n \geq 0 \). Obviously, \(p^{n+2} x = 0 \). Since \(T \) is a straight basis of \(E \), by Proposition 1.6, \(x \) is expressible uniquely as:
\[
x = f_0 + \cdots + f_n + f_{n+1} \quad (f_i \in F_i(T), 0 \leq i \leq n+1).
\]

Then, \(f_{n+1} \) can be written uniquely as:
\[
f_{n+1} = \sum_{\lambda \in \Lambda} \alpha_\lambda z_{\lambda} + \sum_{\mu \in M} \alpha_\mu u_{\mu} + \sum_{m \geq n} \sum_{i \in I_m} \delta_m (p^{m-n} u_{mi})
\]
\[
(\lambda \in \Lambda, \mu \in M, i \in I_m, m \geq n, \alpha_\lambda \in N_p, \alpha_\mu \in N_p, \delta_m \in N_p).
\]

Using i) of (4), it follows by i) of (3) that \(\sum_{\lambda \in \Lambda} \alpha_\lambda e_{\lambda} \in \phi(A[p]) \), since \(p^{n+1} x \in \phi(A[p]) \).

Therefore, \(\alpha_\lambda = 0 \) \((\lambda \in \Lambda) \). If \(n = 0 \), then it follows by \(T(0) = K(0) \) and i) of (5) that
\[
(L(0)) = (E/\phi(A[p])) \cdot \frac{p^n f_n}{\phi(A[p])}.
\]

Now, let \(n \geq 1 \). Since \(f_n \in F_n(T) \), by i) of (4) and ii) of (5), \(p^n f_n \) can be written uniquely as:
\[
p^n f_n = \sum_{\lambda \in \Lambda} \beta_\lambda (p^n u_{\lambda}) + \sum_{i \in I_n} \left(\sum_{\lambda \in \Lambda} (r_{\lambda} g_{\lambda i}) \right) (p^n u_{\mu}) + x' \quad (\lambda \in \Lambda, \beta_\lambda \in N_p, x' \in \phi(A[p])).
\]

Hence, we have:
\[
p^n x = \sum_{\lambda \in \Lambda} \beta_\lambda (p^n u_{\lambda}) + \sum_{\mu \in M} \alpha_\mu (p^n u_{\mu}) + \sum_{i \in I_n} \left(\delta_m - \sum_{\lambda \in \Lambda} \left(r_{\lambda} g_{\lambda i} \right) \right) (p^n u_{\mu})
\]
\[
+ \sum_{m \geq n+1} \sum_{i \in I_m} \delta_m (p^{m-n} u_{mi}) + x'.
\]

Therefore, \(p^n x \in \langle p^n(L(n)) \rangle \). Namely, \(\langle p^n(L(n)) \rangle = (p^n(E/\phi(A[p]))) \cdot \frac{p^n f_n}{\phi(A[p])} \) \((n \geq 1) \).

Finally, for all \(n \geq 0 \), \(p^n(L(n)) \) is independent and is a set of generators of \((p^n(E/\phi(A[p]))) \cdot \frac{p^n f_n}{\phi(A[p])} \). Hence, for every \(n \geq 0 \), \(p^n(L(n)) \) is a basis of \((p^n(E/\phi(A[p]))) \cdot \frac{p^n f_n}{\phi(A[p])} \).
Thus, by Proposition 1.4 and iii) of (4), (6), \(L \) is a normal straight basis of \(E/\phi(A[p]) \).

Since \(E \) is a \(p \)-extension of \(V \), the mapping
\[
\psi: \bar{e} \mapsto pe, \quad (e \in E)
\]
is an epimorphism of \(E/\phi(A[p]) \) onto \(V \). It follows that:
\[
(7) \quad \psi((E/\phi(A[p]))[p]) = \phi(A[p]).
\]
Since \(T \) is a normal straight basis of \(E \) and since (4) and (6) hold, we have
\[
(8) \quad \text{Ker } \psi = p^{\omega}(E/\phi(A[p])) = \bigoplus_{\lambda \in \Lambda} \langle \bar{u}_{0\lambda} \rangle.
\]

From Corollary 1 in p. 250 of [5] and (8), \(E/\phi(A[p]) \) is \(p^{\omega+1} \)-injective. On the other hand, \(H = \bigoplus_{n \geq 0} (\bigoplus_{i \in I_n} \langle \bar{u}_{ni} \rangle) \) is clearly a basic subgroup of \(E/\phi(A[p]) \). Furthermore, the mapping \(\theta \) such that \(\theta(\bar{u}_{ni}) = b_{ni} \) \((n \geq 0, \ i \in I_n) \) is an isomorphism of \(H \) onto \(V \). Obviously, we have
\[
r(p^{\omega}A) = r(V[p]/\phi(A[p])) = |A|.
\]

Therefore, using (7), there is an isometry of \((E/\phi(A[p]))[p] \) onto \(A[p] \) which agrees with \(\theta \) on \(H[p] \). Hence, by Corollary 3.3, there is an isomorphism \(\bar{\theta}: E/\phi(A[p]) \to A \) that extends \(\theta \). Now, we put
\[
\bar{\theta}(\bar{u}_{n\lambda}) = b_{n\lambda} \quad (n \geq 0, \ \lambda \in \Lambda),
\]
\[
\bar{\theta}(\bar{u}_{n\mu}) = b_{n\mu} \quad (n \geq 0, \ \mu \in M),
\]

Moreover, we set
\[
B(n) = \{b_{n\lambda}\}_{\lambda \in \Lambda} \cup \{b_{n\mu}\}_{\mu \in M} \cup \left(\bigcup_{m \geq n} \{p^{m-n}b_{mi}\}_{i \in I_m} \right) \quad (n \geq 0).
\]

Then, clearly, \(B = \{B(n)\}_{n \geq 0} \) is a normal straight basis of \(A \) satisfying the three conditions of our theorem. Thus we reach the desired result.

Hence, we obtain the following theorem which is the main result of this section.

Theorem 3.5. Any \(p^{\omega+1} \)-injective \(p \)-group is straight.

§ 4. Strongly straight \(p \)-groups

In this section, we give a partial characterization of strongly straight \(p \)-groups (Theorem 4.3). Moreover, from Theorem 4.3, we derive the existence of separable straight \(p \)-groups which are not strongly straight. By Theorem 1.18, reduced strongly straight \(p \)-groups are separable. As is well known, every separable \(p \)-group will be identified with a pure and dense subgroup of a torsion-complete \(p \)-group with the same basic subgroup. Therefore, using a normal straight basis of the torsion-complete \(p \)-group discovered by K. Honda [9], reduced strongly straight \(p \)-groups are
expressible as:

Lemma 4.1. Let \(A \) be a reduced strongly straight \(p \)-group. Then, \(A \) has necessarily a normal straight basis \(B = \{ B(n) \}_{n \geq 0} \) where

\[
B(n) = \{ b_{n, \mu} \}_{\mu \in M} \cup \left(\bigcup_{m \geq n} \{ p^{m-n} b_{m, i} \}_{i \in I_m} \right) \quad (n \geq 0),
\]

such that:

1°. \(pb_{n+1, \mu} = b_{n, \mu} + \sum_{i \in I_n} g_{\mu, i} b_{n, i} \quad (n \geq 0, \mu \in M, i \in I_n, g_{\mu, i} \in N_p) \),

2°. \(V = \bigoplus_{n \geq 0} \left(\bigoplus_{i \in I_n} b_{n, i} \right) \) is a basic subgroup of \(A \).

Proof. Let \(W = \bigoplus_{n \geq 0} \left(\bigoplus_{i \in I_n} \langle w_{n, i} \rangle \right) \) with \(\omega(w_{n, i}) = p^{n+1} \) \((n \geq 0, i \in I_n) \) be any basic subgroup of \(A \). Since \(A \) is reduced and strongly straight, by Theorem 1.18, it is separable. Therefore, \(A \) can be identified with a pure and dense subgroup of \(\overline{W} \). Now, let \(\{ w_{0, \gamma} \}_{\gamma \in \Gamma} \) be a basis of a complement of \(W[p] \) in \(\overline{W[p]} \). Since \(W[p] \leq A[p] \leq \overline{W[p]} \), we may assume that \(\{ w_{0, \gamma} \}_{\gamma \in \Gamma} \) contains a basis of a complement \(P \) of \(W[p] \) in \(A[p] \).

Choose a subset \(M \) of \(\Gamma \) such that \(\{ w_{0, \mu} \}_{\mu \in M} \) is a basis of \(P \). On the other hand, \(\overline{W} \) has a normal straight basis \(K = \{ K(n) \}_{n \geq 0} \),

\[
K(n) = \{ w_{n, \gamma} \}_{\gamma \in \Gamma} \cup \left(\bigcup_{m \geq n} \{ p^{m-n} w_{m, i} \}_{i \in I_m} \right) \quad (n \geq 0),
\]

as follows:

\[
p^{n+1} w_{n+1, \gamma} = w_{n, \gamma} + \sum_{i \in I_n} g_{\gamma, i} w_{n, i} \quad (n \geq 0, \gamma \in \Gamma, i \in I_n, g_{\gamma, i} \in N_p).
\]

Put

\[
C^n = \{ p^n w_{n, \mu} \}_{\mu \in M} \cup \left(\bigcup_{m \geq n} \{ p^n w_{m, i} \}_{i \in I_m} \right) \quad (n \geq 0).
\]

Obviously, \(C = \{ C^n \}_{n \geq 0} \) is a sequence of bases of the socle of \(A \). Since \(A \) is strongly straight, we have a normal straight basis of \(A \) associated with \(C \) satisfying the conditions of our lemma.

Remark. There exist \(p \)-groups having normal straight bases of the form given above which are not strongly straight.

Lemma 4.2. Let \(A \) be a reduced strongly straight \(p \)-group. Then we have either 1° or 2°:

1°. \(A \) is an unbounded torsion-complete \(p \)-group.

2°. For any basic subgroup \(V \) of \(A \), \(2^{|A|} = 2^{|V|} \).

Proof. By Lemma 4.1, \(A \) has a normal straight basis
\[B = \{ B(n) \}_{n \geq 0}, \quad B(n) = \{ b_{n\mu} \}_{\mu \in M} \cup \left(\bigcup_{m \geq n} \{ p^{m-n}b_{mi} \}_{i \in I_m} \right) \quad (n \geq 0), \]

such that:

1. \[pb_{n+1} = b_{n} + \sum_{i \in I_n} g_{ni}b_{ni} \quad (n \geq 0, \mu \in M, i \in I_n, g_{ni} \in N_p), \]

2. \[V = \bigoplus_{n \geq 0} \left(\bigoplus_{i \in I_n} \langle b_{ni} \rangle \right) \quad \text{is a basic subgroup of} \quad A. \]

If \(|M| \leq |V| \), then \(|A| = |V| \). Therefore, 2° holds. Now, let \(|M| > |V| \geq N_0 \). Then it is easily seen that \(|A| = |M| \). By (2), \(V \) is a basic subgroup of \(A \). Hence, we may assume that \(A \) can be identified with a pure and dense subgroup of \(V \). To prove 2°, suppose that 1° does not hold. Since \(A \) is not torsion-complete, it follows that \(X \leq A[p] \) (cf. Proof of Lemma 3.1). Therefore, we can pick out elements \(z_n \) (\(n \geq 1 \)) of order \(p^n \) in \(V \setminus A \) such that

3. \[p z_{n+1} = z_n + \sum_{i \in I_{n+1}} \alpha_i (p^2b_{n+1}) \quad (n \geq 1, i \in I_{n+1}, \alpha_i \in \{0, 1\}). \]

Further, for every element \(A \) in the power set of \(M \), we put:

\[B(A)^{(0)} = B(0), \]

\[B(A)^{(n)} = \left\{ b_{n\lambda} + z_n + \sum_{i \in I_{n+1}} (r_{i\lambda})(p^2b_{n+1}) \right\}_{\lambda \in A} \]

\[\cup \{ b_{n\mu} \}_{\mu \in M \setminus A} \cup \left(\bigcup_{m \geq n} \{ p^{m-n}b_{mi} \}_{i \in I_m} \right) \quad (n \geq 1). \]

Using (1) and (3), we have the relations:

4. \[i) \quad p \left[b_{1\lambda} + z_1 + \sum_{i \in I_2} (r_{i\lambda})(p^2b_{i+1}) \right] = b_{0\lambda} + \sum_{i \in I_0} g_{i\lambda}b_{0i} + \sum_{i \in I_2} (r_{i\lambda})(p^2b_{2i}), \]

\[ii) \quad p \left[b_{n+1}\lambda + z_{n+1} + \sum_{i \in I_{n+2}} (r_{i\lambda})(p^2b_{n+2}) \right] = \left[b_{n\lambda} + z_n + \sum_{i \in I_{n+1}} (r_{i\lambda})(p^2b_{n+1}) \right] + \sum_{i \in I_n} g_{i\lambda}b_{ni} \]

\[+ \sum_{i \in I_{n+1}} (s_{i\lambda})(p^2b_{n+1}) + \sum_{i \in I_{n+2}} (r_{i\lambda})(p^2b_{n+2}) \quad (n \geq 1, \lambda \in A). \]

For every element \(A \) in the power set of \(M \), put \(B(A) = \{ B(A)^{(n)} \}_{n \geq 0} \) and \(A(A) = \langle B(A) \rangle \).

Using (1), (4) and Proposition 1.4, we get

(5) \[(p^n A(A))[p] = (p^n A)[p] \quad (n \geq 0). \]
(6) \(B^{(A)} \) is a normal straight basis of \(A^{(A)} \).

Now, let \(s \) be the set of all subgroups of \(\vec{V} \) which are isomorphic to \(A \). Then, since \(A \) is strongly straight and since (5) and (6) hold, it follows by Theorem 1.17 that \(A^{(A)} \) is isomorphic to \(A \). Therefore, each \(A^{(A)} \) belongs to \(s \), and hence \(|s| \geq 2^{|M|}\). Moreover, the pure-exact sequence \(0 \rightarrow V \rightarrow A \rightarrow A/V \rightarrow 0 \) yields the exact sequence \(0 \rightarrow \text{Hom}(A/V, \vec{V}) \rightarrow \text{Hom}(A, \vec{V}) \rightarrow \text{Hom}(V, \vec{V}) \rightarrow \text{Ext}(A/V, \vec{V}) = 0 \). Hence, \(|\text{Hom}(A, \vec{V})| = |\text{Hom}(V, \vec{V})| \leq |\vec{V}^{|V|} = (|V^{|K_v|} = |V||V| = 2^{|V|} \). Also, since \(s \) is the set of all subgroups of \(\vec{V} \) which are isomorphic to \(A \), it is obvious that \(|s| \leq |\text{Hom}(A, \vec{V})|\). Namely, \(|s| \leq 2^{|V|}\). Here, \(2^{|M|} \leq |s| \leq 2^{|V|}\). Since \(|A| = |M|\), it follows that \(2^{|A|} \leq 2^{|V|}\). Conversely, it is straightforward that \(2^{|A|} \geq 2^{|V|}\). Consequently, we have \(2^{|A|} = 2^{|V|}\). Since all basic subgroups of \(A \) are isomorphic, \(2^p \) holds. Thus we reach the desired result.

The following theorem is the main purpose of this section.

Theorem 4.3. Let \(A \) be a reduced strongly straight \(p \)-group such that \(|A| = 2^p\) where \(p \) is the cardinality of a basic subgroup of \(A \). Then, \(A \) is necessarily torsion-complete.

Proof. Suppose that \(V \) is any basic subgroup of \(A \). If \(|A| = 2^{|V|}\), then \(2^{|A|} \neq 2^{|V|}\). Therefore, it follows by Lemma 4.2 that \(A \) is torsion-complete.

The next corollary follows immediately from Theorem 4.3.

Corollary 4.4. We assume the Continuum Hypothesis. Then any reduced strongly straight \(p \)-group with a countable basic subgroup is either a direct sum of cyclic \(p \)-groups or torsion-complete.

As was seen in Remark 3.10 of [1], by making use of the concept of pure-complete, it can be shown that there exist separable \(p \)-groups which are not strongly straight. On the other hand, let \(\alpha_1 < \alpha_2 < \cdots < \alpha_n < \cdots \) and \(\beta_1 < \beta_2 < \cdots < \beta_n < \cdots \) be ascending sequences of natural numbers. Then, from Theorem 4.3,

\[
\bigoplus_{n \geq 1} \mathbb{Z}(p^{\alpha_n}) \oplus \bigoplus_{n \geq 1} \mathbb{Z}(p^{\beta_n})
\]

is not strongly straight but straight. Therefore, we obtain the following two results.

Corollary 4.5. The direct sum of a direct sum \(H \) of cyclic \(p \)-groups and a torsion-complete \(p \)-group \(T \) is strongly straight if and only if either \(H \) or \(T \) is bounded.

From Corollary 4.5, it follows that the direct sum of two reduced strongly straight \(p \)-groups needs not be strongly straight. Now, in [2], it is stated that the direct sum of a bounded \(p \)-group and a divisible \(p \)-group is strongly straight. However, as was seen in [4], the direct sums of any unbounded direct sum of cyclic \(p \)-groups and
any non-zero divisible \(p \)-group are not strongly straight, but straight. In particular, since a countable \(p \)-group is a direct sum of cyclic groups if and only if it contains no elements \(\neq 0 \) of infinite height, we have the following corollary.

Corollary 4.6. Any countable strongly straight \(p \)-group is either a direct sum of cyclic \(p \)-groups or the direct sum of a bounded \(p \)-group and a divisible \(p \)-group.

§ 5. Separable straight \(p \)-groups

From Proposition 2.4 in p. 121 of [1], it is known that strongly straight \(p \)-groups are pure-complete. Also, in [1] and [11], it is proved that any direct sum of cyclic \(p \)-groups is strongly straight. Furthermore, in [1] and [9], it is proved that any torsion-complete \(p \)-group is strongly straight. As is well known, the direct sum of any direct sum of cyclic \(p \)-groups and any torsion-complete \(p \)-group is pure-complete, and any quasi-complete \(p \)-group is pure-complete. Quasi-complete \(p \)-groups have been studied in [7], [10], and others under the name of quasi-closed \(p \)-groups. On the other hand, as was seen in the preceding section, the direct sum of an unbounded direct sum of cyclic \(p \)-groups and an unbounded torsion-complete \(p \)-group is straight but not strongly straight. In this section, we shall show the following two facts: (1) There exist separable straight \(p \)-groups which are not pure-complete. (2) There exist quasi-complete \(p \)-groups which are straight \(p \)-groups but not strongly straight.

Let \(A \) be any \(p \)-group. Then the closure \(0^+ \) [naturally, in the \(p \)-adic topology of \(A \)] is equal to \(A^1 \). Hence, we claim that quasi-complete \(p \)-groups are separable.

Our starting point is the following result. This result was also obtained in [4] by other methods and for \(p \neq 2 \).

Proposition 5.1. Let \(T \) be a torsion-complete \(p \)-group such that \(|T| = 2^n \) and \(p \) is the cardinality of a basic subgroup of \(T \). Put \(n = 2^n \). If \(S \) is a proper dense subsocle of \(T \) such that \(|S| = n \), then \(S \) supports \(2^n \) pairwise nonisomorphic pure, straight subgroups of \(T \) with the same basic subgroup.

Proof. Since \(S \) is a dense subsocle of \(T \), we can choose a basic subgroup \(V \) of \(T \) such that \(S \subset V[p] \). Put

\[
V = \bigoplus_{n \geq 0} \left(\bigoplus_{i \in I_n} \langle v_{ni} \rangle \right), \quad o(v_{ni}) = p^{n+1} \quad (n \geq 0, i \in I_n).
\]

Let \(\{v_{0\gamma}: \gamma \in \Gamma \} \) be a basis of a complement of \(V[p] \) in \(T[p] \). Since \(S \supseteq V[p] \), we may assume that \(\{v_{0\gamma}: \gamma \in \Gamma \} \) contains a basis of a complement \(P \) of \(V[p] \) in \(S \). Choose a proper subset \(M \) of \(\Gamma \) such that \(\{v_{0\gamma}: \gamma \in M \} \) is a basis of \(P \). We claim that \(v_{0\gamma} \in S \) \((\gamma \in \Gamma \setminus M) \). Since \(T \) is a torsion-complete \(p \)-group, \(T \) has a normal straight basis

\[
B = \{B(n)\}_{n \geq 0}, \quad B(n) = \{v_{n\gamma}: \gamma \in \Gamma \} \cup \left(\bigcup_{m \geq n} \{p^{m-n}v_{m\gamma}: \gamma \in I_m \} \right) \quad (n \geq 0)
\]

as follows:
Straight and Strongly Straight Abelian p-Groups

(1) \[
 pv_{n+1} = v_{n} + \sum_{g_{ji}v_{ni}} (n \geq 0, \; \gamma \in \Gamma, \; i \in I_{m}, \; g_{ji} \in N_{p}).
\]

By Lemma 3.1, we may suppose that
\[
g_{ji} \in \{0, 1\} \; (n \geq 0, \; \gamma \in \Gamma \setminus M, \; i \in I_{m}),
\]

since $S \neq T[p]$. Furthermore, it follows that $|M| = n$, since $|S| = n$. Now, let γ be an arbitrary but fixed element of $\Gamma \setminus M$, and let $\Psi(M)$ be the power set of M. For every $n \geq 0$ and every $\Lambda \in \Psi(M)$, we set
\[
 B^{(A)}(n) = \left\{ v_{n} + p^{2}v_{n+1} \left(\sum_{i \in I_{n} + 1} (rg_{ji})(pv_{n+1}) \right) \right\}_{\lambda \in \Lambda}
\]
\[
 \cup \left\{ v_{n} \right\}_{\mu \in \Lambda \setminus \Lambda} \cup \left(\bigcup_{m \geq n} \left\{ p^{m-n}v_{mi} \right\}_{i \in I_{m}} \right)
\]

Using (1), for every $n \geq 0$ and every $\lambda \in \Lambda$, we have

(2) \[
 p \left[v_{n+1} + p^{2}v_{n+2} + \sum_{i \in I_{n+1}} (rg_{ji})(pv_{n+1}) \right]
\]
\[
 = \left[v_{n} + p^{2}v_{n+1} + \sum_{i \in I_{n+1}} (rg_{ji})(pv_{n+1}) \right]
\]
\[
 + \sum_{i \in I_{n}} g_{ji}v_{ni} + \sum_{i \in I_{n+1}} (sg_{ji})(pv_{n+1}) + \sum_{i \in I_{n+2}} (rg_{ji})(p^{2}v_{n+2}).
\]

For each $\Lambda \in \Psi(M)$, we put $B^{(A)} = \{B^{(A)}(n)\}_{n \geq 0}$, and let $A^{(A)} = \langle B^{(A)} \rangle$. Using (1) and (2), we get:

(3) \[
 (p^nA^{(A)})[p] = S \cap p^nT \; (n \geq 0),
\]

(4) \[
 B^{(A)} \text{ is a normal straight basis of } A^{(A)}.
\]

By (4), $A^{(A)}$'s are straight. Also, it is easy to see that $A^{(A)}$'s are pure and dense subgroups of T with the same basic subgroup V. If Λ and Λ' are different elements of $\Psi(M)$, then it holds that $\Lambda \setminus \Lambda' \neq \emptyset$ or $\Lambda' \setminus \Lambda \neq \emptyset$. Assume that $\Lambda \setminus \Lambda' \neq \emptyset$. Then, we can pick out $\lambda \in \Lambda \setminus \Lambda'$. Clearly, $v_{n} + p^{2}v_{n+1} \in A^{(A)}$ for every $n \geq 0$. If $v_{n} + p^{2}v_{n+1}, v_{n} + p^{2}v_{n+1} \in A^{(A)}$ for some $n \geq 1$, then it follows that $p^{2}v_{n+1} \in A^{(A)}$, since $v_{n} \in A^{(A)}$. By (1) and (3), we obtain that $v_{n} + p^{2}v_{n+1} \notin S$. This contradicts $v_{n} \in S$. Therefore, $v_{n} + p^{2}v_{n+1}$ does not belong to $A^{(A)}$. Thus we have $A^{(A)} \neq A^{(A)}$. Since $|\Psi(M)| = 2^n$, it follows that S supports 2^n different pure, straight subgroups $A^{(A)}(\Lambda \in \Psi(M))$ of T with the same basic subgroup V. Moreover, for any $\Lambda \in \Psi(M)$, it is obvious that $|\text{Hom}(A^{(A)}, T)| = |\text{Hom}(V, T)| = n$. Therefore, the cardinality of the set of all $A^{(A)}$ which are isomorphic to $A^{(A)}$ is at most n. Hence the set of nonisomorphic $A^{(A)}$ is of the power 2^n. Thus we reach the desired result.

Let T be the torsion-complete p-group in Proposition 5.1. Then, we can choose
two nonisomorphic pure straight subgroups A_1 and A_2 of T with the same socle. Let A be the external direct sum of A_1 and A_2. Put

$$U=\{(a,a)\in A\mid a\in A_1[p]=A_2[p]\}.$$

Then, it is easy to see that U does not support a pure subgroup of A. Therefore, A is not pure-complete. On the other hand, by Proposition 1.13, A is straight. Hence we have the following corollary.

Corollary 5.2. There exist separable straight p-groups which are not pure-complete.

Moreover, we have the following theorem from Proposition 5.1.

Theorem 5.3. There are separable straight p-groups which are quasi-complete but not strongly straight. In particular, there exist 2^α pairwise nonisomorphic quasi-complete, straight p-groups of the cardinality of the continuum \mathfrak{c} with the same basic subgroup $\bigoplus_{n\geq 0} Z(p^{n+1})$ and with the same socle; moreover, all of these are not strongly straight.

Proof. Let T be a torsion-complete p-group with a basic subgroup $V\cong \bigoplus_{n\geq 0} Z(p^{n+1})$. Clearly, $|T|=\mathfrak{c}$. Since $T[p]\neq V[p]$, we can choose a countable subsocle U of T such that $V[p]\cap U=0$. By Theorem 7 and its proof in p. 273 of [7], there exists a pure subgroup A of T such that

1. $A[p]\supseteq V[p]$,
2. $|A|=\mathfrak{c}$,
3. T/A is divisible,
4. A is quasi-complete,
5. $A\cap U=0$.

By (3), (5) and the purity of A in T, it is obvious that A is not torsion-complete. Further, since the cardinality of a basic subgroup of A is just \aleph_0, it follows by Theorem 4.3 and (2) that A is not strongly straight. Namely, A is a separable p-group with the cardinality of the continuum \mathfrak{c} which is quasi-complete but not strongly straight. Now, by (2), (3) and (5), $A[p]$ is a proper dense subsocle of T such that $|A[p]|=\mathfrak{c}$. It follows by Proposition 5.1 that $A[p]$ supports $2^\mathfrak{c}$ pairwise nonisomorphic pure, straight subgroups of T with the same basic subgroup W. Let G be any member of the set of these subgroups. Since $A[p]=G[p]$, it follows by (2) that $|G|=\mathfrak{c}$. Next, let S be any non-discrete subsocle of G. Using Theorem 2 in p. 272 of [7] and (4), $G[p]+S^- = A[p]+S^- = T[p]$, and hence G is quasi-complete. Since $|G|=\mathfrak{c}$ and $|W|=\aleph_0$, G is not strongly straight by Theorem 4.3. Moreover, by $G[p]=A[p]$, (1) and the purity of G in T, we get $W\cong V\cong \bigoplus_{n\geq 0} Z(p^{n+1})$. Hence, G is a quasi-complete, straight p-group of the cardinality of the continuum \mathfrak{c} with the basic subgroup W and with the socle $A[p]$. Furthermore, G is not strongly straight. Thus we have obtained the desired result.
References

Department of Mathematics
Hachinohe Institute of Technology
Obiraki, Hoachinohe, Aomori 031
Japan