Abelian Groups Related to Mitchell’s Problem

by

Takashi Okuyama

(Received July 1, 1983)

All groups considered in this paper are abelian. For the general notation, we refer to Fuchs [3].

The general purification problem is to ascertain precisely which subgroups of a subgroup A of a group G are the intersections of A with pure subgroups of G.

Mitchell showed in [5] that if G is a p-group and K is a neat subgroup of G^1, then there exists a pure subgroup P of G such that $P \cap G^1 = K$.

He then raised the problem whether the converse holds, i.e. “if P is pure in G, then is $P \cap G^1$ neat in G^1?"

F. Richman and C. P. Walker solved the purification problem when G is a p-group and $A = G^1$ in [6]. By [6], it is immediate that the answer to Mitchell’s problem is negative in general.

But it is an interesting problem to characterize the group G in which the intersection of each pure subgroup and G^1 is neat.

In this paper, we shall characterize the groups mentioned above for the arbitrary case as well as the case of p-groups. Namely, we shall prove the next theorem which determines such groups.

Before we formulate the theorem, we introduce a condition and a definition on a group G for ready reference.

Condition (M). If P is a pure subgroup of G, then $P \cap G^1$ is a neat subgroup of G^1.

Definition. Let G be a p-group. If G is the direct sum of a bounded subgroup and a divisible subgroup, then G is called a B.D.-group.

Theorem. A group G satisfies the condition (M) if and only if either of the following two holds:

(i) G^1 is torsion and for each prime p, either G_p is a B.D.-group or $(G_p)^1$ is elementary.

(ii) G^1 is not torsion and for each prime p, G_p is a B.D.-group.

§ 1. Preliminaries

We first quote some results which will be frequently used afterwards.
(1.1) (J. M. Irwin and E. A. Ealker [4]). If \(G \) is a group and \(S \) is a pure subgroup of \(G \), then we have \(p^{n}S = S \cap p^{n}G \) for each prime \(p \).

(1.2) (F. Richman and C. P. Walker [5]). Let \(G \) be a group, \(K \) a subgroup of \(G^{1} \) and \(\alpha \) the final rank of a high subgroup of \(G \). Then there exists a pure subgroup \(P \) of \(G \) such that \(P \cap G^{1} = K \) if and only if \(K \) is \(\alpha \)-quasi-neat in \(G^{1} \).

(If \(\alpha \) is a cardinal number, we say that \(K \) is \(\alpha \)-quasi-neat in \(G \) if \(|(pG \cap K)/pK| \leq \alpha \). We add that the final rank of a high subgroup of \(G \) is uniquely determined by \(G \).)

(1.3) (K. Benabdallah and J. M. Irwin [2]). Let \(G = B \oplus D \) be a \(p \)-group, where \(B \) is bounded and \(D \) is divisible. Then every pure subgroup \(K \) of \(G \) is the direct sum of a bounded subgroup and the divisible subgroup \(K \cap D \).

(1.4) (J. M. Irwin and E. A. Walker [4]). Let \(G \) be a group and \(K \) be a subgroup of \(G^{1} \). Then all \(K \)-high subgroups of \(G \) are pure in \(G \).

(1.5) (J. Bečvár [1]). Let \(G \) be a group and \(G_{p} \) be a B.D.-group for each prime \(p \). Then each pure subgroup of \(G \) is an isotype subgroup of \(G \).

§ 2. \(p \)-Groups

In this section, we shall determine all \(p \)-group \(G \)'s with the condition (M).

Proposition 2.1. A \(p \)-group \(G \) satisfies the condition (M) if and only if either \(G \) is a B.D.-group or \(G^{1} \) is elementary.

Proof. Suppose that either \(G \) is a B.D.-group or \(G^{1} \) is elementary. When \(G^{1} \) is elementary, each subgroup of \(G^{1} \) is neat in \(G^{1} \). So we may assume that \(G^{1} \) is a B.D.-group. Let \(S \) be a pure subgroup of \(G \). Then, by (1.3), \(S \) is a B.D.-group and the divisible part of \(S \) is equal to \(S \cap G^{1} \). Thus \(S \cap G^{1} \) is neat in \(G^{1} \).

Conversely, suppose that \(G \) satisfies the condition (M) and \(pG^{1}[p] \neq 0 \). Let \(H \) be a high subgroup of \(G \). We shall prove that \(H \) is bounded.

Put \(r(H) = \alpha \). Suppose that \(\alpha \) is finite. Since \(H \) is reduced, we have \(\text{Fin} r(H) = 0 \) and hence \(H \) is bounded. Thus we may assume that \(\alpha \) is infinite. In this case, \(\langle a \rangle \) is \(\alpha \)-quasi-neat for a nonzero element \(a \) of \(pG^{1}[p] \). By (1.2), there exists a pure subgroup \(P \) of \(G \) such that \(P \cap G^{1} = \langle a \rangle \). Then \(p\langle a \rangle = 0 \). On the other hand, we have \(p(P \cap G^{1}) = (P \cap G^{1}) \cap pG^{1} = P \cap pG^{1} = \langle a \rangle \neq 0 \). This is a contradiction. Hence \(H \) is bounded.

Furthermore, since \(H \) is pure in \(G \) by (1.4), \(H \) is a direct summand of \(G \). Then it follows that \(G = H \oplus G_{0} \) for some subgroup \(G_{0} \) of \(G \). As \(G^{1} = (G_{0})^{1} \), we have \(G_{0} \subseteq G^{1} \). On the other hand, since \(H \oplus G^{1} \) is essential in \(G \), we have \(G_{0}[p] \subseteq G[p] \subseteq H \oplus G^{1} \). Let \(x \in G_{0}[p] \) and \(x = h + g \), \(h \in H \), \(g \in G^{1} \). We have \(x - g = h \in H \cap G_{0} = 0 \) and hence \(x = g \in G^{1} \). As \(G_{0}[p] \subseteq G^{1} = (G_{0})^{1} \), \(G_{0} \) is divisible. Hence \(G \) is a B.D.-group. This proposition has been thus proved.
§ 3. Arbitrary groups

First we show a few lemmas which will be used in the proof of our Theorem.

LEMMA 3.1. Let G be a group. Then we have $(G_i)^1 = (G^1)$, and $(G_p)^1 = (G^1)_p$ for each prime p.

Proof. By (1.1), we have

$$(G_p)^1 = \bigcap_q q^\infty G_p = \bigcap_q (G_p \cap q^\infty G) = G_p \cap \left(\bigcap_q q^\infty G \right) = G_p \cap G^1 = (G^1)_p$$

where q ranges over all primes. Similarly, we have

$$(G_i)^1 = \bigcap_q q^\infty G_i = \bigcap_q (G_i \cap q^\infty G) = G_i \cap \left(\bigcap_q q^\infty G \right) = G_i \cap G^1 = (G^1)_i.$$

LEMMA 3.2. Let G be a torsion group and put $G = \bigoplus q G_q$. Then we have $G^1 = \bigoplus q^\infty G_q$.

Proof. Since

$$p^\infty G = \left(\bigoplus q^\infty G_q \right) \oplus p^\infty G_p,$$

we have

$$G^1 = \bigcap_p p^\infty G = \bigoplus p^\infty G_p.$$

Writing q in place of p, we have the desired equality.

LEMMA 3.3. A torsion group G satisfies the condition (M) if and only if, for each prime p, G_p satisfies the condition (M).

Proof. Suppose that G_p satisfies the condition (M) for each prime p. Let S be a pure subgroup of G and put $S = \bigoplus q S_q$. By (3.2), we have

$$(S \cap G^1) \cap pG^1 = S \cap \left(\left(\bigoplus q^\infty G_q \right) \oplus p^\infty G_p \right).$$

Let g be an element of $S \cap pG^1$. Then it follows that $g = s_0 + s_1 + \cdots + s_n$ where $s_0 \in S_p \cap p^\infty G_p$ and $s_i \in S_{q_i} \cap q_i^\infty G_{q_i}$ for each $i = 1, 2, \cdots, n$.

Now we have

$$p(S_{q_i} \cap q_i^\infty G_{q_i}) = S_{q_i} \cap q_i^\infty G_{q_i},$$

and by hypothesis, $S_p \cap p^\infty G_p = (S_p \cap p^\infty G_p) \cap p^\infty G_p = p(S_p \cap p^\infty G_p)$. Hence it follows that, for each $i = 1, 2, \cdots, n$, $s_i = px_i$ where $x_i \in S_{q_i} \cap q_i^\infty G_{q_i}$ and $s_0 = px_0$ for some $x_0 \in S_p \cap p^\infty G_p$. Thus $g = p(x_0 + x_1 + \cdots + x_n) \in p(S \cap G^1)$.
Lemma 3.4. Let G be a group. If G satisfies the condition (M), then G, satisfies the condition (M).

Proof. Let S be a pure subgroup of G, and we have $S \cap G^1 = S \cap pG^1$ for each prime p. Let s be an element of $S \cap p(G_i)$. Then $s \in S \cap pG^1 = p(S \cap G^1)$. So it follows that $s = px$ for some $x \in S \cap G^1$. Using $x \in G_i$ and (3.1), we have $x \in (G_i)^1$ and so $x \in S \cap (G_i)^1 = p(S \cap (G_i)^1)$.

Lemma 3.5. Let G be a group satisfying the condition (M) and p be a prime. If G_p is unbounded and $(G_p)^1$ is elementary, then G^1 is torsion.

Proof. First we note that $G_p \cap pG^1 = 0$. In fact, by hypothesis, we have $G_p \cap pG^1 = (G_p \cap G^1) \cap pG^1 = p(G_p \cap G^1) = p(G_p)^1 = 0$. Suppose that G^1 is not torsion. Then there exists an element g of pG^1 with $o(g) = \infty$ and elements g_1, g_2, \cdots of G such that $p^{-1}g_1 = g$ for every $i = 1, 2, \cdots$. Let B be a high subgroup of G_p. Then B is unbounded as $(G_p)^1$ is elementary. So there exists a linearly independent set $\{b_1, b_2, \cdots\}$ in B such that $o(b_i) = p^i$ for each $i = 1, 2, \cdots$.

Put $X = \langle (G_p)^1, pg, g_1+b_1, g_2+b_2, \cdots \rangle$. We show that $g \notin X$. Suppose that $g \in X$, i.e.

$$g = x + z_0pg + z_1(g_1+b_1) + \cdots + z_k(g_k+b_k),$$

where z_0, z_1, \cdots, z_k are integers and $x \in (G_p)^1$. Then

$$(*) \quad -(x + z_1b_1 + \cdots + z_kb_k) = z_0pg - g + z_1g_1 + \cdots + z_kg_k.$$

From $(*)$ it follows that, in case of $k \geq 2$,

$$-p^{k-1}z_kb_k = p^{k-1}(z_0pg - g + z_1g_1 + \cdots + z_kg_k) \in G_p \cap pG^1 = 0,$$

and $p \mid z_k$. From $(*)$ it follows that, in case of $k \geq 3$,

$$-p^{k-2}z_{k-1}b_{k-1} - p^{k-2}z_kb_k = p^{k-2}(z_0pg - g + z_1g_1 + \cdots + z_kg_k) \in G_p \cap pG^1 = 0,$$

and hence $p \mid z_{k-1}$ and $p^2 \mid z_k$. Finally we have $p^{k-1} \mid z_{k-1}p^{k-2} \mid z_{k-1}$, \cdots, $p \mid z_2$. Now from $(*)$ it follows that

$$x + z_1b_1 + \cdots + z_kb_k \in G_p \cap pG^1 = 0,$$

and hence $x = 0$ and $p^i \mid z_i$ for each $i = 1, \cdots, k$. Write $z_i = p^{i-1}z_i'$ for each $i = 2, \cdots, k$; from $(*)$ it follows that $(z_0p - 1 + z_1 + \cdots + z_k) = 0$ — a contradiction, since $p \mid z_1$, $p \mid z_2$, \cdots, $p \mid z_k$.

Let H be a subgroup of G maximal with respect to the properties $X \subseteq H$, $g \notin H$. Then H is pure in G in analogy with the proof of Theorem 1 in [1].

If $pg \in p^{a+1}H$, then it follows that $pg = ph$ for some $h \in p^a H$. Since $p(g-h) = 0$, we have $g-h \in (G_p)^1 \subseteq H$ and so $g \in H$, a contradiction. Hence $pg \notin p^{a+1}H$ and thus $pg \notin p(H \cap G^1)$. On the other hand, since $pg \in H \cap pG^1$, we have $p(H \cap G^1) \subseteq H \cap pG^1$.

Proof of Theorem. Suppose that G satisfies the condition (M). By (3.3), (3.4),
and (2.1), we have, for each prime p, either G_p is a B.D.-group or $(G_p)^1$ is elementary.

If G^1 is not torsion, then, by (3.5), G_p is a B.D.-group for each prime p.

Conversely, let S be a pure subgroup of G. Then we have

$$S \cap G^1 = S \cap \left(\bigcap_p p^o G \right) = \bigcap_p (S \cap p^o G) = \bigcap_p p^o S = S^1$$

by (1.1).

First suppose that (i). As G^1 is torsion, S^1 is torsion. By (3.1), it follows that

$$p(S \cap G^1) = pS^1 = p(S_i)^1 = p(S_i \cap (G_i)^1) = S_i \cap p(G_i)^1 = S \cap p(G^1_i) = S \cap pG^1.$$

Next suppose that (ii). For each prime p, since G_p is a B.D.-group, S_p is a B.D.-group by (1.3). Then it follows that $S = B_p \oplus D_p \oplus K$, where B_p is a bounded part of S_p, D_p is the divisible part of S_p, and $K \leq S$.

Now put $H = D_p \oplus K$. Then we have $p^o S = p^o H$ and so $S^1 = H^1$. First we will prove that $p^o K$ is p-divisible. Let $x \in p^o K$, then there exist elements k_n such that $x = p^n k_n$ for $n = 1, 2, \cdots$. Since $x = p^n k_n = p^{n+1} k_{n+1}$, it follows that $p^n (k_n - p k_{n+1}) = 0$ and hence $k_n - p k_{n+1} \in K_p = 0$. Hence $x = pk_1$ and $k_1 = pk_2 = p^2 k_3 = \cdots = p^n k_{n+1} = \cdots$, and so $p^o K$ is p-divisible. Thus $p^o H$ is p-divisible.

To finish the proof, it is sufficient to prove that $pH^1 = H^1 \cap pG^1$. Suppose that $h = pg \in H^1 \cap pG^1$, $g \in G^1$. Then we have $h \in H^1 \subseteq p^o H$. Since $p^o H$ is p-divisible, it follows that $h = ph'$ for some $h' \in p^o H$. As $pg = ph'$, we have $g - h' \in p^o G[p] = (G^1)_p[p] \subseteq G^1$. Hence $h' \in G^1 \cap H = H^1$. Thus the proof of Theorem is completed.

Acknowledgement. The author wishes to express his grateful thanks to Prof. K. Honda for his valuable guidance and help during the preparation of this paper.

References

Sayama Industrial High School
Sayama-shi, Fujiimi 2–5–1
Saitama-ken 350–13
Japan