Heegaard Diagrams of Torus Bundles Over S^1

by

Moto-o TAKAHASHI and Mitsuyuki OCHIAI

(Received July 17, 1981)

1. Introduction

It is well known that every closed connected 3-manifold has a Heegaard splitting. A 3-manifold M is said to be of genus n, if M has a Heegaard splitting of genus n. Every 3-manifold of genus 1 is either a lens space or $S^2 \times S^1$ in the orientable case and is the twisted S^2-bundle over S^1 in the non-orientable case. Moreover, 3-manifolds of genus 1 are completely classified in [2], [4] and [5]. In this paper, we shall try to classify a certain class of 3-manifolds of genus 2. Indeed, we shall verify that torus bundles (over S^1) of genus 2 are completely classified by a new invariant (Theorem 3). Moreover, since every orientable 3-manifold of genus 2 is a 2-fold branched covering space of S^3 branched along a link, by Birman-Hilden-Viro-Takahashi [1], [10], [11], we can verify that every orientable torus bundle of genus 2 is a 2-fold branched covering space of S^3 branched along some specified link (Corollary 3.1).

In this paper, we work in the piecewise linear category. S^n, D^n denote n-sphere and n-disk, respectively. Let X be a manifold and Y be a submanifold properly embedded in X. Then $N(Y, X)$ denotes a regular neighborhood of Y in X. Closure, boundary, interior over one symbol are denoted by $\text{cl}(\cdot)$, $\partial(\cdot)$, $\text{int}(\cdot)$, respectively.

2. Surface-bundles over S^1

Let F be a closed connected surface and $\Phi: F \to F$ be a homeomorphism. Moreover let M be the 3-manifold obtained from $F \times I$ by identifying $(x, 0)$ in $F \times 0$ with $(\Phi(x), 1)$ in $F \times 1$. Then M is called a surface-bundle over S^1. We denote M also by $M(\Phi)$. It will be noticed that if F is orientable then M is orientable or non-orientable, according as Φ being orientation-preserving or orientation-reversing. Then by Neuwirth [8], we have;

PROPOSITION 1. Let Φ_1 and Φ_2 be self-homeomorphisms of F. Then $M(\Phi_1)$ is homeomorphic to $M(\Phi_2)$, if there is a self-homeomorphism Ψ such that $\Psi \Phi_1$ is isotopic to $\Phi_2 \Psi$.

Next we consider the relationship between surface-bundles over S^1 and their Heegaard splittings. Let F be a closed connected surface and $g(F)$ be the genus of F.

63
That is, if F is orientable (resp. non-orientable), there exist $2 \times g(F)$ (resp. $g(F)$) circles on F such that if we cut F along these circles, the resulting manifold is a 2-disk. We may assume that if F is non-orientable then all of such $g(F)$ circles are one-sided circles. Then we have;

Theorem 1. Let M be an F-bundle over S^1. If F is orientable (resp. non-orientable), M has a Heegaard splitting of genus $2g(F)+1$ (resp. $g(F)+1$).

Proof. Let Φ be a self-homeomorphism of F such that $M=F \times I/\Phi$. We may assume without loss of generality that there exists a point p on F such that $\Phi(p)=p$. Next let C_1, C_2, \cdots, C_n be circles on F satisfying the following conditions;

1. $n=2g(F)$ (resp. $g(F)$), if F is orientable (resp. non-orientable),
2. $C_i \cap C_j = p$, for all $i \neq j$,
3. $F-\bigcup_{k=1}^{n} \text{int}(N(C_k, F))$ is a 2-disk.

Let C be the circle $(p \times I) / \Phi$ in M and C_k be the circle $C_k \times 0$ in M ($k=1, 2, \cdots, n$). Furthermore let $U=\bigcup_{k=1}^{n} C_k \cup C, M$ and $V=M-\text{int}(U)$. We note that U is a non-orientable handle if either F is orientable and Φ is orientation-reversing or F is non-orientable. (For the definition of non-orientable handles, see [9].) Let V' be $F \times I-\text{int}(N(p \times I, F \times I))$ and $D_i=F \times I-\text{int}(N_i)$, where $i=0, 1$ and $N_0=\bigcup_{k=1}^{n} (C_k \times 0), F \times 0, N_1=\Phi(N_0)$. Then D_i is a 2-disk in $F \times i (i=0, 1)$. Now we may assume that V is obtained from V' by identifying points x in D_0 with points $\Phi(x)$ in D_1. Since V' is a handle of genus n, V is also a handle of genus $n+1$. Thus M has a Heegaard splitting of genus $n+1$. That is, $M=U \cup V$ with $U \cap V=\partial U=\partial V$ and U and V are homeomorphic handles. This completes the proof of the theorem.

From now on, we shall consider surface-bundles over S^1 with Heegaard splittings of rather small genus. Let F be a closed surface with positive genus $g(F)$ and M be an F-bundle over S^1. It is easily verified that M has no Heegaard splittings of genus one. Thus we are interested in the existence of surface-bundles over S^1 with Heegaard splittings of genus two. As the first observation, we have;

Theorem 2. For an arbitrary positive integer n, there exists an orientable F-bundle over S^1 such that $g(F)=n$ and M has a Heegaard splitting of genus two.

Proof. Let K be a torus knot of type (p, q) in S^3 with $n=(p-1)(q-1)/2$. Then the knot exterior $E(K)=S^3-\text{int}(N(K, S^3))$ of K is an F_1-bundle over S^1 such that $\partial F_1 \cong \partial E(K), g(F_1)=n$, and $\partial E(K)=S^1 \times S^1$. Since K is a torus knot, we may assume that K lies on the boundary of an unknotted solid torus H in S^3. Let α be a simple arc in ∂H joining distinct points of K with the interior of it disjoint from K such that it is not homotopic on ∂H to any arcs in K joining points $K \cap \alpha$. Then $N(\alpha \cup K, S^3)=V$ is a handle of genus two. Furthermore, $U=S^3-\text{int}(V)$ is also a handle of genus two, since $H-\text{int}(V)$ and $(S^3-\text{int}(H))-\text{int}(V)$ are both solid tori and their intersection is a 2-disk $\partial H-\text{int}(V)$. Let M be a closed 3-manifold obtained by attaching a 2-handle $D^2 \times I$ to $E(K)$ along ∂F_1. Then M is an F-bundle over S^1 such that F is a closed surface with $g(F)=n$ and that M has a Heegaard splitting of genus two. This
Heegaard Diagrams of Torus Bundles Over S^1

completes the proof of the theorem.

It will be noticed that by Moser [6] all the 3-manifolds given by Theorem 2 are Seifert fibered spaces.

3. Torus-bundles over S^1

In this section, we consider only torus-bundles over S^1. Let G be the group of 2×2 matrices over \mathbb{Z} with determinant plus or minus one. Moreover, let T be a torus and $\mathcal{A}(T)$ be the homeotopy group of T. Then $\mathcal{A}(T)$ is isomorphic to G. Let Φ be a homeomorphism of T onto itself. Then Φ is given by a matrix $(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix})$ in G. Let $M(\Phi)$ be the torus bundle over S^1 determined by Φ. A presentation of $\pi_1(M(\Phi))$ is given by

$$\pi_1(M(\Phi)) = \langle x, y, t \mid [x, y] = 1, \quad txt^{-1} = x^ty^a, \quad tyt^{-1} = x^by^a \rangle,$$

where x, y correspond to generators of $\pi_1(T)$.

Proposition 2. Let Φ_1 and Φ_2 be self-homeomorphisms of T, whose matrices are A_1 and A_2, respectively. Moreover let M_1 and M_2 be the torus-bundles over S^1 determined by Φ_1 and Φ_2, respectively. Then M_1 is homeomorphic to M_2 if and only if A_1 is a conjugate of A_2 or A_2^{-1} in G.

Proof. One direction comes from Proposition 1. Furthermore, if the Betti number $b(M(\Phi_1)) = 1$, then the converse follows from Theorem 1 in [7]. Suppose that $M(\Phi_1)$ is homeomorphic to $M(\Phi_2)$ and $b(M(\Phi_1)) = 2$ ($i = 1, 2$). Then we have that $H_2(M(\Phi_i), Z) = Z + Z + Z_k$. Let E be the unit matrix and $B_i = A_i - E$ ($i = 1, 2$). It is easily seen that the determinant of B_i is zero. Let $B_i = (\begin{smallmatrix} a_i & b_i \\ c_i & d_i \end{smallmatrix})$ ($i = 1, 2$). Then there are integers u_i and w_i such that $(a_i, b_i) = v_i(x_i, \beta_i)$ and $(c_i, d_i) = w_i(x_i, \beta_i)$, where $i = 1, 2$ and x_i and β_i are relatively prime integers. Thus there are integers b_i and d_i such that det$(\begin{smallmatrix} a_i & b_i \\ c_i & d_i \end{smallmatrix}) = 1$ ($i = 1, 2$). Then we have that $(\begin{smallmatrix} a_i & b_i \\ c_i & d_i \end{smallmatrix}) = (\begin{smallmatrix} \gamma_i & \delta_i \\ -\gamma_i & -\delta_i \end{smallmatrix}) = (\begin{smallmatrix} a_i + b_i & 0 \\ -c_i & -d_i \end{smallmatrix})$, where $u_i = \delta(\gamma d_i + \delta c_i) - \gamma(\gamma b_i + \delta d_i)$ ($i = 1, 2$). Thus the matrix A_i is conjugate to $(\begin{smallmatrix} a_i + b_i & 0 \\ -c_i & -d_i \end{smallmatrix})$ ($i = 1, 2$). Let $z_i = a_i + b_i + 1$. Since det$(A_i) = \pm 1$, we have that $|z_i| = 1$. Then two cases happen:

Case (1): $M(\Phi_1)$ is orientable. In this case, we have that $z_i = 1$. Since $H_1(M(\Phi_i), Z) = Z + Z + Z_k$, we have that $k = |u_i|$. Thus A_1 is conjugate to A_2, since $(\begin{smallmatrix} 1 & 0 \\ -1 & 1 \end{smallmatrix})(\begin{smallmatrix} 1 & 0 \\ -1 & -1 \end{smallmatrix}) = (\begin{smallmatrix} 1 & 0 \\ -u & -u \end{smallmatrix})$.

Case (2): $M(\Phi_1)$ is non-orientable. In this case, we have that $z_i = -1$. By Hempel [4], A_1 is also conjugate to A_2, since $(\begin{smallmatrix} -1 & 0 \\ -1 & 0 \end{smallmatrix})(\begin{smallmatrix} -1 & 0 \\ -u & -u \end{smallmatrix}) = E$.

This completes the proof.

By the above argument, if M is a torus-bundle with $H_1(M, Z) = Z + Z + Z_k$, then the corresponding matrix A is conjugate to one of $(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix})$, $(\begin{smallmatrix} -1 & 0 \\ 0 & -1 \end{smallmatrix})$, $(\begin{smallmatrix} 1 & 0 \\ -1 & 1 \end{smallmatrix})$.

From now on, we are interested in torus-bundles with Heegaard splittings of genus two. By Theorem 1, every torus-bundle has always a Heegaard splitting of genus three. But some of them have also Heegaard splittings of genus two.
PROPOSITION 3. Let $M(\Phi)$ be a torus-bundle over S^1 and $\varepsilon = \pm 1$. If the matrix of Φ is \((a \ b)\), then $M(\Phi)$ has a Heegaard splitting of genus two.

Proof. By Theorem 1, $M(\Phi)$ has a Heegaard splitting of genus three and the Heegaard splitting $(U, V; F)$ is associated with the presentation of $\pi_1(M(\Phi))$, \([x, y, t] \mid [x, y] = 1, \, txt^{-1} = x^my^q, \, tyt^{-1} = x\). Let $u = u_1 \cup u_2 \cup u_3$ (resp. $v = v_1 \cup v_2 \cup v_3$) be a complete system of meridian-disks properly embedded in U (resp. V) such that $\text{cl}(U - N(u, U))$ (resp. $\text{cl}(V - N(v, V))$) is a 3-disk. Let $x, y,$ and t be the canonical generators of the free group $\pi_1(V)$ ($= \mathbb{Z} \ast \mathbb{Z} \ast \mathbb{Z}$). Then we can easily find a homeomorphism f from ∂U onto ∂V such that the induced homomorphism $f_* : \pi_1(\partial U) \to \pi_1(V)$ satisfies $f_*(\partial u_1) = xyx^{-1}y^{-1}$, $f_*(\partial u_2) = x^my^qtx^{-1}t^{-1}$, and $f_*(\partial u_3) = xty^{-1}t^{-1}$.

It will be noticed that $f(\partial u_3)$ bounds a torus with one hole in V. We can assume that $f(\partial u_3)$ meets ∂v_2 transversely at only one point. Then if $M(\Phi)$ is orientable, by Waldhausen [13] the intersection of ∂v_2 and $f(\partial u_1)$ or $f(\partial u_2)$ are eliminated. Next suppose that $M(\Phi)$ is non-orientable. Then we may assume that the generators x and y (resp. t) are induced by orientable circles (resp. a non-orientable circle) in V. Thus all the circles $f(\partial u_1)$, $f(\partial u_2)$, and $f(\partial u_3)$ are orientable in ∂V. Hence the elimination method of the orientable case can also apply to the non-orientable case. Let u'_1 and u'_2 be the resulting circles on the boundary of $V' = V - \text{int}(N(v_2, V))$. Then $(V'; \partial u_1 \cup \partial u_3, u'_1 \cup u'_2)$ gives a Heegaard diagram of genus two. Thus $M(\Phi)$ has a Heegaard splitting of genus two. This completes the proof.

It will be noticed that if $\varepsilon = -1$ and $m = 2$ (resp. $\varepsilon = +1$ and $m = 3$), $M(\Phi)$ has an orientable (resp. non-orientable) Heegaard diagram of genus two, illustrated in Figure 1.1 (resp. Figure 1.2).

Next we shall verify that the torus-bundles of genus two given by Proposition 3 cover all torus-bundles of genus two.

LEMMA 1. Let A be a matrix in G and M be a torus-bundle determined by A. If $\pi_1(M)$ is generated by two generators, then A is conjugate to a matrix \((p \ \frac{q'}{r'})\) with $q' = 1$ or $r' = 1$.

Proof. To avoid complexity, we will verify only the case when M is orientable, and the proof in the case when M is non-orientable is similar. Let $\Pi = \pi_1(M)$ and $A = (p \ \frac{q}{r})$. Suppose that $\Pi = \langle a, b \rangle$, that is, two elements a and b in Π generate Π. By $txt^{-1} = x^py^q$ and $tyt^{-1} = x^r y^s$, we have $t^{-1}xt = x^py^{-q}$ and $t^{-1}yt = x^{-r}y^q$, since $ps - qr = 1$. Thus we have that $tx = x^py^qt$, $ty = x^r y^st$, $t^{-1}x = x^py^{-q}t^{-1}$, and $t^{-1}y = x^{-r}y^qt^{-1}$. Let z be an arbitrary element in Π. By the above four equations and $xy = yx$, there are three integers α, β, γ, such that $z = x^\alpha y^\beta t^\gamma$. Furthermore such expression of z is unique. For, if $x^\alpha y^\beta t^\gamma = 1$, then the equation $\alpha x + \beta y + \gamma t = 0$ holds in $H_1(M, Z)$. Since $H_1(M, Z) = Z + Z_k$, x and y generate Z_k, and t generates Z, we have that $\gamma = 0$. Hence $x^\alpha y^\beta = 1$ in $\pi_1(M)$. Here x, y are contained in $\pi_1(T)$. Let $i : \pi_1(T) \to \pi_1(M)$ be the inclusion induced homomorphism. Since i is monic, $x^\alpha y^\beta = 1$ in $\pi_1(M)$.
1 in \(\pi_1(T) \). But \(T \) is a torus, and so \(\alpha = \beta = 0 \).

Now suppose that \(a = x^{\gamma_1 y^{\beta_1} t^{\gamma_1}} \) and \(b = x^{\gamma_2 y^{\beta_2} t^{\gamma_2}} \). We may assume that \(0 \leq \gamma_1, \gamma_2 \leq \gamma_2 \). Then \(b = x^{\gamma_1 y^{\beta_1} t^{\gamma_1}} x^{\gamma_2 y^{\beta_2} t^{\gamma_2}} = a x^{\gamma_1 y^{\beta_1} t^{\gamma_1}} \) for some integer \(\alpha', \beta' \). Thus we may assume that \(\prod = \langle a, b \rangle \) with \(a = x^{\gamma_1 y^{\beta_1} t^{\gamma_1}} \) and \(b = x^{\gamma_2 y^{\beta_2}} \). Next we can assume without loss of generality that \(\gamma_2 \) and \(\beta_2 \) are relatively prime. Then the element \(b \) can be thought of as a simple loop in \(T \), which is not homotopic in \(T \) to zero. And there is a simple loop \(c \) in \(T \) which meets \(b \) transversely at only one point. Let \(c = c^{a_2 y^{b_2}} \) with \(\det(a_2, b_2) = 1 \). Consequently a new presentation of \(\prod \), \(\langle b, c, t | [b, c] = 1, tbt^{-1} = b^p c^q, tct^{-1} = b^r c^s \rangle \) is obtained and \(\prod = \langle a, b \rangle \) with \(a = b^p c^q t^r \). And so \(\prod = \langle a_1, b \rangle \) with \(a_1 = c^q t^r \). Since \(a_1 \) and \(b \) generate \(t \), we have that \(t = c^{-\beta} a_1 \). Thus \(\prod = \langle a_1, b \rangle \) with \(a_1 = c^{q} t^r \). Since \(t = c^{-\beta} a_1 \), the following presentation of \(\prod \) follows:

\[
\prod = \langle b, c, a_1 | [b, c] = 1, a_1 b a_1^{-1} = b^p c^q, a_1 c a_1^{-1} = b^r c^s \rangle .
\]

Let \(a_1 = g \). For every integer \(m \), we have the following, \(m \) the following,

\[
\begin{align*}
(1) \quad g b^m g^{-1} &= (b^p c^q)^m \\
(2) \quad g^{-1} b g &= (b^\iota c^{-\iota})^m \\
(3) \quad g e^m g^{-1} &= (b^r c^s)^m \\
(4) \quad g^{-1} e g &= (b^{-r} c^{-s})^m
\end{align*}
\]

Since \(\prod = \langle g, b \rangle \), we have that \(c = b^{\iota_1} b^{\iota_2} \cdots b^{\iota_k} \) for some integers \(\iota_1, \iota_2, \ldots, \iota_k \). Then we will verify that \(c \) has an expression \(b^\iota c^\iota g^\iota \) such that \(q_1 \) divides \(\beta \). Since both \(b \) and \(c \) are contained in \(\pi_1(T) \), we may assume without loss of generality that all of the three integers \(\iota_1, \iota_2, \iota_3 \) are non-zero. It is sufficient to verify that an element \(g^\iota b^\iota \), with non-zero integers \(\tau \) and \(\lambda \), in \(\prod \) has an expression \(b^\iota c^\iota g^{\lambda \iota} \) with \(q_1 \) divides \(\beta \). To avoid complexity, we assume that \(\tau \) and \(\lambda \) are both positive. Then by the equations (1) and (2), we have the following,

\[
g^\iota b^\iota = b^{\iota_1 \iota} c^{\iota_2 \iota} \cdots , g^\iota b^\iota = b^{\iota_1 \iota} c^{\iota_2 \iota} \cdots ,
\]

Furthermore, by equation (3) we have that for any integer \(m \), \(g c^m = (b^\iota c^\iota)^m \) \(= b^\iota m c^\iota m \). Thus, at the final step we can obtain the expression of \(g^\iota b^\iota \), \(b^\iota c^\iota g^{\lambda \iota} \), such that \(q_1 \) divides \(\beta \). Consequently, \(c = b^\iota c^\iota g^{\lambda \iota} \) for some integers \(\alpha, \beta, \gamma \) and \(q_1 \) divides \(\beta \). But by the uniqueness of the expression of \(c \), we have that \(\beta = 1 \). Hence \(q = \pm 1 \). Here \(\langle \iota, -\iota \rangle \) is conjugate to \(\langle -\iota, \iota \rangle \). Thus we conclude that \(q = 1 \). This completes the proof of the lemma.

Lemma 2. Let \(A = (a \ b) \) be a matrix in \(G \). If \((q - 1)(r - 1) = 0 \), then \(A \) is conjugate to a matrix \((a \ b)\) in \(G \) with \(\varepsilon = \pm 1 \).

Proof. Suppose that \(q = 1 \). In this case, if \(\det(A) = 1 \), then \(A = (a \ b) \). If \(\det(A) = -1 \), then \(A = (a \ b) \). Then the following hold;

\[
\begin{align*}
(p_s \ b \ a) (1 \ b_0) &= (1 \ -b) (p_s \ a) (1 \ b) = (1 \ -b) (p_s \ a) (1 \ b) .
\end{align*}
\]

Thus we set \(m = p + s \). If \(r = 1 \), then the same result is obtained.

Let \(M(m, \varepsilon) \) be a 3-manifold determined by a matrix \((n \ b)\) with \(\varepsilon = \pm 1 \). Then by Lemma 1 and Lemma 2, and Proposition 2, we have;
THEOREM 3. Every torus-bundle over S^1 with a Heegaard splitting of genus two is homeomorphic to $M(m, \varepsilon)$ for some integer m, and if it is orientable (resp. non-orientable) then $\varepsilon = -1$ (resp. $\varepsilon = 1$). In particular, $M(m, \varepsilon) = M(m', \varepsilon)$ if and only if $m = m'$.

Birman-Hilden-Viro-Takahashi [1], [10], and [11] proved that every orientable

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{A Heegaard diagram in the orientable case of $m=2$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{A Heegaard diagram in the non-orientable case of $m=3$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.png}
\caption{A link $K(m+4) = K_0 \cup K_4 \cup K_2$.}
\end{figure}
closed 3-manifold with Heegaard splittings of genus two is a 2-fold branched covering space of S^3 branched along a link. As illustrated in preceding remark, the manifold $M(2, -1)$ has a Heegaard diagram of genus two given by Figure 1.1. Thus we can determine one type of branched sets of torus-bundles of genus two. Let $K(m+4)$ be the link illustrated in Figure 2. It has two components K_0 and K_1 (resp. three components K_0, K_1, and K_2) if m is odd (resp. even). We note that the component K_0 is unknotted and that $m+4$ is the number of double points in $K_1 \cup K_2$ (resp. K_0), when m is even (resp. odd). Then we have;

Corollary 3.1. Every orientable torus-bundle of form $M(m, -1)$ is a 2-fold branched covering space of S^3 branched along $K(m+4)$.

By the way, there are infinitely many torus-bundles of genus three but not two. It is an interesting problem to decide whether such torus-bundles are 2-fold branched covering spaces of S^3 or not. Fox had proved in [3] that $S^1 \times S^1 \times S^1$ is not a 2-fold branched covering space of S^3. Thus we will set up the following problem;

Problem 1. Which torus-bundles are 2-fold branched covering spaces of S^3?

In view of Lemma 1, we raise the following;

Problem 2. Are link types of branched sets of every torus-bundle of genus two unique?

References

Institute of Mathematics
The University of Tsukuba and
Ibaraki, Japan

Department of Mathematics
Osaka University
Osaka, Japan