The Torsion Product of Totally Projective p-Groups

by

J. IRWIN, T. SNABB and R. CELLARS

(Received October 1, 1979)

In this paper we consider the structure of the torsion product, $\text{Tor}(A, B)$, of abelian p-groups A and B. Our emphasis is on the class of totally projective p-groups. We are able to show that the Ulm lengths $\lambda(A)$, $\lambda(B)$ play a crucial role in the structure of $\text{Tor}(A, B)$. In particular we show that for A and B totally projective $\text{Tor}(A, B)$ is totally projective if and only if $\min\{\lambda(A), \lambda(B)\} \leq \Omega$, the first uncountable ordinal. Additionally we show for arbitrary p-groups A, B having unequal Ulm lengths greater than Ω that $\text{Tor}(A, B)$ is not totally projective.

In what follows all groups are reduced abelian p-groups. Let H_α denote the generalized Pruefer group of length α, $f_\delta(A)$ the δth Ulm-Kaplansky invariant of A, and $C(p^n)$ a cyclic group of order p^n. In addition we use d.s.c. for direct sum of countables and \perp to denote a direct summand.

Before proceeding to the first of our results we need the following definition and theorems:

Definition. A subgroup B of the group A is isotype if $B \cap p^nA = p^nB$ for all ordinals α.

Theorem 1 (Griffith [2] p. 78). If A is a d.s.c. group and B an isotype subgroup of A such that $\lambda(B) < \Omega$ then B is a d.s.c. group.

Theorem 2 (Nunke [5]). If $\lambda(A) > \lambda(B) \geq \omega$, then $\text{Tor}(A, B)$ is a d.s.c. group \Leftrightarrow

(i) B is a d.s.c. group

(ii) If $\beta \geq \omega$ is such that $f_\beta(B) \neq 0$, then every p^β-high subgroup of A is a d.s.c. group.

We are now prepared to prove the following theorem.

Theorem 3. For α an arbitrary ordinal and $\beta \leq \Omega$, $\text{Tor}(H_\alpha, H_\beta)$ is a d.s.c. group.

Proof. If $\alpha < \Omega$ and $\beta < \Omega$ then H_α and H_β are countable so $\text{Tor}(H_\alpha, H_\beta)$ is countable.

If $\alpha = \Omega$ and $\beta \leq \Omega$ then since

$$H_\Omega = \bigoplus_{\delta < \Omega} H_\delta$$

we have

$$\text{Tor}(H_\alpha, H_\beta) = \bigoplus_{\delta < \Omega} \text{Tor}(H_\alpha, H_\beta)$$
a d.s.c. group.

If $\beta \leq \omega$ then since $H_\alpha = C(p^\alpha)$ and

$$H_\alpha = \bigoplus_{n < \omega} C(p^n)$$

it follows that Tor(H_α, H_β) is a direct sum of cyclics so it's a d.s.c. group.

Thus we may assume that β is a fixed ordinal, $\omega < \beta \leq \Omega$. Let $\alpha > \Omega$ be an arbitrary but fixed ordinal. Our proof will be by induction on α.

For $\tau < \Omega$ Tor(H_τ, H_β) is a d.s.c. group by our above comments. Assume for all $\tau < \alpha$ that Tor(H_τ, H_β) is a d.s.c. group.

Case 1. If α is a limit ordinal then

$$\text{Tor}(H_\alpha, H_\beta) = \bigoplus_{\tau < \alpha} \text{Tor}(H_\tau, H_\beta)$$

which, by our induction hypothesis, is a d.s.c. group.

Case 2. If α is not a limit ordinal then let $\alpha = \gamma + 1$. Consider the homomorphism

$$\eta : H_{\gamma + 1} \longrightarrow \frac{H_{\gamma + 1}}{p^\gamma H_{\gamma + 1}} \cong H_\gamma,$$

and for δ any ordinal such that $f_\delta(H_\beta) \neq 0$ let H be a $p^\delta H_{\gamma + 1}$ high subgroup of $H_{\gamma + 1}$. Since $\delta < \gamma$, η is height preserving on H which implies that H can be imbedded isomorphically in a $p^\delta H_{\gamma}$ high subgroup \tilde{H} of H_γ. In addition since H, as a $p^\delta H_{\gamma + 1}$ high subgroup, is isotype in $H_{\gamma + 1}$, the height preserving of η implies that H is isotype in \tilde{H}. Now by our induction hypothesis Tor(H_γ, H_β) is a d.s.c. group, so by Theorem 2 (ii) \tilde{H} is a d.s.c. group. Since H is an isotype subgroup of \tilde{H} Theorem 1 implies that H is a d.s.c. group. By our choice of δ, and since H and H_β are d.s.c. groups, Theorem 2 implies that Tor(H_α, H_β) is a d.s.c. group.

Corollary 4. If A and B are totally projective groups such that $\min\{\lambda(A), \lambda(B)\} \leq \Omega$ then Tor(A, B) is a d.s.c. group.

Proof. Let $\lambda(A) = \gamma$, $\lambda(B) = \delta \leq \Omega$. A and B totally projective implies

$$A \perp \bigoplus_{\alpha \leq \gamma} H_\alpha$$

and

$$B \perp \bigoplus_{\beta \leq \delta} H_\beta$$

which implies

$$\text{Tor}(A, B) \perp \text{Tor}(\bigoplus_{\alpha \leq \gamma} H_\alpha, \bigoplus_{\beta \leq \delta} H_\beta) = \bigoplus_{\alpha \leq \gamma} \bigoplus_{\beta \leq \delta} \text{Tor}(H_\alpha, H_\beta).$$

By Theorem 3 each Tor(H_α, H_β) is a d.s.c. group so Tor(A, B) as a direct summand of a d.s.c. group is itself a d.s.c. group.

We note that since the Ulm invariants of Tor(A, B) can be computed in terms of
the Ulm invariants of A and B (Nunke [4]), we have a complete characterization of Tor(A, B) for A and B as in Corollary 4.

Before continuing we need the following short exact sequences. For $\lambda(A) > \delta \geq \omega$, and M a $p^\delta A$-high subgroup of A

(I) $M \rightarrow A \rightarrow A/M$ is $p^{\delta+1}$ pure and A/M is divisible. For B arbitrary the above sequence induces

(II) Tor$(M, B) \rightarrow$ Tor$(A, B) \rightarrow \bigoplus B$ also $p^{\delta+1}$ pure (Nunke, [5]). Additionally we will make use of:

Theorem 5 (Nunke, [6]). If $C \rightarrow E \rightarrow D$ is p^γ pure with γ a limit ordinal not cofinal with ω, E reduced, D not zero and divisible, then C is not $p^{\gamma+n}$ projective for $n < \omega$.

We are now prepared to prove the following lemma.

Lemma 6. If γ is a limit ordinal not cofinal with ω, A a group such that $\lambda(A) > \gamma + n$ for some n, M a $p^{\gamma+n} A$-high subgroup of A, then M is not totally projective.

Proof. The sequence (I) $M \rightarrow A \rightarrow A/M$ is $p^{\gamma+n+1}$ pure so it is p^{γ}-pure. $A/M \neq 0$ as $\lambda(A) > \gamma + n$ so, by Theorem 5, M is not $p^{\gamma+n}$ projective. Since $\lambda(M) < \gamma + n$, if M were totally projective it would be $p^{\gamma+n}$-projective which it is not. Thus M is not totally projective.

We have one more lemma, a generalization of results by Nunke [5], relating total projectivity of Tor(A, B) to conditions on the groups A and B, to consider. First, two well known facts concerning totally projective groups (Fuchs [1]).

Fact (1) For B totally projective, if $f_\beta(B) \neq 0$ then there exists $B' \perp B$ such that $\lambda(B') = \beta + 1$.

Fact (2) For B totally projective, if $\lambda(B) > \alpha$, α a limit ordinal, then there exists n such that $f_\alpha+n (B) \neq 0$.

Lemma 7. Assume Tor(A, B) is totally projective.

(i) If $\lambda(A) > \lambda(B)$ then B is totally projective.

(ii) If $\lambda(A) \geq \lambda(B) = \gamma + 1$, B totally projective, and M a $p^\gamma A$-high subgroup of A then M is totally projective.

(iii) If $\lambda(A) \geq \lambda(B)$, B is totally projective, and for some γ, $f_\gamma(B) \neq 0$ then every $p^\gamma A$-high subgroup of A is totally projective.

Proof. To prove (i) let $\lambda(B) = \gamma$. Let M be a $p^\gamma A$-high subgroup of A then the sequence (I) $M \rightarrow A \rightarrow A/M \neq 0$ is $p^{\gamma+1}$-pure and the sequence (II) Tor$(M, B) \rightarrow$ Tor$(A, B) \rightarrow \bigoplus B$ is also $p^{\gamma+1}$-pure. Since $\lambda(\text{Tor}(A, B)) = \lambda(B) = \gamma$ and Tor(A, B) is assumed totally projective it is p^γ-projective. Thus the sequence splits by Nunke [4] which implies $B \perp \text{Tor}(A, B)$ and thus B as a direct summand of a totally projective is totally projective.

For (ii) choose M as above and notice that B totally projective and $\lambda(B) = \gamma + 1$ implies that B is $p^{\gamma+1}$-projective, thus by Nunke [6] the sequence (II) splits. Thus Tor$(M, B) \perp \text{Tor}(A, B)$ so Tor(M, B) is totally projective. Since $\lambda(M) < \lambda(B)$ (i) implies M is totally projective.
To prove (iii) we assume \(f_\gamma(B') \neq 0 \) for some \(\gamma \). By Fact (1) there exists \(B' \perp B \) such that \(\lambda(B') = \gamma + 1 \). Let \(B = B' \oplus C \). Then \(\text{Tor}(A, B) = \text{Tor}(A, B') \oplus \text{Tor}(A, C) \) which implies that \(\text{Tor}(A, B') \) is totally projective. Now choose \(M \) a \(p^nA \)-high subgroup of \(A \). Since \(\lambda(A) \geq \lambda(B') = \gamma + 1 \) and \(B' \) is totally projective (ii) implies that \(M \) is totally projective.

We are now in a position to prove our next theorem.

Theorem 8. If \(A \) and \(B \) are totally projective, \(\lambda(A) > \Omega, \lambda(B) > \Omega \), then \(\text{Tor}(A, B) \) is not totally projective.

Proof. We assume w.o.l.o.g. that \(\lambda(A) \geq \lambda(B) \) and that \(\text{Tor}(A, B) \) is totally projective. Since \(\lambda(B) > \Omega \) by our Fact (2) there exists an \(n \) such that \(f_\Omega + n(B) \neq 0 \). Choose \(M \) a \(p^{\Omega + n}A \)-high subgroup of \(A \). By Lemma 7 (iii) \(M \) is totally projective. However, since \(f_\Omega + n(B) \neq 0 \) implies \(\lambda(B) > \Omega + n \) which gives \(\lambda(A) > \Omega + n \) and since \(\Omega \) is a limit ordinal not cofinal with \(\omega \) Lemma 6 implies that \(M \) is not totally projective, a contradiction. Therefore \(\text{Tor}(A, B) \) is not totally projective.

Combining Corollary 4 and Theorem 8 we can now give our main theorem.

Theorem 9. For \(A \) and \(B \) totally projective, \(\text{Tor}(A, B) \) is totally projective if and only if \(\min(\lambda(A), \lambda(B)) \leq \Omega \).

Proof. If \(\min(\lambda(A), \lambda(B)) \leq \Omega \) then by Corollary 4, \(\text{Tor}(A, B) \) is a d.s.c. so it is totally projective. On the other hand assume \(\text{Tor}(A, B) \) is totally projective. If \(\min(\lambda(A), \lambda(B)) > \Omega \) then by Theorem 8, \(\text{Tor}(A, B) \) is not totally projective, a contradiction. Therefore \(\min(\lambda(A), \lambda(B)) \leq \Omega \).

Since totally projective groups of length less than or equal \(\Omega \) are d.s.c. we get an immediate corollary.

Corollary 10. For \(A \) and \(B \) totally projective, \(\text{Tor}(A, B) \) is totally projective if and only if it is a d.s.c. group.

We make the observation that in the statement of Theorem 8, \(A \) may be taken to be an arbitrary reduced \(p \)-group and the proof still holds. This raises the question as to whether both groups, \(A \) and \(B \), may be taken to be arbitrary. A partial answer is given in the following theorem.

Theorem 11. If \(A \) and \(B \) are groups such that \(\lambda(A) > \lambda(B) > \Omega \) then \(\text{Tor}(A, B) \) is not totally projective.

Proof. Suppose \(\text{Tor}(A, B) \) is totally projective, \(\lambda(A) > \lambda(B) \) implies by Lemma 7 (i) that \(B \) is totally projective. The rest of the proof follows as in Theorem 8.

The case \(\lambda(A) = \lambda(B) > \Omega \) is an open problem.

We conclude this paper by giving two applications of our results. The first characterizes \(p^nA \)-high subgroups of the totally projective group \(A \) for ordinals \(\alpha \leq \Omega \). In particular we show that such subgroups are themselves totally projective and, in addition, are isomorphic.

Theorem 12. If \(A \) is totally projective then for arbitrary \(\alpha \leq \Omega \) all \(p^nA \)-high
subgroups of A are totally projective and isomorphic.

Proof. Let M be p^nA-high in A. Then, as before, the p^{n+1} pure sequence $M \rightarrow A \rightarrow \bigoplus Z(p^n)$ gives $\text{Tor}(A, H_{q}) \cong \text{Tor}(M, H_{q}) \oplus (\bigoplus H_{q})$. Since $\text{Tor}(A, H_{q})$ is totally projective by Corollary 4 and $\text{Tor}(M, H_{q}) \perp \text{Tor}(A, H_{q})$ we have $\text{Tor}(M, H_{q})$ is totally projective. Since $\lambda(M) < \lambda(H_{q}) = \alpha$, Lemma 7 implies that M is totally projective. If M' is another p^nA-high subgroup of A then by Irwin and Walker [3] $f_{q}(M) = f_{q}(M') \forall \delta$ which, since M and M' are totally projective, implies that $M \cong M'$.

Our second application gives a rather interesting example based on Corollary 4. In particular we describe certain groups A which have the property that $\text{Tor}(A, A) \cong A$.

Example. Let A be totally projective, $\lambda(A) \leq \Omega$, and $f_{q}(A) = r_{q+1}(A) \geq \chi_{0}$ for all $\alpha < \lambda(A)$. From our assumption and from Nunke [4] we have

$$f_{q} \left(\text{Tor}(A, A) \right) = f_{q}(A) f_{q}(A) + f_{q}(A) r_{q+1}(A) + r_{q+1}(A) f_{q}(A) = f_{q}(A).$$

Since A is totally projective and, by Corollary 4, $\text{Tor}(A, A)$ is also totally projective, it follows that $\text{Tor}(A, A) \cong A$. For a specific choice satisfying our requirements consider H_{α^2} and notice that $\text{Tor}(H_{\alpha^2}, H_{\alpha^2}) \cong H_{\alpha^2}$.

References

Dept. of Math.
Wayne State Univ.
Detroit, Mich. U.S.A.

Dept. of Math.
U. M.-Dbn.
Dbn., Mich, U.S.A.

Dept. of Math.
U. M.-Dbn.
Dbn., Mich, U.S.A.