Tsuji points and inner functions

by

H. S. LING*

(Received May 4, 1976)

Abstract

Let D be the open unit disk in the complex plane and C the unit circle. Let f be a meromorphic function on D. Let $E(f)$ be the set of points $e^{i\phi}$ on C, where f can be extended continuously (in the metric of the Riemann sphere) to an open arc of C containing $e^{i\phi}$. Let $T(f)$ be the set of Tsuji points of f. In this note the following statement is proved.

Theorem. If f is an inner function on D, then $T(f) = E(f)$.

1.

Let D be the open unit disk in the complex plane. Let C be the unit circle which is the boundary of D. Let f be a meromorphic function in D. We denote by $E(f)$ the set of points $e^{i\phi}$ in C, where f can be extended continuously (in the metric of the Riemann sphere) to an open arc of C containing $e^{i\phi}$. Let $T(f)$ denote the set of Tsuji points of f, that is, the set of points $e^{i\phi}$ in C satisfying the condition

$$\sup_{0 < r < 1, \delta > 0} \int_{\phi - \delta}^{\phi + \delta} f^*(re^{i\theta})d\theta < \infty$$

for some $\delta > 0$, where $f^*(z) = |f'(z)|/1 + |f(z)|^2$. It is clear that if f can be extended analytically to a point $e^{i\phi}$ in C, then the point $e^{i\phi}$ is a Tsuji point of f. A function f is called a Tsuji function if $T(f) = C$. We say that a function f is normal in D if

$$\sup_{z \in D} (1 - |z|)|f^*(z)| < \infty.$$

Clearly, all bounded holomorphic functions on D are normal in D.

2.

F. Bagemihl [1] proved that if \mathcal{L} is the Banach space of all holomorphic functions in D of the form $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with $\|f\| = \sum_{n=0}^{\infty} |a_n| < \infty$, then the set of all Tsuji functions in \mathcal{L} is a residual

* The author would like to express his thanks to the Princeton University and to the Mathematics Department for their hospitality during his visit at Princeton; and to the Danforth Foundation for the Danforth Fellowship.
subset of \mathcal{L}. This means that most functions in \mathcal{L} are not Tsuji functions. Therefore it is important to know how large the Tsuji set $T(f)$ of a function f is. C. Belna and P. Colwell [2] proved the following two statements.

Lemma A. If f is a normal meromorphic function in D, then $T(f) \subset E(f)$.

Lemma B. For each Blaschke product $B(z)$ we have $T(B) = E(B)$.

3.

In this note we try to prove that Lemma B holds for a larger class of normal functions, i.e., the class of inner functions. At first we show that Lemma B holds for all singular functions.

Lemma 1. If S is a singular function, then $T(S) = E(S)$.

Proof. Since

$$S(z) = \exp \left[- \int_{-\infty}^{\infty} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta) \right],$$

for $z \in D$, where μ is a finite positive Borel measure on the unit circle C, which is singular with respect to the Lebesgue measure on C. By a well-known theorem (see Hoffman [3], p. 68) S is analytic everywhere on the complex plane except at those points of the unit circle which are in the closed support of the measure μ. The function S (or $|S|$) is not continuously extendable from the interior of D to any point in the closed support $\text{supp} (\mu)$ of μ. Therefore $E(f) = C - \text{supp} (\mu) \subset T(f)$. Thus by Lemma A, we have $E(f) = T(f)$. Q.E.D.

We also need the following lemma.

Lemma 2. Let $f = BS$, where B is a Blaschke product and S is a singular function. Then $E(B) \cap E(S) = E(f)$.

Proof. (a) Since $|f(e^{i\theta})| = 1$ almost everywhere on the unit circle, we have $|f(e^{i\theta})| = 1$ for all $e^{i\theta} \in E(f)$. (b) Suppose that $e^{i\theta} \in E(B) \cap E(S)$ we have either $e^{i\theta} \in E(B)$ or $e^{i\theta} \in E(S)$. If $e^{i\theta} \in E(B)$, then $e^{i\theta}$ is an accumulation point of zeros of B; so there exists a sequence $(z_n)_{n=1}^\infty$ in D such that $z_n \to e^{i\theta}$ as $n \to \infty$ and $B(z_n) = 0$ for all n. Therefore $e^{i\theta} \in E(f)$; for otherwise, $f(e^{i\theta}) = 0$ which contradicts (a). If $e^{i\theta} \notin E(S)$, then $e^{i\theta}$ is in the closed support of the singular measure μ which determines S. There exists a sequence $(z_n)_{n=1}^\infty$ in D such that $z_n \to e^{i\theta}$ and $S(z_n) \to 0$ as $n \to \infty$; hence, $f(z_n) \to 0$ as $n \to \infty$. It follows that $e^{i\theta} \notin E(f)$, by (a). Therefore we conclude that $E(f) \subset E(B) \cap E(S)$. Since the opposite direction $E(B) \cap E(S) \subset E(f)$ is clear, we have the desired equality. Q.E.D.
4.

Now we are in a position to prove the following result.

THEOREM. *If* f *is an inner function, then* $T(f) = E(f)$.

Proof. By Lemma 1, we need only to show that $E(f) \subset T(f)$. Since $f = BS$, where B is a Blaschke product and S is an singular function, by Lemma B, we have $T(B) = E(B)$. Also, by Lemma 1, $T(S) = E(S)$. Hence by Lemma 2, we have $E(f) = E(B) \cap E(S) = T(B) \cap T(S) \subset T(f)$. Q.E.D.

References

Department of Mathematics and Computer Science
South Carolina State College
Orangeburg, S.C. 29117
U.S.A.

Present Address:
Princeton University
Department of Mathematics
Fine Hall-Box 37
Princeton, N.J. 08540
U.S.A.