Existence of a Regular Unimodular Triangulation of the Edge Polytopes of Finite Graphs

by

Ginji HAMANO

(Received July 13, 2016)
(Revised September 28, 2016)

Abstract. In this paper, we give several criteria for the edge polytope of a graph to possess a regular unimodular triangulation in terms of some simple data of the graph. We further apply our criteria to several examples of graphs and show that their edge polytopes possess a regular unimodular triangulation.

Introduction

Let G be a finite connected simple graph and P_G be the edge polytope of G. The combinatorial structure of P_G, especially which type of triangulations P_G admits, is an interesting problem, and many research studies have been done on this topic (see [5, Chapter 5] and references therein). In [7], Ohsugi obtained a necessary and sufficient condition for P_G to possess a regular unimodular triangulation (there exists a monomial order such that the initial ideal of the toric ideal of the graph G is generated by squarefree monomials). However, this condition is not so easy to apply to a given graph just by looking at the graph.

In this paper, for a graph G, we will give several criteria for the existence of a regular unimodular triangulation of P_G in terms of some simple data of the graph. We also apply our criteria to some examples and show that their edge polytopes possess a regular unimodular triangulation.

The contents of this paper are as follows. In Section 1, we review the definitions of and some basic results on the graphs in [7]. In Section 2, we give several slightly different criteria for P_G to possess a regular unimodular triangulation. In Section 3, we show some examples to which our criteria are applicable.

1. Preliminaries

A matrix $A = (a_{ij})_{1 \leq i \leq d, 1 \leq j \leq n} \in \mathbb{Z}^{d \times n}$ is called a configuration matrix if there exists $c \in \mathbb{R}^d$ such that $a_j \cdot c = 1, \ 1 \leq j \leq n$ where a_j is a column vector of A.

Let $\mathcal{A} = [a_1, \ldots, a_n] \in \mathbb{Z}^{d \times n}$ be a configuration matrix. Let Δ be a collection of simplices whose vertices belong to a configuration matrix \mathcal{A}. Then, Δ called a covering of
A if
\[
\text{CONV}(\mathcal{A}) = \bigcup_{F \in \Delta} F
\]
holds. In addition, if a covering \(\Delta\) of a configuration matrix \(\mathcal{A}\) is a simplicial complex, then it is called a \textit{triangulation} of \(\mathcal{A}\). For a configuration matrix \(\mathcal{A} = [a_1, \ldots, a_n] \in \mathbb{Z}^{d \times n}\), let
\[
\mathbb{Z}\mathcal{A} = \left\{ \sum_{i=1}^{n} z_i a_i : z_i \in \mathbb{Z} \right\} \subset \mathbb{Z}^d.
\]
Let \(B \subset \{a_1, \ldots, a_n\}\) be the vertex set of a maximal simplex \(\sigma \in \Delta\) in a covering (triangulation) \(\Delta\) of \(\mathcal{A}\). Suppose that the rank of a configuration matrix \(\mathcal{A} \in \mathbb{Z}^{d \times n}\) is equal to \(d\). Let \(\delta\) be the greatest common divisor of all \(d \times d\) minors of \(\mathcal{A}\). Then, the \textit{normalized volume} of \(\sigma\) is defined by
\[
\text{VOL}(\sigma) = \frac{|\det(B)|}{\delta}.
\]
A covering (triangulation) \(\Delta\) of \(\mathcal{A}\) is said to be \textit{unimodular} if the normalized volume of any maximal simplex in \(\Delta\) is equal to 1. For a configuration matrix \(\mathcal{A} = [a_1, \ldots, a_n] \in \mathbb{Z}^{d \times n}\) and a vector \(w = [w_1, \ldots, w_n] \in \mathbb{Q}^n\), let \(\Delta_w\) be the set of all convex polytopes \(\text{CONV}([a_{i_1}, \ldots, a_{i_r}])\) satisfying the following condition:
\[
\text{There exists } c \in \mathbb{Q}^d \text{ such that }\begin{align*}
a_j \cdot c &= w_j, \quad j \in \{i_1, \ldots, i_r\}, \\
a_j \cdot c &< w_j, \quad j \notin \{i_1, \ldots, i_r\}.
\end{align*}
\]
A triangulation \(\Delta\) of a configuration matrix \(\mathcal{A}\) is said to be \textit{regular} if there exists \(w \in \mathbb{Q}^d\) such that \(\Delta = \Delta_w\).

Let \(t_1, t_2, \ldots, t_d\) be variables. Let \(\mathcal{A} = (a_{ij})_{1 \leq i \leq d, 1 \leq j \leq n} \in \mathbb{Z}^{d \times n}\) be a configuration matrix. To each column vector
\[
a_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{dj} \end{pmatrix},
\]
we associate the monomial
\[
t^{a_j} = t_1^{a_{1j}} t_2^{a_{2j}} \cdots t_d^{a_{dj}}
\]
with allowing negative powers. Let \(K\) be a field and let \(K[x] = K[x_1, x_2, \ldots, x_n]\) be a polynomial ring in \(n\) variables over \(K\). If \(f = f(x_1, x_2, \ldots, x_n) \in K[x]\), then we define \(\pi(f)\) by setting
\[
\pi(f) = f(t^{a_1}, t^{a_2}, \ldots, t^{a_n}).
\]
Let
\[
K[\mathcal{A}] = \{\pi(f) : f \in K[x]\}.
\]
We say that \(K[\mathcal{A}]\) is the \textit{toric ring} of \(\mathcal{A}\). In general, a configuration matrix \(\mathcal{A}\) satisfies \(\mathbb{Z}_{\geq 0}\mathcal{A} \subset \mathbb{Z}\mathcal{A} \cap \mathbb{Q}_{\geq 0}\mathcal{A}\). The toric ring \(K[\mathcal{A}]\) is said to be \textit{normal} if it satisfies \(\mathbb{Z}_{\geq 0}\mathcal{A} = \mathbb{Z}\mathcal{A} \cap \mathbb{Q}_{\geq 0}\mathcal{A}\).

With respect to the normality of the toric ring \(K[\mathcal{A}]\), the existence of unimodular triangulations and unimodular coverings of \(\mathcal{A}\) plays an important role.
The even closed walk of the chord two cycles, where one is an odd cycle and the other is an even cycle. We call the even cycle require that

\[\text{(4)} \]

is an FHM graph that has at least one pair of disjoint odd cycles. A graph such that any pair of disjoint odd cycles has a bridge. A

\[\text{Γ} \]

of the bridge

−

means the oppositely directed edge of

\[\text{b} \]

in

\[\text{Γ} \]

is called a

\[\text{Γ} \]

is an edge

\[\text{C} \]

be a chord of

\[\text{G} \]

if

\[\text{ρ}(\text{e}) \]

is an odd cycle contained in

\[\text{G} \]

. Then, \(\text{c} \) divides \(\text{C} \) into two cycles, where one is an odd cycle and the other is an even cycle. We call the even cycle the even closed walk of the chord \(\text{c} \) in \(\text{C} \). In the even closed walk \(\text{Γ} \) of the chord \(\text{c} \) in \(\text{C} \), we require that \(\text{c} \) be an even-numbered edge of \(\text{Γ} \).

Let \(\text{G} \) be a finite connected simple graph on the set of vertex \{1, \ldots, \text{d}\}. Let \(\text{K}[\text{t}_1, \ldots, \text{t}_\text{d}] \) denote the polynomial ring in \(\text{d} \) indeterminates over a field \(\text{K} \) and let \(\text{K}[\text{G}] \) be the subalgebra of \(\text{K}[\text{t}_1, \ldots, \text{t}_\text{d}] \) generated by all quadratic monomials \(\text{t}_i \text{t}_j \) such that \{i, j\} is an edge of \(\text{G} \). The affine semigroup ring \(\text{K}[\text{G}] \) is called the edge ring of \(\text{G} \).

Let \(\text{C}_1, \text{C}_2 \) be a pair of disjoint odd cycles in \(\text{G} \) (namely, the odd cycles \(\text{C}_1 \) and \(\text{C}_2 \) have no common vertex) and \(\text{b} \) be a bridge of this pair. Here, a bridge \(\text{b} \) of the pair \(\text{C}_1, \text{C}_2 \) is an edge \(\text{b} = \{i, j\} \), where \(i \) is a vertex of \(\text{C}_1 \) and \(j \) is a vertex of \(\text{C}_2 \) or vice versa. Then, the even closed walk of \(\text{b} \) in \(\text{C}_1, \text{C}_2 \) is the closed walk \(\text{C}_1, \text{b}, \text{C}_2, -\text{b} \). In this notation, \(-\text{b} \) means the oppositely directed edge of \(\text{b} \) and the cycle \(\text{C}_1 \) starts from the vertex \(\text{C}_1 \cap \text{b} \) and ends at the same vertex. The same holds for \(\text{C}_2 \). We note that, in the even closed walk \(\text{Γ} \) of the bridge \(\text{b} \) in \(\text{C}_1, \text{C}_2 \), \(\text{b} \) appears twice as an even-numbered edge of \(\text{Γ} \).

A Fulkerson–Hoffman–McAndrew (FHM) graph ([4]) is a finite connected simple graph such that any pair of disjoint odd cycles has a bridge. A fundamental FHM graph ([4]) is an FHM graph that has at least one pair of disjoint odd cycles.

It is also known that the normality of edge polytopes is characterized by the following condition.

Proposition 1.2 ([10, Corollary 2.3]). Let \(\text{G} \) be a finite connected simple graph. Then the following conditions are equivalent:

(i) the edge ring \(\text{K}[\text{G}] \) is normal;

(ii) the edge polytope \(\text{PG} \) possesses a unimodular covering;

(iii) the graph \(\text{G} \) is an FHM graph.

The following is a basic fact about the fundamental FHM graph ([10, Corollary 2.3], [7, Proposition 3.4], [8], and [11]).
Let G be a finite connected simple graph.

(i) If the edge polytope P_G possesses a regular unimodular triangulation, then G is an FHM graph.

(ii) If G possesses no pair of disjoint odd cycles, then P_G possesses a regular unimodular triangulation.

(iii) There exists an example of an edge polytope P_G of a fundamental FHM graph G that possesses no regular unimodular triangulation.

Thus, we focus on the fundamental FHM graph hereafter. We will review the necessary and sufficient condition for P_G to have a regular unimodular triangulation.

Let G be a fundamental FHM graph. Suppose G possesses p pairs of disjoint odd cycles $\Pi_1 = (C_1, C'_1), \ldots, \Pi_p = (C_p, C'_p)$. For each i ($1 \leq i \leq p$), let $\{b_j^i \mid 1 \leq j \leq q_i\}$ be the set of bridges of Π_i and the chords of C_i or C'_i. Let $\Gamma_j^i = (e_{i_1}^i e_{i_2} \ldots e_{i_{2s+1}})$ be the even closed walk of b_j^i, where the bridge or chord is even numbered.

Now, we define the open half-space $H_{b_j^i}$ by

$$H_{b_j^i} := \left\{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \sum_{k=1}^{r} x_{2k-1} > \sum_{k=1}^{r} x_{2k}\right\}.$$ \hfill (1)

Furthermore, we set $W := \bigcap_{i=1}^{p} \left(\bigcup_{j=1}^{q_i} H_{b_j^i} \right)$. The following result is our starting point.

Proposition 1.4 (cf. [7, Theorem 3.5]). The edge polytope P_G possesses a regular unimodular triangulation if and only if $W \neq \emptyset$.

2. Criteria for the existence of a regular unimodular triangulation

Let G be a fundamental FHM graph. In this section, we will give four criteria for the edge polytope P_G to possess a regular unimodular triangulation in terms of the simple data of the graph G. Our criteria are based on the existence of special bridges in each pair of disjoint odd cycles. Let Π_1, \ldots, Π_p be all the pairs of disjoint odd cycles in G as before and $\{b_1^1, \ldots, b_p^p\}$ be the set of bridges, where b^i is the bridge of Π_i. Let $\Gamma_j^i := (e_{i_1}^i e_{i_2} \ldots e_{i_{2s+1}} b^i, e_{j_1}, \ldots, e_{j_{2t+1}}, -b^i)$.

Now, we define

$$\alpha_i := |\{b_1^1, \ldots, b_p^p\} \cap \{e_{i_2}, e_{i_4}, \ldots, e_{i_{2s}}, e_{j_2}, e_{j_4}, \ldots, e_{j_{2t}}\}|,$$

$$\beta_i := |\{b_1^1, \ldots, b_p^p\} \cap \{e_{i_1}, e_{i_3}, \ldots, e_{i_{2s+1}}, e_{j_1}, e_{j_3}, \ldots, e_{j_{2t+1}}\}|.$$

Furthermore, we set $a_i := 2 + \alpha_i - \beta_i$.

Theorem 2.1. Work with the same notation as above. The edge polytope of a fundamental FHM graph G possesses a regular unimodular triangulation if it has a set of bridges $\{b_1^1, \ldots, b_p^p\}$ (b^i is the bridge of Π_i) that satisfies the following condition: For each i, $a_i \geq 0$ holds, and furthermore, the number of Γ_j^i's such that $a_i = 0$ is at most 2.
Proof. We first rewrite W in Proposition 1.4 by the distributive law as follows:

$$W = \bigcap_{i=1}^{p} \left(\bigcup_{j=1}^{q_i} H_{b_{ij}} \right) = \bigcup_{j_1, \ldots, j_p} (H_{b_{i1}} \cap \cdots \cap H_{b_{ip}}),$$

where j_k satisfies $1 \leq j_k \leq q_k$. We set

$$C_b = C_{b_1^1, \ldots, b_p^p} := H_{b_{i1}} \cap \cdots \cap H_{b_{ip}}$$

and call C_b as the open cone of $b = \{b_1^1, \ldots, b_p^p\}$. Thus, $W \neq \phi$ is equivalent to that there is a set of bridges $b = \{b_1^1, \ldots, b_p^p\} (b^i$ is a bridge of $\Pi_i)$ such that C_b is non-empty.

For each i, let I_i be the even closed walk of b^i and $f_i > 0$ be the inequality (1) defined by b^i. We denote by the same f_i an n-dimension vector that consists of the coefficients of the left-hand side (LHS) of the inequality $f_i > 0$. We note if the bridge b^i is equal to an edge e_j, if the jth component $f_i[j]$ of the vector f_i is -2, and if the other edge e_k is contained in Γ_i, $f_i[k] = +1$ (respectively -1) if e_k is an odd (respectively even)-numbered edge of Γ_i. The other components of f_i are 0.

We define the standard weight vector $w \in \mathbb{R}^n$ of C_b as follows. If there exists i such that $f_i[k] = -2$, then we set $w[k] := -1$. The other components of w are 0. We note if a_i is equal to (f_i, w) (inner product) for each i.

(i) Suppose $a_i > 0$ for any i. Since $(f_i, w) > 0$ for any i, then $w \in W$
(ii) Suppose $a_j = 0$ and $a_i > 0$ ($i \neq j$). Let b^j be a bridge of Γ_j and $b^i = e_i$. Let $w' := w + (-1/10 \cdot e_i)$, where e_i is a unit vector. Now, we consider $(f_j, w') = (f_j, w) + (f_j, -1/10 \cdot e_i)$. By the assumption, $(f_j, w) = a_j = 0$. Moreover, we obtain $(f_j, -1/10 \cdot e_i) = 1/5$. Therefore, $(f_j, w') = (f_j, w) + (f_j, -1/10 \cdot e_i) = 1/5 > 0$. On the other hand, let b^k be a bridge of Γ_i and $b^k = e_m$. Let $w' := w + (-1/10 \cdot e_m)$. Next, we consider $(f_i, w') = (f_i, w) + (f_i, -1/10 \cdot e_m)$. By the assumption, $(f_i, w) = a_i > 0$. Moreover, we obtain $(f_i, -1/10 \cdot e_m) = 1/5$. Therefore, $(f_i, w') = (f_i, w) + (f_i, -1/10 \cdot e_m) > 0$.

(iii) Suppose $a_j = a_k = 0$ and $a_i > 0$ ($i \neq j, i \neq k$). There exists at least an edge e_l in Γ_j that is not contained in Γ_k. On the other hand, there exists at least an edge e_m in Γ_k that is not contained in Γ_j. Let v be a vector that satisfies the following condition: $v[l] = 1/10$ (respectively $-1/10$) if e_l is odd numbered (respectively even numbered) in Γ_j. $v[m] = 1/10$ (respectively $-1/10$) if e_m is odd numbered (respectively even numbered) in Γ_k. The other components of v are 0. Let $w' := w + v$. Now, we consider $(f_i, w') = (f_i, w) + (f_i, v)$. By the assumption, $(f_i, w) = a_i > 0$. On the other hand, we obtain $(f_i, v) \geq 3/10$. Here, since $a_i \in \mathbb{Z}_{>0}$, then $(f_i, w) = a_i \geq 1$. Therefore, $(f_i, w') = (f_i, w) + (f_i, v) \geq 7/10 > 0$. Next, we consider $(f_j, w') = (f_j, w) + (f_j, v)$. By the assumption, $(f_j, w) = a_j = 0$. Moreover, we obtain $(f_j, v) = 1/10$ or $1/5$. Therefore, $(f_j, w') = (f_j, w) + (f_j, v) > 0$. Work with the same discussion as above. We obtain $(f_k, w') = (f_k, w) + (f_k, v) > 0$.

We have the following corollaries.
COROLLARY 2.2. Work with the same notation as above. The edge polytope of a fundamental FHM graph G possesses a regular unimodular triangulation if it has a set of bridges $\{b^1, \ldots, b^p\}$ (b^i is the bridge of Π_i) that satisfies the following condition: For each i, $a_i > 0$ holds.

COROLLARY 2.3. The edge polytope of a fundamental FHM graph G possesses a regular unimodular triangulation if it has a set of bridges $\{b^1, \ldots, b^p\}$ (b^i is the bridge of Π_i) that satisfies the following condition: for each even closed walk Γ_i of b^i, the number of the other bridges b^j contained in Γ_i is at most 2, and, furthermore, the number of Γ_i's that contain exactly two other bridges is at most 2.

COROLLARY 2.4. The edge polytope of a fundamental FHM graph G possesses a regular unimodular triangulation if it has a set of bridges $\{b^1, \ldots, b^p\}$ (b^i is the bridge of Π_i) that satisfies the following condition: each even closed walk of the bridge b^i contains at most one other bridge b^j.

We note that the narrowest condition is Corollary 2.4, whereas the broadest is Theorem 2.1. However, Corollary 2.4 is the easiest to check graphically.

REMARK 2.5. (i) In Theorem 2.1, if there exist more than two i's such that $a_i = 0$, the following result holds. Suppose $a_i = 0$ for $i = i_1, \ldots, i_r$ ($r \geq 3$) and $a_i > 0$ for the other i's. Let $H \subset \mathbb{R}^n$ be the hyperplane defined by $\sum_{j=1}^{n} w[j] x_j = 0$. If the convex cone generated by f_{i_1}, \ldots, f_{i_r} in H is strongly convex i.e., for a convex cone P, $P \cap -P = \{0\}$, W is not empty. The proof is the same as that of Theorem 2.1. Namely, thanks to this condition, we can vary w slightly to get a new weight w' such that $(f_i, w') > 0$ for any i. However, this condition is not clear at all just by looking at the graph.

(ii) More generally, let $C(f_1, \ldots, f_p)$ be an open cone in \mathbb{R}^n defined by p linear homogeneous inequalities $f_i > 0$ ($1 \leq i \leq p$). Then, $C(f_1, \ldots, f_p) \neq \phi$ holds if and only if the dual cone $C(f_1, \ldots, f_p)^\vee = \mathbb{R}_{\geq 0} f_1 + \cdots + \mathbb{R}_{\geq 0} f_p$ of $C(f_1, \ldots, f_p)$ is strongly convex (f_i is the coefficient vector of the LHS of the inequality). It is difficult to determine whether $C(f_1, \ldots, f_p)^\vee$ is strongly convex or not just by looking at the graph.

(iii) The edge polytope of the following graph does not possess the regular unimodular triangulations (Example 3.2 in [6]). Moreover, there exist three i's such that $a_i = 0$. Therefore, we cannot improve the condition of Theorem 2.1 such that “the number of Γ_i’s such that $a_i = 0$ is at most 3”

![Graph Image](image-url)
3. Applications

We first apply our criteria to the complete graph $G = K_6$ with six vertices. It is known that P_{K_d} possesses a regular unimodular triangulation for any d (see [12]). Moreover, it is known that an edge polytope of a gap-free graph or a complete multipartite graph possesses a regular unimodular triangulation too (see [2] and [9]).

REMARK 3.1. The complete graph K_6 satisfies the condition of Corollary 2.2, but does not satisfy the condition of Corollary 2.3.

We finally show several other examples that satisfy our criteria.

EXAMPLE 3.2. The following five types of graphs satisfy the condition of Corollary 2.4. More precisely, in the graphs $A_{m,n}$, $B_{m,n}$, and C_{m_1,m_2,n_1,n_2}, all the pairs of disjoint odd cycles (triangles) have a bridge b in common, and, thus, there are no other bridges contained in the even closed walk of b.

D_{m_1,m_2,m_3,m_4} has a set of bridges $\{b_1, b_2\}$ where any disjoint pair has a bridge in this set, and the even closed walk of b_i ($i = 1, 2$) contains (exactly) one other bridge. E_{m_1,m_2,m_3} has a set of three bridges $\{b_1, b_2, b_3\}$ where any disjoint pair has a bridge in this set, and there are no other bridges contained in the even closed walk of b_i ($i = 1, 2, 3$).

EXAMPLE 3.3. The following two types of graphs satisfy the condition of Corollary 2.2, but not that of Corollary 2.3. F_{m_1,m_2,m_3,m_4} has a minimal set of six bridges $\{b_i \mid 1 \leq i \leq 6\}$.
\(i \leq 6 \) where any disjoint pair has a bridge in this set, and \(G_{m_1, m_2, m_3, m_4, m_5} \) has a minimal set of ten bridges \(\{ b_i \mid 1 \leq i \leq 10 \} \).

Example 3.4. The following graph satisfies the condition of Theorem 2.1. Moreover, there exist just two \(i \)'s such that \(a_i = 0 \). The following graph has a minimal set of seven bridges \(\{ b_i \mid 1 \leq i \leq 7 \} \) where any disjoint pair has a bridge in this set. When \(\Gamma_1 = (e_{24}, e_{16}, e_{15}, b_7, b_1, b_5, b_6, b_2, -b_7) \), then \(\alpha_1 = 1 \) and \(\beta_1 = 3 \). Therefore, \(a_1 = 2 + \alpha_1 - \beta_1 = 2 + 1 - 3 = 0 \). On the other hand, by symmetry, when \(\Gamma_2 = (e_{22}, e_{11}, e_{12}, b_6, b_5, b_1, b_7, e_{24}, b_4, -b_6) \), then \(a_2 = 0 \).
4. The algorithm and program

We have implemented a program for the computer algebra system Magma [1] that determines whether a given fundamental FHM graph satisfies our criteria. By using the program “cycle 12.c” (see “http://sloppyjoe9.wixsite.com/mysite/program”), we tested 10 fundamental FHM graphs in appendix A.

<table>
<thead>
<tr>
<th>Graph number</th>
<th>Theorem 2.1</th>
<th>Corollary 2.2</th>
<th>Corollary 2.3</th>
<th>Corollary 2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph 1</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Graph 2</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Graph 3</td>
<td>√</td>
<td>×</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Graph 4</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Graph 5</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Graph 6</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Graph 7</td>
<td>√</td>
<td>×</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Graph 8</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Graph 9</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Graph 10</td>
<td>√</td>
<td>√</td>
<td>×</td>
<td>√</td>
</tr>
</tbody>
</table>
A. Example of 10 fundamental FHM graphs

Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

Graph 6
Existence of a Regular Unimodular Triangulation of the Edge Polytopes of Finite Graphs

References

[8] H. Ohsugi and T. Hibi, A normal (0,1)-polytope none of whose regular triangulations is unimodular, Discrete and Computational Geometry, 21 (1999), 201–204.
Ginji HAMANO
Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology
Osaka University
Suita, Osaka 565–0871, Japan
e-mail: g-hamano@ist.osaka-u.ac.jp