Zeta Functions of \((\text{SL}_2 \times \text{SL}_2 \times \text{GL}_2, M_2 \oplus M_2)\) Associated with a Pair of Maass Cusp Forms

by

Fumihiro Sato

(Received April 5, 2006)

§0. Introduction

In [S3], we generalized the theory of zeta functions of prehomogeneous vector spaces ([SS], [S1]) to zeta functions whose coefficients involve periods of automorphic forms under the additional assumption that a prehomogeneous vector space has a symmetric structure. The purpose of the present paper is to make a detailed study of such zeta functions for the prehomogeneous vector space \((G, \rho, V) = (\text{SL}_2 \times \text{SL}_2 \times \text{GL}_2, \rho, M_2 \oplus M_2)\) and a pair of Maass cusp forms \((\Phi_1, \Phi_2)\), an automorphic form on \(\text{SL}_2 \times \text{SL}_2\). Here the representation \(\rho : G \rightarrow \text{GL}(V)\) is defined by

\[
\rho(g_1, g_2, h)(x_1, x_2) = (g_1 x_1 g_2^{-1}, g_1 x_2 g_2^{-1})^t h.
\]

Our main result is that the zeta functions attached to a pair of Maass cusp forms are identified with the convolution of two Dirichlet series obtained as the Mellin transforms of the theta liftings of \(\Phi_1, \Phi_2\).

It is known that \((G, \rho, V)\) is a regular prehomogeneous vector space (of type (15) in the list of [SK, §7]) with only one irreducible relative invariant

\[
P(x) = (\text{tr}(x_1 J x_2 J^{-1}))^2 - 4 \det x_1 \det x_2, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

The singular set \(S\) is given by \(S = \{ x \in V | P(x) = 0 \}\) and \(V \setminus S\) is a Zariski-open \(\rho(G)\)-orbit.

Put \(\Gamma_0 = \text{SL}_2(\mathbb{Z}), \Gamma = \Gamma_0 \times \Gamma_0 \times \Gamma_0\) and \(\mathcal{L} = M_2(\mathbb{Z}) \oplus M_2(\mathbb{Z})\). Let \(\Phi_1, \Phi_2 : \Gamma_0 \setminus \mathcal{L} \rightarrow \mathbb{C}\) be even Maass cusp forms, which are eigenfunctions of the non-Euclidean Laplacian on the upper half-plane \(\mathcal{H}\):

\[
y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \Phi_i(z) + \lambda_i (1 - \lambda_i) \Phi_i(z) = 0 \quad (i = 1, 2).
\]

Then the zeta functions we consider in this paper are of the form

\[
\zeta_{\pm}(\Phi_1, \Phi_2; s) = \sum_{x \in \rho(\Gamma) \setminus \mathcal{L}, \pm P(x) > 0} \frac{M_{\Phi_1, \Phi_2}(x)}{|P(x)|^s},
\]

where \(M_{\Phi_1, \Phi_2}(x)\) is a certain period of \(\Phi_1 \times \Phi_2\) over the isotropy subgroup of \(G\) at \(x\).
For \(i = 1, 2 \), let

\[
\Theta(\Phi_i)(z) = \sum_{n \neq 0} \rho_i(n)W_{\frac{1}{2}\text{sgn}(n), \frac{2i-1}{4}}(4\pi |n|y)\text{e}[nx]
\]

be the Fourier expansion of the theta lift \(\Theta(\Phi_i) \) of \(\Phi_i \) (see [KS]). Then our main result is the following:

THEOREM A. The zeta functions \(\zeta_{\pm}(\Phi_1, \Phi_2; s) \) coincide with

\[
\xi(2s-1) \sum_{n=1}^{\infty} \frac{\rho_1(\pm n)\rho_2(\pm n)}{n^{s-3/2}}
\]

up to constant factors depending on \(\lambda_1, \lambda_2 \).

The general theory in [S3] provides us a recipe for proving a functional equation satisfied by the zeta functions.

THEOREM B. The zeta functions \(\zeta_{\pm}(\Phi_1, \Phi_2; s) \) have analytic continuations to meromorphic functions of \(s \). Moreover, if we put

\[
\xi_{\pm}(\Phi_1, \Phi_2; s) = \pi^{-2s} \Gamma(s + \frac{\lambda_1-\lambda_2-1}{2}) \Gamma(s - \frac{\lambda_1+\lambda_2}{2}) \zeta_{\pm}(\Phi_1, \Phi_2; s),
\]

then they satisfy the following functional equation:

\[
\begin{pmatrix} \xi_+ \\ \xi_- \end{pmatrix} (\Phi_1, \Phi_2; 2-s) = C(\lambda_1, \lambda_2; s) \begin{pmatrix} \xi_+ \\ \xi_- \end{pmatrix} (\Phi_1, \Phi_2; s),
\]

where

\[
C(\lambda_1, \lambda_2; s) = \frac{1}{\sin \pi s \cos \pi \lambda_2} \cdot \frac{\Gamma(1-\lambda_1)\Gamma(1-\lambda_2)}{\Gamma(1-\lambda_1-\lambda_2)} \cdot \frac{\sin \pi s \cos \frac{\pi \lambda_1}{2} \cos \frac{\pi \lambda_2}{2}}{\sin \pi s \sin \frac{\pi \lambda_1}{2} \sin \frac{\pi \lambda_2}{2}}.
\]

Note that \(SL_2 \times SL_2 \cong Spin_4 \) and our prehomogeneous vector space is a special case of \((Spin_m \times GL_m, M_{m,n}) \). The zeta functions of this general prehomogeneous vector space attached to automorphic forms on \(Spin_m \) are expected to be the Koecher-Maass series of the theta liftings of the automorphic forms under consideration. In [BS], Böcherer and Schulze-Pillot considered the Koecher-Maass series of the Yoshida lifting and proved that the series is connected with the convolution of Dirichlet series of two modular forms. Theorem A can be viewed as a Maass form version of their result.

We can apply the method used in this paper also to a pair of holomorphic cusp forms for \(SL_2(\mathbb{Z}) \) on the basis of Shintani’s work [Shn]. If we take the real analytic Eisenstein series \(E(z, \lambda) \) for \(\Phi_1 \) and/or \(\Phi_2 \), then we can obtain a similar result by considering the prehomogeneous vector spaces \((B_2 \times SL_2 \times GL_2, V) \) or \((B_2 \times B_2 \times GL_2, V) \), \(B_2 \) being the Borel subgroup of \(SL_2 \). However our method cannot apply to the case of three modular forms; this is a limitation of the theory in [S3].

The key to the proof of Theorem A is a study of the \(G \)-equivariant quotient map

\[
\psi : V \setminus S \longrightarrow X := (V \setminus S)/SL_2.
\]
The space X is given explicitly by

$$X = \left\{ (Y_1, Y_2) \in \text{Sym}_n \times \text{Sym}_n \mid \det Y_1 = \det Y_2 \neq 0 \right\}.$$

The quotient map ψ behaves quite well on the set of integral points in $V \setminus S$ and the structure of X is responsible for the convolution structure in the expression of the zeta functions in Theorem A.

In §1, we examine the structure of the prehomogeneous vector space (G, ρ, V) through the quotient mapping ψ. In §2, after recalling some necessary results on the theta lifting of Maass forms from [KS], we prove Theorems A and B.

Notation.

Let Sym_n (resp. $\text{M}_{m,n}$) be the set of symmetric (resp. square, rectangular) matrices of size n (resp. m, m by n), which we consider as the affine space of dimension $n(n + 1)/2$ (resp. m^2, mn). For a commutative ring R, $\text{Sym}_n(R)$ (resp. $\text{M}_{m,n}(R)$) denotes the set of symmetric (resp. square, rectangular) matrices of size n (resp. m^2, mn) with entries in R. We denote by $\text{Disc}(Y)$ the discriminant of $Y \in \text{Sym}_n(R)$, which is defined to be $(-1)^n(n-1)/2 \det Y$. For a real symmetric matrix $Y \in \text{Sym}_n(\mathbb{R})$ we write $\text{sgn}(Y) = (i, j)$ if Y has i positive and j negative eigenvalues. For matrices A and B, we put $A[B] = ^tBA B$ if the product is defined. For a real vector space V, $S(V)$ is the space of rapidly decreasing functions on V.

§1. Prehomogeneous vector space $(\text{SL}_2 \times \text{SL}_2 \times \text{GL}_2, \text{M}_2 \oplus \text{M}_2)$

Put $G = \text{SL}_2 \times \text{SL}_2 \times \text{GL}_2$ and $V = \text{M}_2 \oplus \text{M}_2$. We define a rational representation ρ of G on V by

$$\rho(g_1, g_2, 1)(x_1, x_2) = (g_1 x_1 g_2^{-1}, g_1 x_2 g_2^{-1}), \quad g_1, g_2 \in \text{SL}_2,$$

$$\rho(1, 1, h)(x_1, x_2) = (x_1, x_2)^h = (ax_1 + bx_2, cx_1 + dx_2), \quad h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2.$$

Then the triple (G, ρ, V) is a regular prehomogeneous vector space equivalent to the prehomogeneous vector space of type (15) with $n = 4$, $m = 2$ in the Sato-Kimura classification ([SK, §7]). For $x = \begin{pmatrix} x \cr d \end{pmatrix} \in \text{M}_2$, we put

$$x^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \det x \cdot x^{-1}$$

and define a symmetric bilinear form $(\cdot, \cdot) : \text{M}_2 \times \text{M}_2 \to \mathbb{C}$ by

$$(x_1, x_2) = \text{tr} x_1 x_2^*.$$

Note that $\langle x, x \rangle = 2 \det x$. We consider the mapping $\pi : V \to \text{Sym}_2$ defined by

$$\pi(x) = \pi(x_1, x_2) = \begin{pmatrix} \langle x_1, x_1 \rangle & \langle x_1, x_2 \rangle \\ \langle x_2, x_1 \rangle & \langle x_2, x_2 \rangle \end{pmatrix}.$$

Then we have

$$\pi(\rho(g_1, g_2, h)x) = h \pi(x)^h \quad (1.1)$$
and the discriminant of $\pi(x)$

$$P(x) := \text{Disc} \pi(x) = (x_1, x_2)^2 - (x_1, x_1) (x_2, x_2)$$

is the fundamental relative invariant of (G, ρ, V), which corresponds to the character $\chi(g_1, g_2, h) = (\det h)^2$. The singular set S of (G, ρ, V) is given by $S = \{x \in V | P(x) = 0\}$. In the following we consider (G, ρ, V) as a prehomogeneous vector space defined over \mathbb{Q}. The \mathbb{Q}-structure is the standard one.

Let $\sigma : M \to \text{Sym}_2$ be the mapping defined by

$$\sigma(A) = JA + \tau AJ^{-1}, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Then, by a straightforward calculation, we have

$$\sigma(I_2) = 0, \quad \sigma(x_1 x_2^*) = -\sigma(x_2 x_1^*) \quad (x_1, x_2 \in M_2), \quad (1.2)$$

$$\text{Disc} \sigma(A) = (tr A)^2 - 4 \det A, \quad (1.3)$$

$$\sigma(g_1 x_1 g_1^{-1}) = \sigma(x_1) [g_1^{-1}] \quad (g_1 \in SL_2). \quad (1.4)$$

We define a mapping $\psi : V = M_2 \oplus M_2 \to \text{Sym}_2 \oplus \text{Sym}_2$ by setting

$$\psi(x) = \psi(x_1, x_2) = (\sigma(x_1 x_2^*), -\sigma(x_1^* x_2)).$$

Lemma 1. (1) Put $\psi_1(x) = \sigma(x_1 x_2^*)$, $\psi_2(x) = -\sigma(x_1^* x_2)$. Then we have

$$\text{Disc} \psi_1(x) = \text{Disc} \psi_2(x) = \text{Disc} \pi(x).$$

(2) The identity

$$\psi(\rho(g_1, g_2, h)x) = (\det h) \cdot (\psi_1(x) [g_1^{-1}], \psi_2(x) [g_2^{-1}])$$

holds for any $(g_1, g_2, h) \in G$.

Proof. (1) By (1.3) we have

$$\text{Disc} \psi_1(x) = (tr x_1 x_2^*)^2 - 4 \det(x_1 x_2^*)$$

$$= (x_1, x_2)^2 - 2(\det x_1)(2 \det x_2)$$

$$= \text{Disc} \pi(x).$$

Similarly one can prove the identity $\text{Disc} \psi_2(x) = \text{Disc} \pi(x)$.

(2) By (1.4) we have

$$\psi(\rho(g_1, g_2, 1) \cdot (x_1, x_2)) = (\psi_1(x) [g_1^{-1}], \psi_2(x) [g_2^{-1}]).$$

To see the equivariance property for $h \in GL_2$, we note that, for $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we have

$$\psi((x_1, x_2)^t h) = \psi((ax_1 + bx_2, cx_1 + dx_2)) = (\sigma(X_1), -\sigma(X_2)),$$

$$X_1 = (ac \det x_1 + bd \det x_2) I_2 + ad x_1 x_2^* + bc x_2 x_1^*,$$

$$X_2 = (ac \det x_1 + bd \det x_2) I_2 + ad x_1^* x_2 + bc x_2^* x_1.$$

Hence, by (1.2), we obtain $\psi(x^t h) = (\det h) \cdot \psi(x)$.

\square
Let $X = \{(Y_1, Y_2) \in \text{Sym}_2 \oplus \text{Sym}_2 \mid \text{Disc } Y_1 = \text{Disc } Y_2 \neq 0\}$.

Then, by Lemma 1 (1), the image $\psi(V \setminus S)$ is contained in X. The G-equivariant mapping $\psi : V \setminus S \rightarrow X$ plays a crucial role in the analysis of the structure of our prehomogeneous vector space (G, ρ, V).

Lemma 2. For $x \in V \setminus S$, then the projection $p_1 : G \rightarrow \text{SL}_2 \times \text{SL}_2$ induces an isomorphism of the isotropy subgroup G_x at x onto the group

$\{(g_1, g_2) \in \text{SL}_2 \times \text{SL}_2 \mid \psi_1(x)[g_1] = \epsilon \psi_1(x), \ \psi_2(x)[g_2] = \epsilon \psi_2(x), \ \epsilon = \pm 1\}$.

In particular, the identity component G^o_x of G_x is a subgroup of index 2 and is isomorphic to $\text{SO}(\psi_1(x)) \times \text{SO}(\psi_2(x))$.

Proof. If $(g_1, g_2, h) \in G$ is in G_x, then by Lemma 1 (2) and (1.1) we have $(\psi_1(x), \psi_2(x)) = (\det h \cdot (\psi_1(x)[g_1^{-1}], \psi_2(x)[g_2^{-1}]), \pi(x) = \pi(x)\theta h)$. Hence $\det h = \pm 1$ and (g_1, g_2) is in the group given in the lemma. If (g_1, g_2, h) is in G^o_x, then det $h = 1$ and (g_1, g_2) is in $\text{SO}(\psi_1(x)) \times \text{SO}(\psi_2(x))$. It is easy to see that $G_x \cap \ker(p_1)$ is trivial and the projection p_1 is injective when restricted to G_x. Since $\dim G_x = \dim G - \dim V = 10 - 8 = 2 = \dim(\text{SO}(\psi_1(x)) \times \text{SO}(\psi_2(x)))$, G^o_x is isomorphic to $\text{SO}(\psi_1(x)) \times \text{SO}(\psi_2(x))$. It is easy to see that the index of G^o_x in G_x is equal to 2. Hence G_x is isomorphic to the group given in the lemma.

Lemma 3. (1) The space (X, ψ) is a geometric quotient of $V \setminus S$ for the action of $\rho(1, 1) \times \text{SL}_2$.

(2) Let k/\mathbb{Q} be an arbitrary field extension. For $x, x' \in V(k) \setminus S$, $\psi(x) = \psi(x')$ if and only if $x' = x'h$ for some $h \in \text{SL}_2(k)$.

Proof. (1) It is obvious that $V \setminus S$ is irreducible and ψ is surjective. Since X is a homogeneous space of $\text{GL}_1 \times \text{SL}_2 \times \text{SL}_2$, X is normal. Hence, by [PV, Theorem 4.2], the first assertion follows immediately from the second.

(2) The ‘if’-part of the assertion is obvious in view of Lemma 1 (2). Let us prove the ‘only if’-part. If $h \in \text{SL}_2$ satisfies $x' = x'h$ for $x, x' \in V(k) \setminus S$, then h is necessarily in $\text{SL}_2(k)$. Hence we need not worry about the k-rationality of h. Since $V \setminus S$ is an open G-orbit, one finds a $(g_1, g_2, h_0) \in G$ such that $x = \rho(g_1, g_2, h)x'$. From the assumption $\psi(x) = \psi(x')$ it follows that $\det h = \pm 1$ and $\psi(x)[g_1] = (\det h \cdot \psi(x))[g_1] = (\det h \cdot \psi(x))[g_1]$. Hence, by Lemma 2, there exists an $h' \in \text{GL}_2$ such that $\det h' = \det h$ and (g_1, g_2, h') is in G_x. Thus we have $x = \rho(1, 1, h^{-1}h)x'$ and $\det(h'^{-1}h) = 1$.

For $i, j = 0, 1, 2$, we put

$$V_{ij} = \{x \in V(\mathbb{R}) \setminus S \mid \text{sgn } (\psi_1(x)) = (i, 2 - i), \ \text{sgn } (\psi_2(x)) = (j, 2 - j)\}.$$ \hspace{1cm} (1.5)

Since $\text{Disc } \psi_1(x) = \text{Disc } \psi_2(x)$, the set V_{ij} is empty unless $i \equiv j \pmod{2}$. Let G^+ be the identity component of the real Lie group $G(\mathbb{R})$. The group G^+ is given by

$$G^+ = \{(g_1, g_2, g_0) \mid g_1, g_2 \in \text{SL}_2(\mathbb{R}), \ g_0 \in \text{GL}_2(\mathbb{R}), \ \det g_0 > 0\}.$$
Lemma 4. The G^+-orbit decomposition of $V(\mathbb{R}) \setminus S = \{ x \in V(\mathbb{R}) | P(x) \neq 0 \}$ is given by

$$V(\mathbb{R}) \setminus S = V_{0,0} \cup V_{0,2} \cup V_{1,1} \cup V_{2,0} \cup V_{2,2}.$$

Proof. The lemma is an immediate consequence of Lemma 1 (2) and Lemma 3. □

Now we study the integral structure of $G = \psi \circ \rho (\mathbb{C}) \in V(\mathbb{Q})$. Let $\text{Sym}_2^\mathbb{Z}(\mathbb{Z})$ be the set of even integral 2×2 symmetric matrices and put

$$X_\mathbb{Z} = X \cap (\text{Sym}_2^\mathbb{Z}(\mathbb{Z}) \times \text{Sym}_2^\mathbb{Z}(\mathbb{Z})).$$

Lemma 5. The mapping $\psi : \mathcal{L} \setminus S \to X_\mathbb{Z}$ is surjective.

Proof. Let (Y_1, Y_2) be an arbitrary element in $X_\mathbb{Z}$. Put $d = \text{Disc} Y_1 = \text{Disc} Y_2$. Take $g_i \in GL_2(\mathbb{Q}) (i = 1, 2)$ which diagonalizes Y_i. Then $Y_1[g_1] = \begin{pmatrix} a_1 & 0 \\ 0 & a_1 \end{pmatrix}$ for some $a_1 \in \mathbb{Q}^\times$. By an elementary matrix calculation, we have

$$\frac{a_1}{a_2} Y_2 = Y_1[g], \quad g = g_1 \begin{pmatrix} 1 & 0 \\ 0 & a_1/a_2 \end{pmatrix} g_2^{-1}.$$

By multiplying the both sides of the identity by a suitable integer, we see that there exists an $x_1 \in M_2(\mathbb{Z})$ with non-zero determinant satisfying $Y_1[x_1] = \text{det} x_1 \cdot Y_2$. We may assume that the greatest common divisors of all the entries of x_1 is 1. Then x_1 is written as $x_1 = y_1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} x_2$ for some $y_1, y_2 \in SL_2(\mathbb{Z})$ and some non-zero integer m. Put $Y'_i = Y_i[y_1] (i = 1, 2)$. Then we have $Y'_1[\begin{pmatrix} 0 & m \\ 1 & 0 \end{pmatrix}] = m Y'_2$. Hence there exist integers y_1, y_2, y_3 satisfying $Y'_1 = \begin{pmatrix} 2 y_1 & y_2 \\ y_2 & 2 y_3 \end{pmatrix}$ and $Y'_2 = \begin{pmatrix} 2 m y_1 & y_2 \\ y_2 & 2 y_3 \end{pmatrix}$. It is easy to check that $(Y'_1, Y'_2) = \psi \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \begin{pmatrix} y_2 & -y_1 \\ y_1 & 0 \end{pmatrix} \end{pmatrix}$. This implies that $x = \rho(y_1, y_2, 1) \begin{pmatrix} m & 0 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} y_2 & -y_1 \\ y_1 & 0 \end{pmatrix}$ satisfies

$$\psi(x) = (Y_1, Y_2).$$ □

For simplicity we put $G_0 = SL_2(\mathbb{Z})$ and $G = G_0 \times G_0 \times G_0 (\subset G(\mathbb{Q}))$.

Lemma 6. The mapping $\psi : \rho(G) \setminus (\mathcal{L} \setminus S) \to \Gamma_0^2 \setminus X_\mathbb{Z}$ induced by $\psi : \mathcal{L} \setminus S \to X_\mathbb{Z}$ is factorized as

$$\psi : \rho(G) \setminus (\mathcal{L} \setminus S) \xrightarrow{\psi(1)} \rho(\Gamma_0) \setminus (\mathcal{L} \setminus S) \setminus SL_2(\mathbb{Q}) \xrightarrow{\psi(2)} \Gamma_0^2 \setminus X_\mathbb{Z}.$$

Here the mapping $\psi(2)$ is a bijection.

Proof. The factorization $\psi = \psi(2) \circ \psi(1)$ and the injectivity of $\psi(2)$ are consequences of Lemma 3. The surjectivity of $\psi(2)$ is a consequence of Lemma 5. □

By Lemma 2, we have a natural isomorphism $G_2^\mathbb{Z} \xrightarrow{\zeta_{\mathbb{Z}}} SO(\psi_1(x)) \times SO(\psi_2(x))$ for any $x \in V(\mathbb{Q}) \setminus S$. Hence we may consider $G_2^\mathbb{Z}$ as a subgroup of $SO(\psi_1(x))(\mathbb{Z}) \times SO(\psi_2(x))(\mathbb{Z})$ of finite index.

For any $\rho(G)$-orbit $\{x\} \in \mathcal{L} \setminus S$, we put

$$\tau(\{x\}) = \sum_{\{v\} \in \psi(1)^{-1}(\psi(1)(\{x\}))} [SO(\psi_1(v))(\mathbb{Z}) \times SO(\psi_2(v))(\mathbb{Z}) : G_2^\mathbb{Z}(\mathbb{Z})]. \quad (1.6)$$
LEMMA 7. For \(x \in \mathcal{L} \setminus S \), put
\[
\tilde{x} = \begin{pmatrix}
x_{11}^1 & x_{12}^1 & x_{11}^2 & x_{12}^2 \\
x_{21}^1 & x_{22}^1 & x_{21}^2 & x_{22}^2 \\
\end{pmatrix} \in M_{4,2}(\mathbb{Z}),
\]
where \(x_{ij}^k \) is the \((i, j)\)-entry of \(x_k \). Let \(a_1, a_2 \) be the elementary divisors of \(\tilde{x} \). Then we have
\[
\tau(\{x\}) = \sharp(\Gamma_0 \setminus T(a_1 a_2)),
\]
where \(T(a_1 a_2) \) is the set of all matrices in \(M_{2}(\mathbb{Z}) \) with determinant \(a_1 a_2 \).

Proof. We put \(\mathcal{L}(x) = \{ h \in SL_2(\mathbb{Q}) | x^h \in \mathcal{L} \} \). Let \(p_1 : G \to SL_2 \times SL_2 \) and \(p_2 : G \to GL_2 \) be the projections defined by \(p_1(g_1, g_2, h) = (g_1, g_2) \) and \(p_2(g_1, g_2, h) = h \).

We define a subgroup \(H_{x, r} \) of \(SO(x, r))((\mathbb{Q}) \) by
\[
H_{x, r} = p_2(p_1^{-1}(SO(\psi_1(x)) (\mathbb{Z}) \times SO(\psi_2(x))(\mathbb{Z})) \cap G_x^0).
\]

Then we obtain the following one to one correspondence:
\[
\Gamma_0 \setminus \mathcal{L}(x)/H_{x, r} \leftrightarrow \psi(1)^{-1}(\psi(1)((x))).
\]

Since \(p_1 \) induces an isomorphism of \(G_x^0 \) onto \(SO(\psi_1(x)) \times SO(\psi_2(x)) \) and
\[
G_x^0(\mathbb{Z}) = G_x^0 \cap p_1^{-1}(SO(\psi_1(x))(\mathbb{Z}) \times SO(\psi_2(x))(\mathbb{Z})) \cap p_2^{-1}(\Gamma_0),
\]
we obtain
\[
[SO(\psi_1(x))(\mathbb{Z}) \times SO(\psi_2(x))(\mathbb{Z})] : G_x^0(\mathbb{Z}) = [H_{x, r} : H_{x, r} \cap \Gamma_0].
\]

For a \(v = x^h (h \in \mathcal{L}(x)) \), we have
\[
H_{v, r} = hH_{x, r}h^{-1} \quad \text{and} \quad SO(\pi(v)) = hSO(\pi(x))h^{-1}.
\]

Hence
\[
[SO(\psi(v))(\mathbb{Z}) \times SO(\psi_2(v))(\mathbb{Z})] : G_x^0(\mathbb{Z}) = [H_{x, r} : H_{x, r} \cap h^{-1}\Gamma_0h].
\]

Thus we obtain
\[
\tau(\{x\}) = \sum_{h \in \Gamma_0 \setminus \mathcal{L}(x)/H_{x, r}} [H_{x, r} : H_{x, r} \cap h^{-1}\Gamma_0h].
\]

Since there exists a one to one correspondence
\[
H_{x, r} \cap h^{-1}\Gamma_0h \setminus H_{x, r} \leftrightarrow \Gamma_0 \setminus \Gamma_0hH_{x, r},
\]
we have
\[
\tau(\{x\}) = \sharp(\Gamma_0 \setminus \mathcal{L}(x)).
\]

Let \(a_1, a_2 \) be the elementary divisors of \(\tilde{x} \). Then \(\tilde{x} \) can be written as
\[
\tilde{x} = u \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \gamma \quad (u \in GL_4(\mathbb{Z}), \gamma \in \Gamma_0).
For an $h \in \text{SL}_2(\mathbb{Q})$, h belongs to $\mathcal{L}(x)$ if and only if \(\begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \gamma \gamma^{-1} \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \). Hence

\[\mathcal{L}(x) = T(a_1a_2)\gamma^{-1} \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}^{-1}. \]

This implies that $\sharp(\Gamma_0 \setminus \mathcal{L}(x)) = \sharp(\Gamma_0 \setminus T(a_1a_2))$. This proves the lemma.

We call a $(Y_1, Y_2) \in X_\mathbb{Z}$ a primitive pair if $\frac{1}{2}(Y_1, Y_2) \not\in X_\mathbb{Z}$ for any $n \geq 2$. We denote by X^{pr} the set of all primitive pairs in $X_\mathbb{Z}$.

We call an $x = (x_1, x_2) \in \mathcal{L}$ primitive if the elementary divisors of $\tilde{x} \in M_{4,2}(\mathbb{Z})$ are $\{1, 1\}$. We denote by L^{pr} the set of all primitive elements of \mathcal{L}.

Lemma 8. For $x \in \mathcal{L} \setminus S$, $\psi(x)$ is a primitive pair if and only if x is primitive. Hence we have a surjection $\psi : L^{pr} \to X^{pr}$.

Proof. Any one of the conditions $\psi(x) \in X^{pr}$ and $x \in L^{pr}$ implies that the greatest common divisor of all the entries of x_i is equal to 1 for every $i = 1, 2$. Hence, if we replace x by $\rho(\gamma_0, \gamma_1, \gamma_2) x$ for appropriate $\gamma_0, \gamma_1, \gamma_2 \in \Gamma_0$, we may assume that x is of the form \(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} y_1 & y_2 \\ y_3 & 0 \end{pmatrix}\). Then we have

\[\psi(x) = \begin{pmatrix} 2y_3 & -y_1 \\ -y_1 & -2ay_2 \end{pmatrix}, \begin{pmatrix} 2ay_3 & -y_1 \\ -y_1 & -2y_2 \end{pmatrix}. \]

Hence $\psi(x) \in X^{pr}$ if and only if

\[\gcd(y_1, y_2, ay_2, y_3, ay_3) = \gcd(y_1, y_2, y_3) = 1. \]

This is equivalent to the condition that $x \in L^{pr}$.

Lemma 9. If $x \in L^{pr} \setminus S$, then we have an isomorphism \(G^*_2(\mathbb{Z}) \cong \text{SO}(\psi_1(x))(\mathbb{Z}) \times \text{SO}(\psi_2(x))(\mathbb{Z})\) and the mapping

\[\rho(\Gamma) \setminus (L^{pr} \setminus S) \to \Gamma_0^2 \setminus X^{pr} \]

is a bijection.

Proof. To see this, it is sufficient to prove that $\tau(\{x\}) = 1$ for $x \in L^{pr} \setminus S$. This is obvious from Lemma 7, since x is primitive.

Remark. The integral structure of $\mathcal{L} \setminus S$ was studied deeply by Bhargava [B]. The construction of ψ is closely related to his result. In fact, our $\frac{1}{2}\pi(x), \frac{1}{2}\psi_1(x), \frac{1}{2}\psi_2(x)$ coincide essentially with Bhargava’s Q_1, Q_2, Q_3.

2. Zeta functions attached to a pair of Maass cusp forms

2.1. Maass forms of weight 0 and 1/2

First we recall some basic facts on Maass wave forms of weight 0 and 1/2 following [KS].

Let \(\mathfrak{H} = \{ z \in \mathbb{C} | \text{Im} \, z > 0 \} \), the upper half-plane. Then the group \(\text{SL}_2(\mathbb{R}) \) acts on \(\mathfrak{H} \) by linear fractional transformation. We put \(\Gamma_0 = \text{SL}_2(\mathbb{Z}) \) as in §1. For \(k = 0 \) or \(1/2 \), put

\[
\Delta_k = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) - kiy \frac{\partial}{\partial x}.
\]

Let \(L^2(\Gamma_0 \backslash \mathfrak{H}) \) be the space of measurable functions on \(\Gamma_0 \backslash \mathfrak{H} \) square integrable with respect to the invariant measure \(\frac{dx \, dy}{y^2} \). Put

\[
\mathfrak{S}_0^+ (\Gamma_0 \backslash \mathfrak{H}, \lambda) = \left\{ \phi \in L^2(\Gamma_0 \backslash \mathfrak{H}) \left| \Delta_0 \phi + \lambda(1 - \lambda) \phi = 0, \phi(z) = \phi(-\overline{z}) \right. \right. \left. \int_0^1 \phi(x + iy) \, dx = 0 \right\}.
\]

A function in \(\mathfrak{S}_0^+ (\Gamma_0 \backslash \mathfrak{H}, \lambda) \) is called an even Maass cusp form (of weight 0).

Put \(\Gamma_0(4) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0 \left| \begin{array} {c} c \equiv 0 \pmod{4} \end{array} \right. \right\} \). For \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4) \), we define the automorphy factor \(J(\gamma, z) \) by

\[
J(\gamma, z) = \epsilon_d^{-1} \left(\frac{cz + d}{|cz + d|} \right)^{1/2}, \quad \epsilon_d = \begin{cases} 1 & d \equiv 1 \pmod{4}, \\ \sqrt{-1} & d \equiv 3 \pmod{4}, \end{cases}
\]

where the Legendre symbol \(\left(\frac{d}{4} \right) \) has the same meaning as in [Shm]. Let

\[
\mathfrak{S}_{1/2}^+ (\Gamma_0(4) \backslash \mathfrak{H}, \mu) = \left\{ F \in L^2(\Gamma_0(4) \backslash \mathfrak{H}) \left| \begin{array} {c} F(\gamma \cdot z) = J(\gamma, z) F(z) \ (\forall \gamma \in \Gamma_0(4)) \\ \Delta_{1/2} F + \mu(1 - \mu) F = 0, \int_0^1 F(x + iy) \, dx = 0 \end{array} \right. \right\},
\]

where

\[
LF(z) = \frac{1}{4} e^{i \pi/4} \left(\frac{z}{|z|} \right)^{-1/2} \sum_{\nu \text{mod} 4} F \left(-1 + \frac{4\nu z}{16z^2} \right).
\]

We call an \(F \in \mathfrak{S}_{1/2}^+ (\Gamma_0(4) \backslash \mathfrak{H}, \mu) \) a Maass cusp form of weight 1/2. A Maass cusp form \(F \) of weight 1/2 has a Fourier expansion of the form

\[
F(z) = \sum_{n \neq 0} \rho(n) W_{\text{sgn}(n), \mu-1/4} (4\pi |n| y) e(nz),
\]

where \(W_{\text{sgn}(n), \mu-1/4} \) is the usual Whittaker function (see [E, 6.9]).
To describe the Maass correspondence, a kind of theta liftings, between \(S^+_{0}(I_0 \setminus \mathfrak{H}, \lambda) \) and \(S^+_{1/2}(I_0(4) \setminus \mathfrak{H}, \mu) \), we need the Siegel Theta series. Put

\[
Q = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 0 \end{pmatrix}, \quad R = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.
\]

Let \(r : \text{SL}_2(\mathbb{R}) \to \text{GL}_3(\mathbb{R}) \) be the second symmetric tensor representation:

\[
r\left(\begin{array}{ccc} a & b \\ c & d \end{array}\right) = \begin{pmatrix} a^2 & ab & b^2 \\ 2ac & ad + bc & 2bd \\ c^2 & cd & d^2 \end{pmatrix}.
\]

The image of \(\text{SL}_2(\mathbb{R}) \) coincides with the identity component of \(\text{SO}(Q)(\mathbb{R}) \).

Let

\[
\Theta(z, g) = y^{3/4} \sum_{v \in \mathbb{Z}^3} e\{ (xQ + iyR)[r(g)^{-1}v] \} \quad (z = x + iy \in \mathfrak{H}, \ g \in \text{SL}_2(\mathbb{R}))
\]

be the Siegel Theta series. Then \(\Theta(z, g) \) has the following properties:

(i) \(\Theta(y \cdot z, g) = J(y, z)\Theta(z, g), \ y \in I_0(4); \)

(ii) \(\Theta(z, ygk) = \Theta(z, g), \ (y \in I_0, \ k \in \text{SO}(2)(\mathbb{R})); \)

(iii) \(\Theta(z, \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix}) \) is an even function of \(\xi \). For a \(\Phi \in S^+_{0}(I_0 \setminus \mathfrak{H}, \lambda) \), put

\[
\Theta(\Phi)(z) = \int_{I_0(4) \setminus \text{SL}_2(\mathbb{R})} \Phi(g \cdot \sqrt{-1})\Theta(z, g) \, dg.
\]

Then, it is known that \(\Theta(\Phi) \) is in \(S^+_{1/2}(I_0(4) \setminus \mathfrak{H}, \mu) \) for \(\mu = \frac{2k+1}{4} \) (see [KS, Proposition 2.3]).

Let

\[
\Theta(\Phi)(z) = \sum_{n \neq 0} \rho(n)W_{\frac{1}{2}+\text{sgn}(n), \mu-\frac{1}{4}}(4\pi |n| y)e[nx]
\]

be the Fourier expansion. To describe the Fourier coefficients \(\rho(n) \), it is necessary to fix the normalization of Haar measures on \(\text{SO}(Y)(\mathbb{R}) \) for nondegenerate \(Y \in \text{Sym}_2(\mathbb{R}) \). Let \(h_Y \) be an element in \(\text{SL}_2(\mathbb{R}) \) such that

\[
Y = \begin{cases}
\pm h_Y \begin{pmatrix} \sqrt{\det Y} & 0 \\ 0 & \sqrt{\det Y} \end{pmatrix}^{t} h_Y & (\text{Disc } Y < 0), \\
h_Y \begin{pmatrix} 0 & \sqrt{\det Y} \\ \sqrt{\det Y} & 0 \end{pmatrix}^{t} h_Y & (\text{Disc } Y > 0).
\end{cases}
\]

Then, putting

\[
k(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad a(y) = \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix},
\]

(2.1)
we have
\[\text{SO}(Y)(\mathbb{R}) = \begin{cases} h_Y \{ k(\theta) \mid \theta \in \mathbb{R}/(2\pi \mathbb{Z}) \} h_Y^{-1} & (\text{Disc } Y < 0), \\ h_Y \{ \pm a(y) \mid y > 0 \} h_Y^{-1} & (\text{Disc } Y > 0) \end{cases} \]
and we normalize the Haar measure \(d\mu_Y \) on \(\text{SO}(Y)(\mathbb{R}) \) by
\[
\begin{align*}
\int \phi(h_Y k(\theta) h_Y^{-1}) d\mu_Y(\theta) &= \int \phi(\pm h_Y a(y) h_Y^{-1}) \frac{dy}{\sqrt{\pi}} \\
\int_{\text{Disc } Y < 0}^{\text{Disc } Y > 0} &\quad (\text{Disc } Y < 0), \\
\int_{\text{Disc } Y > 0}^{\text{Disc } Y < 0} &\quad (\text{Disc } Y > 0).
\end{align*}
\]
Then, under a suitable normalization of the Haar measure \(d\sigma \) on \(\text{SL}_2(\mathbb{R}) \), we have
\[\rho(n) = |n|^{-3/4} \sum_{\substack{Y \in \Gamma_0 \setminus \text{Sym}^2(\mathbb{Z}) \\text{Disc } Y = n}} M_{\phi}(Y), \quad (2.2) \]
where
\[M_{\phi}(Y) = \int_{\text{SO}(Y)(\mathbb{R})} \phi(h_Y h_Y^{-1} h) d\mu_Y(h) \times \begin{cases} 1 & (n > 0), \\ \frac{1}{\sqrt{2\pi}} & (n < 0). \end{cases} \]
Note that
\[M_{\phi}(mY) = M_{\phi}(Y) \quad (m \in \mathbb{Z} \setminus \{0\}). \quad (2.3) \]
We need a little bit more general periods for later use. For \(Y, Y' \) with \(\text{sgn } Y = \text{sgn } Y' \), put
\[M_{\phi}(Y, Y') = \int_{\text{SO}(Y)(\mathbb{R})} \phi(h_Y h_Y'^{-1} h) d\mu_Y(h). \]
As is proved in [S3, Lemma 6.3], the period \(M_{\phi}(Y, Y') \) is a spherical function as a function of \(Y' \). We define the spherical functions \(\Psi_{\lambda}(Y) (\lambda \in \mathbb{C}) \) on the space of nondegenerate real symmetric matrices of size 2 by
\[
\Psi_{\lambda}(Y) = \begin{cases} P_{-\lambda}(\cosh(\log |\alpha|)) & (\text{Disc } Y < 0), \\ P_{-\lambda/2}^{1/2}(\tanh(\log |\alpha|)) + P_{-\lambda/2}^{1/2}(-\tanh(\log |\alpha|)) & (\text{Disc } Y > 0), \\ \cosh(\log |\alpha|)^{1/2} \end{cases}
\]
where \(\alpha \) is an eigenvalue of \(|\det Y|^{-1/2}Y \), \(P_{-\lambda}(z) \) denotes the Legendre function, which is given by
\[P_{-\lambda}(z) = F \left(\lambda, 1 - \lambda; 1, \frac{1 - z}{2} \right), \]
and \(P_{-\lambda/2}^{1/2}(z) \) denotes the associated Legendre function, which is given by
\[P_{-\lambda/2}^{1/2}(z) = \frac{1}{\Gamma\left(\frac{1}{2} - \lambda\right)} \left(1 + z \right)^{-\lambda-1/4} \cdot F \left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2} - \lambda, \frac{1 - z}{2} \right). \]
The functions $\Psi_{\lambda}(Y)$ does not depend on the choice of α and have the following integral representations:

$$\Psi_{\lambda}(Y) = |\det Y|^{\lambda/2} \int_{0}^{2\pi} |Y[k_0]|_{11}^{-\lambda} \, d\theta \times \left\{ \begin{array}{ll} \frac{1}{2\pi} & (\text{Disc} \, Y < 0) , \\ \frac{1}{\sqrt{2\pi} \Gamma(1-\lambda)} & (\text{Disc} \, Y > 0) . \end{array} \right.$$ \hspace{1cm} (2.4)

The integral representation of $\Psi_{\lambda}(Y)$ with $\text{Disc} \, Y < 0$ is absolutely convergent for all $\lambda \in \mathbb{C}$ and that of $\Psi_{\lambda}(Y)$ with $\text{Disc} \, Y > 0$ is absolutely convergent for $\text{Re}(\lambda) < 0$ and analytically continued to a meromorphic function of λ.

Lemma 10 ([S3, Lemma 6.3]). We have

$$\begin{cases} M_{\Phi}(Y, Y') = 4\sqrt{\pi} \cdot M_{\Phi}(Y)\Psi_{\lambda}(Y') & (\text{Disc} \, Y, \text{Disc} \, Y' < 0) , \\
M_{\Phi}(Y, Y') + M_{\Phi}(-Y, Y') \over 2 = \frac{\Gamma(1-\lambda/2)^2}{2^{\lambda+1/2}\sqrt{\pi}} \cdot M_{\Phi}(Y)\Psi_{\lambda}(Y') & (\text{Disc} \, Y, \text{Disc} \, Y' > 0) . \end{cases}$$

2.2. Zeta functions

For $\Phi_1 \in \mathcal{S}_0^+(I_0 \setminus \mathfrak{f}, \lambda_1)$, $\Phi_2 \in \mathcal{S}_0^+(I_0 \setminus \mathfrak{f}, \lambda_2)$ and $f \in \mathcal{S}(V(\mathbb{R}))$, we define the zeta integral $Z(f; \Phi_1, \Phi_2; s)$ by setting

$$Z(f; \Phi_1, \Phi_2; s) = \int_{0}^{\infty} t^{2s-1} \, dt \int_{\text{SL}_2(\mathbb{R})/I_0} \phi_1(g_1) \, d\mu_{g_1} \int_{\text{SL}_2(\mathbb{R})/I_0} \phi_2(g_2) \, d\mu_{g_2} \times \sum_{x \in \mathcal{C}} f(tp(g_1, g_2, h)x) \, dh ,$$

where $\phi_1(g_i) = \Phi_1(g_i^{-1} \cdot \sqrt{-1}) \, (i = 1, 2)$. Recall that $G_{\kappa}(\mathbb{R}) \ni k = (k_1, k_2, k_3) \mapsto (k_1, k_2) \in \text{SO}(\psi_1(x))(\mathbb{R}) \times \text{SO}(\psi_2(x))(\mathbb{R})$ is an isomorphism. We normalize the Haar measure $d\mu_x$ on $G_{\kappa}(\mathbb{R})$ by

$$d\mu_x(k) = d\mu_x(k_1, k_2, k_3) = d\mu_{\psi_1}(k_1) d\mu_{\psi_2}(k_2) .$$

We can normalize the Haar measures $d\mu_{g_1}, d\mu_{g_2}, d\mu_{h}$ appearing in the zeta integral above so that the following integral formula holds for any $x \in V_{ij}$ and any $F \in L^1(\text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R}) \times \text{GL}_2(\mathbb{R}))$:

$$\int_{0}^{\infty} dt \int_{\text{SL}_2(\mathbb{R})} F(g_1, g_2, th) \, d\mu_{g_1} \, d\mu_{g_2} \, dh = \int_{V_{ij}} |P(y)|^{-2} \, dy \int_{G_{\kappa}(\mathbb{R})} F(g_k) \, d\mu_x(k) ,$$

where g_k is an element in G^+ such that $\rho(g_k)x = y$.

Lemma 11. The zeta integral $Z(f; \Phi_1, \Phi_2; s)$ is absolutely convergent for $\text{Re}(s) > 2$.

Proof. Put

$$k(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} , \quad a(y) = \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix} , \quad n(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} .$$
Then, as a fundamental domain of $SL_2(\mathbb{R})$ for Γ_0, we may take

$$\mathcal{F} := \left\{ g = k(\theta)a(y^{-1})m(-x) \mid 0 < \theta < \pi, \ |x| \leq \frac{1}{2}, \ x^2 + y^2 \geq 1 \right\}.$$

Since Φ_1 and Φ_2 are assumed to be cuspidal, for any $\alpha > 0$ there exist positive constants C_1, C_2 satisfying

$$|\phi_i(g)| = |\Phi_i(x + y\sqrt{-1})| < C_i \ y^{-\alpha}, \quad (g = k(\theta)a(y^{-1})m(-x) \in \mathcal{F}, \ i = 1, 2).$$

Take an $f_0 \in \mathcal{S}(V(\mathbb{R}))$ such that the inequality

$$|f(\rho(k(\theta_1)n(x_1), k(\theta_2)n(x_2), k(\theta_3)n(x_3))v)| \leq f_0(v)$$

holds for any $\theta_1, \theta_2, \theta_3 \in \mathbb{R}, |x_1|, |x_2|, |x_3| \leq 1$ and $v \in V(\mathbb{R})$. Then, for any $g_1, g_2, g_3 \in \mathcal{F}$ and $t > 0$, we have

$$|f(\rho(g_1, g_2, g_3)v)| \leq f_0(\rho(a(y_1^{-1}), a(y_3^{-1}), a(y_3^{-1}))v).$$

For $\beta > 0$, there exists a positive constant C_β satisfying

$$|f_0(v)| \leq C_\beta (\text{tr}^t vv)^{-\beta} \quad (v \neq 0).$$

Then we have

$$|f_0(\rho(a(y_1^{-1}), a(y_2^{-1}), a(y_3^{-1}))v)| \leq C_\beta t^{-2\beta} \sum_{i,j,k=1,2} y_1^{(i-1)y_2^{-y(i)}y_3^{(k-1)}} (v_k^{(i)})^2.$$

When $y_1, y_2 \geq 1/2$, we have $y_1^{\pm 1}, y_2^{\pm 1} \geq 2^{-4} y_1^{-1} y_2^{-1}$. Hence

$$|f_0(\rho(a(y_1^{-1}), a(y_2^{-1}), a(y_3^{-1}))v)| \leq 2^{4\beta} C_\beta t^{-2\beta} (y_1 y_2)^\beta \left(y_3^{-1} ||v_1||^2 + y_3 ||v_2||^2 \right)^{-\beta},$$

where we put $||v_k|| = \left(\sum_{i,j=1,2} (v_k^{(i)})^2 \right)^{1/2}$. If $v \not\in S$, then neither v_1 nor v_2 is equal to 0 and we obtain

$$|f_0(\rho(a(y_1^{-1}), a(y_2^{-1}), a(y_3^{-1}))v)| \leq 2^{3\beta} C_\beta t^{-2\beta} (y_1 y_2)^\beta ||v_1||^{-\beta} ||v_2||^{-\beta} \quad (v \in \mathcal{L} \setminus S).$$

Therefore we have the inequality

$$\sum_{v \in \mathcal{L} \setminus S} |f_0(\rho(a(y_1^{-1}), a(y_2^{-1}), a(y_3^{-1}))v)| \leq 2^{3\beta} C_\beta t^{-2\beta} (y_1 y_2)^\beta \left(\sum_{v_1 \in M_2(\mathbb{Z}) \setminus \{0\}} ||v_1||^{-\beta} \right)^2.$$

The infinite sum with respect to v_1 is the Epstein zeta function of the quadratic form $x_1^2 + x_2^2 + x_3^2 + x_4^2$ in 4 variables and is absolutely convergent for $\text{Re}(\beta) > 4$. Now assume that $s > 2$ and take positive constants $\alpha_1, \alpha_2, \beta_1, \beta_2$ satisfying

$$2s < \beta_1 < \alpha_1 + 1, \quad 2s > \beta_2 > 4, \quad \alpha_2 > \beta_2 - 1.$$
Then the integral \(Z(f; \Phi_1, \Phi_2; s) \) is dominated by

\[
C' \left(\sum_{n \in \mathbb{Z} \setminus \{0\} \atop \|v_1\|^2 = 1} \right)^2 \left(\int_1^\infty \frac{t^{4s-2\beta_1}}{t} \int_{1/2}^\infty \frac{y_1^{\beta_1-\alpha_1}}{y_1^2} \int_{1/2}^\infty \frac{d\alpha_1}{y_1^2} \int_{1/2}^\infty \frac{d\beta_1}{y_1^2} \right) + C'' \left(\sum_{n \in \mathbb{Z} \setminus \{0\} \atop \|v_1\|^2 = 1} \right)^2 \int_0^1 \frac{t^{4s-2\beta_2}}{t} \int_{1/2}^\infty \frac{y_1^{\beta_2-\alpha_2}}{y_1^2} \int_{1/2}^\infty \frac{d\alpha_2}{y_1^2} \int_{1/2}^\infty \frac{d\beta_2}{y_1^2}
\]

for some positive constants \(C', C'' \). From the choice of the constants \(\alpha_1, \alpha_2, \beta_1, \beta_2 \), this implies the convergence of the integral \(Z(f; \Phi_1, \Phi_2; s) \).

We define the local zeta functions with spherical functions as follows:

\[
\zeta_{ij}^{(\infty)}(f; \lambda_1, \lambda_2; s) = \int_{V_{ij}} |P(v)|^{s/2} \Psi_{\lambda_1}(\psi_1(v)) \Psi_{\lambda_2}(\psi_2(v)) f(v) \, dv
\]

\[
(f \in \mathcal{S}(V(\mathbb{R})), \, i, j = 0, 1, 2)
\]

(for the definition of \(V_{ij} \), see (1.5)). The integrals on the right hand side are absolutely convergent if \(\text{Re}(s) > 2 - \frac{\text{Re}(\lambda_1) + \text{Re}(\lambda_2)}{2} \) and \(\text{Re}(\lambda_1), \text{Re}(\lambda_2) < 0 \), and have analytic continuations to meromorphic functions of \((\lambda_1, \lambda_2, s) \) in \(\mathbb{C}^3 \). We also put

\[
\zeta_+^{(\infty)}(f; \lambda_1, \lambda_2; s) = \zeta_{11}^{(\infty)}(f; \lambda_1, \lambda_2; s), \quad \zeta_-^{(\infty)}(f; \lambda_1, \lambda_2; s) = \sum_{i,j=0,2} \zeta_{ij}^{(\infty)}(f; \lambda_1, \lambda_2; s).
\]

This kind of zeta integrals and local zeta functions were examined in [S3]. By [S3, Proposition 5.2], there exist certain Dirichlet series of the form

\[
\zeta_{\pm}(\Phi_1, \Phi_2; s) = \sum_{x \in \rho(f) \setminus \mathcal{L}_{\pm}} M_{\Phi_1, \Phi_2}(x) \left| \frac{P(x)}{x} \right|^s,
\]

where the coefficients \(M_{\Phi_1, \Phi_2}(s) \) are period integrals of \(\Phi_1 \Phi_2 \) over \(\mathcal{G}_s^\phi(\mathbb{R})/\mathcal{G}_s^\phi(\mathbb{Z}) \), and they satisfy the identity

\[
Z(f; \Phi_1, \Phi_2; s) = \zeta_+(\Phi_1, \Phi_2; s) \zeta_{\pm}^{(\infty)}(f; \lambda_1, \lambda_2; s) + \zeta_-(\Phi_1, \Phi_2; s) \zeta_{\pm}^{(\infty)}(f; \lambda_1, \lambda_2; s).
\]

(2.5)

Our main result is a formula expressing the zeta functions \(\zeta_{\pm}(\Phi_1, \Phi_2; s) \) in terms of the Maass lifts \(\Theta(\Phi_1) \) and \(\Theta(\Phi_2) \).

Let \(F_1 \in \mathcal{S}_{1/2}^+(\Gamma_0(4) \setminus \mathcal{L}, \mu_1) \) (\(\mu_1 = \frac{3i+1}{4} \)) and \(F_2 \in \mathcal{S}_{1/2}^+(\Gamma_0(4) \setminus \mathcal{L}, \mu_2) \) (\(\mu_2 = \frac{3i+1}{4} \)) be Maass cusp forms of weight 1/2. The Maass forms \(F_1 \) and \(F_2 \) have the Fourier
expansion of the following form:

\[
F_1(z) = \sum_{n \neq 0} \rho_1(n) W_{\frac{1}{2} \text{sgn}(n), \mu_1 - \frac{1}{2}} (4\pi |n| y) e[nx].
\]

\[
F_2(z) = \sum_{n \neq 0} \rho_2(n) W_{\frac{1}{2} \text{sgn}(n), \mu_2 - \frac{1}{2}} (4\pi |n| y) e[nx].
\]

Using the Fourier coefficients of \(F_1\) and \(F_2\), we define Dirichlet series \(D_{\pm}(F_1, F_2; s)\) as follows:

\[
D_{\pm}(F_1, F_2; s) = \sum_{n=1}^{\infty} \frac{\rho_1(\pm n) \rho_2(\pm n)}{n^s}.
\] (2.6)

Then our main theorem is the following:

Theorem 1. We have

\[
\zeta_+(\Phi_1, \Phi_2; s) = \frac{\Gamma(1 - \frac{2s}{\lambda_1 + 1}) \Gamma(1 - \frac{2s}{\lambda_2 + 1})}{2^s \pi^{\frac{1}{2}}} \cdot \zeta(2s - 1) D_+ \left(\Theta(\Phi_1), \Theta(\Phi_2); s - \frac{3}{2} \right),
\]

\[
\zeta_-(\Phi_1, \Phi_2; s) = 4\pi \cdot \zeta(2s - 1) D_- \left(\Theta(\Phi_1), \Theta(\Phi_2); s - \frac{3}{2} \right).
\]

For the proof of Theorem 1, we introduce the following auxiliary zeta integral, the contribution of the primitive part \(L^{\text{pr}}\):

\[
Z_{\text{pr}}(f; \Phi_1, \Phi_2; s) = \int_0^\infty t^{4s-1} dt \int_{\text{SL}_2(\mathbb{R})/\Gamma_0} \phi_1(g_1) dg_1 \int_{\text{SL}_2(\mathbb{R})/\Gamma_0} \phi_2(g_2) dg_2
\]

\[
\times \int_{\text{SL}_2(\mathbb{R})/\Gamma_0} \sum_{x \in \mathcal{L}_{\text{pr}}} f(t \rho(g_1, g_2, h)x) dh .
\]

Lemma 12. If \(\text{Re}(s) > 2\), we have

\[
Z(f; \Phi_1, \Phi_2; s) = \zeta(2s) \zeta(2s - 1) Z_{\text{pr}}(f; \Phi_1, \Phi_2; s).
\]

Proof. Put \(\Delta = \{ T \in \mathcal{M}_2(\mathbb{Z}) \mid \det T > 0 \} \). Then it is easy to see that the mapping

\[
\mathcal{L}^{\text{pr}} \times \Delta/\Gamma_0 \ni (x, T) \mapsto \rho(1, 1, T)x \in \mathcal{L} \setminus \mathbf{S}
\]

is a bijection. Hence the lemma is an immediate consequence of the following lemma. \(\square\)

Lemma 13. Let \(f\) be a right \(\text{GL}_2(\mathbb{Z})\)-invariant measurable function on \(\text{GL}_2(\mathbb{R})\). Then the identity

\[
\int_0^\infty t^{4s-1} dt \int_{\text{SL}_2(\mathbb{R})/\Gamma_0} \sum_{T \in \Delta/\Gamma_0} f(tT) dh
\]

\[
= \zeta(2s) \zeta(2s - 1) \int_0^\infty t^{4s-1} dt \int_{\text{SL}_2(\mathbb{R})/\Gamma_0} f(tT) dh
\]

holds, if \(\text{Re}(s) > 1\) and the integral on the left hand side of the identity is absolutely convergent.
Proof. For a positive integer \(n \), put \(\Delta_n = \{ T \in \Delta \mid \det T = n \} \). Let \(\Delta_n = \bigcup \delta_i \Gamma_0 \) be the left coset decomposition of \(\Delta_n \). We also put \(\Gamma_{\Delta, n} = \Gamma_0 \cap \left(\bigcap_i \delta_i \Gamma_0 \delta_i^{-1} \right) \). Then we have

\[
\int_0^\infty t^{4s-1} \frac{dt}{\text{SL}_2(\mathbb{R})/\Gamma_0} \sum_{T \in \Delta_n/\Gamma_0} f(\theta T) \, dh
\]

\[= \frac{1}{[\Gamma_0 : \Gamma_{\Delta, n}]} \int_0^\infty t^{4s-1} \frac{dt}{\text{SL}_2(\mathbb{R})/\Gamma_{\Delta, n}} \sum_i f(\theta \delta_i) \, dh \]

\[= \frac{1}{n^{2s}} [\Gamma_0 : \Gamma_{\Delta, n}] \sum_i \int_0^\infty t^{4s-1} \frac{dt}{\text{SL}_2(\mathbb{R})/\Gamma_{\Delta, n}} f(\theta) \, dh \]

\[= \frac{1}{n^{2s}} \left(\sum_i \left[\frac{[\Gamma_0 : \delta_i^{-1} \Gamma_{\Delta, n} \delta_i]}{[\Gamma_0 : \Gamma_{\Delta, n}]} \right] \right) \int_0^\infty t^{4s-1} \frac{dt}{\text{SL}_2(\mathbb{R})/\Gamma_0} f(\theta) \, dh \]

Since \([\Gamma_0 : \delta_i^{-1} \Gamma_{\Delta, n} \delta_i] = 1 \), we obtain

\[
\int_0^\infty t^{4s-1} \frac{dt}{\text{SL}_2(\mathbb{R})/\Gamma_0} \sum_{T \in \Delta_n/\Gamma_0} f(\theta T) \, dh
\]

\[= \frac{\nu(\Delta_n/\Gamma_0)}{n^{2s}} \int_0^\infty t^{4s-1} \frac{dt}{\text{SL}_2(\mathbb{R})/\Gamma_0} f(\theta) \, dh \]

Hence the lemma follows from the identity

\[
\sum_{n=1}^\infty \frac{\nu(\Delta_n/\Gamma_0)}{n^{2s}} = \sum_{n=1}^\infty \left(\sum_{d|n} d \right) n^{-2s} = \zeta(2s) \zeta(2s - 1) \quad \square
\]

Proof of Theorem 1. By Lemma 12, it is enough to calculate \(Z_{pf}(f; \Phi_1, \Phi_2; s) \). We have

\[
Z_{pf}(f; \Phi_1, \Phi_2; s) = \sum_{i, j} \sum_{x \in \Gamma \cap \mathcal{D}'(\mathbb{R}) \setminus \mathcal{V}_j} \frac{\text{SO}(\psi_1(x)(\mathbb{Z})) \times \text{SO}(\psi_2(x)(\mathbb{Z})) : G_2(\mathbb{Z})}{|P(x)|^s}
\]

\[\times \int_{\mathcal{V}_j} |P(y)|^{s-2} f(y) \, dy \int_{\text{SO}(\psi_1(x)(\mathbb{Z}))} \phi_1(g_1, y, k_1) \, d\mu_{\psi_1(x)}(k_1) \]

\[\times \int_{\text{SO}(\psi_2(x)(\mathbb{Z}))} \phi_2(g_2, y, k_2) \, d\mu_{\psi_2(x)}(k_2) \]

(2.7)

where \(g_1, y, g_2, y \) are elements in \(\text{SL}_2(\mathbb{R}) \) for which there exists an \(h_y \in \text{GL}_2(\mathbb{R}) \) satisfying \(\rho(g_1, y, g_2, y, h_y) x = y \). Note that we may take \(g_1, y = h_{\psi_1(y)} h_{\psi_1(x)}^{-1} \) and \(g_1, y = h_{\psi_2(y)} h_{\psi_2(x)}^{-1} \) (for the definition of \(h_y \), see (2.1)). Therefore the integral with respect to \(k_1 \) (resp. \(k_2 \)) is
equal to $M_{\Phi_1}(\psi_1(x), \psi_1(y))$ (resp. $M_{\Phi_2}(\psi_2(x), \psi_2(y))$). Put

$$X_{ij}^p(n) = \begin{cases} (Y_1, Y_2) \in X^p & \text{Disc } Y_1 = \text{Disc } Y_2 = (-1)^{-1}n, \\ \text{sgn } Y_1 = (i, 2 - i), \ \text{sgn } Y_2 = (j, 2 - j) \end{cases}.$$ \hfill (2.3)

Then, by Lemmas 9 and 10, the right hand side of (2.7) is equal to

$$\sum_{i,j} \sum_{n=1}^{\infty} n^{-s} \sum_{(Y_1, Y_2) \in I_G^0 \setminus X_{ij}^p(n)} \int_{V_{ij}} |P(y)|^{s-2} M_{\Phi_1}(Y_1, \psi_1(y)) M_{\Phi_2}(Y_2, \psi_2(y)) f(y) \, dy$$

$$= 2^4 \pi \sum_{i,j=0,2} \zeta_{ij}^{\text{pr}}(\Phi_1, \Phi_2; s) \zeta_{ij}^{(\infty)}(f; \lambda_1, \lambda_2; s)$$

$$+ \frac{\Gamma(1 - \frac{i}{4})^2 \Gamma(1 - \frac{j}{4})^2}{2^{i+1} \pi} \lambda_{ij}^{\text{pr}}(\Phi_1, \Phi_2; s) \lambda_{ij}^{(\infty)}(f; \lambda_1, \lambda_2; s),$$

where

$$\lambda_{ij}^{\text{pr}}(\Phi_1, \Phi_2; s) = \sum_{n=1}^{\infty} n^{-s} \sum_{(Y_1, Y_2) \in I_G^0 \setminus X_{ij}^p(n)} M_{\Phi_1}(Y_1) M_{\Phi_2}(Y_2).$$

By (2.2), (2.3) and (2.6), we have

$$\lambda_{ij}^{\text{pr}}(\Phi_1, \Phi_2; s) = \begin{cases} \frac{1}{\xi(2s)} \cdot D_+(\Theta(\Phi_1), \Theta(\Phi_2); s - \frac{3}{2}) & (i = j = 1), \\ \frac{1}{4\xi(2s)} \cdot D_-(\Theta(\Phi_1), \Theta(\Phi_2); s - \frac{3}{2}) & (i, j = 0, 2). \end{cases}$$

Therefore we obtain

$$Z_{\text{pr}}(f; \Phi_1, \Phi_2; s)$$

$$= \frac{(1 - \frac{i}{4})^2 \Gamma(1 - \frac{j}{4})^2}{2^{i+1} \pi} \cdot D_+(\Theta(\Phi_1), \Theta(\Phi_2); s - \frac{3}{2}) \cdot \zeta_{ij}^{(\infty)}(f; \lambda_1, \lambda_2; s)$$

$$+ 4\pi \cdot D_-(\Theta(\Phi_1), \Theta(\Phi_2); s - \frac{3}{2}) \cdot \zeta_{ij}^{(\infty)}(f; \lambda_1, \lambda_2; s).$$

This proves the theorem. \hfill \Box

2.3. Functional equation

We identify the vector space V^* dual to V with V via the bilinear form

$$\langle x, y \rangle = \langle (x_1, x_2), (y_1, y_2) \rangle = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle.$$

Then the contragredient representation ρ^* is given by

$$\rho^* (g_1, g_2, h)(x_1, x_2) = (g_1 x_1 g_2^{-1}, g_1 x_2 g_2^{-1}) h^{-1}$$

and $P(x)$ is the fundamental relative invariant of the dual prehomogeneous vector space (G, ρ^*, V). Therefore the local zeta functions and the global zeta functions associated with (G, ρ^*, V) coincide with $\zeta_{ij}^{(\infty)}(f; \lambda_1, \lambda_2; s)$ and $\zeta_{ij}(\Phi_1, \Phi_2; s)$, respectively. Moreover, if we replace G with $G' = \text{SL}_2 \times \text{SL}_2 \times \text{GL}_2$, then (G', ρ, V) is a prehomogeneous...
vector space equivalent to \((G, \rho, V)\) and \(G' = L \times U\) (\(L = SU_2 \times SU_2 \times GL_1, U = SU_2\)) determines a symmetric structure in the sense of [S3, §4]. Hence the general theory developed in [S3] can apply to our zeta functions attached to a pair of Maass cusp forms and the local zeta functions \(\xi^{(\infty)}_\pm (f; \lambda_1, \lambda_2; s)\) and the zeta functions \(\xi_\pm (\Phi_1, \Phi_2; s)\) satisfy certain functional equations ([S3, Theorems 5.3, 5.4]).

Theorem 2. The following functional equation holds for any \(f \in \mathcal{S}(V(\mathbb{R}))\):

\[
\begin{bmatrix}
\xi_\pm^{(\infty)}(f; \lambda_1, \lambda_2; s) \\
\xi_\pm^{(\infty)}(f; \lambda_1, \lambda_2; s)
\end{bmatrix}
= \Gamma(\lambda_1, \lambda_2; s)
\begin{bmatrix}
\xi_\pm^{(\infty)}(f; \lambda_1, \lambda_2; 2-s) \\
\xi_\pm^{(\infty)}(f; \lambda_1, \lambda_2; 2-s)
\end{bmatrix},
\]

where

\[
\Gamma(\lambda_1, \lambda_2; s) = 2^{-1} \pi^{-4s+2} \Gamma\left(s + \frac{\lambda_1 + \lambda_2}{2} - 1\right) \Gamma\left(s + \frac{\lambda_1 - \lambda_2 - 1}{2}\right) \Gamma\left(s + \frac{\lambda_2 - \lambda_1 - 1}{2}\right) \Gamma\left(s - \frac{\lambda_1 + \lambda_2}{2}\right)
\times
\left(\begin{array}{c}
2 \pi \Gamma(1-\lambda_2) \Gamma(1-\lambda_2) \\
\sin \pi \lambda_1 + \sin \pi \lambda_2
\end{array}\right),
\]

Proof. Let \(B_2\) be the subgroup of \(SL_2\) consisting of all upper triangular matrices in \(SL_2\) and consider the subgroup \(G' = B_2 \times B_2 \times GL_2\) of \(G\). Then, \((G', \rho, V)\) with the smaller group \(G'\) is still a prehomogeneous vector space and the fundamental relative invariants are given by

\[
P(x) = \det \pi(x), \quad P_1(x) = \psi_1(x)_{11}, \quad P_2(x) = \psi_2(x)_{11}.
\]

The local zeta functions of \((G', \rho, V)\) are given by the integrals

\[
\Xi_\pm(f; \mu_1, \mu_2; s) = \int_{V'_x} |P(x)|^{s/2} |P_1(x)|^{\mu_1} |P_2(x)|^{\mu_2} f(x) \, dx \quad (f \in \mathcal{S}(V(\mathbb{R}))),
\]

where \(V'_x = \{x \in V(\mathbb{R}) | \pm P(x) > 0, \ P_1(x) P_2(x) \neq 0\}\). By the integral representation (2.4) of the spherical function \(\Phi_\lambda\), we have

\[
\xi_\pm^{(\infty)}(f; \lambda_1, \lambda_2; s) = \Xi_\pm(\mathcal{K}(f); -\lambda_1, -\lambda_2; s + \frac{\lambda_1 + \lambda_2}{2}) \times \left\{\begin{array}{c}
\frac{2 \pi \Gamma(1-\lambda_2) \Gamma(1-\lambda_2)}{\sin \pi \lambda_1 + \sin \pi \lambda_2} \quad (+\text{case}), \\
\frac{1}{4\pi^2} \quad (-\text{case}).
\end{array}\right.
\]

Thus the theorem is reduced to the functional equation of the local zeta functions of \((G', \rho, V)\), which is a special case of the functional equations given in [S2, Theorem 4.1]. We omit further details of the explicit calculation. \(\Box\)

The following global functional equation is an immediate consequence of Theorem 2 and [S3, Theorem 5.4].
THEOREM 3. The zeta functions \(\zeta_{\pm} (\Phi_1, \Phi_2; s) \) have analytic continuations to meromorphic functions of \(s \). Moreover, if we put

\[
\xi_{\pm} (\Phi_1, \Phi_2; s) = \pi^{-2s} \Gamma (s + \frac{\lambda_1 - \lambda_2 - 1}{2}) \Gamma (s - \frac{\lambda_1 + \lambda_2}{2}) \zeta_{\pm} (\Phi_1, \Phi_2; s),
\]

then they satisfy the following functional equation:

\[
\left(\frac{\xi_+ (\Phi_1, \Phi_2; 2 - s)}{\xi_- (\Phi_1, \Phi_2; 2 - s)} \right) = C (\lambda_1, \lambda_2; s) \left(\frac{\xi_+ (\Phi_1, \Phi_2; s)}{\xi_- (\Phi_1, \Phi_2; s)} \right),
\]

where

\[
C (\lambda_1, \lambda_2; s) = \frac{1}{\sin \pi (s + \frac{\lambda_1 + \lambda_2}{2}) \cos \pi (s + \frac{\lambda_1 - \lambda_2}{2})}
\times
\left(\frac{\pi}{\sin \pi s \sin \frac{\pi \lambda_1}{2} \sin \frac{\pi \lambda_2}{2}} \frac{\Gamma (2 - \lambda_1) \Gamma (2 - \lambda_2)}{\sin 2\pi s + \sin \pi \lambda_1 + \sin \pi \lambda_2} \frac{\Gamma (1 - \lambda_1) \Gamma (1 - \lambda_2)}{\pi \sin \pi \lambda_1 \sin \pi \lambda_2} \right).
\]

References

Department of Mathematics
Rikkyo University
Nishi-Ikebukuro, Toshima-ku, Tokyo
171–8501, Japan
e-mail: sato@rikkyo.ne.jp