Some Elementary Properties of Hardy-Littlewood Homogeneous Spaces

by

Takao Watanabe

(Received December 9, 1996)

Introduction

The notion of Hardy-Littlewood varieties was first introduced by Borovoi and Rudnick ([B-R]) for counting integer points in affine algebraic varieties defined over \(\mathbb{Q} \). Let \(W \) be an affine space and \(X \) be a closed subvariety of \(W \). We choose an open subset \(B \) in the adele space \(X(\mathbb{A}) \) whose infinite component \(B_\infty \) is a connected component of \(X(\mathbb{R}) \) and finite component \(B_f \) is open compact in \(X(\mathbb{A}_f) \). Then an important problem of number theory is to count or estimate the number of rational points in \(B \). Define the counting function

\[
N(T, X ; B) = \sharp (X(\mathbb{Q}) \cap (B_\infty^T \times B_f)),
\]

where \(B_\infty^T \) is the set of \(x \in B_\infty \) whose Euclidean norm is less than or equal to a positive real number \(T \). A variety \(X \) is called a Hardy-Littlewood variety if there exists a locally constant non-negative function \(\delta \) on \(X(\mathbb{A}) \) such that, for any \(B \) as above, one has

\[
N(T, X ; B) \sim \int_{B_\infty^T \times B_f} \delta(x) d\omega_\mathcal{X}(x) \quad (T \to \infty).
\]

Here \(\omega_\mathcal{X} \) denotes the Tamagawa measure associated with a gauge form on \(X \). A typical example of such varieties is the quadric \(\{ x : Q(x) = a \} \) defined from an indefinite quadratic form \(Q \) in \(n \) variables, \(n \geq 4 \), and \(a \in \mathbb{Z} - \{0\} \). In fact, Borovoi and Rudnick proved that many affine homogeneous spaces are Hardy-Littlewood. For instance, based on the work of [D-R-S] or [E-M-S], an affine symmetric space \(X = G/H \) is Hardy-Littlewood if \(G \) is a semisimple and simply connected group having the strong approximation property and \(H \) has no nontrivial \(\mathbb{Q} \)-rational characters. Several interesting examples were also given in [B-R].

In this paper, we give some general properties satisfied by Hardy-Littlewood homogeneous spaces. Our tool is a mean value theorem in adele geometry (cf. [O], [M], [M-W]). Morishita showed that the uniformity holds for some wide class of

1991 Mathematics Subject Classification. Primary 11R56, Secondary 11H60.
homogeneous spaces. It is stated as the following integral formula;
\[\int_{G(\mathbb{A})X(\mathbb{Q})} f(x)\omega^\mathbb{Q}_1(x) = \frac{\tau(G, X)}{\tau(G)} \int_{G(\mathbb{A})/G(\mathbb{Q})} \sum_{z \in X(\mathbb{Q})} f(gz)\omega^\mathbb{Q}_1(g) \]
for \(X = G/H \) and any compactly supported continuous function \(f \) on \(G(\mathbb{A})X(\mathbb{Q}) \), where \(G \) is a connected algebraic group defined over \(\mathbb{Q} \), \(H \) a closed \(\mathbb{Q} \)-subgroup of \(G \) and it is assumed that both \(G \) and \(H \) have nontrivial \(\mathbb{Q} \)-rational characters. Constants \(\tau(G) \) and \(\tau(G, X) \) denote Tamagawa numbers of \(G \) and \(X \), respectively. Applying this formula to Hardy-Littlewood homogeneous spaces, we will prove the following theorem.

Theorem. If \(X = G/H \) is a Hardy-Littlewood variety with density function \(\delta \), then one has
\[\frac{1}{\tau(G)} \int_{G(\mathbb{A})/G(\mathbb{Q})} \delta(g^{-1}x)\omega^\mathbb{Q}_1(g) = \begin{cases} \tau(G, X)^{-1} & (x \in G(\mathbb{A})X(\mathbb{Q})) \\ 0 & (x \notin G(\mathbb{A})X(\mathbb{Q})) \end{cases} \]

When \(G \) has the strong approximation property, Borovoi and Rudnick gave a formula of the density function \(\delta \) under some conditions, (see Theorem 2). The same formula of \(\delta \) follows immediately from the above theorem.

Corollary. Let \(X = G/H \) be as above. Assume that \(G \) has the strong approximation property. Then
\[\delta(x) = \begin{cases} |\pi_1(H)_{\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})}| & (x \in G(\mathbb{A})X(\mathbb{Q})) \\ 0 & (x \notin G(\mathbb{A})X(\mathbb{Q})) \end{cases} \]
where \(\pi_1(H)_{\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})} \) denotes the coinvariant quotient of Borovoi's fundamental group of \(H \) under \(\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \)-action.

Furthermore, we obtain a geometric sufficient condition for the strongly Hardy-Littlewood property.

Corollary. Let \(X = G/H \) be as above. Assume that \(G \) has the strong approximation property and the second homotopy group of the complex manifold \(X(\mathbb{C}) \) vanishes. Then \(\delta \) is identically equal to 1 on \(X(\mathbb{A}) \), i.e. \(X \) is strongly Hardy-Littlewood.

In Section 2, we will exactly give a definition of Hardy-Littlewood varieties and will recall the results of Borovoi and Rudnick. The results stated above will be proved in Section 3.

The author would like to thank Professor M. Morishita for helpful discussions.

Notations. Let \(k \) be an algebraic number field and \(\mathcal{V} \) the set of all places of \(k \). We write \(\mathcal{V}^\infty \) and \(\mathcal{V}_f \) for the sets of all infinite places and all finite places, respectively. For \(v \), \(k_v \) stands for the completion of \(k \) at \(v \). If \(v \) is a finite place, \(\mathcal{O}_v \) denotes the ring of integers in \(k_v \). The ring of adeles and the ring of finite adeles of \(k \) are denoted by \(\mathbb{A} \) and \(\mathbb{A}_f \), respectively. We set \(k_\infty = \prod_{v \in \mathcal{V}^\infty} k_v \). If \(S \) is a finite set of \(\mathcal{V} \) containing
\(\mathcal{V}_\infty \), then \(\mathcal{O}(S) \) denotes the ring of \(S \)-integers in \(k \).

Let \(X \) be a non-singular algebraic variety defined over \(k \). For any \(k \)-algebra \(R \), \(X(R) \) denotes the set of \(R \)-rational points of \(X \). The set \(X(\mathbb{A}) \) of adele points of \(X \) is a locally compact topological space. A real-valued function \(\delta \) on \(X(\mathbb{A}) \) is said to be locally constant if the restriction of \(\delta \) to \(B_\infty \times B_f \) is a constant for any topological connected component \(B_\infty \) of \(X(k_\infty) \) and any sufficiently small open compact subset \(B_f \) in \(X(\mathbb{A}_f) \). By a gauge form on \(X \), we mean a nowhere zero regular differential form of degree \(\dim X \). If \(X \) has a gauge form \(\omega_X \), then one associates a measure \(\omega_{X(k_v)} \) on \(X(k_v) \) for any place \(v \in \mathcal{V} \). Since \(X \) is defined over \(\mathcal{O}(S) \) for some finite set \(S \) of \(\mathcal{V} \) containing \(\mathcal{V}_\infty \), one can consider the set \(X(\mathcal{O}(v)) \) of \(\mathcal{O}(v) \)-rational points and its volume \(\omega_{X(k_v)}(X(\mathcal{O}(v))) \) for any \(v \notin S \). If the infinite product \(\prod_{v \notin S} \omega_{X(k_v)}(X(\mathcal{O}(v))) \) converges absolutely, then we define the Tamagawa measure on \(X(\mathbb{A}) \) by

\[
\omega^X_{\mathbb{A}} = |\Delta_k|^{-\dim X/2} \prod_{v \in \mathcal{V}} \omega_{X(k_v)},
\]

where \(\Delta_k \) is the discriminant of \(k \). When \(\prod_{v \notin S} \omega_{X(k_v)}(X(\mathcal{O}(v))) \) does not converge absolutely, we choose a family \(\{\lambda_v\} \) of convergence factors for \(X \) and define the Tamagawa measure derived from \(\{\lambda_v\} \) by

\[
\omega^X_{\mathbb{A}} = |\Delta_k|^{-\dim X/2} \prod_{v \in \mathcal{V}} \lambda_v^{-1} \omega_{X(k_v)}
\]

(cf. [We, 2.3]).

Let \(G \) be a connected affine algebraic group defined over \(k \). We denote by \(G^u \) the unipotent radical of \(G \) and by \(G^{red} \) the quotient group \(G/G^u \). In this paper, we will identify \(G^{red} \) with a Levi subgroup of \(G \), so that \(G = G^u G^{red} \) is a Levi-Chevalley decomposition of \(G \). If \(G^{red} \) is semisimple and simply connected, then \(G \) is said to be simply connected. Let \(X(G) \) and \(X_l(G) \) be the free \(\mathbb{Z} \)-modules consisting of all rational characters and all \(k \)-rational characters of \(G \), respectively. The absolute Galois group \(\text{Gal}(\bar{k}/k) \) acts on \(X(G) \). The representation of \(\text{Gal}(\bar{k}/k) \) in the space \(X(G) \otimes \mathbb{Q} \) is denoted by \(\rho_G \) and the corresponding Artin \(L \)-function is denoted by \(L(s, \rho_G) = \prod_{v \in \mathcal{V}} L_v(s, \rho_G) \). Borovoi defined the algebraic fundamental group \(\pi_1(G) \) of \(G \). (See [B], [M] for its definition.) As an abstract group, \(\pi_1(G) \) is canonically isomorphic to the topological fundamental group of the complex Lie group \(G(\mathbb{C}) \).

The difference between these two fundamental groups is that \(\pi_1(G) \) has an additional \(\text{Gal}(\bar{k}/k) \)-module structure. That is, \(\pi_1(\cdot) \) defines an exact functor from the category of connected affine \(k \)-groups to the category of \(\text{Gal}(\bar{k}/k) \)-modules generated finitely over \(\mathbb{Z} \). We denote by \(\pi_1(G)_{\text{Gal}(\bar{k}/k)_{tor}} \) the torsion part of the coinvariant quotient of \(\pi_1(G) \) under \(\text{Gal}(\bar{k}/k) \) action. Notice that if \(X_l(G) = 0 \), then \(\pi_1(G)_{\text{Gal}(\bar{k}/k)} \) is finite, i.e. \((\pi_1(G)_{\text{Gal}(\bar{k}/k)})_{\text{tor}} = \pi_1(G)_{\text{Gal}(\bar{k}/k)} \) (cf. [M, Theorem 3.4]).

Let \(G \) be a unimodular connected affine algebraic group defined over \(k \). Then \(G \) admits an invariant gauge from \(\omega_G \). There is a finite set \(S \) of \(\mathcal{V} \) containing \(\mathcal{V}_\infty \) so that \(G \) is defined over \(\mathcal{O}(S) \). It is known by [O] that the product \(\prod_{v \notin S} \omega_{G(k_v)}(G(\mathcal{O}(v))) \) converges absolutely if and only if \(X(G) = 0 \). If \(X(G) \neq 0 \), we take (and fix) a family
of convergence factors for \(G \) as \(\{ L_e(1, \rho_G)^{-1} \} \) and normalize the Tamagawa measure on \(G(\mathbb{A}) \) as follows.

\[
\omega_G^G = \prod_{v \in \mathcal{V}_\infty} \omega_{G(\mathbb{Q}_v)},
\]

(0.1)

\[
\omega_f^G = |\Delta_k|^{-\dim G/2} r_G^{-1} \prod_{v \in \mathcal{V}_f} L_e(1, \rho_G)^{-1} \omega_{G(\mathbb{Q}_v)},
\]

\[
\omega_A^G = \omega_G^G \omega_f^G.
\]

Here the constant \(r_G \) is defined to be

\[
r_G = \lim_{s \to 1} (s-1)^{\text{rank} X_0(G)} L(s, \rho_G).
\]

For non-negative non-decreasing functions \(f(t) \) and \(g(t) \) defined on the set of positive real numbers, the notation \(f(t) \sim g(t) \ (t \to \infty) \) means that \(f(t) \) is identically zero if \(g(t) \) is identically zero, otherwise \(\lim_{t \to \infty} f(t)/g(t) = 1 \).

1. Special homogeneous spaces

In this section, we define \(k \)-special homogeneous spaces. The terminology "special homogeneous space" was first introduced by Ono in [O].

DEFINITION. An affine algebraic group \(G \) is said to be \(k \)-special if \(G \) is defined over \(k \), connected and \(X_k(G) = 0 \).

The condition \(X_k(G) = 0 \) is equivalent to that \(G^{\text{red}} \) has no nontrivial central \(k \)-split torus. If \(G \) is \(k \)-special, then \(G \) is unimodular, i.e. \(G \) admits an invariant gauge form \(\omega_G \). The associated Tamagawa measure \(\omega_A^G \) on \(G(\mathbb{A}) \) is normalized as in (0.1).

DEFINITION. An algebraic variety \(X \) is called a \(k \)-special homogeneous space if \(X \) satisfies the following two conditions;

(S1) There exist a \(k \)-special group \(G \) and a \(k \)-special closed subgroup \(H \) of \(G \) such that \(X \) is \(k \)-isomorphic to the homogeneous space \(G/H \).

(S2) \(X(k) \) is nonempty.

We denote by \(\mathcal{S}_k \) the set of all \(k \)-special homogeneous spaces.

Notice that if we assume the condition (S1), then the condition (S2) is equivalent to that \(X(k_v) \) is nonempty for all \(v \in \mathcal{V} \) and the Brauer-Manin obstruction to the Hasse principle for \(X \) is trivial ([B2, Corollary 2.5]).

DEFINITION. Let \(X \) be a \(k \)-special homogeneous space and \(x_0 \in X(k) \) be a base point. A pair \((G, H) \) consisting of a \(k \)-special algebraic group \(G \) and its \(k \)-special closed subgroup \(H \) is called a realization of \((X, x_0) \) if there is a \(k \)-isomorphism \(f \) from \(G/H \) onto \(X \) such that \(f(H) = x_0 \). We denote by \(\mathcal{R}_k(X, x_0) \) the set of all realizations of \((X, x_0) \).

If \((G, H) \in \mathcal{R}_k(X, x_0) \), then \(X \) has an action of \(G \) through an isomorphism
$f: G/H \to X$. If no confusion arise, we omit f and the action of $g \in G$ to $x \in X$ will be simply written as gx. The next proposition follows from [R, Theorem 3 and Lemma 2].

Proposition 1. A k-special homogeneous space X is a quasi-affine variety defined over k. For every $(G, H) \in \mathcal{R}(X, x_0)$, there exists a k-embedding ι of X into an affine space W (onto a closed subset of an affine space W if X is affine) on which G operates k-linearly.

If $x \in S_k$ and $(G, H) \in \mathcal{R}(X, x_0)$, then X admits the canonical gauge form ω_X so that the matching $\omega_G = \omega_X \omega_H$ holds. We normalize the Tamagawa measure on $X(\mathbb{A})$ as follows.

$$\omega_{\infty}^X = \prod_{v \in V_{\infty}} \omega_{X(k_v)} ,$$

$$\omega_f^X = |\Delta_k|^{\dim X/2} \prod_{v \in V_f} \frac{L_v(1, \rho_G)}{L_v(1, \rho_H)} \omega_{X(k_v)} ,$$

$$\omega_A^X = \omega_{\infty}^X \omega_f^X .$$

Then the Tamagawa measures ω_X^A, ω_f^A, and ω_A^H match together topologically (cf. [B-R, Lemma 1.6.5]). We note that the Tamagawa measure ω_A^X is independent of the choice of a realization of X (cf. [B-R, Remark 1.6.6]).

2. Hardy-Littlewood varieties

We give a definition of Hardy-Littlewood varieties. Let X be a non-singular quasi-affine algebraic variety defined over k. We assume that X has a gauge form ω_X and the Tamagawa measure ω_A^X derived some family of convergence factors for X. We consider a triple (X, ι, W) consisting of above X, a k-affine space W and a k-embedding $\iota : X \to W$. The set $W(k_{\infty})$ is regarded as a finite dimensional real vector space. Let Ω be any o-symmetric bounded convex body in $W(k_{\infty})$ which contains the origin o as an inner point. By an o-symmetric set, we mean a set which is symmetric with respect to the origin. Notice that there is an one to one correspondence between the set of norms of $W(k_{\infty})$ and the set of o-symmetric bounded convex body having o as an inner point (cf. [L, p. 7, Theorem 4]). For a positive real number T, we set

$$\Omega(T) = \{ T \omega : \omega \in \Omega \} .$$

Let B_∞ be a topological connected component of $X(k_{\infty})$ and B_f an open compact subset of $X(\mathbb{A}_f)$. Then $B = B_\infty \times B_f$ is an open subset of $X(\mathbb{A})$. We set

$$B_{\infty}(T) = \{ x \in B_\infty : \iota(x) \in \Omega(T) \} , \quad B_f(T) = B_\infty(T) \times B_f .$$

The counting function $N(\Omega(T), X ; B)$ is defined to be

$$N(\Omega(T), X ; B) = \sharp(X(k) \cap B(T)) .$$
For \((X, \mathfrak{i}, W)\), we assume the following condition;

(HL0) The volume \(\omega_x^X(i^{-1}(\Omega(T)))\) is finite for any \(T > 0\) and any \(\Omega\) as above. This condition is clearly satisfied if \(i(X)\) is Zariski closed in \(W\).

DEFINITION. A triple \((X, \mathfrak{i}, W)\) is called relatively Hardy-Littlewood with respect to \(\omega_x\) if there exists a non-negative function \(\delta : X(\mathbb{A}) \to \mathbb{R}\) which satisfies the following two conditions:

(HL1) \(\delta\) is not identically zero and is locally constant.

(HL2) For any \(\Omega\), any \(B_o\) and any \(B_f\) as above, one has

\[
N(\Omega(T), X ; B) \sim \int_{B_{o}(T)} \delta(x) d\omega_x^X(x) \quad (T \to \infty).
\]

Furthermore, in addition to the above conditions, if \(\delta\) is identically 1 on \(X(\mathbb{A})\), then \((X, \mathfrak{i}, W)\) is called strongly Hardy-Littlewood.

It is easy to see that the non-negative function \(\delta\) is uniquely determined by the conditions (HL1) and (HL2).

If the context is clear, we often omit the notations \(i, W, \omega_x\), and we will say that \(X\) is a relatively Hardy-Littlewood variety with density function \(\delta\), or more simply, \((X, \delta)\) is relatively Hardy-Littlewood.

We note that the condition (HL2) is a little stronger than the corresponding condition of Definition 2.3 in [B-R]. In [B-R], a norm of the vector space \(W(k_\infty)\) was fixed at first. Namely, an only one \(o\)-symmetric bounded convex body \(\Omega_o\) having \(o\) as an inner point was fixed, once and for all. Therefore, it seems that the definition of Hardy-Littlewood varieties in [B-R] depends on the choice of \(\Omega_o\). In order to avoid this dependence, we adopt the condition (HL2). Although our definition of Hardy-Littlewood varieties is slightly different from that in [B-R], the results in [B-R] still remain true.

THEOREM 1 ([B-R, Propositions 2.4–2.7]). Let \((X, \delta)\) be relatively Hardy-Littlewood. Then \(X\) satisfies the following;

1. There is a finite set \(S\) of \(\mathcal{V}\) containing \(\mathcal{V}_\infty\) such that \(X\) is defined over \(\mathcal{O}(S)\) and \(X(\mathcal{O}(S))\) is dense in \(\prod_{v \in S} X(\mathcal{O}_v)\).
2. \(X\) is geometrically simply connected, i.e. \(\pi_1(X(\mathbb{C})) = 1\). In particular, if \(X\) is a quasi-affine homogeneous space of a connected group \(G\), then the stabilizer \(H\) of a base point \(x_0 \in X\) must be connected.
3. A gauge form on \(X\) is unique up to scalar factors. Hence the Tamagawa measure \(\omega_x^X\) does not depend on the choice of a gauge form \(\omega_x\) if a family of convergence factors for \(X\) is fixed.

Furthermore, if \((X, \delta)\) is strongly Hardy-Littlewood, then \(X\) has the strong approximation property, i.e. \(X(k)\) is dense in \(X(\mathbb{A}_f)\).

The following is the main theorem of [B-R].

THEOREM 2 ([B-R, Theorems 5.3, 5.4]). Let \(X\) be a \(k\)-special homogeneous space. Assume that \((X, \mathfrak{i}, W)\) satisfies the following three conditions.
(i) There exists a realization \((G, H) \in \mathcal{R}(X, x_0)\) such that \(G\) is a semisimple group having the strong approximation property and \(H\) is reductive. (So that \(X\) is an affine variety.)

(ii) \(G\) operates \(k\)-linearly on the affine space \(W\) and \(i(X)\) is a closed \(G\)-orbit in \(W\). (Such \(W\) exists at least one by Proposition 1.)

(iii) The following asymptotic count holds; For any \(\Omega\) as above, any arithmetic subgroup \(\Gamma\) of \(G(k_\infty)\) and any \(x \in X(k)\), one has

\[
\#(\Gamma \cap i^{-1}(\Omega(T))) \sim \frac{\omega^h_x(H_x(k_\infty)/\Gamma \cap H_x(k_\infty))}{\omega^x_\infty(G(k_\infty)/\Gamma)} \frac{\omega^x_\infty(G(k_\infty) \cap i^{-1}(\Omega(T)))}{\omega^x_\infty(G(k_\infty)/\Gamma)} \quad (T \to \infty),
\]

where \(H_x\) denotes the stabilizer of \(x\) in \(G\).

Then \((X, i, W)\) is relatively Hardy-Littlewood, with density function

\[
\delta(x) = \begin{cases}
|\pi_1(H)_{\text{Gal}(\bar{k}/k)}| & (x \in G(\mathbb{A})X(k)) \\
0 & (x \notin G(\mathbb{A})X(k)).
\end{cases}
\]

In addition, if \(\pi_1(H)_{\text{Gal}(\bar{k}/k)} = 1\), then \((X, i, W)\) is strongly Hardy-Littlewood.

To prove this theorem, Borovoi and Rudnick used the finiteness theorem for the orbits of arithmetic subgroups ([B-H, Theorem 6.9]). The assumption (ii) is required for that reason. [B-R, Corollary 5.5] also remains true and all examples studied in [B-R] are still Hardy-Littlewood under our definition.

3. Some properties of Hardy-Littlewood special homogeneous spaces

Throughout this section, we assume that \(X\) is a \(k\)-special homogeneous space and \((X, i, W)\) is relatively Hardy-Littlewood with density function \(\delta\). We certainly assume (HL0) holds for \((X, i, W)\), but we need not assume that \(G\) acts on \(W\) for a realization \((G, H) \in \mathcal{R}(X, x_0)\).

First, we give general properties satisfied by \((X, \delta)\). In the following, we denote by \(\Omega_w\) the set of all \(\alpha\)-symmetric bounded convex body in \(W(k_\infty)\) which contains \(\alpha\) as an inner point.

Lemma 1. Let \((G, H) \in \mathcal{R}(X, x_0)\) and \(g \in G(\mathbb{A})\). For any \(B \subset X(\mathbb{A})\) as in Section 2 and any \(\Omega \in \Omega_w\), define a counting function by

\[
N(\Omega(T), X; B; g) = \#(gX(k) \cap B^{\Omega(T)}), \quad (T > 0).
\]

Then one has

\[
N(\Omega(T), X; B; g) \sim \int_{B^{\Omega(T)}} \delta(g^{-1}x) d\omega_x^\infty(x) \quad (T \to \infty).
\]

Proof. This is obvious by the condition (HL2).

Lemma 2. Let \((G, H) \in \mathcal{R}(X, x_0)\). Then one has
\[\delta(gx) = \delta(x) \]

for all \(g \in G(k) \) and \(x \in X(\mathbb{A}) \).

Proof. If we set \(\delta_1(x) = \delta(gx) \), then both \(\delta \) and \(\delta_1 \) satisfy the conditions (HL1) and (HL2). From uniqueness, it follows \(\delta = \delta_1 \). \(\square \)

Lemma 3. Let \((G, H) \in \mathfrak{R}(X, x_0)\) and \(G(k) \times G(k)\) be the topological identity connected component of \(G(k)\). Then one has

\[\delta((g_\infty, g_f)x) = \delta(1, g_f)x \]

for all \((g_\infty, g_f) \in G(k) \times G(\mathbb{A}_f)\) and \(x \in X(\mathbb{A})\).

Proof. Let \(x = (x_\infty, x_f) \in X(k) \times X(\mathbb{A}_f)\). Since the orbit \(G(k) \times x_\infty\) is connected in \(X(k)\), there is the connected component \(B_\infty\) of \(X(k)\) which contains \(G(k) \times x_\infty\). By the condition (HL1), the restriction of \(\delta\) to \(B_\infty \times B_f\) identically equals \(\delta(1, g_f)x\). \(\square \)

Lemma 4. For any \((G, H) \in \mathfrak{R}(X, x_0)\), one has

\[\operatorname{supp} \delta \subseteq G(\mathbb{A})X(k) \]

Proof. For \(y = (y_\infty, y_f) \in X(\mathbb{A}_f) = X(k_\infty) \times X(\mathbb{A}_f)\), the orbit \(G(\mathbb{A})y\) is open and closed in \(X(\mathbb{A})\). We take the connected component \(B_\infty\) of \(X(k)\) containing \(y_\infty\) and a sufficiently small open compact neighbourhood \(B_f\) of \(y_f\) such that \(B_\infty \times B_f\) is contained in \(G(\mathbb{A})y\) and \(\delta\) is identically constant on \(B_\infty \times B_f\). Then, for any \(\Omega \in \Omega_X\), we have

\[N(\Omega(T), X : B) \sim \int_{B \times T} \delta(x)d\omega_A^X(x) = \omega_A^X(B^{\Omega(T)})\delta(y) \quad (T \to \infty). \]

If \(\delta(y) \neq 0\), then \(B\), and hence \(G(\mathbb{A})y\), contains \(k\)-rational points. Therefore \(y\) is contained in \(G(\mathbb{A})X(k)\). \(\square \)

Lemma 5. Let \((G, H) \in \mathfrak{R}(X, x_0)\). Assume that \(G\) has the strong approximation property. Then, for any \(x \in X(k)\), the restriction of \(\delta\) to \(G(\mathbb{A})x\) is identically equal to \(\delta(x)\). Furthermore, in this case, one has \(\operatorname{supp} \delta = G(\mathbb{A})X(k)\).

Proof. Let \(G = G^aG^\text{red}\) be a Levi-Chevalley decomposition of \(G\). Since \(G\) has the strong approximation property, \(G^\text{red}\) must be semisimple and simply connected (cf. [P-R, 7.4]). Then \(G(k)\) is topologically connected (cf. Corollaire (4.7) in [B-T]). By Lemma 3, we have

\[\delta((g_\infty, g_f)x) = \delta(1, g_f)x \]

for any \((g_\infty, g_f) \in G(\mathbb{A})\). Since \(\delta\) is locally constant, there is an open compact subgroup \(K_x\) of \(G(\mathbb{A}_f)\) such that \(\delta((1, g_f)x) = \delta(x)\) for all \(g_f \in K_x\). Combining this with Lemma 2, we have \(\delta(gx) = \delta(x)\) for all \(g \in G(k)G(k)K_x\). The strong approximation property implies \(G(\mathbb{A}) = G(k)G(k_x)K_x\). The second assertion is obvious by the condition (HL2). \(\square \)
Next, we investigate a relation of the Hardy-Littlewood property and the uniformity of X (cf. [M], [M-W]).

Lemma 6. For any $(G, H) \in \mathcal{A}_k(X, x_0)$ and any $x \in X(\mathbb{A})$, the integral

$$
\int_{G(\mathbb{A})/G(k)} \delta(g^{-1}x) d\omega^G_\mathbb{A}(g)
$$

converges.

Proof. Let $D = D_\infty \times D_f$ be a fundamental set of $G(\mathbb{A})/G(k)$ such that D_∞ is open in $G(k_\infty)$ and D_f is compact in $G(k_f)$ (cf. [P-R, Theorem 4.17, Proposition 5.9]). It follows from $X_k(G) = 0$ that the volume of D_∞ is finite. Let h be the index of $G(k_\infty)^0$ in $G(k_\infty)$ and $\{g_1, \cdots, g_h\}$ be a complete set of representatives for $G(k_\infty)/G(k_\infty)^0$. Note that h is finite by a theorem of Whitney ([Wh, Theorem 3]). We set $D^i_\infty = D_\infty \cap g_i G(k_\infty)^0$ for each i. Then, by Lemma 3, we have

$$
\int_{G(\mathbb{A})/G(k)} \delta(g^{-1}x) d\omega^G_\mathbb{A}(g) \leq \int_D \delta(g^{-1}x) d\omega^G_\mathbb{A}(g)
$$

$$
= \sum_{i=1}^h \omega^G_\mathbb{A}(D^i_\infty) \int_{D^i_f} \delta(g_i^{-1}g_f^{-1}x) d\omega^G_\mathbb{A}(g_f) < + \infty \quad \square
$$

For each $(G, H) \in \mathcal{A}_k(X, x_0)$, we set

$$
F_{(G, H)}(x) = \frac{1}{\tau(G)} \int_{G(\mathbb{A})/G(k)} \delta(g^{-1}x) d\omega^G_\mathbb{A}(g), \quad (X \in X(\mathbb{A})).
$$

Here $\tau(G)$ stands for the Tamagawa number of G. The main theorem of this paper is the following.

Theorem 3. For any $(G, H) \in \mathcal{A}_k(X, x_0)$, one has

$$
F_{(G, H)}(x) = \begin{cases} \tau(G, X)^{-1} & (x \in G(\mathbb{A})X(k)) \\ 0 & (x \notin G(\mathbb{A})X(k)) \end{cases},
$$

where $\tau(G, X)$ denotes the Tamagawa number of X.

Proof. We fix $(G, H) \in \mathcal{A}_k(X, x_0)$ and set $F = F_{(G, H)}$. It is obvious by Lemma 4 that $F(x) = 0$ if $x \notin G(\mathbb{A})X(k)$. Thus, we assume $x \in G(\mathbb{A})X(k)$. Since F is $G(\mathbb{A})$-invariant, we may assume $x \in X(k)$. Let B_∞ be the connected component containing $G(k_\infty)^0 x$ and B_f be an open compact subset of $G(\mathbb{A})_f X$ containing x. Set $B = B_\infty \times B_f$. It is easy to see that the restriction of F to $B_\infty \times G(\mathbb{A})_f x$ is identically equal to $F(x)$. Therefore, we have

$$
(3.1) \quad \int_{B(0)(T)} F(y) d\omega^A_\mathbb{A}(y) = \omega^A_\mathbb{A}(B(0)(T)) F(x)
$$

for any $\Omega \in \Omega_\mathbb{W}$ and $T > 0$. By changing order of integrations, we obtain
\[
\int_{B^m(T)} F(y) d\omega_{\lambda}(y) = \frac{1}{\tau(G)} \int_{G(A)/G(k)} \int_{B^m(T)} \delta(g^{-1} y) d\omega_{\lambda}(y) d\omega_{\lambda}(g).
\]

It follows from Lemma 1 that, for any given \(\varepsilon > 0 \) and \(\Omega \in \Omega_w \), there exists a sufficiently large \(T > 0 \) such that
\[
(1 - \varepsilon) \int_{B^m(T)} \delta(g^{-1} y) d\omega_{\lambda}(y) \leq N(\Omega(T), X; B; g) \leq (1 + \varepsilon) \int_{B^m(T)} \delta(g^{-1} y) d\omega_{\lambda}(y).
\]

Therefore,
\[
(3.2) \quad (1 - \varepsilon) \int_{B^m(T)} F(y) d\omega_{\lambda}(y)
\]
\[
\leq \frac{1}{\tau(G)} \int_{G(A)/G(k)} N(\Omega(T), X; B; g) d\omega_{\lambda}(g) \leq (1 + \varepsilon) \int_{B^m(T)} F(y) d\omega_{\lambda}(y).
\]

If \(\chi \) is a characteristic function of \(B^m(T) \), then the counting function is written as
\[
N(\Omega(T), X; B; g) = \sum_{z \in X(k)} \chi(gz).
\]

By the uniformity ([M, Theorem 3.2]), we have
\[
\frac{1}{\tau(G)} \int_{G(A)/G(k)} N(\Omega(T), X; B; g) d\omega_{\lambda}(g)
\]
\[
= \frac{1}{\tau(G, X)} \int_{G(A)/X(k)} \chi(y) d\omega_{\lambda}(y) = \frac{\omega_{\lambda}(B^m(T))}{\tau(G, X)}.
\]

Combining this with (3.1) and (3.2), we have
\[
(1 - \varepsilon)F(x) \leq \frac{1}{\tau(G, X)} \leq (1 + \varepsilon)F(x).
\]

This concludes \(F(x) = \tau(G, X)^{-1} \). \(\square \)

By [M, Theorem 3.1], the Tamagawa numbers \(\tau(G) \) and \(\tau(G, X) \) are described as
\[
\tau(G) = \frac{|\pi_1(G)_{\text{Gal}(\bar{k}/k)}|}{|\text{Ker}^1(k, G)|},
\]
\[
\tau(G, X) = \frac{\tau(G)}{\tau(H)|\text{Ker}^1(k, H) \to \text{Ker}^1(k, G)|},
\]
where \(\text{Ker}^1(k, G) \) denotes the Tate-Shafarevich group
\[
\text{Ker}^1(k, G) = \text{Ker}(H^1(k, G) \to \prod_{v \in \mathcal{V}} H^1(k_v, G)).
\]

Furthermore, by [M, Theorem 3.4], if \(\text{Ker}^1(k, G) = 1 \), one has
\[
\tau(G, X) = \frac{\left| \pi_1(G)_{\text{Gal}(\overline{k}/k)} \right|}{\left| \pi_1(H)_{\text{Gal}(\overline{k}/k)} \right|}.
\]

Therefore, we obtain the following Corollary.

Corollary. Let \((G, H) \in \mathcal{R}_k(X, x_0)\). If \(G\) has the strong approximation property, then

\[
F_{(G, X)}(x) = \delta(x) = \begin{cases}
\left| \pi_1(H)_{\text{Gal}(\overline{k}/k)} \right| & (x \in G(\mathbb{A})X(k)) \\
0 & (x \notin G(\mathbb{A})X(k)).
\end{cases}
\]

Corollary. Let \((G, H) \in \mathcal{R}_k(X, x_0)\). Assume that \(G\) has the strong approximation property and the second homotopy group of the complex manifold \(X(\mathbb{C})\) vanishes. Then \(\delta\) is identically equal to 1 on \(X(\mathbb{A})\), i.e. \((X, \delta)\) is strongly Hardy-Littlewood.

Proof. By the assumption of \(X\), Theorem 1 (2) and [M, Theorem 3.5], we have \(\tau(G, X) = \left| \pi_1(H)_{\text{Gal}(\overline{k}/k)} \right| = 1\). Then \(X(\mathbb{A}) = G(\mathbb{A})X(k)\) follows from [B-R, Corollary 3.7].

\[\Box\]

Finally, we remark that the condition \(x \in G(\mathbb{A})X(k)\) can be rewritten in terms of the Kotwitz invariant. Let \((G, H) \in \mathcal{R}_k(X, x_0)\). When \(G\) is simply connected, Borovoi and Rudnick constructed the mapping \(\kappa : X(\mathbb{A}) \to (\pi_1(H)_{\text{Gal}(\overline{k}/k)})_{\text{tor}}\) such that \(\kappa(x) = 0\) is equivalent to \(G(\mathbb{A})x \cap X(k) \neq \emptyset\) for \(x \in X(\mathbb{A})\) ([B-R, Theorem 3.6]). Morishita pointed out the author that the argument of Borovoi and Rudnick is extendable to the case where the derived group \(G^s\) of \(G^\text{red}\) is simply connected and the quotient map \(H \to G^\text{red}/G^s\) is surjective. Therefore, in this case, \(x \in G(\mathbb{A})X(k)\) is equivalent to \(\kappa(x) = 0\). We notice that any \(k\)-special homogeneous space \(X\) has a realization \((G, H) \in \mathcal{R}_k(X, x_0)\) which \(G^s\) is simply connected ([B2, Lemma 5.1]).

References

[We] A. Weil, Adeles and Algebraic Groups; Birkhäuser, Boston, 1982.

Department of Mathematics
Graduate School of Science, Osaka University
Toyonaka, Osaka 560, Japan

E-mail address: watanabe@math.wani.osaka-u.ac.jp