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A New Class of Analytic Functions with
Negative Coefficients

by
H. M. SrRivasTAVA* and Shigeyoshi Owa

(Received July 26, 1985)

A systematic investigation of a new class of analytic functions, which is defined
in terms of fractional derivatives, is presented. Apart from various coefficient bounds,
and a number of characterization and distortion theorems, many interesting and
useful properties of this class of functions are given; some of these properties involve,
for example, linear combinations and modified Hadamard products of several
functions belonging to the class introduced and studied here. Relevance of one of the
results obtained here to the celebrated Bieberbach conjecture (now de Branges’s
theorem) is also indicated.

1. Introduction and definitions

Let o denote the class of functions f(z) defined by

(1) f@=2-3 a2  (@20)
n=2

which are analytic in the unit disk # ={z: |z|<1}. Also let 7 be the subclass of &/
consisting of analytic and univalent functions f(z) of the form (1.1). Schild [10]
studied a subclass of J consisting of polynomials having |z|=1 as radius of
schlichtness (univalence). Subsequently, Silverman [11] proved a number of useful
results for the subclasses 7 *(«) and 4(x) of 7, where J *() and %(x) denote,
respectively, the classes of starlike functions of order « and convex functions of order
o, 0Za<].

A function f(z) € 7 is said to be in the class 2*(a, ), which was studied recently
by Gupta and Jain [5], if and only if

f@)-1

(12) SR A
f2)+(01 =29

<p (zeX)
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for 0<a<1 and O<B<1. The object of the present paper is to investigate
systematically a new class 2 5(a, f) of analytic functions f(z) belonging to the class .o/
and satisfying the condition

rQ-Az""'Dif(z)—1
rQ—-Az*"'Dif(z)+(1 —20)

for 0<A<1,0<a<1, and 0<B<1; here Df(z) denotes the fractional derivative of
f(2) of order 4, as defined below, with

(1.4) Df(2)=f(z) and DLf(z)=['(z).

Since the condition (1.3) reduces, when A=1, to (1.2), the subclass of 2§(«, f)
consisting of functions f(z)e 7 is precisely the class 2*(«, f) studied by Gupta and
Jain [5]. Furthermore, in the special case when 4=0, the condition (1.3) assumes the
elegant form:

1.3)

<p (ze%)

z7 1f(z)-1
z Hf(z)+ (1 —20)

where, as before, 0<a<1 and 0<B<1. Thus 2¥(a, f) represents the class of
functions f(z) € o satisfying the inequality (1.5).

Several essentially equivalent definitions of fractional derivatives and fractional
integrals have been- given in the literature (cf., e.g., [2, Chapter 13], [6], [8], [9], and
[12, p. 28 et seq.]). We find it to be convenient to restrict ourselves to the follow-
ing definitions used-recently by Owa [7] (and by Srivastava and Owa [13]):

1.5

<p (ze)

DEFINITION 1. The fractional integral of order 4 is defined, for a function f{(z),
by

1 [f S
I Jo &0 7

where 1>0, f(2) is an analytic function in a simply-connected region of the z-plane
containing the origin, and the multiplicity of (z—{)* ! is removed by requiring
log(z—{) to be real when z—{>0.

(1.6) D *f(z)= ac,

DEFINITION 2. The fractional derivative of order A is defined, for a function
f(@), by
14 [ f©
TA—74) dz Jo(z—0F

where 0<A<1, f(z) is an analytic function in a simply-connected region of the
z-plane containing the origin, and the multiplicity of (z—{¢)™* is removed as in
Definition 1 above.

.7 D:f(d)= g,

DEFINITION 3. Under the hypotheses of Definition 2, the fractional derivative
of order n+ 4 is defined, for a function f{(z), by
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(1.8) D"”f(Z)—— Dif(),

where 0=<4<1 and ne #" U {0}, 4 being, as usual, the set of natural numbers.

For the class of functions belonging to #%(«, f) we prove a number of sharp
results including, for example, coefficient and distortion theorems, and theorems
involving modified Hadamard products.

2. A theorem on coefficient bounds

THEOREM 1. 4 function f(z) defined by (1.1) is in the class P *(a, ) if and only

if
o I'h+1)IrR-—24)
2.1 _
@D & T+ 1-7
The result (2.1) is sharp.

Proof. Assume that the inequality (2.1) holds true and let |z]=1. Then we
obtain

(1+Pa,=2B(1~0a).

lF(2 /1)le(2) ‘ ﬁlF(Z l)D‘f(Z) (- 2)'

_ & ITn+1)IQ2-2) . o < I'(n+1)I2—-2) -
= ngz——l"(n+l—l) a,z" ! 21—w) ngz__——l"(n+1—/1) a,z"" 1|

< I'n+1)Ir2—-2)
ney IT(n+1-=2)

0, by hypothesis.

(1+B)a,—2p(1 -

lIA
™

IIA

Hence, by the maximum modulus theorem, we have f(z) e Z¥(a, f).
To prove the converse, assume that f(z) is defined by ¢1.1) and is in the class
2% (a, B), so that the condition (1.3) readily yields

, TFQ—-Az""D*f(z)—1

IQ—2Az*"1D f(z)+(1—2a)
L v i-h /

<B, zeY .

Since | Re(z) |<| z| for any z, we find from (2.2) that

o Th+)r2-% 2 In+)I2—2 ,_
o9 e £ 25 [ £ B0

Choose values of z on the real axis so that I'(2—2)z*"'DZf(2) is real. Upon clearing

22

o lh+D)rQ-2 =1

2 I(n+1)IQ2—-4)
SRRy (T
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the denominator in (2.3) and letting z—1~ through real values, we have

& I'n+1)Ir2-42) T'n+1)I2—4)

@H L raeiop = Ty

which gives the required assertion (2.1).
Finally, we note that the assertion (2.1) of Theorem 1 is sharp, the extremal
function being

_2pU-a)(nt1-A)
AP+ OIC—N

Remark 1. From the work of Silverman ([11], p. 110, Theorem 2) it is known
that a function f(z) defined by (1.1) is in the class 7 *(«) if and only if

(2.5) f@)=

Z (n—a

<
(2.6) ,.;z (1 _a>a,,=1 :
Thus we have
2.7 2¥, P T *(),
provided that 0<A<1, 0=a<]1; and

1

. 0<B<min{—7,

28 <’3-£‘22‘{¢(n)—1}

where, for convenience,

2n—a)(n+1-4)
29) ) ="FarDre—5

The function &(n) defined by (2.9) is positive and non-decreasing for n=2, and

. 2, if A=1,
(2.10) lim @(n)—{oo , A<l

Consequently, (2.7) holds true for 0Sa<1 and 0<B=<1 if and only if A=1.

0=a<l, 0is1.

Remark 2. When A=1, Theorem 1 reduces to the corresponding result due to
Gupta and Jain ([5], p. 469, Theorem 1). It follows immediately that
@.11) P, B)=2* B) .

We record in passing the following interesting consequence of Theorem 1.

COROLLARY 1. Let the function f(z) defined by (1.1) belong to the class
2%, p).

Then
< 26(1—)(n+1—24)

(2.12) AT P+ OIC—A)
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for every integer n=2.

Remark 3. The assertion (2.12) of Corollary 1 may be rewritten as
26— (1+1-4) _
Q+PpIn+1)rQ—-4=

for0=a<1,0<f<1,and 0= A<1. Thus, if & denotes the class of functions f(z) of
the form:

(2.13) a,

lIA

(nz2)

(2.14) f@)=z+ i cuz" (ze )
n=2

that are analytic and univalent in %, there do exist functions
f@Q e, B, 0=a<l, 0<f=1, 0=Zi<l1,

not necessarily in the class &, for which the celebrated Bieberbach conjecture (now de
Branges’s theorem [1]):

(2.15) lenl=n (n22)
holds true (¢f. [3] and [4]).

3. A distortion theorem

THEOREM 2. Let the function f(z) defined by (1.1) be in the class P *(a, f).

Then
(1) ezlz -2 e
and
(32) @z + 52D
for zeq
Furthermore
2 1 . 20(1 —a) _a
(3.3) 'DZf(Z)'gF(Z—l)lzl l—mlﬂz
and
R 1 . 280-a) )
(34 |sz(z)|§r(2_l)lz|l l+mmlzlz *

whenever zeU.

Proof. Since f(z)e 2¥(a, B), in view of Theorem 1, we have



180 ’ H. M. SRIvASTAVA and S. Owa

21+ P) i .s © [(n+1)[2— )
2—4 &%= 2 Tm+1-))
ézﬂ(l_a)a

(3.5)

(1+Ba,

which evidently yields

(3.6) i a, Mz_—ﬁ,
n=2

1+

IIA

Consequently, we obtain

(3.7 |f(z)|z|z|—lz|2n§2a,.g|z|—m_l—“ﬁ‘ﬂlzﬁ
and
69 s@ISlzl+1zr 3 asia+ A28

which prove the assertions (3.1) and (3.2).
Next, by using the second inequality in (3.5), we observe that

& I'n+1)Ir2-7)

(39) IFQ—N*Dif(2) 2]z — Y Tn+1-7) a,|z|"
n=2
© [(n+ 12—
2lz|-|zp 3 TOE DD,
z|z|-2ﬁl(:3°‘)|z|2
and
ana © Mn+)IR-7%
(3.10) IFQ=2Df@)ISIz1+ ¥ —p oS alz]
© [(n+1)IQ2— 1)
§|Z|+|Z|2n§2man
siz1+ e,

which prove the assertions (3.3) and (3.4).

Remark 4. Putting A=1 in Theorem 2, we obtain the corresponding result
given by Gupta and Jain ([5], p. 470, Theorem 2).

The following consequence of Theorem 2 is worthy of note:

COROLLARY 2. Under the hypotheses of Theorem 2,> f(2) is included in a disk
with its center at the origin and radius r given by
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Bl—a)2-4)
3.11 = —_—,
(3.11) r=1+ 135
and D}f(z) is included in a disk with its center at the origin and radius R given by
| 1 281 —a)}
3.12 = .
(3.12) R m_ﬁ){n u

4. Further properties of the class 2 %(a, f)

We begin by recalling the following useful result (see also Remark 2):
LEMMA 1 (Gupta and Jain [5, p. 469, Theorem 1]). A4 function f(z) defined by
(1.1) is in the class P*(o, P) if and only if

29

4.1) Y. n(1+p)a,<2B(1—0a).

n=2

This result is sharp, the extremal function being

2f(1—a) -

4.2) f@=z— rﬁ(1+ﬁ))z"’ neN .
THEOREM 3. Let 0<1=<1,0=<a<l1,and 0<B<I1.
Then

4.3) P¥(e, ﬂ)=9’j{‘( 1—.—%, 1> .

More generally, if 0<a’<1 and 0<p’ <1, then

4.4) Py, =23, B)

if and only if
- _p-2)
148 1+8
Proof. First assume that the function f(z) is in the class P¥a, B), and let the

condition (4.5) hold true. Then, by using the assertion (2.1) of Theorem 1, we readily
have

4.5)

o In+1)re-72) 2p(1—a) 2B'(1-o)

,,; Tm+1-7) "= 14 _ 1+f °

which shows that f(2)eP¥(’, B’), again with the aid of Theorem 1.
Reversing the above steps, we can similarly prove the other part of the
equivalence (4.4) which, for '=1, immediately yields the special case (4.3).
Conversely, the assertion (4.4) can easily be shown to imply the condition 4.5),
and the proof of Theorem 3 is thus completed.

IIA
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Next we state

THEOREM 4. Let 011,050, <0,<1,and 0<f=<1.
Then

(4.6) P, B)=>P (@, B) .

The proof of Theorem 4 uses Theorem 1 in a straightforward manner. The
details may be omitted.

THEOREM 5. Let 0£A<1,0=5a<1, and 0<f, <B,<1.
Then

4.7 P32, ) =P, Bs) -

Proof. By using Theorem 3, we have

l_ﬁl +20(ﬁ1 )
* — *
(48) 'a])l(a9 ﬁl)_gl< 1+Bl ) 1
and

1—B8,+208
9) 210 py=os( 2, 1),
Furthermore
(4‘10) Oél—ﬁ2+2aﬁ2sl_ﬂl+2aﬁl<l

1+8, ~ 1458
for0<a<1land 0<p, <p,=1.
Consequently, by using Theorem 4, we arrive at our assertion (4.7).

COROLLARY 3. Let 0<SA<1,0Za,Za,<1,and 0<B,<B,=<1.

Then

(4.11) PF(0y, B) =P (o, B =P (4, o) -
THEOREM 6. Let 0<1<u<l1,0=5a<],and 0<p<1.
Then

4.12) P, f)o>2x(x, B) .

Proof.  Let the function f(2) defined by (1.1) be in the class 2 ¥(«, B). Then, by
using Theorem 1, we have
& ITn+1)IR—4 & I'n+1)IQ2—p)

@13 ¥ (1+Ba,s X

o= T+1-2) n=2m(1+ﬂ)an§2ﬁ(1—a),

because
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4.1) | <Te+DIR—A) T+ 1)I2—p) _
' S TT+1-2) - T+l-p -

for 0=A=<pu<1 and n=2. It follows from (4.13) that
(4.15) f(2)e2(@ B),
in view of Theorem 1, and the assertion (4.12) is thus proved.

THEOREM 7. Let 0<1<1,0=<a<l1,and 0<B<1.
Then

(4.16) P¥a, f)=P¥(a, p).

Proof. Let the function f{(z) defined by (1.1) belong to the class 2*(a, ). Then,
by using Lemma 1, we have

S I'n+1)IQ2-2) i
(4.17) n}; —r(m(l + B)a,,éngz n(1+Pla, <2p(1—a),
because
(4.18) <1“(n+1)1"(2—,1)S

= I'n+1-72) =

for 0<A<1and n=2.
Equation (4.17), in conjunction with Theorem 1, completes the proof of the
assertion (4.16).

5. Theorems involving modified Hadamard products

Let f(z) be defined by (1.1), and let
(5.1 g(z)=z— Y bz"  (b,20).
n=2

The modified Hadamard product of f(z) and g(z) is defined here by

2y

(5.2) f*xgl2)=z— ) a,b,z".

n=2

The following result depicts an interesting property of the modified Hadamard
product of several functions.

THEOREM 8. Let the functions f,(2), f,(z), - - -, fou(2) defined by

(53) fD=2= Y " (cs,20)
n=2

be in the classes P}(w;, B), j=1,2, -, m, respectively. Also let
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(5.4 A+ min {f;}=1.
1S5js<m
Then
(5.5 Jixfpx- o *f,,,(z)eg‘j'{( lm_[ o ﬁ ﬂj>~
=1 =1

Proof. Since fi(z)e 2} (), Bj),j=1,2,- -, m, by using Theorem 1, we have
 I'h+1)I2-2)

(5.6) | y

Tn+1-2) (1+Bj)en, ;=2B;(1— )
n=2

and

2 _B-u)2—)
5.7 .S_l____L_____
(5.7 ; Cnj S T+5,
for each j=1, 2, -
Using (5.6) for any Jo and (5.7) for the rest, we obtain

® [(n+1)[(2—1) mo ] m
& Tnri-2) [”HB'JU =

i=1

22—-Amt ]:[1 B;(1—ay)

Z (1+8)
A

20-ir [l 5 1- 1|
L1+ mn 5[

1S5jSm

it fis]

IIA

ji=1
since
2—2
58 0<—— " _<1.
(8) 1+ min {f;} =
15js=m

Consequently, we have the assertion (5.5) with the aid of Theorem 1.
For aj=a and B;=8, j=1,2, - -, m, Theorem 8 yields

COROLLARY 4. Let each of the functions f,(2), ,(2), - - -, f,.(2) defined by (5.3)
be in the same class P¥(a, p). Also let A+f=1.
Then

(5.9 fixfox o *f(2)ePF(, 7).

Next we prove
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THEOREM 9.  Let the functions f(z) defined by (1.1) and g(z) defined by (5.1) be
in the classes 2?3 (v,, By) and P¥(o,, B,), respectively.

Then the modified Hadamard product f* g(z) belongs to the class P*(2u— a2, p),
where

(5.10) a=min{a,, a,} and P=max{B,B,}.

Proof. Since f(z)e P}(xy, B;) and g(z) e P¥(a,, B,), in view of Theorem 1, we
have

(5.11) i’: I'n+1)I'2—-4) Bo(l—a)2—2)

=y Tn+1-2) 146,

where f,=min{B,, B,}. Moreover, 0<a(2—a) <1 for 0<a< 1. Hence, by Theorem 1,
the modified Hadamard product f*g(z) is in the class #*(20.—a?, B), with « and p
given by (5.10).

COROLLARY 5. Under the hypotheses of Theorem 9, the modified Hadamard
product f*g(z) belongs to the class ?*(a, ).

(1+Ba,=2B(1—a) S2B{1-au2-a)},

Proof. 1In view of Theorem 4, we have
(5.12) P, B> 23Q2a—a, B,

which, in conjunction with Theorem 9, shows that fx g(z) e 2 *(a, B), where « and S
are given by (5.10).

Finally, we prove an interesting theorem on the modified Hadamard product
(5.2) with extremal functions.

THEOREM 10. Let the functions f(z) (i=1, 2) defined by (5.3) be in the class

23, p).
Then
(5.13) Si#f(2)e 2% (v, B, 2), B),
where
—o)2(D —
(5.14) W, B =1 - PL=C2=4

1+8
The result is sharp.

Proof. 1t suffices to prove that

2 1+pIrm+1)I2—2)
(13 & B Ta+1=7) o2 =]

for y<y(a, B, 4). By virtue of the Cauchy-Schwarz inequality, it follows from (2.1)
that
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& (1+PAIn+1)I2—A)
(5.16) n; 2pQ—)I'(n+1-4)

Hence we need to find the largest y such that

© (1 4B+ 1)IQ2—7) © (14 Bn+ 12— )
GID L S Tmai=3) ™= L a1 =h) Voo

or, equivalently,

]__
(5.18) Vot St (nz22).

11—«

n,1Cn,2 él .

In view of (5.16), it is sufficient to find the largest y such that
281 —a)l(n+1—2) < 1—y

A+ n+1Dre—21)=~1—o"

The inequality (5.19) yields

(5.19)

2p(1 —a)?
(5.20) y=1 Y ¥(n) (nz2),
where
(5.21) W)= 014

T T(mn+DIR2—-2"
Since ¥(n) defined by (5.21) is a decreasing function of n (n=2) for fixed 4, we have
281 —a)’T(3—2)

o2 rE1e b A=1- A+AHreyre-a’
that is,
(5.23) <9, B, =1 _fa-0re-4

1+8 ’

which proves the assertion (5.13) under the constraint (5.14).
Finally, by taking the functions

_pu-ae-4 ,
1+8
we can prove that the result is sharp.

COROLLARY 6. Let the functions f(z) (i=1, 2) defined by (5.3) be in the class

P, B).
Then

(5:25) ~ fixf(2)e2E(v(@, B), B) »

(524 fi2)=z (i=1,2),
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where
., Ba-o?
(5‘26) y(a’ ﬂ)_ 1 - 1 T ﬂ .
The result is sharp for functions
(5.27) fi(z)=z—ﬂ (11;;)22 (i=1,2).

Putting A=0 in Theorem 10, we have
COROLLARY 7. Let the functions f(z) (i=1, 2) defined by (5.3) be in the class

25, p).
Then
(5.28) fi*f2(2)e 2§ (3(e, B), B) ,
where
(5.29) e B=1 —%%:T"‘)Z
The result is sharp for the functions
(5.30) f@=z=P0=9 2 oy,

1+

6. Linear combination of functions in the class 2 ¥(a, p)

THEOREM 11. Let each of the functions f,(2), f5(2), - - -, f,.(z) defined by (5.3) be
in the same class P ¥(a., f).
Then the function h(z) given by

S £(2)

1
m ;=

6.1) h(z)=
is also in the class P¥(a., f).
Proof. By the definition (6.1) of A(z), we have the expansion
o0 1 m
(6.2) hz)=z— 3, [— 2 c,,,j:lz”.
n=2 LM j=1
Since fj(z)eg'j{‘(cx, p) for every j=1,2, - -+, m, by using Theorem 1, we obtain

2 In+1)I(2—2)
(6.3) ,,;2 Tn+1-7)

which, in view of Theorem 1, yields Theorem 11.

m

%,-; c.,,,]§2ﬁ(1-a),

(1+ﬁ)[
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