On N-Pure-High Subgroups of Abelian Torsion Groups

by

Takashi Okuyama

(Received July 1, 1983)

All groups considered in this paper are abelian. For the general notation, we refer to Fuchs [4].

Let N be a subgroup of a group G. We say that a subgroup H of G is N-pure-high if it is maximal among the pure subgroups disjoint from N. Zorn's lemma guarantees the existence of N-pure-high subgroups.

Fuchs, in [4], Problem 14, proposes the study of pure-high subgroups of a group. Benabdallah [1] proved that N-pure-high subgroups are N-high subgroups in torsion groups. Krivonos [6] characterized the group G which has a finite number of N-high subgroups of G.

In the case of torsion groups, the group G with the above property has a finite number of N-pure-high subgroups of G by [1]. But the converse is not trivial.

In this paper, we will characterize the torsion group G which has a finite number of N-pure-high subgroups of G and will prove that the converse is true.

Our groups are all the same type with Krivonos' groups. But the proof is evidently different from his.

§ 1. Preliminaries

We first quote some results which will be frequently used afterwards.

- (1.1) (K. Benabdallah [1]). Every pure subgroup disjoint from a subgroup N of a torsion group G can be extended to a pure N-high subgroup of G.
- (1.2) (K. Benabdallah [1]). Let N be a subgroup of a torsion group G. Then N-pure-high subgroups of G are N-high subgroups of G.
- (1.3) (F. V. Krivonos [6]). Let N be a nonzero subgroup of a torsion group G. A subgroup A of G is the unique N-high subgroup of G if and only if $A = \bigoplus_{p \in \pi} G_p$, where π is a set of all prime numbers.
- (1.4) (F. V. Krivonos [6]). A group G has a finite number of N-high subgroups of G for a subgroup N of G if and only if either of the following two holds:
 - (i) N=0, or

- (ii) $N \neq 0$ and (a) G/N is torsion (b) for almost all primes p, N[p] = G[p] or N[p] = 0. (c) for any other primes p, $G_p = D \oplus R$, where D is the direct sum of a finite number of Prüfer groups and R is the direct sum of a finite number of finite cyclic groups, and $D[p] \subseteq N[p]$.
- (1.5) (R. S. Pierce [7]). Let G be a p-group. For each integers $k \ge 0$, define $P_k = G[p] \cap p^k G$, $P_{\infty} = G[p] \cap G^1$, and $P_{\infty+1} = P_{\infty+2} = 0$. Let H be a subgroup of G. Then H is a center of purity in G (that is, every H-high subgroup of G is pure) if and only if there exists k with $0 \le k \le \infty$ such that $P_k \ge H[p] \ge P_{k+2}$.
- (1.6) (K. Benabdallah [2]). Let S be a subsocle of a p-group G. If S is a center of boundedness, then S is strongly purifiable.
- (S is said to be a center of boundedness if every S-high subgroup of G is bounded. S is said to be strongly purifiable if every pure subgroup H such that H[p] < S can be extended to be a pure subgroup K supported by S.)
- (1.7) (J. M. Irwin [5]). Let G be a p-group, and let H be a high subgroup of G. Then H contains a basic subgroup of G.
- (1.8) (K. Benabdallah and J. M. Irwin [3]). Let $G = B \oplus D$ be a p-group, where B is bounded and D is divisible. Then every pure subgroup K of G is the direct sum of a bounded and a divisible subgroups. In particularly, the divisible part of K is equal to $K \cap D$.

§ 2. Uniqueness of the *N*-pure-high subgroups

In this section, we will characterize the torsion group G which has the unique N-high subgroup of G.

LEMMA 2.1. Let N be a subgroup of a p-group G and A be an N-pure-high subgroup of G. If there exists an element b of G[p] such that $h(b) < \infty$, $b \notin A$, and $b \notin N$, then G has an N-pure-high subgroup of G which is different from A and contains $\langle b \rangle$.

Proof. Put h(b) = n. Then we write $b = p^n c$ for some $c \in G$. Since $\langle c \rangle$ is pure in G and $\langle c \rangle \cap N = 0$, there exists an N-pure-high subgroup L of G containing $\langle c \rangle$ by (1.1). Suppose that L = A. Then we have $b \in A$, a contradiction. Hence $L \neq A$.

PROPOSITION 2.2. Let N be a subgroup of a p-group G. Then G has the unique N-pure-high subgroup of G if and only if either N=0 or N[p]=G[p].

Proof. Suppose that G has the unique N-pure-high subgroup A of G and $A \neq 0$ and $N \neq 0$. We divide the following two cases and will lead to a contradiction in each case.

 $\langle Case \ I \rangle A$ is nondivisible.

In this case, there exists a nonzero element a of A[p] such that $h(a) < \infty$. By hypothesis, there exists a nonzero element g of N[p]. Now we will prove that there exists an element b of G[p] such that $h(b) < \infty$, $b \notin A$, and $b \notin N$. Then it contradicts

(2.1) and hence the proof in this case is finished.

First we may assume that $h(a+g) = \infty$ for each $g \in N[p]$. Indeed, if there exists a nonzero element g of N[p] such that $h(a+g) < \infty$, then put b=a+g, and so we have $h(b) < \infty$, $b \notin A$, and $b \notin N$.

We can write $A[p] = \langle a \rangle \oplus A_1[p]$ for some subgroup A_1 of A. Suppose that $A_1[p] \neq 0$. If there exists an element a_1 of $A_1[p]$ such that $h(a_1) < \infty$, then, for some $g \ (\neq 0) \in N[p]$, put $b = a_1 + (a + g)$, and so we have $h(b) < \infty$ and $b \notin A$. If $b \in N$, then we have $a_1 + a \in A \cap N = 0$ and $a_1 = 0$, a contradiction. Hence each nonzero element of $A_1[p]$ has an infinite height. On the other hand, since $h(a+g) = \infty$ for each $0 \neq g \in N[p]$, it follows that $h(g) = h(a) < \infty$ for each $0 \neq g \in N[p]$. Hence, for some $0 \neq a' \in A_1[p]$, put b = a' + g, and so we have $h(b) < \infty$, $b \notin A$, and $b \notin N$. Hence we may assume that $A_1[p] = 0$.

By (1.2), we have $G[p] = \langle a \rangle \oplus N[p]$. Since $h(g) = h(a) < \infty$ for each $0 \neq g \in N[p]$, it follows that h(a) = h(g) for each $g \in N[p]$, by ([4], Cor. 27.8), there exists a bounded direct summand B of G containing N[p]. If B[p] = G[p], then B = G, and hence G is bounded. This contradicts that $h(a+g) = \infty$. Hence we have $G[p] \neq B[p] = N[p]$ and write $G = A_0 \oplus B$, where A_0 is a subgroup of G with $|A_0[p]| = p$. Then A_0 is an N-pure-high subgroup of G, and $A_0 = A$. Since $h(a) < \infty$, A is bounded, and hence G is bounded, a contradiction.

 $\langle Case \ II \rangle A$ is divisible.

Since A is an absolute direct summand of G, we can write $G = A \oplus B$, where B is a subgroup of G containing N. By (1.2), we have $G[p] = A[p] \oplus B[p]$ and B[p] = N[p].

First suppose that the height of each element of B[p] is infinite. Then B is divisible. Hence B is a center of purity in G. Since all N-high subgroups of G are B-high in G, N is a center of purity. Thus G has the unique N-high subgroup A of G. By (1.3), either A = G or A = 0. If A = G, then N = 0, a contradiction. Hence we may assume that there is a nonzero element x of N[p] such that $h(x) < \infty$. Let $0 \neq a \in A[p]$. Since $h(a) = \infty$, it follows that $h(a+x) < \infty$, $a+x \notin A$, and $a+x \notin N$. This is a contradiction by (2.1).

Conversely, if N=0, then G is the unique N-pure-high subgroup of G. If N=G, then 0 is the unique N-pure-high subgroup of G. Hence the proof is completed.

Next we will characterize the torsion group G which has the unique N-pure-high subgroup of G. Before we do it, we introduce two lemmas for ready reference.

LEMMA 2.3. Let G be a torsion group and N_p be a subgroup of G_p for each prime p. Let H_p be an N_p -pure-high subgroup of G_p for each prime p, and $N = \bigoplus_p N_p$. Then $H = \bigoplus_p H_p$ is an N-pure-high subgroup of G.

Proof. For integers $n \ge 1$, we have

$$p^n H = \biggl(\bigoplus_{q \, \doteq \, p} H_q \biggr) \oplus p^n H_p = \biggl(\bigoplus_{q \, \doteq \, p} H_q \biggr) \oplus (H_p \cap p^n G) = \biggl(\bigoplus_q H_q \biggr) \cap p^n G = H \cap p^n G \; .$$

Hence H is pure in G. Furthermore $H \cap N = 0$. By (1.1), there exists an N-pure-high

subgroup L of G containing H. Let $L = \bigoplus_{p} L_{p}$. Since L_{p} is pure in G_{p} and contains H_{p} for each prime p, it follows that $L_{p} = H_{p}$. Hence L = H.

LEMMA 2.4. Let G be a torsion group and N be a subgroup of G. If H is an N-pure-high subgroup of G, then H_p is an N_p -pure-high subgroup of G_p for each prime p.

Proof. By (1.2), it is immediate.

THEOREM 2.5. Let N be a subgroup of a torsion group G. Then G has the unique N-pure-high subgroup of G if and only if, for each prime p, either N[p]=0 or N[p]=G[p].

Proof. Suppose that G has the unique N-pure-high subgroup of G. (2.4) and (2.5), for each prime p, G_p has the unique N_p -pure-high subgroup of G_p . Hence, by (2.2), for each prime p, either N[p]=0 or N[p]=G[p].

Conversely, suppose that, for each prime p, either N[p] = 0 or N[p] = G[p]. Let A be an N-pure-high subgroup of G. By hypothesis, it follows that $A = \bigoplus_{p \in \pi} G_p$ for some set π of primes. By (1.2) and (1.3), G has a unique N-pure-high subgroup of G. Hence the proof is completed.

$\S 3$. Finiteness of *N*-pure-high subgroups

In this section, we will characterize the torsion group G which has a finite number of N-pure-high subgroups of G.

LEMMA 3.1. Let N be a nonzero subgroup of a p-group G and A be an N-pure-high subgroup of G. If G has a finite number of N-pure-high subgroups of G and $A \neq 0$, then N[p] is finite.

Proof. We will prove it in the following two cases.

 $\langle Case \ I \rangle$ A is nondivisible.

Suppose that $|N[p]| \ge \aleph_0$. Then there exist an independent set $\{g_i \mid g_i \in N[p], i = 1, 2, \dots\}$. Furthermore, since $A \ne 0$, there exists a nonzero element a of A[p] such that $h(a) < \infty$.

Let $I = \{i \mid h(a+g_i) = \infty\}$ and $J = \{j \mid h(a+g_j) < \infty\}$. If |I| is finite, then $|J| \ge \aleph_0$ and so we may assume that $h(a+g_j) < \infty$, $j=1, 2, \cdots$. By (2.1), there exist N-pure-high subgroups A_j containing $\langle a+g_i \rangle$ different from A for $j=1, 2, \cdots$. Then for distinct indices i, j, we have $A_i \ne A_j$. Indeed, if $A_i = A_j$, then we have

$$g_i - g_i(a + g_i) - (a + g_i) \in A_i \cap N = 0$$
,

a contradiction. Hence G has a countable number of N-pure-high subgroups of G, and hence this contradicts the hypothesis.

Suppose that $|I| \ge \aleph_0$. Then we may assume that $h(a+g_i) = \infty$, $i=1, 2, \cdots$. We can write $A[p] = \langle a \rangle \oplus A_1$ for some subgroup A_1 of A. First suppose that $A_1[p] \ne 0$. If there exists an element a_1 of $A_1[p]$ such that $h(a_1) < \infty$, then put $b_i = a_1 + (a+g_i)$, and

so we have $h(b_i) < \infty$, $b_i \notin N$, and $b_i \notin A$, $i = 1, 2, \cdots$. In analogy with above, G has a countable number of N-pure-high subgroups of G, a contradiction. Hence each element of $A_1[p]$ has a infinite height. On the other hand, since $h(a+g_i) = \infty$ for $i = 1, 2, \cdots$, it follows that $h(g_i) = h(a) < \infty$ for $i = 1, 2, \cdots$. Hence, for some $0 \not= a' \in A_1[p]$, put $b_1 = a' + g_i$, $i = 1, 2, \cdots$, and so we have $h(b_i) < \infty$, $b_i \notin A$, and $b_i \notin N$, $i = 1, 2, \cdots$. In analogy with above, it contradicts the hypothesis.

Suppose that $A_1[p]=0$. Then $A[p]=\langle a \rangle$. Since $h(a)<\infty$, $h(g_i)<\infty$, and $h(a+g_i)=\infty$, we have $h(a)=h(g_i)$ for $i=1,2,\cdots$. Put $b_i=(a+g_1)+g_i,\ i=2,3,\cdots$. Then we have $b_i\notin A,\ b_i\notin N$, and $h(b_i)<\infty$, for $i=2,3,\cdots$. By (2.1), there exist N-pure-high subgroups B_i containing b_i for $i=2,3,\cdots$. In analogy with above, it contradicts to the hypothesis.

 $\langle Case \ II \rangle A$ is divisible.

We may assume that all N-pure-high subgroups of G are divisible. By (1.2), we can write $G = A \oplus B$, where B is a subgroup of G containing N, and $G[p] = A[p] \oplus B[p]$ and B[p] = N[p]. If each element of B[p] has an infinite height, then, in analogy with Case II of (2.2), N is a center of purity in G. Thus G has a finite number of N-high subgroups of G. By (1.4), |N[p]| is finite.

If there exists and element b of B[p] such that $h(b) < \infty$, then we have $h(a+b) < \infty$, $a+b \notin N$, and $a+b \notin A$ for some $0 \neq a \in A[p]$. By (2.1), there exists an N-pure-high subgroup L of G containing $\langle a+b \rangle$. Then L is divisible and so $h(a+b) = \infty$, a contradiction. Hence the proof is completed.

THEOREM 3.2. Let N be a nonzero subgroup of a p-group G with $N[p] \neq G[p]$. Then G has a finite number of N-pure-high subgroups of G if and only if the following two hold:

- (a) $G = D \oplus B$, where D is a divisible subgroup and B is a bounded subgroup with $|B[p]| < \aleph_0$, and
- (b) Either $N[p] \supseteq D[p]$ or the following two hold: $N[p] \cap D[p] = 0$ and $r(D[p]) \le 1$.

Proof. Suppose that G has a finite number of N-pure-high subgroups of G. By (3.1), it follows that N[p] is finite. Put $N_2 = N[p] \cap G^1$ and so we have $N[p] = N_1 \oplus N_2$ for some subgroup N_1 of N[p]. If $N_1 = 0$, then N is a center of purity in G by (1.5). By (1.4), (a) and (b) are satisfied. Hence we may assume that $N_1 \neq 0$.

By (1.5), there exists a pure N_2 -high subgroup L of G containing N_1 . Since the height of each nonzero element of N_1 is bounded, by ([4], 27.8) and ([4], 27, Ex. 5), we have

$$L = H \oplus K$$
.

where K is a bounded subgroup of L with $K[p] = N_1$ and H is some subgroup of L. Now we have $G^1 \cap L = L^1 = H^1$. Then we can express

$$H[p] = H^1[p] \oplus H'$$

for some subgroup H' of H[p]. Put

$$H' = \bigoplus_{\alpha \in I} \langle x_{\alpha} \rangle$$
.

First we will prove that |I| is finite. Suppose that |I| is infinite. Since $N_1 \neq 0$, there exists a nonzero element g of N_1 such that $h(g) < \infty$. Put

$$H'_{\alpha} = (\bigoplus_{\beta \in I - \{\alpha\}} \langle x_{\beta} \rangle) \oplus \langle x_{\alpha} + g \rangle$$

and

$$H_{\alpha} = H^{1}[p] \oplus H'_{\alpha}$$
.

Let K_{α} be a H_{α} -high subgroup of L. Then $L[p] = H_{\alpha} \oplus K_{\alpha}[p]$, $K_{\alpha}[p]$ is finite, and the height of each nonzero element of $K_{\alpha}[p]$ is finite. Hence all H_{α} -high subgroups of L are boundary and so H_{α} is strongly purifiable by (1.6). Since there exists an element x of H_{α} such that $h(x) < \infty$, there exists a pure subgroup $H(\alpha)$ such that $H(\alpha)[p] = H_{\alpha}$. Now α ranges over all elements of I. If $H(\alpha) = H(\beta)$, α , $\beta \in I$, $\alpha \neq \beta$, then we have

$$g = (g + x_\alpha) - x_\alpha \in H(\alpha) \cap N = 0$$
,

a contradiction. Hence, by the hypothesis, |I| is finite.

A socle of a high subgroup of H is finite. By (1.7), we can express

$$H=D_1\oplus H_1$$
,

where D_1 is a divisible subgroup of H and H_1 is a finite subgroup of H. Hence we have

$$G = D_1 \oplus A$$
,

where A is a subgroup of G and A contains $H_1 \oplus K$ and N_2 . Since $A[p] = H_1[p] \oplus K[p] \oplus N_2$, we have

$$A = D_2 \oplus A'$$
,

where D_2 is a divisible subgroup of A, A' is a finite subgroup of A, and A' contains $H_1 \oplus K$. Since $N_2 \leq A \cap G^1 = A^1 = D_2$, we have $N_2 = D_2[p]$. Hence we have

$$G = D_1 \oplus D_2 \oplus H_1 \oplus H_2$$

for some subgroup H_2 of A'.

Suppose that $D_2 \neq 0$. Put $G_0 = D_1 \oplus D_2 \oplus H_1$. Then every D_2 -high subgroup of G_0 is a pure N-high subgroup of G. By (1.4), it follows that $D_1 = 0$. Hence put $D = D_2$ and $B = H_1 \oplus H_2$, and so (a) and (b) are satisfied.

We may assume that $D_2 = 0$. Put $D = D_1$. Since $G = D \oplus A$, A is bounded, and K is bounded pure in A, it follows that

$$G = D \oplus H_0 \oplus K$$

for some subgroup H_0 of A. We will prove that $r(D[p]) \le 1$. Suppose that r(D[p]) > 1. Let $0 \ne g \in D[p]$ and $0 \ne x \in N[p]$. Since K[p] = N[p], we have

$$G = D' \oplus D'' \oplus K' \oplus K'' \oplus H_0$$

where D' and D' are subgroups of D with $D''[p] = \langle g \rangle$ and K' are subgroups of K with $K'[p] = \langle x \rangle$. Since $h(g+x) < \infty$ and $g+x \in D'' \oplus K'$, we have

$$D'' \oplus K' = K_0 \oplus K'_0$$

where K_0 and K'_0 are subgroups of $D'' \oplus K'$, K_0 is bounded pure in $D'' \oplus K'$, and $K_0[p] = \langle g+x \rangle$. Put $M = D' \oplus K_0 \oplus H_0$, and so M is pure in G, $M \cap N = 0$, and G[p] = M[p] + N[p]. Hence M is an N-pure-high subgroup of G. Since D' is a $\langle g \rangle$ -high subgroup of D and D has at least countable $\langle g \rangle$ -high subgroups of D by (1.4), it contradicts the hypothesis. Hence $r(D[p]) \leq 1$ and so (a) and (b) are satisfied.

Conversely, suppose that (a) and (b) are satisfied. If either D[p]=0 or $D[p] \le N[p]$, then it is immediate by (1.2) and (1.4). Hence we may assume that $N[p] \cap D[p]=0$ and r(D[p])=1. Let A be an N-pure-high subgroup of G, and then, by (1.8), it follows that $A = D_1 \oplus R_1$, where D_1 is a divisible subgroup and R_1 is a bounded subgroup. If $D_1 \ne 0$, then we have $D_1 = A \cap D$ by (1.8). Since D is pure-simple, we have $D_1 = D$. By (1.4), G has a finite number of D-high subgroups of G. Every D-high subgroup of G is finite, and G is a subgroup of some G is subgroup of G. Hence G has a finite number of G-pure-high subgroups of G.

If $D_1 = 0$, then, in analogy with above, we has a finite number of N-pure-high subgroups of G. Hence the proof is completed.

THEOREM 3.3. Let N be a subgroup of a torsion group G. G has a finite number of N-pure-high subgroups of G if and only if the following two hold:

- (i) for almost all primes p, either N[p]=0 or N[p]=G[p], and
- (ii) for any other primes p, G_p is the group mentioned in Theorem 3.2.

Proof. Suppose that G has a finite number of N-pure-high subgroups of G. By (2.3) and (2.4), for almost all primes p, G_p has the unique N_p -pure-high subgroup of G_p , and for any other primes p, G_p has a finite number of N-pure-high subgroups of G_p . Hence, by (3.3), (i) and (ii) are satisfied.

Conversely, assume (i) and (ii). By (1.2) and (3.2), G has a finite number of N-pure-high subgroups of G.

(1.4) and the preceding result yield the next Corollary.

Example. Let G be a p-group and $G = D \oplus B$ where D is a divisible subgroup and B is a bounded subgroup and B[p] is finite. Let N be a nonzero subgroup of G with $N[p] \subseteq B[p]$. Then G has a finite number of N-pure-high subgroups of G by (3.2). But G has at least countable number of N-high subgroups of G.

Acknowledgement. The author wishes to express his grateful thanks to Prof. K. Honda for his valuable guidance and help during the preparation of this paper.

References

- [1] Benabdallah, K.; On pure-high subgroups of abelian groups, Can. Math. Bull., 17 (1974), 479-482.
- [2] Benabdallah, K.; p-Centers and p-kernels in primary abelian groups, Proc. Conf., Kuwait 1981, 1982, pp. 31-37.
- [3] Benabdallah, K. and Irwin, J.: On quasi-essential subgroups of abelian groups. Can. J. Math., 22 (1970), 1176-1184.
- [4] Fuchs, L.; Infinite Abelian Groups, Vol. I and II, Academic Press, 1970 and 1973.
- [5] IRWIN, J. M.; High subgroups of abelian torsion groups, Pacific. J. Math., 11 (1961), 1375-1384.
- [6] Krivonos, F. V.; On N-high subgroups of abelian groups, Vestnik Moskovskogo Universitits Matematica, 30 (1975), 58-64.
- [7] PIERCE, R. S.; Centers of purity in abelian groups, Pacific. J. Math., 13 (1963), 215-219.

Toba National Mercantile Marine College Toba-shi, Ikegami-chō 1–1 Mie-ken 517 Japan