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In [4], we have considered the representations of the fundamental groups of 3-
manifolds obtained by Dehn surgeries along 2-bridge knots. In this paper, we shall
show that this method can be applied also to manifolds which are not obtained by
Dehn surgery along a knot.
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§1. Lens space conjecture

Unless otherwise stated, we denote by M a closed orientable connected 3-
manifold and by =, (M) its fundamental group. By a lens space we mean a closed 3-
manifold obtained by glueing the boundaries of two solid tori. Thus we include S*
and S? x S! in lens spaces. Let Z, be the finite cyclic group of order n.

First we consider the following conjecture:

Conjecture 1 (Haken). If n,(M)=Z,, then M is a lens space.

We call this conjecture the lens space conjecture. Obviously this conjecture for
n=1 is just the Poincaré conjecture. We first derive some consequences from this
conjecture.

THEOREM 1. Suppose that the lens space conjecture is true. Then, if n,(M) is
abelian, then either M is a lens space or M is homeomorphic to S* x S* x S'.

Proof. Suppose that the lens space conjecture is true and that =, (M) is abelian.
Then by Epstein [1], 7,(M) is isomorphic to one of the following groups:

zZ,, Z, Z,xZ, ZxZ, ZxZxZ.

If 7,(M) is finite, then it must be isomorphic to Z,, and hence by the lens space
conjecture M is a lens space. If 7, (M) is infinite, then H,(M) (= =,(M)) is infinite and
hence by Waldhausen [6], M is sufficiently large. So M contains an incompressible
surface F. Since 7,(M ) is abelian, the genus of F must be 0 or 1. First suppose that the
genus of Fis 0, that is, Fis a 2-sphere. By a standard argument we can assume that F'
is separating in M, unless M is homeomorphic to S? x S*. Then M is the connected
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sum of two closed 3-manifolds M, and M, which are not homeomorphic to S3, and
(M) =mn,(M,) *n;(M,), (a free product). Since the lens space conjecture implies
Poincaré conjecture, m,(M,) and =n;(M,) are non-trivial. But then =,(M) cannot be
abelian. Next suppose that the genus of Fis 1, that is, F'is a torus. If F'is separating,
then n,(M) is an amalgamated free product '

(M) =m,(M;)* nl(F)nl(MZ)

where 0M; =0M,=F. Since n,(M) is abelian, this amalgamated free product must be
trivial: ‘

n,(M,) (or m,(M,))=n,(F)=Zx Z .

But there does not exist a 3-manifold M, such that 0M, is a torus and n,(M,)=
Z x Z. For, by Waldhausen [7], there is an incompressible surface G in-M, such that
0#[0G]e H,(0M,). G must be a 2-disk or an annulus. In either case, a contradiction
" arises. Finally suppose that Fis a torus and non-separating in M. We choose a base
point P on F. Let a and b be loops on F which represent independent generators of
1,(F)=Zx Z. Let ¢ be a loop in M such that ¢ intersects F transversely only at one
point P. Since =n,(M) is abelian, we have ab=ba, ac=ca, bc=ch. Moreover
a'b™c"=1 implies n=0 (since the intersection number of a'b™c" with F must be 0) and
hence /=0 and m=0 (since n,(F)—-mn,(M) is injective). Thus n,(M) contains a
subgroup isomorphic to Zx Z x Z. Hence by Epstein’s result mentioned above,
7,(M) must be isomorphic to Zx Zx Z. Since we are assuming the lens space
conjecture and hence Poincaré conjecture, M must be irreducible. And M is also
sufficiently large. So it is determined by =, (M) (Waldehausen [7]). Hence M must be
homeomorphic to S x S* x S*. This completes the proof of the theorem.

COROLLARY 2. Suppose that the lens space conjecture is true. Then, if M has a
Heegaard splitting of genus 2 and n,(M) is abelian, then M is a lens space. In other
words, if M is of Heegaard genus 2, then n,(M) is non-abelian.

Proof. This follows immediately from the Theorem 1, since S* x S* x S! does
not have Heegaard splittings of genus 2.

COROLLARY 3. Suppose that the lens space conjecture is true. Then, (i) if
(M) =Z, then M is homeomorphic to S* x S', and (ii) if n,(M)=Z x Z x Z, then M is
homeomorphic to S* x §* x St.

The following conjecture is well-known:

Conjecture 2. 1f Z, acts freely on S%, then the quotient space is a lens space.

THEOREM 4 (Haken). The lens space conjecture is equivalent to the conjunction
of Poincaré conjecture and Conjecture 2.

Proof. Clearly the lens space conjecture implies Poincaré conjecture and
Conjecture 2. Conversely suppose that Poincaré conjecture and Conjecture 2 are true



Representations of the Fundamental Groups of 3-Manifolds, I 11

but the lens space conjecture is false. Then there exists a 3-manifold M with
n,(M)=Z, which is not a lens space. Consider the universal cover M of M. By
Poincaré conjecture M is homeomorphic to S* since M is compact. The covering
translations constitute a group isomorphic to Z, and this group acts freely on M and
the quaotient space is M. This contradicts Conjecture 2.

§2. Representations of 7, (M)

First we define the following four groups:
PGL(2, C)=GL(2, C)/{AE} ¥
PSL(2, C)=SL(2, C)/{ £ E},
I =““the group of all Mdbius transformations
w=(az+b)/(cz+d),
where a, b, ¢, de C and ad—bc#0.”

I (H?) =*the group of all orientation-preserving
isometries of the hyperbolic 3-space H>.”

Then it is known that these four groups are all isomorphic:
PGL(Q2, C)=PSL(2, C)=M=I"(H?).

Hereafter, by a representation of =, (M) we shall mean a representation of 7,(M)
into PGL(2, C). Let h and &’ be two representations of n;(M). h and h’ are said
to be equivalent if there exists an Ae PGL(2, C) such that for all xen (M),
h'(x)=Ah(x)A~1.

In many cases, the number of the equivalence classes of representations of 7, (M)
is finite with the exception of the connected sums of lens spaces, some of sufficiently
large manifolds, etc. Let (M) be the number of the equivalence classes of
representations of m,(M). Then &(M) is a (computable) invariant of M. We
conjecture the following:

Conjecture 3. If M is irreducible but not sufficiently large, then 6(M) is finite.
A representation is said to be abelian, cyclic, trivial, etc., if so is its image.

Conjecture 4. If M is not homeomorphic to S3, then there exists a non-trivial
representation of w,(M).

Obviously this conjecture implies Poincaré conjecture.

Conjecture 5. If M is irreducible but not sufficiently large, and not a lens space,
then there exists a non-abelian representation of n,(M).

*)  F is the identity matrix.
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This conjecture implies the lens space conjecture.

Example. There exists an irreducible, sufficiently large, closed 3-manifold M
such that

,(M)={a, b|a@b* @b~ =bPaba " =1) .

This 7,(M) is non-abelian (in fact, a non-trivial amalgamated free product, see [2]),
but it can be shown that all the representations of =,(M) are abelian.

§3. A class of 3-manifolds

For 3-manifolds obtained by Dehn surgeries along 2-bridge knots, the com-
putation of the representations of n,(M) is carried out in [4]. The remainder of this
paper is devoted to computing all the representations of 7, (M) for a certain class of
3-manifolds. The class of 3-manifolds we will consider appears in [3], and each
manifold in this class has a Heegaard splitting of genus 2 and has the corresponding
presentation of the fundamental group in which one of the relators is of length 10.

In order to describe the class of 3-manifolds, first we consider a solid torus ¥ of
genus 2. V can be viewed as obtained from a 3-disk D? by glueing a* to o~ and g+ to
B, wherea™,a”, B*, B~ are disjoint 2-disks on 6D3. Then, a=a* =0~ and f=B* =
B~ (in V) constitute a system of meridian disks of V. Let ¢ be the loop on ¥ as shown
in Fig. 1. (We glue «* to o™ and B* to B~ so that the points with the same number
coincide.) We attach a 2-handle D*> x D' to V along c, that is, we glue D? x D* to

Fig. 1
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N(c), where D* is a 2-disk, D' is [0,1] and N(c) is the closure of a regular
neighborhood of ¢ in dV. Then we obtain a 3-manifold N with a torus as its
boundary. ,(M) has the following presentation:

m(M)=<{a, b|a*b~'ab’ab ™ =1}, )

where a and b are generators corresponding to the meridian disk « and f respectively,
and the relator corresponds to the loop c and is read from Figure 1. Let y* = D? x {0}
and y"=D*x{1}. y* Uy~ UOB<SON is called the reverse graph of c. Since N is a
torus, its universal covering space P is a plane. The reverse graph of ¢ induces an
infinite graph on P, as shown in Fig. 2. This is called the reverse development of c.
(Cf. [3])

Fig. 2

Now let T be a solid torus. If we glue 07 to dN in any way, then we obtain a
closed orientable 3-manifold. It is determined by the homotopy type of a loop d on
ON which is identified with a meridian of T by the glueing. This homotopy type is, in
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turn, determined by a pair (m, n) of relatively prime integers, where d is homotopic to
mx-+ny and, x and y are loops on 0N as shown in Figure 2. The closed manifold
obtained is denoted by M, ,. Obviously, M_, _, =M, ,. Hence we can assume
m=0. Since x and y correspond to the words ab~'a?b~* and ab? respectively and they
commute in 7,(N), we have presentations

(M, ) =<a, b|a*b " ab’ab™" = (ab ™ a*b™ )" (ab®)"=1)
=(a, b|a*b~tab’ab™ = (b7*a*b " (ab?) =1},

(@)
where j=m+n.

§4. Computation of representations of (V)

We shall find all the representations of n,(N) and of =,(M,, ,). First we
determine all the representations of 7, (N).

LEMMA 4. For any non-negative integer n, let

< . qn>=<p q)".
Fu  Su ros
Moreover we define polynomials p,= p,(x, y), inductively as follows:
Po=0, p1=1,  pp2=Xpus1+yp,.
Let x=p+s and y=qr—ps. Then, we have
' Pu=PPutIPu-ts  4u=9Pu>
Fn=FPy s Sp=8PntVPn-1-

Proof. By the induction on n.
Note that

p2=x,  p3=XCHy, p=x0+2xy,  ps=xt43x7p4yt e

COROLLAY. (? 9" is a scalar matrix AE, if and only if p,(x, y)=0, where x=
p+s and y=qr—ps. '
Proof. (? 9" is a scalar matrix if and only if p,—s,=¢,=r,=0. By Lemma 1,

* this condition is equivalent to p,=0. q.e.d.

Here we note that any matrix 4 in GL(2, C) has its Jordan normal form

A0 A1
T .
0o u ° 0 1
If the latter is the case, 4 is called parabolic.

Now let 4, Be GL(2, C). We define
A~B < 31#0, AA=B.
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That is, A~ B if and only if 4=B8, where 4 and B are elements of PGL(2, C)
corresponding to 4 and B, respectively.
Let h be a representation of n,(N), and let A(a)=A and h(b)= B. Then, by (1),

B UARAB =1, 3)

that is, A3B™' AB*AB '~ E. Conversely, if 4, Be PGL(2, C) are such that (3)
holds, then the equations 4(a) = A4 and h(b) = B define a representation of n,(N).*) We
denote these equations by

a—A, b—B. 4

THEOREM 6. (i) Let A, BeGL(2, C) and B=A"5, then (4) defines an abelian
representation of n,(N). Every abelian representation is obtained in this way. Two such
representations are equivalent if and only if the corresponding A’s are conjugate in
PGL(2, C).

(i) Let A, peC be such that Ap#0 and 33+ 3. Let

=8+ 225u+ 3242 422313 4222 + A,
s=—Apu—2242 —=22313 =372t —20° — u®

and let q, re C be such that both are not zero and qr=ps—A3u3(A3 — u3)?. Then the

correspondence
a_)A_-(p q), b_,B_—<;L 0>,
r s 0 u

defines a non-abelian representation of n,(N).
(iii) Also the correspondence

10 1 11
“_’A_<11 2)’ b_’B=<o 1)’

defines a non-abelian representation of n,(N).
(iv) Every non-abelian representation of n,(N) is equivalent to one of the
representations defined in (ii) and (iii).
(v) A representation defined in (ii) and the one defined in (iii) are not equivalent.
(iv) Two representations

®  j(a)=A and A(b) = B clearly define a representation of the free group G generated by a and b. Let -
A be the least normal subgroup generated by a*b~1ab®ab~'. By (3), i(#")={E}. So h is uniquely defined
by the following commutative diagram:

¢ . per2, ©)

|
G| N ={a, b|a*b™ tab®ab™1=1),
where j is the natural homomorphism.
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S ]

C\r s 0 u

a_><p q>, b_)(x' 0>’
r/ sl 0 ”/

which are defined as in (ii) are equivalent, if and only if one of the following is satisfied:
(D) (Aipu=A:p ord:p=p 1) and qr#0,
(I) A:pu=A":u" and (qg=q'=0 or r=r'=0),
)y A:pu=p':1 and (g=r"=0 or r=q’'=0).

and

Proof. The abelian case (i) is obvious. Suppose that # is a non-abelian
representation of 7, (N) defined by

a—A4, b—B.

First suppose that B is not parabolic. Then we can assume that B is in Jordan normal
form (§ 9) with A%y, Au#0. Let A=(? 9. Then we must have A°B~'4B°4AB™ '~ E.
Let x=p+s and y=gr—ps. Then by Lemma 1 we have

P3=pp3+yp;, 93=4p3 , r3=rps, S3=8p3+yp; .

By computation we have

A3B'1AB3AB_1zp3 qs ﬂOPq '13 0 P q ,uO
rs s3s)\0 AN\r s)\NO wBN\r s)\O0 2

_ (‘13 Pri*u+papA*i? + qarsipt + paary®,  qaqrad®+py paitu+ g8t + psqslu“>
Sapratu+rs PP PP+ sarshut 4 raqri®,  s3qra® +rypghtuts;stAiud +ragsiut )
Hence we must have
QDI papP AR+ GarsApt + paqris® = S qrid + rapqit -+ 5,202 + ragsipt
G3qrA° +papg it u+qss* A2 1 + pagsipt =0,
S3prA* U+ 1 p? 312 + syrsapt +ryqric =0

or,
X =5,qr7° —psp* 1 + 5382218 — pygri® =0, )
q(p3qri* +pspAPu+ pss* Al +pssu®) =0, (6)
r(sspA* + pap* 2+ 53546 + pagrut) =0 . @)

Suppose that g#0 and »#0. From (6) and (7), it follows that
Y =paqrht +pap Rt st +paspt =0, ®
Z=s5;,p2* + p3p* PP p+ 535248 + psqrit =0. ()
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Note that
| P X =50 Y +pspiZ . (10)
Now
ar=y+ps, ps=x'+y,  ps=pxX’+(p+x)y.
Substituting these into (8), we obtain
Y2+ y{p(s+ )%+ p* 2P p+ s(s+ X)A3 + (2 + ps)u}
+ {psx? 1t + P?x? B u+ X2 + psx®u*y =0 .

63))

Similarly we obtain from (9)
Y2+ y{p(s+ 202 +pP 2t s(s+ x) 43 + (2 + ps)u*}
+ {psx? 2t + p*xP 23 pu+ 2P 4+ psxuty =0 .

(12)

Subtracting (12) from (11), we have
V2O =) + y(sxi* + pxA3p—sxip — pxp*) =0
Since y #0, we have
V(A* — )+ (sxA* + px A3 p—sx i — pxp®) =0 .
Hence, if A*# u*, we have

(A Au+p)(sA+pp)
YT T A (3)
On the other hand we must also have

B*AB ' A*B'A~E.

And

220\ q\(r 0\(ps 43\(n O\p 4
3 —143R-14 ~ 3 3
BABA'B A~<0 ,u3>(r s)O A(r3 S3 (0 ANr s)

_ ( AXs3qrA® +2pqrpsip+ps pPp?) - Aq(s352%+ py(ps+qr)iu+ps pu’))
1r(s3522 + p3(ps+qr)dp+ps pp?) (35?22 +2qrspsiu+pagru?) )’
So we must have
5352% + p3(ps+qr)iu+pipu* =0, (14)
or,
Y2+ y(sA+p){(sA+puw) + (p+5)(A+ )} +x*(sA+pu)? =0 (15)
Substituting (13) into (15), we easily obtain
Ppx=A+ W2+ (A2 + A+ 1) (sA+pu) . (16)
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From this it follows that
PP+ 2242 + 20313 + 302 2048 +1°)
+$(AS + 225+ 3243+ 22313 + 2221+ M) =0 . 17)

Since this holds also when some scalar is multiplied to the matrix (¥ %), we may
assume from (17) that

P=A0 203U+ 322313+ 222+ A (18)
s=— (B pu4 2042 422313 4+ 32214 + 20485 + 1) (19)

Then, we have
x=p+s=A+m)A+ )P~ 1), (20)
sA+pu=p(A—p) . @

Hence by (13),
y=qr—ps=—2PP0>— ). 22)

It follows that A3+ 3. In the above, the case 1*=pu* was excluded. In this case, we
must have si+pu=0 or x=0. But, if sA+pu=0, then by (15) we must have y*Au=0.
This is impossible. If x =0, then (16) holds (since 4 # 1) and hence we obtain (18), (19)
and (22) also in this case.

It remains the case g=0 or r=0. We shall show that (18), (19) and (22) hold also
in this case. Since the case ¢=0 is treated similarly, we only treat the case r=0. Then
we have ¢#0 (otherwise we would have AB=BA) and

) o=l

(5), (8) and (14) are available in this case. So, if we show that (9) is also available, then
(18), (19) and (22) will follow. We show it by using (10). Since y= —ps+#0, we have

p3=p(x*+y)+xy=p°.

So, we have p;u#0, X=0, Y=0. Hence by (10), we have Z=0. Thus (9) is available,
as desired. '

Thus, we have proved that if / is a non-abelian representation of 7,() in which
h(b) is not parabolic, then 4 is equivalent to a representation defined in (ii) of
Theorem 5.

Conversely, suppose that Au=0, 1># 13, (¢#0 or r#0) and that (18), (19) and
(22) hold. Direct computation shows that the correspondence

s
ros 0 u

defines a non-abelian representation of ,;(N). Thus (i) of Theorem 5 is proved.
Next suppose that /4 is a non-abelian representation of m;(N) defined by a— 4,
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b— B, and that B is parabolic. Then we may assume that B=(} !). Let A= 9.
Since A°B'AB3AB~ '~ E, we have BA 3B~ AB3A, that is,

0 el P X (A A (1

or,
S3—r3 S3+tp3—r3—q; p’+3pr+qr pq+3ps+gs
( —rs  py—rs pr+3ri+rs qr+3rs+s2>' @3)
We show that r#0. Suppose that r=0. Then,
S3=8p3+yp;
=s(x*+y)+yx

=5(x* — ps) — psx
= S3 5

and similarly we have p, =p3. Hence (23) becomes
s s*+p*~q3\ _(P* pq+3ps+gs
0 p? ~\o 52 ’

P=s (29)

So we must have

and
s8> +p* —q3)=p*(pq+3ps+gs) . (25)
Since AB~ BA, we must have p#s. Hence it follows that
PP +pis+pist4psi +54=0. (26)
Moreover from (25) we have
—=3p's+p’s* +5° =5"q3 +piq+p3sq
=5’q(x* +y)+p*q+psq
=q(p*+P’s+p’s* +ps> +5%)
=0.

From this and (26), we must have p=s5=0, a contradiction. Thus r 0.
Now from (23) we have

(s3—13): (P*+3pr+gqr) =(s3+p3—r3—q3) : (pg+3ps+gs)
=(=p3):(p+3r+s)
=(p3—r3):(qr+3rs+s7),
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or,

(53=73)(p+3r+95)+(p*+3pr+qr)ps =0 @7
(3 —13)(p+3r+5)+ (s> +3sr+qr)p; =0 (28)
(s3+p3—r3—q3)(p+3r+s)+(pg+3ps+4qs)p;=0. (29)
But,
p3=x"+y,

p+3r+s=x+3r,
s3—r3=(s=n(x*+y)+xp,
ps—r3=(p—n(x*+y)+xy,

S3+p3—r3—q3=(x—r—q)(x* +)+2xy,

P+ 3pr+qr=p(x+3r+y,

a*+3sr+qr=s(x+3r)+y,

pq+3ps+gs=q(x+3r)—3y.

Hence, (27) and (28) become the same equation
(x+3)(x—r(x*+p)+xp(x+3r)+y(x*+y)=0, (30)

while (29) becomes

(x+3r)(x—r)(x*+ )+ 2xp(x +3r) = 3p(x* + ) =0 . (31

From (30) and (31), we have
x(x+3r)=4(*+y), (32)

since y #0. Hence x#0 and
rextar. (33)

Substituting it in (30) we have
(x%2+y)(x*+16y)=0.
But if x*+y=0, then

(-%""3 53+P3_"3—‘13>=<xy 2XJ’>
—7; DP3—r1; 0 xy/’
p*+3pr+qr pq+3ps+gs\ (v -3y
pr+3r24rs qr4+3rs+s*) \0 y )’

and
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xy 2xy\ (y =3y
0 xy)\0o y )

This contradicts (23). Hence

xX*+16y=0. 349
From this and (33) we have
11
=—x. 35
=12* (35)

Conversely, (34) and (35) together with y#0, p+#s are sufficient for a non-abelian
representation of 7,(N). Now from (34) and (35), the values of p and s determine the
values of g and r. We shall show the resulting representations are all equivalent,
irrespective of the values of p and s. Now the correspondence

i 1 t\(p q\(1 —t\ (p+tr gq—tp+is—t?r
0 1/\r s\O 1)\ r s—tr ’
1 t\/1 1\1 -t 11

b—) = .
G 1o o )6 1)

‘gives an equivalent representation to the original one. That is, (p, s) and (p+tr, s— tr)
give equivalent representations. But, (p+ tr)/(s— tr) takes arbitrary values at 7 varies.
Thus, all the representations considered in this case are equivalent. So, as a
representative of these we can choose the one defined by

(10 1 b-»ll
>\ 2) 0 1)

Thus we have proved (iii) and (iv) of the theorem. Moreover (v) is obvious since
(¢ 9) and (§ }) are not conjugate.
Finally we shall show (vi). Let 4 and A’ be two non-abelian representations

defined respectively by
a (p q> , b <A 0) :
r s 0 u

a_)<p’ q’>’ b_)(x 0>.
ros 0

Since they are non-abelian it follows that A#u and 4’#u’. And {/, u} and {1’, u’}
are eigenvalues of (§ 9) and (" 9.), respectively. The last two matrices are conjugate in
GL(2, C) if and only if {4, u} ={A’, u’}. Hence these are conjugate in PGL(2, C) if
and only if A:u=A":p" or A:pu=u’:A". So, this condition is necessary for the
equivalence of 4 and 4’

and
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Suppose that 4 and 4’ are equivalent. Then, for some 4 € GL(2, C),

A0 20
A lx
A<0 u) <0 #’>’ (36)

A<” q)A“z<p, q,). (37)
r s r S

If A:p=A":p'# —1, then by (36), 4 must be of the form (§ J). So, =0 implies ¢’ =0,
and r=0implies 7’ =0. If 1: u=p’: 2’ # — 1, then by (36), A must be of the form (] §).
So, g=0 implies ' =0, and r=0 implies ¢’ =0. If A: y= — 1, then we may assume that
A=1, p=1. Then by (18), (19) and (22), we have p=1, s=—1, gr—ps=4. So, qr #0.

These considerations show that if 4 and A’ are equivalent, then one of the
conditions (I), (II), (IIT) of Theorem 35, (vi), holds. Next suppose that (I) holds. Since

(o) o) =6 )
1) H R

we may assume that A: u=41": u’. But then we may also assume that A=A1"and u=y".
Then we have by (ii) that p=p’, s=s" and gr=¢'r’ #0. So there exists an «#0 such

that o’q=q’. Now
0 V(2 0\@ 0\ (2 0\ (¥ 0
a N0 u at) N0 u) N0 w)

0\P a\o ON\*' [ p oq\ (P ¢
0 R X
Hence the two representations are equivalent.

Next we assume that (II) holds. We may assume that A=4", u=p’. If r=r"=0,
then ¢=0, ¢’ #0, for otherwise the representations become abelian. So by the same
reason as above, the two representations are equivalent. Similarly for the case ¢=
q’=0. The case (III) is reduced to the case (II) by (38). This completes the proof of
Theorem 5.

(38)

K

o
o

S R

§5. Computation of representations of =,(M,, ,)

THEOREM 7. If (m, n)# £(0,1), £(1,0), then n,(M,, ,) has a non-abelian
representation and hence it is non-abelian. Moreover M, , is the lens space of type (9, 2)
and M,  is the lens space of type (13, 3). Therefore the lens space conjecture holds for
the class of 3-manifolds {M,, .}.

The rest of this section is devoted to proving this theorem.

We consider the representations of
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(M, )=<a, b|a*b~'ab’ab~ ! = (ab~'a?b~)"(ab?)'=1)
={a, b|a*b " 'abPab™ ' =(b"3a?b )"(ab?) =1,

e O
ros 0 u

be a representation of n,(N) defined in Theorem 6(ii). Then it becomes a represen-
tation of mn,(M,, ,) if and only if

where j=m+n. Let

(B 3A*B YY" (AB})~E.

, (P a\(A 0\ [u«
(7 6 )= 5
3 " 7"
3 a-1 (B 0\(P2 4r\(m _(“ B
bt _)<0 ls)(’z 52><0 l) <7” 5”>'

a=Ap=R3A3+22%u+ 323U~ 2+ 20213 + 204t + 115)
(abbreviated by A* (1, 2, 3, 2, 2, 1)),

Let

S

(=)

Then,

B=uq,
y=Ar,
S=prs=—p*(1,2,2,3,2, 1),
o =utpr =t (23— 1) (1,3,6,7,9,8,6,3, 1),
B =Mlxq= AP A+ WA+ )2 — 1)q
Y = Ruxr =22 p(+ p) (22 + 2R — 1P,
8 =Ns,=—2tu(2—13) (1, 3,6,8,9,7,6,3,1).
Let
=t (1,3,6,7,9,8,6,3,1),
B’ =22+ (A2 + 1P,
Y =Ru(+ w2+,
0’=-2*u(1,3,6,8,9,7,6,3,1).
Then,
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AN
v &)\ §)
Note that ab* and b~ 3a*h~! commute in 7,;(N). Hence
o o B
<v g) and (?’ g)
must commute in PGL(2, C).
Let k&, xn be the eigen-values of (} §), and 6¢’, O be those of (% %). Then,
kE+m=a+p,  KXEn=0d—py, (39)
0 +n")=a"+6", e =a's'— By .
Hence we have
(P (=B =Ena+0)*, @0
E+n8 +B) = @+
We first assume that £##, ¢ # —#. Then, for some Pe GL(2, C),

« B\,-, (¥€ O
o 5 =(0m)

Since (; §)and (¢ §) commute in PGL(2, C), P(% §)P~'is also diagonal and equal to
either (& §,) or " 9.). We may assume that P(% £)P~'=({ §,). Then

o5 8= o)

So the eigen-values of (; §)( §) are k0&&’ and kOyn’, and we have

ad'+ﬁy'+yﬁ'+55'=x0(£é’+nn/) : (41)
Also by (39) we have

KO +m(E +n")=(a+0) ' +0") . 42)
From (41) and (42) we have

(0’ +By"+ 9B+ 66" WE+m(E +n)=(a+6) '+ )EE +nn")
or
Po(&n’ +n&)=Qo(E" +nm) ,
where
Py=ao’+ By’ +yp’+06" and Q,=ad’ —By —yB’ +da’ .

From (43) we have
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¢ in"=(Po— Qo) :(Qo& — Por) .
So if @ is suitably chosen, we may assume
&'=Pyl—0Qon, n'=0o—Pon ,

unless they are both zero.
Now the second relator becomes

gy nmapy o (% B\ (% BY o
(b™%a*b™)"(ab?) <y’ 5,) <y 5) ~E.

From this, it is necessary that two eigen-values of

(1’ ﬁ, m o ﬂ J
,y/ 5/ ,y 5
coincide, that is, £'™EV=n""yJ, or

(Po&— Qom™E/=(QoC — Por)™’ . 43)

But this condition is also sufficient in this case. For, if (. §)™(¢ )/~ E does not hold
but (44) holds, tl}en, (¢ $)"C §’ must be parabolic and hence (¢ §) is also parabolic,
since (§ % and G £) commute. But it is impossible since we assume & #1.

In order to obtain representations of =,(M,, ,), we solve the simultaneous
homogeneous equations

(E+n(@d—By)=Ena+9)*, (40)
(Po&— Qom™E7=(Qo& — Pom)™n’ . 43)

As in [4], we consider the solutions of these equations as the intersection of two
algebraic curves in CP' x CP! with the coordinate system {(/, y; , 1)}, where A, p are
not both zero, and &, 5 are not both zero, and (4, y; &, #) and (A’, u’; &', #”) denote the
same point iff A'=0l, p'=op, &'=1& n'=1n, for some o#0 and t#0. These
solutions give desired representations iff Au#0, A3#u3, En#0, E#£ny, E# —1.

Now,

wd—fy=—ly=p (P -1’y
a+d=(A2-p?»(1,2,4,3,4,2,1).
So, (40) becomes
CHm* P22 +dp+ 12y =En(A+u) (1, 2, 4, 3,4, 2, 1), (44)
Moreover,
Py=ao'+ By +yB + 66’
=20 -w*A+w(1,2,4,54,2,1).
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Qo= —Au(h—w?(h+p) (1, 6, 22, 56, 113, 185, 261, 316, 339,
316, 261, 185, 113, 56, 22, 6, 1)
= — (A — O+ w22 4+ Au+u?y?
(1, 4, 11, 20, 31, 37, 43, 37, 31, 20, 11, 4, 1) .

In (44), if 2+ p=0, then {+#=0. So it does not give representations. So we can
devide (43) by — Au(A—u)*(A+p). Then we have

(PE=Qn"EI=(QE—P)™/ , (45)
where P=2°1° (1,2, 4, 5,4, 2, 1) and
Q=2+ u+u?? (1, 4, 11, 20, 31, 37, 43, 37, 31, 20, 11, 4, 1).

So we solve the simultaneous equations (44) and (45).
In (44),
(i) if Au=0, then én=0;
(i) if A*+Ap+p*=0, then én=0;
(iti) if A=y, then 9(E+n)*=1156¢n;
(iv) if &n=0, then Au=0 or A2+ Au+ > =0;
(v) if E=n, then 4% (A + Au+ 12 =(A+w?(1, 2, 4, 3, 4, 2, 1),
(vi)y ifé=—n,then u=—-1o0r(1,2,4,3,4,2,1)=0.
By the way there are only finitely many such exceptional points.
First we remark that A= u does not occur in any solution of (44) and (45). For, if
A=p, then from (44) we have 9(¢ +n)?>=1156&y, that is,

9¢E2—1138&n+97°=0.
Sc; if we put x=¢&/n, then x satisfies the eqilation
9x*—1138x+9=0. (46)
Moreover, by (45) we have
(Px—Q)"x'=(Qx~P)",

(= P\"_(2259x—19\"
“\Px—Q) \19x—2259) °

_ 2259x—19
Y= 19x—2259"°

So, if we put

we have
9y2—17938y+9=0, 47)

and
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xi=ym. (48)
And each of x" and y" satisfies the equation of form
9"2 —kt+9"=0,

where £ is an integer relatively prime to 9. So we must have |j|=|m | and since j and m
are relatively prime, we have |j|=|m|=1 and x=y or y~!, by (48). But this is
impossible by (46) and (47). So A#u in any solution of (44) and (45).

Now, let

SOy s & M=CE+n)? PP+ p+ 12— En(A+ (1, 2, 4, 3, 4, 2, 1)?

49)
and
Gm, 1o 15 &, ) =(PE—ON)"E7—(QE — Py)™n’ (50)
and we consider the simultaneous equations
SO s &m=0, g, 4 w & n=0, (51)

in CP' x CP'. f is of degree (2, 14) and g, ; is of degree (m+|j|, 16m). By Bezout’s
theorem for CP! x CP! (cf. [4]), the total sum of the number of intersection is

2-16m+14(m+|j)=46m+14|j| .
First we compute the numbers of interesections at
4, & m=0,10,1), (0,1;1,0), (1,0,0,1), (1,0;1,0).

We easily see that the numbers of intersections at these points are the same. So we
only compute that of the point F=(0, 1; 0, 1).
Now the only parametrization of (49) with center at F is given by

A=t, u=1; E=r—454+617—F+34"°+ -, p=1.
Then
(PE=Omy"&I=+074- -,
(QS—Pn)"n)= £+ - -
So, if 5j#8m, j=0, then
ord (g,,, ;) =min (5j, 8m) .
Moreover we can show that if 5/=8m, i.e. (m, j)=(5, 8), then
ord (g, )=41.
If j<0, we easily obtain
ord (g, ;)=0.
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So, if we denote the number intersection at F by 1(F), then
10, 1; 0, )=1(0, 1; 1, 0)=1(1, 0; 0, 1)=1(1, 0; 1, 0)
min (5/,8m), if j=0, 5j#8m,
=141, if (m,j)=(,8),
0, if j<O.
Next we consider the exceptional points with P +iu+p=0, én=0. Let
denote a root of w?+w+1=0. Then there are four points under consideration:
hwémn=@, 1;0,1), (@, 1;0,1), (w,1;1,0), («? 1;1, 0).

Of course the numbers of intersection at these points are equal. So we only treat the
point (w, 1; 0, 1). The place with center at this point is given by

i=o+t, p=1l;  E=-3w0fl4+---, p=1.

If j=0, then ord (g, ;)=0. So the number of interesection w, 1; 0, 1)=0. If j <0,
then

(PE=QnymnI=3nina -
(Q&—Pn)"e I =(=30) It ¥4

So if 2m# —2j, then 1(w, 1; 0, 1) =min 2m, =2j). If 2m==2j, ie. (m, j)=(1, —1),
then 1(w, 1; 0, 1)=3. Thus

(o, 1;0, D=1? 1;0, D=uw, 1; 1, 0)=1(w?, 1; 1, 0)

0, if jz0,
3, it (m, )=(1, —1).

Next we compute the number of intersection at (—1, 1; —1, 1). Let A=—1+1¢,
u=1, n=1. Then, by (44), é=—1431—32 -, or é=—1—3t—61>+---. If &=
—1+3r—3¢%-- -, then

(PE— O —(Q&— Py’
={(=1+0°G-9)(—-1+3)—(1 —200(7—420)}"(— 14 3¢)/
—{(1=20)(7—4200(= 1430 — (= 1+ ’B—9)}" + - -~
=(—4+23)"(—1+30) —(—4+101)"+ - - -
=H{(=D" (=1 = (=" +2(=H" 1 (39m — 2~ 39}t 4+ - .
So
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0, if j isodd,
ord )= e
Gm.) { 1, if j iseven.
The same holds when é=—1—3¢—6¢/2+ - - -. Thus

RN if j is odd,
(—1,1;-1,1)= 1x2=2, if j iseven.

But if j is even, there exists a homomorphism
0y (M, ) =<a, b|a*b™'ab’ab™" = (b~3a?b~y"(ab?) = 1)
—<a, b|a*=b*=(ab*=1).

The latter group has the representations
-1 0 p q\(—-1 0\ s —gq
a— N - 5
0 1 r s)\NO 1/A—-r p

where + )
b (ps gr pq)
—2rs ps+gqr

and 3(ps)®+10(ps)(gr)+3(gr)*=0, so that (ab)>*—1. In some sense, these repre-
sentations may be counted twice. So we do not subtract 1(—1, 1; —1, 1) from the total
number of intersection.

Next we compute the number of intersection at (4, y; &, ) («, 1; —1, 1), where
o is a root of

d(O=04+25+44 + 38 +42 42t +1=0.

First we remark that ¢(¢) is an irreducible polynomial in Z[f] and hence does not have
double roots. So there exist six roots of it and they determine six points (o, 1; —1, 1)’s
in CP! x CP!.

We shall show that

o, 1; —1, 1)=2m,

for each a. Now- there are two places with center at this point. These are
parametrized by

é=—1+t, A=oa+at+bP+---, (52)
n=1, p=1.
In order to find the values of a, we substitute (52) into f(4, w; &, ). Then
0=f(=14¢ 1; a4+at+b>+---, 1)
= Ao+ at)* {(a+ar)* + (a+ar) + 1)
—(=1+{(1 + ) +at}*Pp(a+ar)?
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={o’(+ o+ 1)*+(a+ 1)@ (a)a?} 2 (mod. 1) .

Thus, we have

. —o’(@?+a+1)? 1 ta¥(@®+atl)y/—a
R R PSS | R R PO | Ut B

Next we compute the order of g, (4, u; £, 17). We assume j>0. The case j <0 can
be treated similarly.

Im (=141, 1, a+at+brP+---, 1)
=(P-(=140=Q/"(=14+0/=(Q-(~1+)—P)"
=(Pt—(P+Q)"(—1+1))—(Qt—(P+ Q)"

Here we notice that
P(4, D+ 0@, D=¢)x(4) ,
where
AA)=210442° + 10284+ 1727 4231542405 + 2324 + 1723+ 102 + 45+ 1.

Thus,

(Pr—(P+Q)"(—1+8)’—(Qt—(P+ Q)"

=(P(a, D1—ad (@(@))"(— 1) = (Q(e, 1)t —ad’(@)x(@)r)"

={(P(a, )—ad’(@x(@)"(— 1) = (Qe, D—ag ()x(@)"}™ (mod. £m+1) .

We show ord (g,, ;)=m by checking that the coefficient

e=(P(a, 1)—ag’(@)(@)™(— 1)/ —(Q(a, 1) —ag’ () 7(2))" #0..
Suppose that ¢=0. Then
_ P, 1)—ag (@)
(e, 1) —ag'(@)x()

is a 2m-th root of unity and hence d must satisfy a cyclotomic equation. Thus if we
show that d satisfies an irreducible non-cyclotomic equation in Q, then we have a
contradiction and it shows that c#0. Now

P(a, 1)=208 , (since P(A, 1)=248 (mod. ¢(1)) .

QO(x, 1)=—20%, (by the same reason as above)
x(@)=—20’, (by the same reason as above)

a¢,(a)=ia2(a2—;j_4£1)./ —o
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+oc2(a2.+oc+ 1)/ —a (= 20%)— 208
T a+1
aX (o +a+1)/—a .
+ _ 5 8
* 1 (—2a”)+ 20
(@ +at+ 1)/ —aFoa+1)
(*+oa+1)/ —atoa(a+1)
A further (rather long) calculation shows that d satisfies the irreducible equation

d®+14d° +63d* +36d> +63d*+14d+1=0,

which is not cyclotomic.
Thus we have shown that ord (g,, )=m, for each place with center at (o, I;
—1, 1). Since there are exactly two places with center at this point, we have that

o, 1; =1, )=2|m]|.
Since there are 6 different roots of ¢(a) =0, we have

Y (=1,L0,1)=12m.
¢(@)=0

Next note that
Sy 15 & =@ —nPPp> (R + A+ 2Y = En-v(4, 1) ,
where
| v, W=, 6, 21, 50, 92, 134, 167, 178, 167, 134, 92, 50, 21, 6, 1)
=(1,4,8,9,8,4,1(,2,55,6,5,52,1).

Since these factors are reciprocal we can easily compute all the roots of (4, 1), (e.g.
by the aid of programable electronic calculator) and see that (4, 1) does not have
multiple roots.

Let 8 be any solution of y/(1). Then by Walker [8], there exists exactly one place
with center at (f, 1; 1, 1), which is parametrized by

E=1+t, A=p+a’+bP+---,
n=1, u=1.
Substituting these in f(4, u; &, n), we obtain
0=f(B+at®+bP+---, 1; 141, 1)
=t} (B+at? +b>+ - ) (B+al?+b+ - P+ (B+at? +bP+ - )+ 1)
—(+y(B+at*+br+---, 1)
={FE+B+ 1)~y (Bajt?  (mod. ).
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Thus

BB+ +1)
Ve
Note that
Q—P=(2+2pu+12W(2, )
=((B+ar?+br- Y +(B+al +b>+ - - )+ D) (Bat*+ - - -)
=(B+p+ )y (Bar
=F B +p+1°2  (mod.r?),
P=p(B°+24°+4B*+56°+4p*+2f+1)  (mod. %),
Q=422 u+ 42412 + 53313+ 4224 + 205 +1°)  (mod. ¥)
=B5(BO+2B° +4B*+ 582 +462+28+1)  (mod. 12).
Thus (assuming j > 0)

G, (Brat +b+ -+, 1; 141, 1)
=(P-(1+0)—-0)y"(1+1)’—(Q-(1+0)—P)"
=(Pt—(Q—P)"(1+1)'—(Qt+(Q—P)"
=(P™"—mP" BB+ B+ 1) (1 +j1)

—(P™"+mP™ 1B (BE 4+ B+1* ") (mod. t™F2)
={=2mP" BB+ B+ 1)° +jP™ "1
where '
P=B(B+2B°+4B*+ 503+ 482 +2B+1) .
But it is easily seen that
BB+ B+1)? _ (B2 + B+ 1)°
P TR+ 2B5+4B4+ 563 +4B2+2B+1
is irrational. So the coefficient
—2mP" B (BE+ B+ 1) +jPm 0.

Thus (B, 1; 1, 1)=ord (g,, )=m+1. There are 14 solution of the equation y(1)=0.
So

Y i 1;1,1)=14m+14.
v(B)=0 ,

Recall that j=m+n. Now
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d,, ,=(the total sum of the numbers of intersections)
—10, 1,0, 1)—1(0, 1; 1, 0)—(1, 0; 0, 1)— (1, 0; 1, 0)
—o, 1;0, )—1(w? 1; 0, 1) —1(w, 1; 1, 0)—1(w?, 1; 1, 0)
- Y e, -1L1)—Y B 1;1,1)

$@=0 vip)=0
=46m+14|j| —4 max (0, min (5j, 8m)) — 4 max (0, min (—2j, 2m))
—12m—14m—14
14j—12m—14, if 5/>8m,

—6j+20m—14, if 8m>5>0,

—6j+20m—14, if 0>2/>-2m,

—14j+12m—14, if —2m>2j.
=2|5—8m| +4|j+m| —14=2|5n—3m| —4|n+2m| — 14,

if (m,j)#G5 8, (1, —-1), (0,1), (1,0). Moreover,

f (m,j)=(5,8), then d,,=32=2|5n—3m|+4|n+2m|—18,
if (m,j)=(, —1), then d, ,=8=2|5n—3m|+4|n+2m|—18,
if (m,j)=(0,1), then d,,=0=2|5n—3m|+4|n+2m|—14,
if (m,j)=(1,0), then d,,=6=2|5n—3m|+4|n+2m|—14,

o

Thus

dpn=2|5n—3m| +4|n+2m| —-14-56, ,,
where

5 ={0, if (mmn)#(5,3), (1,-2),

™ 4, if (mn)=(5,3), 1,-2).
Let

h(x, y)=2|5x—3y| +4|x+2y| — 14,

where x, ye R. Then Ah(x, y) is a continuous, piecewise linear function of x, y. In
(x, y)-plane, {(x,y)|h(x, y)=0} is the parallelogram L illustrated in Figure 3.
h(x, y)>0 outside L, and A(x, y) <0 inside L. The interior of L does not contain any
lattice point other than the origin and on L there are four lattice points + (0, 1),
+(1, 0). This means that 4,, ,>0 except (m, n)=(0, 1), (1. 0).

So if (m, n)#(0, 1), (1. 0), then there exists a non-abelian representation of
n(M,,,) and hence n,(M,, ,) is non-abelian and M, , is not a lens space. Moreover,
by examining Heegaard diagrams we can show that M, ,, is the lens space of type
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sl3
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33
0o [~

Fig. 3

(13, 3) and M, ,, is the lens space of type (9, 2). Thus we conclude that for the class of
manifolds {M,, ,} the lens space conjecture holds.

§6. Remark

During the writing of this paper, we knew Thurston’s theory [5]. If we used his
theory with some device, the arguments of this paper could be fairly simplified.
Moreover we can show that the interior of N admits a (complete) hyperbolic
structure (with finite volume). This structure can be constructed by glueing together
the faces of three ideal tetrahedra. We can also show that the critical cases (m, n)=
(5, 3), (1, —2), the manifold M,, , is sufficiently large. Indeed M _,, contains an
incompressible torus and M s 5 contains an incompressible surface of genus 2. Mg ;5
is also sufficiently large since H,(M g ,3)) is infinite. It seems likely that any other M,, ,
is not sufficiently large. There is no theoretical difficulty to check it but only a tedious
effort would be necessary.

Also it can be shown that when (m, j)=(1, —1), (1, 1), (2, 1), the manifold M,, ,
is a (special) Seifert fibered space and hence does not admit hyperbolic structure.
M _,, does not admit hyperbolic structure since it contains an incompressible torus.
It seems likely that when (m, n)#(0, 1), (1,0), (1, —2), (1, =1), (1, 1), 2, 1), M,, ,,
does admit hyperbolic structure. Thurston’s hyperbolic Dehn surgery argument can
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apply. However it causes some difficulty when both positively oriented simplexes and
negatively oriented simplexes occur.
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