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1. Introduction

Let f be a function meromorphic in D={|z|<1}, and let 7(1, f) be the limit
T, f)=lim T(r, f)
r—1

of the Shimizu-Ahlfors characteristic function
T(r,ﬁ=ﬂ_1j t'l[fj f“(z)zdxdy:ldt, O<r<1,
0 |z| <t

=11+ 11
For we D as a parameter we write the composed function
fu@=f(+w)/(1+wz)), zeD.

Then, fis said to be of uniformly bounded characteristic in D, f € UBC in notation,
if

where

Ifllz=sup T(,f,) <,
while fis said to be of class UBC,, f € UBC, in notation, if
lirill TQ1,f£,)=0.
It is known that UBC, <= UBC [3‘,w11emma 2.1, p. 352].
We begin with the positive answer to the problem raised in [3, p. 366].

THEOREM 1. If f is meromorphic in D with finite image area,
(1.1) JJ fi2)?dxdy<oo  (z=x+1iy),
D

then f e UBC, .

For we D we set
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Rw)=D, if w=0;
={zeD; |w|<]|z|<]l and |arg(z/w)|<n(l1—|w]}, if w#0.
Then, the length of the arc
0D N OR(w)={e"; |t—arg w| <n(1—|w]|)}
is 2n(1 —|w]) if w#0; this is also true for w=0. For a measure =0 in D we set
O, w)=puRW))/{2n(1—|w])},  weD.

Then, uis called a Carleson measure if sup Q(u, w)< oo; the definition is equivalent
to that in [2, p. 238]. web

For f meromorphic in D we consider the measure y, defined in the differential
form:

dp(2) = f*(2*(1 | z|)dx dy .

THEOREM 2. Let f be meromorphic in D and suppose that f € UBC. Then p; is a
Carleson measure.

A partial answer to the problem whether or not the converse of Theorem 3 is
true, is supplied by

THEOREM 3. Let f be meromorphic in D and suppose that
(1.2) lilmI sup Q(u, w)<1/2.
w|—>1
Then feUBC.

The condition (1.2) implies that u, is a Carleson measure; see Lemma 4.1.

2. Proof of Theorem 1
We have already proved in [3, Theorem 6.1, p. 362] that (1.1) implies
|zli|r511 (1=1z)f*2)=0.
Accordingly, for each r>0, there exists 6=4(r), 0<d <1, such that
2.1 , 6<sluz[|)<l(1—|z|2)f“(z)<r.
Let A be the area integral in (1.1), let
p=p(r)=1—exp(=2/r), and ¢(r)=(p+0)/(1+5p).

Let M be the supremum of the function

Y(O)=—t*(log )/(1—1*)—(1/2) log (1 +1),
bounded in 0<t<1, and finally let
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g(z, wy=log |(1 —wz)/(z—w)|
be the Green function of D with its pole at we D. Apparently,
M=1limy(1)=(1/2) log (¢/2)>0.
Then we shall show that -

2.2) jj 1¥(2)%g(z, wydx dy £ — Alog p(r)+ nr + nMr?

for each w in the annulus {¢(r) <|w|<1}. Since the right-hand side of (2.2) tends to
zero as r tends to zero, we observe that

lim J:[ i(2)%g(z, w)dx dy =0,
1.JJp

|w|-

whence f € UBC, by the criterion [3, Theorem 2.2, (II), p. 352].
For the proof we set

A(wy, 1) ={z€D; | z—w, |/| | —wpz| <7}

for each wye D and 0 <7< 1. First, it is easily proved that

I, Eﬂ fH(2)*g(z, w)dx dy < Alog(1/p) .
D\A(w,p)

Next, since 4(w, p)c={6<|z|<1} by ¢(r)<|w], it follows from (2.1) that
fi@P=r(—z1)7%, zed(w,p),

whence

I,= ﬂ fH(2)*g(z, wydx dy<r? ff (11217 ?g(z, wdx dy
40w,) 4wp)

=r2”m (1-1¢1) " ?log|1/C|dEdn

by the change of variable
z={(+w)/A+W0),  |l<p, (=l+in.

Therefore,

0
I, <mr? J 2t(1—t%) " %log(1/t)dt

0
=mr?{—(1/2)log (1 - p)+Y(p)} Smr¥(1/r+ M) .
Since the left-hand side of (2.2) is I, +1,, we obtain the estimate (2.2).
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3. Proof of Theorem 2

Our aim is to show that

3.1 sup QO W =@+2?(fllr.

First of all, for each we D, and for each z e R(w), the inequality
(3.2) [1—wz|<(m+2)(1—|w]|)

holds. Actually, we may suppose for the proof that w=a, 0 <a<1, with the aid of
rotation. Let z, and z, be the vertices of the annular trapezoid R(a) in the upper half-
plane. Then,

|z—1/a|<max (|z; —1/a|, | z,—1/a])
<(/a—a)+1/a)n(l—a),;

the second term in the right-most is the length of the arc on the circle {|{|=1/a}. On
multiplying both sides by a we have (3.2) for w=a.
Since —log t>(1—1¢2)/2 for 0<t<1, it follows from (3.2) that for each z e R(w),

A—lzA=lwly_  1-]z]
2[1-wz>  S2m+2P1—|w)’

glz,w)2
Therefore,

KRW) =2m+2)*(1—|w]) ﬂ fH(2)*g(z, wydx dy

S2n(n+2A—|w)If ¢
by [3, (2.6), p. 353]. We thus have

Q(lufs w)é(n+2)2”f”T9 WGD,
which yields (3.1).

4. Lemmas

We prepare two lemmas for the proof of Theorem 3.

LEMMA 4.1. Suppose that

lim sup Q(u;, w) < 0

|w|—-1
for f meromorphic in D. Then p; is a Carleson measure.

Remark. The only one property of u, required in the proof is that u(E)<oo
for each closed disk E with center 0 and contained in D.
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Proof of Lemma 4.1. There exist §, 0<d<1, and K>0 such that
4.1) He(R(w)) =2nK(1—|w])

for each w in the annulus {0=|w|<1}.
We fix a natural number N, > 1/(1—6). Then, for each w, |w|<dJ, we may find w;
with [w;[=4, such that

No

Rw)n{é<|z|<1l}< ~U1 R(w)).
Since (4.1) is true for each w;, it follows that 1
4.2 U(Rw) N {d<|z|<1})Z2nKNy(1-96), lw|<d.
Furthermore,
(4.3) wRW) o {lz|so)su({lzIsoD=4,, |w|<d.
Therefore, for w, |[w| <4, (4.2) and (4.3) yield
4.4) Oy w) = 1 (RW))/{2n(1 —6)}

SKNy+A45/2n(1—0)}=A}.
Combining this with (4.1) for 6<|w|<1, we have
Oy, w)s4;+K

for each we D. Therefore y, is a Carleson measure.
We fix a constant B, 1/2<B< 1, once and for all, so that

4.5) (1-9/(1+1)<sin {n(1—1)} for B<it<l1.

LEMMA 4.2. Let f be meromorphic in D, let B<d<1, and 0<r<1. Then for
each (,

O+n/A+dn<|{i<l,

we have

(4.6) j rin fH2)dxdy <2n{(1+n)/(1 - r)}z‘KSIliII)< Qo).
Proof. We may suppose that the supremum in the right-hand side of (4.6),
denoted by C, is finite. Set
w={(|{|=n/(1=rI{]}e =t
Since B<d<|w|<1, (4.5) yields that
A=1wD/A+|w] <sin {n(1—|w])} .

Consequently, the Euclidean disk with the diameter between w and w/|w]| is
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contained in R(w), so that
A, S RMW) .
On the other hand, for each ze A({, r),

[C+r _(a=18hd—n
1+ {r 1+]r

1—|z|>1-

Therefore

2rC(1+r)1—|{))
1—r|¢]

=2nC(1—|w])

2 ﬂ (2’1 —|z]dxdy
R(w)

(=1L —r) 4 N2
> 7 d
2T JA(c,r)f(Z) xdy,

whence follows (4.6).
COROLLARY. Let f be meromorphic in D, let B<0 <1, and suppose that
4.7 sup  Q(u, w)<l1/2.

s<|wl<1
Then
sup (1—|z]*) f*(z2)< 0.
For the proof, choose r, 652r< 1, such that
2nCA+r)*/(1=r<m,
where C is the supremum in (4.7). Then it follows from (4.6) that

sup JI fH2)%dxdy<n, for (6+r)/1+dr)<|{|<1.
)

By [3, Remark, p. 355], the conclusion of the Corollary holds.

5. Proof of Theorem 3

By Lemma 4.1, y, is a Carleson measure, or, equivalently, f/ 2 (1—|z|®)dx dy is
a Carleson measure in the differential form. It then follows from [2, Lemma 3.3, p.
239] that

CESUp J\J (1_|W|2)(1_|Z|2)fﬁ(z)2dxdy<OO ]

weD [1—wz|?

Since there exists a constant I' ,0<I'<1, such that
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—logt<(1—13)/(2r?) for I'st<l,

it follows that, for each we D,

(5.1) J:[ 1¥2)%g(z, wydx dy< {1/(2I'%)} ‘H‘ f“(z)2<1 _ ‘ z—‘:v
D\A(w, T) D —Wwz

1

2
)dxdy

sc/2r?.
On the other hand, by the Corollary of Lemma 4.2, there exists Q >0 such that
ff@*=0(~1z1»"?, zeD.

Therefore, for each we D,

(52) J:[ 29z, wydxdy < Q H (1—121)"*g(z, w)dx dy
A(w,I) A(w,I)

=Qﬂ| | (A—1¢1?)"*log|1/¢|dEdn
¢{|<r
=%Q.1).

Therefore,

m|lflly=sup ﬂ [H@*g(z, wydx dy < C/2I?)+ #(Q, )< w0,

which shows that fe UBC.

Appendix

The “if” parts of (I) and (II) in [3, Lemma 3.2, p. 354] can be ameliorated. For
0<r<lI, and weD, let a(r, w, f) be the spherical area of the image f(4(w, r))
(namely, the projection of the Riemannian image) of 4(w, r) by f meromorphic in D;
f(4(w, r)) is a subset of the Riemann sphere of diameter one.

(a) Suppose that there exist r,0<r<1, and 8, 0< <1, such that

sup a(r,w, f)<m.

s<|wi<1
Then
sug) 1=z f*(z)< o .

(b) Suppose that there exists r, 0 <r<1, such that

lim a(r, w, £)=0.

Iwl-1

Then
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Ililm (=121 f*2)=0.
z|=>1

The proofs are the same as those of (I) and (II) on replacing [3, Lemma 3.1, p.
354] by the obvious version in terms of o; see [1, Lemma II, (6), p. 216].
A function f meromorphic in C={|z|< o} is called Yosida if
sup f¥(z)< o,
zeC
or equivalently, f is of class (A) in K. Yosida’s sense [4]. Similar propositions for f
meromorphic in C to be Yosida hold. In this case, a(r, w, f) should be replaced by the
spherical area of the image by f of the Euclidean disk of center w e C and radius r>0.
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