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Introduction

This paper is divided into two parts. In part one, the basic definitions and several
theorems from [2] are referred to and some errors are corrected. In part two, the
notion of elementary equivalence between two Boolean-valued models is introduced,
and Frayne’s Theorem in the model theory is generalized, as in the case of the
Boolean-valued models, somewhat categorically.

, PART 1
§1. The category BVM(T)

Throughout this paper, T will denote a given theory. Our theory T consists of three
parts. The first part is the language of T Lang(T). It is the quadruple (X, LS, F, P),
where X is the countable set of all individual variables, LS is the set
{1, 2} U{(Vx)|xe X}, Fis the set of function letters and P is the set of predicate
letters. Both F and P are graded sets (i.e. the sets with arity functions). An O-placed
function letter is often called a constant.

The set of terms Tm, the set of well-formed formulas wif and the set of closed
well-formed formulas cwff are constructed as usual in Lang(T'). Note, especially, that
Tm is the free F-(type) algebra generated by the set X, and is also an object of the
category Algy of F-algebras. The second part is the logic of T'Logic (7). It is the triple
(LA, EA, RI), where LA is the set of logical axioms, EA is the set of equality axioms
and RI is the set of inference rules which are necessary and sufficient for the
development of classical logic. The third and last part of T is the set of mathematical
axioms Ax(7).

T=Lang(T)+ Logic(T)+ Ax(T)
The Lindenbaum algebra of T will be denoted by L(T). Since our logic is classical,

T The author is grateful to the referee for calling his attention to the results of Walter Felscher, Bull.
Acad. Polon. Sci. Sér. Sci. Math., 17 (1969), 327-332; Symposia Mathematica, Vol. V (INDAM, Rome,
1969/70), 133-148, Academic Press, London, 1971.
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L(T) is an object of the category Bool of Boolean algebras. If the theory T is
inconsistent, then L(T) is terminal in Bool. :

By the above notation, our category BVM(T') of Boolean-valued models for T
will be defined as a full subcategory of the comma category

(Algg(Tm, —) | Bool(I(T), —))

where Alg;(Tm, —) and Bool(L(7), —) mean the hom functors. So the object u of
BVM(T) is the mapping

u: Alge(Tm, M) ——Bool(L(T), A)

which satisfies certain conditions. The above u is called the 4-valued model of T with
the domain (algebra) M. If we want to emphasize the domain M and the value-
algebra A of u, we would denote it by

K, 4y -
DEFINITION 1.1. An object

p: Alge(Tm, M) — Bool(L(T),4)

of (Algy(Tm, —)|Bool(L(T), —)) will be called a Boolean-valued model or, more
precisely, an A-valued model with the domain M if and only if
i) (Veewth)(Vx, -+, x,eX)(¥V¢t, - - -, t,e Tm)(Vo, t: Tm— M)

[Fv(@)={xy, - -, x,p Ao(x)=1t(t) A - -+ Aa(x,)=1(t,)
= u@)el=p@leGr.
ii) (Vo: Tm—M)(Vxe X)(Vo e wif) [u(o)[(Vx)p] = aQM we@)lell

Where Fv(g) is the set of the free variables of ¢, ¢(¥) is the formula which results
from first replacing each bound occurrence of the variables z; in ¢ which appear in ¢
by some y; which does not occur in ¢, and then replacing all free occurrences of x by
t. [p] is the equivalence class { e wif | Fro—y} and also is an element of L(T). The
symbol A means the infirmum in 4. The arrow ¢(¥): Tm— M in Algg will be defined

acA

uniquely by the condition

(VyEX)|:y;éx—>a<z>(y)=a(y)]Aa(Z)(x)=a.

The full subcategory of (Algy(Tm, —) | Bool(L(T), —)) determined by the
Boolean-valued models of T will be denoted by BVM(T).

THEOREM 1.2.  Let . 4 € BVM(T). Then there is a unique function p on P (the
set of predicate letters of T)

p: P—— ) Set(M]", |A])

new
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pr+—p(p): IM|">|A]|

(where the arity of p is n, the symbols | M |, | A | will denote the underlying sets of M, A)
such that, for any o: Tm—>M,

) wO)p(ty, -5 t)=p(P)o(ty), -+, a(1,)).
By the very definition of u, we also have

i) u(o)[1¢]= —p(o)le]

iil) (o) AYl=wuo)le] A uo)Y]

V) WE(Del= A poCel

(i.e. nothing but the usual recursive definition of Boolean-valued structures.) Moreover,

v) Iftro, then p(o)lp]=1.
(i-e. o, 4y is a Boolean-valued model of T in the usual sense.)

Proof. We only have to show i). Let
("" x”): Tm—M
a,, ", a,

be one of the arrows in Alg, with the property

X1, "y Xy )= a; if x=x;
\ay, ", a, " \arbitrary in M otherwise ‘
for each xe X, and let

ppas = e,

for all @, -, a,e M. Then, we have

Xy 5ttty X

#(0')[17(% T t”):I:#(O'(l’l) - ',0‘(t,,)>[p(xl’ R X,,)]

=P(P)(O'(t1), Y G(tn)) ’
as desired. [J

Remarks. Our category BVM(T) contains the Natural Model. The Natural
Model will be defined as follows:

N: Algp(Tm, Tm) —— Bool(L(T), L(T)) .

For each ¢: Tm—Tm and formula ¢ whose free variables are among x;, - -, x,

) x LRI x
N(o[«p]éH S )]
LI= Ao, . ot
We can easily verify that N is an L(T)-valued model with the domain Tm. If the

theory T is inconsistent, then L(7) is the one-point algebra {1}. It is still a
Boolean-valued model of 7.
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THEOREM 1.3. If gy 4 is a Boolean-valued model which satisfies the
Maximum Principle, then, for each h: A~ B in Bool, the mapping Bool(L(T), k) o
is a B-valued model of T with the domain M. - [

THEOREM 1.4. Let vy 5, BVM(T), and let g: M —z> N in Algp. Then, the
mapping v o Algy(Tm, g) is a B-valued model of T with the domain M. []

Next, we will show that the category BVM(T) has all products. Let “I”” be some
arbitrary fixed index set. For each i€, let y;, 4, be a Boolean-valued model of T.
Since the product [T M;e Alg, and for each i€, the projection pr;: [T M;— M, is

an onto arrow in AllegIF, we have “
Min,, 4y © Alge(Tm, pr))e BVM(T) (iel).
We also have the product [] 4;eBool and its projection p;: H A;—A; in Bool
for each ie . Since the functorlgool(L(T), —) preserves all limitsl,eéve have

[ I Bool(I(T), A)= Bool<L( 7)., [] A,») .
iel iel

Hence, there exists a unique mapping = such that the following diagram commutes:

Algy(Tm, [T M)-——--—- S Bool(L(T), TT 4)
iel iel
Algy(Tm, pr;) Bool(L(T), p;)
Algy(Tm, M;) p Bool(L(T), 4,) .

Here, we will show that the mapping = is [] 4;-valued model of 7 with the
iel
domain [T M;. Moreover, © becomes the product of the factors p;y, 4, in BVM(T).
iel .

Now, let’s suppose ¢ is a formula,
Xi, "ty X, €X,
ty, -, t,eTm,

O-a T Tm_’nMi, FU((P)g{xly T, xn}
iel
(i.e. all of the free variables of ¢ are among x,, -, x,) and o(x;)=t(t)A - A
a(x,)=1(t,). Then, we have pr; co(x)=pr; o t(t;) A - - - Apr; o 0(x,)=pr; 1(t,) and
since y; is a Boolean-valued model of T, '
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pioma)@]=p{pr; ° o) @]

Xg s Xy
= u{ pr; o‘l:)l: (tl, . tn>:|

—peato) o )| e,

Therefore,

n(o)[¢]=n(x) (p<x1’ "n) .

tl,...,tn |

Furthermore, let 6: Tm—]] M,, and let ¢ be a formula, then,

iel

pi e o)[(Vx)@]= p(pr;  0)[(VX)¢]

=A /h((prioa)( ))[rp]
= A u<pr °a< >>[<p]
aeflM.

=ae{'I\M,pl OTE( <Z>>[(p]
g, po) v

"oV x)pl= A n(a(x»m.
wcps N N\

®

Therefore,

75

To establish the universal property, let (g;, 4;): v—p; (iel) be a family of arrows in
BVM(T). By the universal properties for the products in Alg; and Bool, there exists g

and 4 such that
prieg=g,p;och=h;.
Moreover, for each 6: Tm—N and iel,
i ohov(o)=h; ov(o)
=u(g; ° o)
=upri°g -o)
=p;°n(g °0).
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Hence, 4 o v(o)=n(g - o) for each o: Tm— N, that is (g, ) in BVM(T). Such (g, h) is
unique, so we have the universal property for .
We can summarize the result of this discussion in the following theorem:

THEOREM 1.5. The category BVM(T) has all products. []

Let p15, 4 be any object of BVM(T). Since T includes the axioms of equality, we
have
Wox=x]=1 |
Ho)x=y] A Wo)p(x)] < uo)p(y)] .

Note that u(o)[x=y] may be different from 0 and from 1. Also, we may have
wo)x=y]=1 but a(x)#0(y). To exclude this last possibility we introduce the
separated models.

Let ppr, 4y € BVM(T). Then,
W : separated
SV Tm—M)(Ve, se Tm)[u(o)t=s]=1-a(f) = o(s)] .

Every Boolean-valued model p is equivalent fo a separated model Sep(u) obtained
from p by considering the equivalence relation

R {(a, b)e M?|(vx, ye X)uG:px=y1=1]} .
This model Sep(uy, 4)) is an A-valued model of 7 with the domain M/R.
Sep(u): Algp(Tm, M/R) —— Bool(L(T), 4)

Sep(u)(g ° o)l = u(o)l¢]

where ¢: M— M/R is the natural surjection.

Using this terminology, we have the following result: Let yy, 5, i€ I be a family
of separated 2-valued models of T. Then, the product of y; is a separated 2!-valued
model of 7. Since each 2-valued model satisfies the Maximum Principle, this product
also satisfies the Maximum Principle. So, for any given homomorphism 4: 2/ -2 in
Bool, the mapping

Bool(I(T), h) o [ | w;: AlgF<Tm [1M; ><—->B001(L(T) 2)
iel iel

becomes a 2-valued model of 7. Furthermore, the separated model

Sep(Bool(L(T), h) o H ;) obtained from Bool(L(T), k) o ]'[ ; is isomorphic to the

ultraproduct of y; deﬁned by the ultrafilter D on I determlned by A.
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§2. The gdjunctions (&, Uy, e): Algr—>BVM(T)’
DEFINITION 2.1.
Alg;={gin Alg|g: onto}
BVM(T)’ = {(g, k) in BVM(T)| g : onto}
The forgetful functors are introduced as follows:
Up: BVM(T) —— Algy (a4 — M)
U,: BVM(T) —— Bool (U, 40— A)
U{: BVM(T) ——Algy (g0 —M)
U;: BVM(T)" —— Bool (Upr, 4y A)
In this section, we will construct the functor
E: Algy — BVM(T)’

that is left adjoint for the forgetful functor Uj.

First, we expand the theory T to a new theory 7. The language of T, Lang(T),
is that of T plus C as the set of new constants. The set of terms in Lang(7) and the set
of well-formed formulas will be denoted Tm. and wff., respectively. The logic of T,
Logic(T¢), is not changed except in the influence of adding new constants. The set of
mathematical axioms, Ax(7), is the same as that of T.

From a given py, ., € BVYM(T) and a mapping y: C—| M| (| M| means the
underlying set of M), we can construct a new Boolean-valued model (, y) of Tg, as
follows: ‘

Algy ,(Tmg, (M, 7)) ~2— Bool(L(T¢), A)

Vi Y Cp "y Cry
(1 NoN@] = u(cr( ))[ ( )}
'))(Cl), a'y(cm) (p yls Y ym
(New constants of ¢ are among ¢;, - - -, ¢,,.)

where (M,y) is Fu C-algebra with a new interpretation y of C. The symbol
@Gy %) means the substitution of ¢; that occurs in ¢ for the variable y;
which is not contained in ¢. Since Algy(Tm, M)=Alg; ,(Tm¢, (M, y))(c+—0c"),
and we have just simplified the notation. It should be written as (u, y)(¢ ")[¢].

LEMMA 2.2. (u,y)e BVM(Ty).

Next, we further expand the theory T, , for each M e Alg, to a new theory
T(M) as follows:

Lang(T(M)) = Lang(T} )
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Logic(T(M))=Logic(T| )
AX(T(M)) = AX(T ) U {fuulay, - @)= fay, -+, @)} rer

arity of f=n
ay,,a4,eM

LEMMA 2.3. If oewfl, Fr(p)={x,, - -, x,} and all of the free variables
occurring in the terms t,, - -, t, are among y,, .V, then, for each 1: Tm—M in
Algg, we have

Xy, X, Xes XN Vios
T | { "),
T(tl)’ ”',T(tn) (p tla I tn t(yl)a “"T(ym)
. DEFINITION 2.4. A theory T in the language Lang(7),,) said to be |M|-

complete iff for every formula ¢ with at most one free variable x, we have
(Vae| M)[T’+ ()] implies T’ + (Vx)e.

THEOREM 2.5. Let T’ be an | M |-complete theory in the language Lang(T| )
and let AX(T(M)) <= AxX(T"). Then, ‘

Alg(Tm, M) —2— Bool(L(T), Ly(T"))
o+—u(0): L(T) — L|(T")

u(o)[«p]é[qn( e a&))] (V@) {xp, * %))

is a Boolean-valued model of T. Further
Algp o a(Tmy (M, i, )
is a Boolean-valued model of T,y and
(Vpe AX(T")(Vo : Tm—M)[(k, id)p )(0)le]=1]
(where L,(T") is the Lindenbaum algebra of all sentences of T").
Proof. By Lemma 2.3 and Ax(T(M))< Ax(T’), we have

Xy, X, Xis X\ Vi s Ym
O S )
Ttl)’ ."9T(tn) tl’ .”’tn T(yl)a 'Hat(ym)
If o(x,)=1(2,) A - - - Aa(x,)=1(t,), Fv(p) ={x;, - - -, x,} and all of variables occurring
int, -, t,are among y;, * * -, ,, then

. e, o x N ey

MT)[(H T t,,>:|= _(p<t1 T tn)<f(yl)’ s TU’m))]
B Xy 5ttty Xp

- f"(r(tl), - r(tn))]

__ Xy o, xn>:|

‘_"’(o(xl), S o(x,)

=uo)le].

ey
LK), Bool(L(Tjpe ), LolT)
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Next, suppose Fv(¢p)={x, y;, ***, ¥} Then, we have

v )

- A X, V1o s Ym )il
ac|M| |:(p<a’ a(yl)’ o "O'(ym)

X
= A AL

Therefore, ue BVM(T). By using Lemma 2.2 we have
(1, id) ) €BYM(T} )

Furthermore, if @ € Ax(T’), then [@]=1 in Ly(T’). So the proof is complete. []

The | M |-rule is the following rule of proof: From {¢() | ae| M|} infers (Vx)o.
| M |-logic is formed by adding the | M |-rule to the usual first-order logic.
Here, again, we expand the theory T(M) to a new theory T(M) as follows:

Lang(7(3))< Lang(T(M))
Logic(T(M))2 Logic(T(M))

AX(T(M))2{¢| T(M)F ¢ in | M -logic} .
LEMMA 2.6. T(M) is | M|-complete.
COROLLARY 2.7. For each M e Algg, T(M) is consistent iff
(ApeBVM(M)IU, (W) =M A Uy(u) #{1}] .

Remarks. 1If ’fiﬁ) is inconsistent, then the above u in Corollary 2.7 is {1}-
valued model with the domain M. {1}-valued models will be called trivial models.
Corollary 2.7 is a generalized form of w-completeness theorem.

Now, we construct the functor ¢ that is left adjoint for Uj.
First of all, we define the functor L by

L: Algg Bool
M Ly
of |k
N Ly

as follows:
Ly = Ly(T(M))

ol )2 Lol )]
g (p ala “'aan - (p g(a1)9 ”"g(an)
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where ¢ is a formula of Lang(T) whose free variables are among x,, - - -, X

By the definition of L,, its element may be expressed by the form [p(Z" ")
where the symbol [ ] means the equivalence class defined by the relatlon
T %o *.

As a final step, we construct the functor

&: Algy —— BVM(TY’
This functor ¢ assigns to each M e Alg; the mapping
¢(M): Alge(Tm, M) —— Bool(L(T), L)

which sends each ¢: Tm— M to the Boolean homomorphism

S(M)0): L(T) — Ly

" a X, . x"):l.
EMY0) o] [q»( o) o)

E(M) is well defined and it is easy to see that (M) becomes a Boolean valued
model of T (see, Theorem 2.5). Further, &(g) is defined as follows: &(g)= (g, L).1tis
also easy to see that (g, L)) is in BVM(T)’".

In order to show that ¢ is left adjoint for the forgetful functor U, we define the
arrow

goUj) —=2, y in BYM(T)’

for each vy p, as follows:

e,: Ly — B

S R I EX O 8

We can prove that for any ve BVM(T)’, the arrbw (1y, &) in BVM(T)’ is
universal from ¢ to v, (i.e. (1, &,) is the counit.)

E(M) M
@ / \g,m
g
U{
Ui - N i)

To prove universality we have to show that for every pair (M, (g, h): £(M)—v) there
is a unique g": M- U{(v) with (g, k) =(1y, &,) ° &(g"). Since &(g")=(g’, L,), we have
g=g’. It suffices to show that h=e¢, o L.
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But,
Xis X, _ X, X,
o Lg<|:¢<a1a a>]> 8”([(’)(9011), '“,g(a,,)>]>
X X,
—v<g(al) s T, g(an)>[(p]

=ho é(M)<x1 o "")m

a,, -, a,

A
a,, " a,
so, we have h=¢, o L,.

The following theorem is the final result of the aforementioned discussion:

THEOREM 2.8. The forgetful functor U{: BVM(T)'—Alg; has a left adjoint
¢ 0O

Theorem 2.8 will be refined as follows:

Let p: Alge(Tm, M)—Bool(L(T), A) be a Boolean-valued model of T. If we
substitute any Boolean algebra B under the condition 4 < B for 4 in u above, then the
A-valued model y becomes a B-valued model at the same time. Clearly, the element of
B— A cannot be used under the given interpretation. Here, we call these elements
“dummy values”. The purpose of the next discussion is to construct a model with no
dummy values or with as few as possible, and to pursue its behavior.

One needs at least the set of values

U o)) (c4)
o:Tm—M
to assign the Boolean-values to all formulas at any sequence o: Tm—M. So, the
subalgebra of 4 generated by the set | ) wu(0)””’L(T) must fulfill the requirement.

¢:Tm—>M
LEMMA 2.9. The set Ay= |) w(6)’L(T) is a Boolean algebra.
o:Tm—M
Proof. We will show that A4, is closed under the Boolean operators. First of all,
clearly, 0,1e4, and for any u(c)[p]le A, we have its Boolean complement

—o)lple (o) 'L(T) < A,. Next, let u(o)¢], u(x)[¥]€ 4y. Then
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. e
u(a)[fp]/\u(r)[t//]=u<a(;l)’. oo .»)M II(T(;), -..,f(y,,,)>[‘”

_<xl’..., X, Z; .t >[]
=M otxy), -, olx) W) s - r(ym) ¢
N W e
Au(dxl), T, G(Xn),'f(h), '”:T(ym)>|:lp<zl > .‘.,Zm>:|,
— Xy o5 Tt Xps Zpo5 07 Yis " Vm
"‘(a(xl), e ate) 1), - r(y»)[“” A "’)( 2 z,n)]
€Ay

where the free variables of ¢ are among x,, * * -, X,, these i are among y;, * - *, ¥, and

;4% there exists i for which o(x;)=1(y))
7 |y; otherwise. [

According to Lemma 2.9 the generating step falls into disuse. Therefore, the next
definition comes into effect.

DEFINITION 2.10. A Boolean-valued model
u: Algp(Tm, M) —— Bool(L(T), 4)
is said to be strict if and only if A=) (o) "L(T).

¢:Tm—>M
The full subcategory of BVM(T) determined by the strict Boolean-valued
models will be denoted by SBVM(T). Clearly, these well-known two valued models

are strict.

LEMMA 2.11. For any Boolean-valued model .y, 4, there is exactly one strict
Boolean-valued model

s(u): Algge(Tm, M) —— Bool(L(T), s(4)) ,
where

A2 U o)),

¢:Tm—>M

such that

s(wo)lel=u@)le]. O

This s(ﬂ) will be called the strict model obtained from p.
In Theorem 2.8, we introduced the adjunction

BVM(T) —— Alg; .
é

In this notation, we have
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LEMMA 2.12. For any F-type algebra M, E(M) is strict.
Proof. Clearly,

U  &MYe)'LT)SL,,.

¢:Tm—M

The converse inclusion also holds true. Since any element of L,, can be written in the

form
[¢<x1 , . ., xn>] ’
al s T, 4y

there is a 0: Tm— M and a formula ¢ such that
Xy, X,
(o2 ) |- enioren.
al > " an

[w(’“’ x”)]e U &M)o)'L(T). O

ay, "4, o:Tm—M

This means

By this Lemma, the full subcategory SBVM(T') contains all the objects £(M) for
M e Algg, and it leads to another adjunction
Vi
SBVM(T) — Algg.
&
where SBVM(T')’ ={(g, h) in SBVM(T') | g : onto} and the functor &g is just £ with its
codomain restricted from BVM(T)’ to SBVM(T)’. V{ is U with a domain restricted
to SBVM(T)".
Considering the information presented thus far in the above lemmas, we have
the following theorem:

THEOREM 2.13. The forgetful functor
V{:SBVM(T) —— Alg;
has a left adjoint &g.

PART II

§3. Generalization of Frayne’s theorem

In this last section, the basic theorem in the model theory will be generalized to
the Boolean-valued case somewhat categorically. We shall introduce two new
functors Bar and Core, and extend our former definition of elementary equivalence
to the Boolean-valued case.
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Bar: BVM(T) —— (Lo(T') | Bool)

Bar(u)
Ko, 4) L(T)——— 4
, h Bar(g, h
) = Bar) ar(g, h)
Vv, B) B

Bar(,u)[go]=A wo)le] (for some ¢: Tm— M)
Bar(g, h)=h

where L,(T) is the Lindenbaum algebra of all sentences (closed well formed
formulas) of T, and since ¢ is closed, the definition is sound.

Core: BVM(T) —— (Ly(T) | Bool)

Core
I'L(M,A) LO(T) ——@’ Im Bar(u)
(g, h) — Core(v) Core(g, h)
VN, B) Im Bar(v)

Core()l] = Bar(u)g]
Core(g, h)=A just & with a domain restricted to Im Bar(u)
and with a codomain restricted to Im Bar(v) .

where Im Bar(u) is the image of Bar(w).
By the above notation,

DEFINITION 3.1.
U=v 4, Core(u) = Core(v)
(isomorphic in (Ly(T) | Bool)) .

The symbol “u=v” is read “u is elementarily equivalent to v”’. If both x and v are
2-valued models, the symbol p=v means the usual elementary equivalence.
Furthermore, let (g, #) : u—vin BVM(T), and let 4 [Im Bar(u) be injective, then u=v.

DEFINITION 3.2.  pi,, 4 strict in the strong sense
45 Im Bar(u)=A4.
If u is strict in the strong sense, u is clearly strict

(A=ImBarws (J w0)"L(T)c4).

o:Tm—->M
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We come now to the main theorem of this section.

THEOREM 3.3.  Let yy 4 =Vy.py U satisfy the Maximum Principle, v be strict
in the strong sense and let the condition

(Jg: I-Algp(N, M)V el)
[ o Bar(v, 1,y lY]1<Bar(u, g )YI-——(*)
be satisfied by these factors. Where
1= {y ecwif y, | Bar(y, 1, )[¥] %0}

(the symbol cwif|y| means the set of closed well formed formulas of T\y) and i is the
isomorphism Core(v)— Core(u). Then,

(3G: N->M"in Algg)(3PeBool)3k: A’ P in Bool)
[Bool(L(T), k) o u* e BVM(T)

A,k odgoi): vy g—Bool(L(T), k) o u' in BVM(T)
Nk oA, i is injective in Bool]

(where A, is the diagonal A— A").

Algp(Tm, N) Bool(L(T), B)
i ;
Algy(Tm, §) | I BoOl(L(T), k o 4,4 i)
f l
{ {
Alg,(Tm, M) Bool(L(T), P)
Pl
ul _~""Bool((T), k)

Bool(L(T), 4"
Proof. We define the function §: | N|—| M|" in the following way:
goYW)=g()b)  (be|N|, yel).

Then, in fact, § is an arrow in Algy. Next, let k: A’— P be a coequalizer of the pair
(4407 Bar(y, 1), Bar(y', §)) of homomorphism in Bool.

B 1

Bar(v, 1 y))

k

L(T ) Al
> Bar(u, g)
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Using §, P and k, we will show that
i) Bool(L(T), k) - u”* e BVM(T)
i) (g,kod,oi)in BVM(T)
iii) ko4, oiis injective in Bool.

Proof of i). Since u satisfies the Maximum Principle, u' also satisfies the
Maximum Principle. Hence, we have i).

Proof of ii). Let t: Tm—N and [p]e L(T) where all free variables of ¢ are
among x;, * - *, X,. Then

k o p!(g o 7)[@]1=k - Bar(y, g)[(p< Xi 5ttty Xy )}

T(xl) s T T(xn)

esetmat o g0y )]
=kod,oioWD)g].
Hence,
kopl(Gor)=kod ciowr).
That is
Bool(L(T), k) o u'(got)=k oA 4 oiov(7)
and this proves
(G, kod,°i) in BVM(T).
Proof of iii). Let
D= {J(v)|ve Ly(T)y)} = 4"

where J(v)=4, oi o Bar(v, 1, N|)(v)¢>Bar(u’ , §)(v) and let D be the filter generated by
D,. Then, by the definition of coequalizer, P=A’/D and k=the natural surjection
A'- A'/D. Furthermore,

kod,oiwy=1
—A,0iw)eD
<@, * Y, ecwifjy)

QoD A - AT <44 0i(w)]
=T, s Y, €cwif y )(Vnel)

L, (JQoD) A -+ AP (J([Wn—1D) <i(W)]
g, -, Y, ecwil v )(Vnel)

[V A e,‘,’(j)Si(W)]

ee2n jen
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(where
iy 2 {i o Bar(v, 1,x)[¥;] A Bar(y, gn)[¥;] if e(j)=0
™)== o Bar(v, 1,5)[¥;] A —Bar(s, gm)[¥;] if e()=1)

(W, * 7, Y, €Wl y N(VneI)(Vee2")

A eﬁ(j)si(w)}
(o, Ypo g €Wy (Y eT)(Vee2")

i o Bar(y, 1| A e(f)%]ABar(u, gm)| A e“h//,.]sxw)]

(where %; = ; and '¥;= "1y, set n= N, then

>3, Y-y €CWH| y )(Vee2")

[ioBar(v, Liy) /\"""l//,-}ABar<u,g A "‘”%)) A ‘""’t//j]Si(w)]
@y, Yooy €Wy (Ve 2

I:i oBar(v, 1,y) /\ e””zp,]g(w)]

(since i o Bar(v, 1,y )[¥]<Bar(y, g())[¥])
oo, 5 Y- cwifjy)

i o Bar(v, 1,N|)[ V A e“‘)r//,}s i(w)]
L ee2n" jen

g L7 '/’n—leCWffuvl)

FBar(v, 1lN|)[ vV A e‘j)lﬁj]SWJ )

ee2n jen
But
e(j)
M DT
is a tautology, hence,
-»w=1.

Therefore, k o 4, i is injective and the proof is complete. []
Since k o 4 ] Im Bar(y) is injective, we have

u=Bool(L(T), k) o u!
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and P is not terminal in Bool.

So, applying any Boolean homomorphism P—2 to this model Bool(L(T), k) o !
gives a usual 2-valued model. This line of argument will complete the proof of 2-
valued Frayne’s Theorem.

COROLLARY 3.4 (Generalized Frayne’s theorem). Suppose the theory T has no
Sunction letters. Then the condition (*) can be omitted, and Theorem 3.3 will be
rewritten as follows:

If u=v, u satisfies the Maximum Principle, and if v is strict in the strong sense, then
(BD(3g: N->M")(3PeBool)(3k: AP in Bool)
[Bool(L(T), k) o u! e BVM(T)
A(g, koA, 0i) in BVM(T)
Nk oA, oi is injective in Bool] .

Proof. We will show that the condition () is satisfied automatically. For each
Y eI with constants b,, - -+, b, ,

] . xl’...,xn bl"“’bn
- B ,1 =jo
ioBar(v, 1 y[y] =1 "<b1’ -'~,bn>[¢<x1, ...’xnﬂ
. xl)”‘axn ) b "'b
<jio 1> > “n
si v<b1 , ...,bn>[(3x1’ >xn)'p<x1, ‘..,x"):’

i oCOI‘e(v)I:(axl, ) w(bl . b)]

X1, " X,

=Core(/t)l:(3x1’ %) w(il , :, iﬂ)]

=u(a)|i(5|x1, RN x,,)lﬁ(b1 o b”)} (for some o).

X(, X,
Since p satisfies the Maximum Principle, there exists a;, - - -, a,€ M such that
='u(x1 , ',xn>|:¢<b1 , bn>:|.
a,, . a, Xes X,
Let, for each ¥, g(}y): N->M be

4 if b=b,(1<i<n)
b)= e,
g(w)b) {any element of M otherwise.

Then, since the set of function letters F of T is empty, there exists
g: I-Set(N, M)=Alg,(N, M),
such that for all Y el
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, Xy, b’...,bn
Bar(y, g(w))[!//]=ﬂ(zi z>['/’<xi x)]

. x’...’x” b,...’bn
i Bar(y, 1,N.)w]sﬂ< o )[w( : )J
ala aan xl"”rxn
and, it follows that we have

i o Bar(v, 1, )[Y]<Bar(, W)Y

Carefully examined, this Corollary is just a generalized version of Frayne’s
theorem which asserts that “M = N if and only if N is elementarily embedded in some
ultrapower M!/D of M.”

But
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