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§1. Introduction

Let m be a positive square free integer and ¢, denote the fundamental unit of
Q(\/W). We consider only those m for which ¢, has norm + 1. If / is an odd prime
such that (m/l)=(e,/[)=1, we can ask for the value of the quartic residue symbol
(en/D)4 (cf. [1], [5]). Let K be the Galois extension of degree 16 over the rational num-
ber field Q generated by \/—1 and %/e,,. Then its Galois group G(K/Q) has just two
irreducible representations of degree 2. We can define a cusp form of weight one by
these representations, which will be denoted by @(t; K). In this paper, we shall show
that ©(t; K) has three expressions by definite or indefinite theta series and that the
value of the symbol (¢,/l), is expressed by the /th Fourier coefficient of @(z; K).
These results offer us new criterions for ¢, to be a quartic residue modulo /.

§2. Cusp forms of weight one

We put G=G(K/Q). Then the group G is generated by three elements g, @ and p

in such way that
o/ en)=v/ =13/,
P/ en) =%/t 1,
o/ -1)=-V-1,
and has defining relations:
ct=¢’=p’=1, o@p=p0,
poP=pop=0c".
The group G has three abelian subgroups of index 2 in G, which are the following: ‘
H,={0, pp> «— k=Q(/—m),
Hy={d% ¢, p) —— F=Q(/1+2),
Hp={d% 09, 0p) «—— E=Q(/—m(t+2)),
91
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where ¢ =tr(g,,). Let fand e be the square free part of 742 and m(+ 2), respectively,

and put
K'=QW/—1,/¢), L=Q(/—=1,/—m),
L=QW/-m /N, L'=Q/=m,/=f).
Then we have the following diagram:

K

K

/ \LH

|
_— IT /\ I\/ [
|

~

_ — [ T
F=QW/ f)_E=QW/=9 Q/=D)~k— QW/m) QWe) (/=

e e

By this diagram, we have the following equivalence for any odd prime /:
) [ splits completely in K'<>(—1/)=(f/)=(e/l)=1,

where (*//) denotes the Legendre symbol.
The group G has the following eight representations y; of degree 1, where j=

1.8

M1 Y2 V3 Ya Vs Ve Y7 Vs

4 1 1 1 1 -1 -1 -1 -1
@ 1 1 -1 -1 1 1 -1 -1
p 1 -1 1 -1 1 -1 1 -1

The group G has just two irreducible representations of degree 2, which have
determinant y,. If we denote by i, the one of these, then the other is ¥,®7;. Let o,
denote the Frobenius substitution associated with /in K. Then we have the following
table which gives the correspondence between quadratic subfields of K and vy,
2<j<8).

V2 V3 Ya Vs Ve V7 78

QW=D  Q/m) k F AV - QWe) E
7o) (=1 (mily  (—ml) D) (=D (e/l) (—efl)

Put y; =y, ®7;. Let L(s; K/Q, ) (resp. L(s; K/Q, ¥,)) denote the Artin L-function
associated with y, (resp. ¥,), and let O(t; y,) (resp. O(z; ¥,)) denote the Mellin
transformation of L(s; K/Q, ¥,) (resp. L(s; K/Q, ¥,)). Then we can define the
following function which appeared in § 1:
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O(x: K)=3 (6 Yo)+ 6(c: 1)}

Let N denote the L.C.M. of the conductor of ¥, and that of y,. Then the function
O(t; K) is a cusp form of weight 1 on the congruence subgroup I'y(N) with the
character (—my/l). This result is essentially based upon the work of Hecke.

Let M be one of the three quadratic fields k, E and F. Then X is abelian over M.
Let Q, be the ring of integers of M and a an ideal of Q,,. If M is imaginary (resp.
real), then H),(a) denotes the group of ray classes (resp. narrow ray classes) modulo a
of M. Let b be an ideal of M prime to a and [b] the class in H,,(a) represented by b. If
in particular b is an element of M, then the ideal class [()] represented by the
principal ideal (b) is abbreviated as [b]. Let f(K/M) (resp. f (K/M)) be the conductor
(resp. the finite part of conductor) of K over M. Furthermore we denote by C,(K)
(resp. Cy(K")) the subgroup of H,(f(K/M)) corresponding to K (resp. K’). The
restriction y, (resp.y,) to the abelian Galois group G(K/M) decomposes into two
distinct linear representations &,, and &, (resp. £,,®y; and ¢ ;,®y;) of G(K/M):

Ui| GKIM) =&, ®y5+E 3 ®Y5, (=0, 1).

By Artin reciprocity law, we can identify &,, and ¢ ;, with characters of H,,((K/M))
trivial on Cy(K) and so we denote these characters by the same notation. Let c,, be
the finite part of conductor of £,,. We assume that the finite part of conductor of

Eu®y; is equal to ¢y, Let C;Zj() (resp. C/M\(JK ")) be the image of C,(K) (resp.
Cy(K")) by the canonical homomorphism of H,,({(K/M)) to H,.(c,,). Since K is the
class field over M with conductor f(K/M), the Artin L-function L(s; K/Q, y,) (resp.

L(s; K/Q, y,)) is coincident with the L-function Ly,(s; ,,) (resp. Ly,(s; é;,\é%)) of M

associated with the character &,, (resp. & A;\é%), where &, (resp. & ;é)yg,) denotes the
primitive character corresponding to &,, (resp. &,,®y;). Therefore we have three
expressions of O(t; K).

PROPOSITION 1. The notation and the assumption being as above, we have

()] O K)= ) xyla)g"e®  (g=exp(2miv)),
ac<Qn
[a] CrTK")

where

1 if []eCyK),

-1 otherwise;

Aml0)= {

and Ny o(a) denotes the norm of a with respect to M/Q.

The proof of Proposition 1 is quite similar to that appeared in §3 of [3].
Therefore we omit it.
Let f(x) be a defining polynomial of %/e, over Q. Then it is easy to see that
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f)=(*—g)x* =&, ")
=x—tx*+1.

Let a(n) be the nth Fourier coefficient of the expansion

o0

O(t; K)= ) a(n)q".

n=1

Then we have the following relation:

PROPOSITION 2. Let p be any prime not dividing the discriminant A; of f(x) and
F, the p element field. Then we have

(©) #HxeF,|f(x)=0}=1+(m/p)+(f/p)+(e/p)+2a(p) .

Proof. Let H be a group generated by p, say H={p). Then H is the subgroup
of G corresponding to Q(%/¢,). We denote by 1§ the character of G induced by the
identity character of H. Then we have the following scalar product formulas.

(1;}1|7i)={

where y, (resp. x;) denotes the character of y, (resp. ¥,). Therefore, we have

15c)= Y o)+ 10(0,)+1:(0))
1<i<?7
i:odd

=1+(m/p)+(f/p)+(e/p)+2a(p) .

On the other hand, it is easy to see that the left hand side of (3) is equal to 1§(a,). This
proves our proposition. q.e.d.

1 if i=1,3,5,7,
0 otherwise ;

Let Spl{ f(x)} be the set of all primes such that f(x) mod p factors into a product
of distinct linear polynomials over F,. We call a rule to determine the primes
belonging to Sp/{f(x)} a higher reciprocity law for f(x) (cf. [2]). Then we have the
following

COROLLARY. Spl{f(x)}={p:pft4;, a(p)=2}.

Proof. By Proposition 1, we have

la(p)| <2.

Hence our assertion is a direct consequence of Proposition 2. g.e.d.

§3. Fundamental lemmas

In this section, we shall determine the conductors {(K/M), {(K'/M), {(L'/M)
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and f(L/M). Let &, £ and § be fields such that R > 8> F and [L: F] =2. Assume that
K is abelian over &. We denote by D(2/F) the different of £ over §. For a prime ideal
q of £, let f(q) (resp. g(q)) denote the g-exponent of f(K/L) (resp. D(L/F)) and put

e(q)=max {0, g(q) — f(@)} .
Then we have the following

LEMMA 1.
f(R/E) =F(RK/D(L/F) l:[qe‘ 2,

Proof. This is deduced from the proof of Lemma 1 in [3].

We assume that £ is a Galois extension over Q. Let Q, be the ring of integers of
£ and let p be a prime ideal of Q, dividing 2. We denote by e, the ramification
exponent of p. Let Q, denote the completion of Qg with respect to p and 11, a prime
element of Q,. Furthermore, for e Q;, we put

S,(&)=max {reZ" |{=squaremod IT,} .

LEMMA 2. If S,(§) <2ey, then there exists uniquely the odd integer t <2eqy such
that

E=n?+0IT,  {n,0eRQ});
and this uniquely determined t is equal to S,(&).
Proof. The assertion is clear.
LEMMA 3. Put
t,(&)=min {neZ| &M =square mod I12°2, 0<n<e,} .
If S,(&) <2eq, then we have
’ S,(E)=2eq+1-21,(¢).

Proof. This follows immediately from the definition.

Let « be an element of Qg such that («) is a square-free ideal with ((«), 2)=1 and
put R=£!(\/7). We assume that & is a Galois extension over Q. Then S,(a) is
independent of p chosen. Since & and & are the Galois extensions over Q, the p-
exponent f(p) of f(/2) does not depend on p chosen. Thus we can put Sg(a) =S, ()

and f(2)=/(p).

LEMMA 4. (i) The prime ideal p is ramified for K/8 if and only if Sg(a) <2e,.
(i) If Se() <2eq, then Sg(a) is equal to the odd number t (<2ey) determined by

a=n>+0II, (n,0€Q});
and moreover

f(2)=2e,+1—Sy() .
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Proof. By the assumption on a, we have
1
Qg = {7(41 +b/a)

Denote by P a prime ideal of & dividing p. Let a be an ideal of & and denote by vg(a)
the PB-exponent of a, and let ¢ be a generator of G(K/8). Then, by the definition of

S(p),
C) f(2)=?2in“ﬁ og(¢—&9).

a, be Qq, a®>—ab?=0 mod 4}.

Denote by X (resp. X,) the group of all elements b of Qg satisfying the condition
ab? =square mod 4 (resp. mod p¢2).
Let np(b,) denote the p-exponent of (b). Then, by (4), we have
12 =2£1:i;1 v,(b)

=2min v, (b).
beXp

Therefore,
p is unramified for K/2<f(2)=0
<o is square mod p?°2<>Sg(0) > 2e, .
If p is ramified for K/L, then

i b)=t(a).
rg;l;v v (b)=t, (%)

By Lemma 3, So(0x) =2e,+1—/(2). Hence by Lemma 2 the assertion (ii) is proved.
q.e.d.

Now we assume that 53(‘{/7) is a Galois extension over Q. It is easy to see that
there exists a subgroup R of Q; with order |Qq/p|—1 such that R*=RuU {0} is a
complete system of coset representatives of Qg mod p. Put

t=min{2egy Sg(®)} and u=[%(t+1):|.

Then there exist elements a,, a;, - -, a,_; of R* such that
a=(ap+a I+ +a, 15 ') mod IT} .
LEMMA 5. (i) If p is unramified for KL and there exists a non-zero element
in {aili: odd}, then
Sqy/2)=min {i:odd |a;#0} .

(i) If p is ramified for ] and there exists a prime element Ily of Qg such that
I,=I%mod II§", then
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Saly/0)=S4(®).
Proof. Put
A=ay+a, I+ +a, JI47".
If p is unramified for }/£, then we put ITy=1II,. It is easy to see that
Joa=A+e I (e, €Qg) .

Therefore the assertion (i) is an immediate consequence of Lemma 4. On the other
hand, if p is ramified for R/£, then we take ITy which satisfies the condition in (ii). We

can take the elements b; € R* with q;=b? (i=0, 1, - - -, u—1). Therefore,
Joa=bo+byllg+ - +b, I8V 46,01y (6,€R5).
Hence we obtain the assertion (ii) by Lemma 4. g.e.d.

Now we put
=L or K',a=s,.

From now on we assume that m is prime number p with p=3mod 4. We put

§p=a=A+B\/;.

Then it is easy to verify that 4 is an even number. Since 42—pB*=1, we have
(A+1)(A—1)=pB>. Therefore we can put

A—1=r%u,
A+1=s5%,
with (ru, sv)=1, rs=B and uww=p (r, s, u, ve Z"). Hence,
2=sv—r%u.
By considering the above relation mod 8, we have
1 i = d 8,
(. v)= (L, p) {f p=3mo
(p, 1) if p=7modS8.
Since t=tr (¢) =24, we have t+2=2s%v. Hence

_J@p,2) if p=3mod8,
(f’e)“{a,zp) i p=Tmod§.

Therefore we have the following lemma.
LEMMA 6. With F and E as in §1, we have

(F, E)={(Q(\/2_p), QW/=2)  if p=3mods8,
(Q/2), Q/=2p) if p=7mods.
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Now we shall calculate the conductors {(K/M), {(K’'/M), f(L/M) and f(L'/M).
Because the method of calculation is very similar for each of three cases, we shall give
the details only for the case of M =k. If we put =L, then K’ = L(ﬁ ). We can take
e, =2 and I1,=1—./ p . Therefore,

ssl—HpmodZ.

By Lemma 4, S;(¢)=1 and hence SK,(\/? )=1 by (it) of Lemma 5. Therefore, again
by Lemma 4, we have fx.(2)=5—1=4. Since prime factors of 2 are only ramified for
K’/L, we have {(K’/L)=(4), and hence D(K’/L)=(2). By ex. =4, fx(2)=9—-1=8.
Therefore {(K/K’)=(4). Consequently, by Lemma 1, we have

f(K/L)=1(K/K)D(K'/L)
=@x2)=().
Thus, we obtain the following:
f(K/k)=T(K/L)D(L/k)=(16)
(K[ =T(K'|L)D(L[Kk)=(8),
f(Lk)=D(L/ky=4).

Therefore our required conductors are as follows.

1
y

M f(K/M) fk’I1M) T(L'/M) T(L/M) gn
k 16 8 8 4 16
F p=3mod38 4p, 00,00, (2)004 00, 00, 00, 4p,
p=Tmod38 (4\/ 2p)oo, 00, (2p) o0, %0, (p)ooy 00, 4p
g p=3mod8 4/=2p 2p P 45
p=Tmod 8 4p, 2 1 4p,

In the above table, § denotes a prime ideal of M dividing p, and p, denotes a prime
ideal of M dividing 2. Further oo, (i=1, 2) denote two infinite places of F.

§4. Three expressions of O(; K)

For an integral ideal a of M, if M is imaginary (resp. real), then Py/(a) denotes
the subgroup of H,(a) generated by principal classes (resp. principal ‘classes
represented by totally positive elements). We write simply Hy, and P, in place of
H,,(f(K/M)) and P, (f(K/M)) respectively. Suppose that a divides j(K/M). Then
we denote by K(a) the kernel of the canonical homomorphism: Py~ Py(a). More-
over we put Cy( )*=Py N Cy( ). In the following, we shall obtain Cy(K) and
Cy(K’) under the assumption p=7 mod 8.
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Case 1. M=k (=Q(/—p)).

By the assumption, we have 2=p,p, in k, where §, denotes the conjugate of p,.
Take the two elements u and v of , such that

{uESmodp‘z‘: {vs—lmodp‘z‘,
p=1mod 73, v=1mod p}.
Then wé have the following relations: [u][a]=[5], [u} =[a}*=1, [V]=[7] and [V} =1.
We also have
Pe=<[ul, [, DD, K(@)=<Lu, [al>,
K(®)=<[uP, [AP> .
By the above table, we see that
[Py CUL)¥]=[C(L)*: C(K")¥]
=[CK)*: C(K)*]=2.
Furthermore,
CGL)*>K(@), CGK)*2K(®), PK(4),
CUK)* P K((8)) -
Hence
ClL)*=K((4)=<[ul, [A1> ,
C(K)* =<[uF, [AP, (Wl ,
CUK)*p [P, [AP -
Since G(K/Q) is non-abelian and G(K/k)= P,/C(K)*, wé see [u] '[a]¢ CU(K)*.
Therefore, [u][i] e C,(K)*. Hence we have ,
G K)* =<l [a1> =<[5]> -
We put
Hy=3 [b]Py,

beS
where S denotes the index set of integral ideals b. Then
CK')=C(K)+ CUK)uP,
CuK)= 3. [b] *CyK)*.
beS

Put w=(1 +\/:—p)/2 and let a be an ideal of Q, with (a, (2)) =1. Then, by the above
relations, we have [a] e C,(K") if and only if there exist be S'and #=x+ yw e b* such
that x=1mod 2, y=0mod 8 and a=b"*(). Moreover
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[a]le C(K)<>y=0mod 16.
Therefore, if M=k, then the right hand side of (2) is as follows:
©) OmK)=Y, N (—lpeqertuiiemiieer,

beS 4x+1+4y —peb?

Case 2. M=F (=Q(/2)).

Let a be an element of QF.‘Then there exists an element o* of Qp such that
o* s totally positive ,
w*=omod4./2 ,
o*=1modp.

Let p=pp in F, and r(p) denote a generator of the multiplicative group (Qp/p)*. Take
a totally positive element A of Qp such that

J=1mod 4\/7 ,
A=r(p)mod p,
A=1modjp.
Then
Hp=Pp={[5], 3*], [5*], [4], [AD>;
and
3 =[P =[*FP=[""=1,
[VeFl=[3*115*1le5T -
Furthermore,

Ke(p)=<[e3], 3*], [5*1, [4])
Ke(p)=<[e31, [3*], [5*D
Ke((2p))=<[3*], [5*], [e31°>
Ki((4p) =<[5*]> .

Therefore, by the above table of conductors, we see that
[Pp: Co(L)]=[Ce(L"): Ce(K')]

=[Cp(K"): Cp(K)]=2;

Cp(L)2 K(P)), $ Ki(p)
Ce(K")2Kx((2p)), $ Ke((P))
Cr(K)$ Kr((4p)) -
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Hence we obtain
C(L)=<[e3], [3*], [5*], [A]- 1), 21> .

Since the Galois group G(K’/Q) is isomorphic to Pr/Cx(K’), we have

Ce(K')3[AF, [AF, [
Hence

Ce(K)=<[e31%, [3*], [5*], AP, [A1%, [AIA]) -

Next we shall calculate Cp(K). First we notice that

{CF(K) s[1% [0, [e512,

CHK)3[5*].

Take a prime g such that g=3 mod 8 and (¢/p)= — 1. Then ¢ remains prime in F and
[4]=[3*I(A][A])* (a: odd). Since (—p/q) = — 1, g remains prime in k also. Hence, by the
result of Case 1, g splits completely for K/k. Therefore [g]e Cx(K), i.c.,

Cp(K) 3 [3*|([A114)) -
Similarly, [5*)([A][4]) € Cx(K). Therefore we obtain
Cr(K) =[5, [AF, A%, [3*A1AL, [S*1AIAD
Cr(K")= Cp(K) + Cp(K)[5*] .
Let r be a rational integer with r>=2mod p and p=x+ y\/7 be a totally positive
element of Q; such that (2p, u)=1. Then we have
[ule Ci(K") <> x: 0dd, y: even, ((x*—2y?)/p)=1.
Further
[ule Cp(K) < (sgnx)((ry — x)/p)(2/x)=1.

We put

E*={eeQj | totally positive}

E°={¢ecE*|e—1€ef(K/F)},

and e=[E" : E°]. Then, the right hand side of (2) has the following expression for
M=F.

© O K)=e™' Y (sgnx)(2ry—x)/p)2/0g" .

u=x+2p/2
x=1mod 4
Nejolw)>0
pumod E®

Case 3. M=E (=Q(/—2p)).

By a similar calculation of Case 2, we have the following:
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Q) BCCESTS M VI G Ut b L

a 4x+1+2y.—2pca

where {a} denotes the set of integral ideals of E which are representatives of all
square classes in Hg/Py.

" Summing up (5), (6) and (7), we obtain the following theorem which is our main
purpose.

THEOREM. Let p be any prime with p=7mod 8. Then, the notation and the
assumption being kept as above, we have the three expressions of O(t; K):

@(‘L" K)=Z Z (_ 1)x+y,q{(4x+ 1)2+8py2}/Ngq(a) (via E)
b
a 4x+1+2y.y=2pea
— Z z (=1 q((4x+ 1)2+16py2}/Nyq®)* (via k)

b 4x+1+4y—pebt

=e™' ) (sgnx)(2ry-— x)/p)2/x)g** "8 .  (via F)

u=x+2y\/2
x=1mod 4
Nifol)>0
pumod E°

Let / be an odd prime number satisfying the conditions (p//)=1and /=1 mod 8.
Then we have (¢,//)=1 by (1), and we have also the following from the theorem
above:

I={(4a+1)*+8pb’}/Ngo(@) ,

I={(da+1*+ 16pﬁz}/Nk/Q(b)4 ,

I=x*—8y*, x=lmod4, ((x*-8?)/p)=1;
al)=+2.

Moreover, we have the following criterions for ¢, to be a quartic residue modulo /
which are our conclusion.

(¢,/D)s=1<>a+b: even
< f: even

o (sgn)(@ry— )P =1

<a(ll)=2.
For prime p with p=3 mod 8, we shall only state the result as a remark.

Remark 1. Let p=3mod 8 and p # 3. Then, the following may be obtained in a
way similar to the proof of the above theorem.
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@(T, K)= Z (_l)(x—l)/4((x_2ry)/p)qx2+8y2

x, yeZ
x=1mod4
=Z{ z '(_ 1)(“‘1)/4+(Nk/q(")_1)/8.q(¢2+Pﬂ2)/4Nk/Q(5)4
b
v=(a+py/—p)2eb*
N,Mv)slmodS
a=1mod 4

+ ) (—l)y'q(mxﬂ)”16"”2)/Nk/0(")"}
4x+1+4y/—peb*
) ) (sgnx)(— 1)**7- g+ D% 8py2iNegle)
a

p=4x+1 +2y\/ﬂeu
Nijol)>0
pumod E°

Remark 2. A similar problem for the rational case was discussed in [4].
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