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§0. Introduction

0.1. 1In [1] and [2], Andrianov constructed the theory of Euler products of
Dirichlet series corresponding to holomorphic automorphic forms for the Siegel
modular group Sp,(Z) of degree 2. The method of his theory seems to be applicable
even to the case of holomorphic automorphic forms for a certain class of subgroups
of Sp,(Z). In the previous paper [7], we studied the case of congruence subgroups of
Sp,(Z) which is also important from the arithmetic point of view. In this paper, we
shall improve the formulation and theorems of [7] to be applicable to a wider class of
automorphic forms and show some examples which make the meaning of our main
theorems clearer.

0.2 As in [7], we investigate cusp forms of weight & with respect to a congru-
ence subgroup

I"O(N)={<é g>e Spy(Z); C=0 (mod N)} (0<NeZ)

of Sp,(Z) and a Dirichlet character ¥ of modulo N. We can define Hecke operators
T(m), (meN) on the space S,(I'((N), ¥) of the forms mentioned above. We take a
non-zero automorphic form F, e S,(I'y(NV)), ¥) which is a common eigen form of all
Heck operators T(m), with (m, N)=1:

Fo| T(m), = im)F, ~ for (m,N)=1.

For the set {A(m); (m, N)=1} of eigen values, we define a subspace S,(I'o(N), ¥, 4) of
the space Si(I'o(N), ¥) by putting

SiTo(N), ¥, ) ={Fe S(T'o(N)), ¥); F| T(m), = Am)F for (m, N)=1} .

The space S,(I'o(N), ¥, A) is invariant under the action of Hecke operators. Define a

T This paper is a large part of the doctorial dissertation of the author submitted to Tokyo University
in 1981.
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Dirichlet series by
| Dis, W)= ¥ Mmm™ (Res>k)
(m,N)=1

and let L(s, %) be the Dirichlet L-function with character 2. Set

ZY(s, W) =LQ2»s—k+2), y*)D (s, ¥) .
The function Z(s, y) has the following Euler products

Z¥s w=11 Qyr™™!
PIN .
inRes >k, where QY%(7) is a polynomial of 7 with degree 4. Each Fe S,(I'y(N), ) has a
Fourier expansion of the form:
F(Z)= Y adT)exp(2nia(TZ)),

T>0
where T runs through all positive definite half-integral symmetric matrices of size 2.
‘The equivalence class of positive definite primitive half-integral symmetric matrices
with given determinant —D/4 corresponds bijectively to the proper R-ideal class,
where R is an order of Q(,/ D) with discriminant D. Let aj, a,, - - -, a,, be a com-
plete set of representatives of proper R-ideal classes and let T(a;), T(a;), * - -, T(a,)
be the corresponding positive definite primitive half-integral symmetric matrices
with determinant —D/4. We take a character y of the group of proper R-ideal
classes and consider the sum
h
af(l; 0= Y. afT(a)x(e) .
i=1 :

Let {F,, F,, - - -, F}} be a basis of the space S,(I'y(N), ¥, A) and put

a(l; ) =(ap,(L, ), ap,(L; ), -, ap(l;2) (€CY.

It is easy to show that there exist a certain order R of an imaginary quadratic field and
a certain character y of the group of proper R-ideal classes with the property
a(l; x)#0. We assume that N is a prime number. We impose the following
assumption on the space S,(I'4(N), ¥, A):

(C1) for a suitable choice (see (4.2)") of R and y which satisfy the condition
a(l; x) #0, N does not divide the discriminant D(R) of R.
For each Fe S,(I'y(N), Y, 4), we define a function F by
F(Z)=det(\/NZ) *F(-N"'Z7Y),

which in fact is an automorphic form of Si(I'o(N), ¥, Y>2). we define matrices U, and
U, by putting '

(Fl |T(N)|/p F2| T(N)llp o '5E|>T(N)|[/)=(F15F25 ) E)UWa
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(B, | T(NYg, By | TNy, -+, K| TWN)p)=(Fy, By, -+, BTy
Moreover we put
i 0= (L0, ap,(1; 20, -5 ap(1; 1) -
We attach a suitable I'-factor to the function Z¥(s, ) putting
DN(s, 4, Y)=Q2n) PO (s—k+2)Z(s, ¥) .

For a complex variable s, we put §=2k—2—s.
Now our main theorems are formulated as follows. In the following theorems we
assume that N is a prime number.

THEOREM 1. The function ®"(s, A, ) can be continued analytically to a
meromorphic function in the whole complex plane and is holomorphic except for a
possible simple pole at s=k.

For the functional equation satisfied by the function ®¥(s, A, y), we divide two cases.

THEOREM 2. Let Y be a primitive Dirichlet character modulo N such that y* is
non-trivial. Suppose that the space S(I'o((N), ¥, A) satisfies the assumption (C1) above.
Then, ®N(s, A, ) satisfies the functional equation: '

N>2@N(s, 4, )a(l; )(E,~N"°U,)™
=Y(— DoN>*2ONE, 22, Pya(l; DE-N"Up~",

where

w=N‘1{ Y z//(lxlz)exp<27ti x—x)}.
xe RINR N \/B
THEOREM 3. Let y be the trivial Dirichlet character modulo N. We put (F,, F,,

o, B)=(F, F,, - - -, F)U, with some Uye GL,(C).

Suppose that the space S,(I'o(N), ¥, 4) satisfies the condition (C1) above and
moreover that

(C2) N remains primé in Q(/D(R))/Q .
We put
ON(s, )=DN(s, 4, Y)E,—N"U,) "(E,—N"C7*2y) 1.
Then we have
a(l; )@"(s, H=a(l; (= 1eN(, 1) .

In [3] Freitag proved the following fact: let @ be the Siegel operator from
M (To(N), ¥) to the set of the elliptic modular forms of level N, character . Suppose
F is a common eigen functiorrlrof all Hecke operators T(m), with (m, N)=1 and
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F | @ +£0. Then Z%(s, y) is represented as some products of Dirichlet series corre-
sponding to F|®.

The functional equation satisfied by ®%(s, /, A) should be independent of the
choice of R and coefficient a(1; y). Up to now, the problem to obtain the functional
equation of ®"(s, 4, ) in a better form seems to be rather difficult. However in some
examples we can derive explicit functional equations from our theorems, where we
employ some results of Ibukiyama [5].

Now we show an exmaple. Let m, and m, be elements in Z*> and let m=
(my, my)e Z*. For m=(m,, m,), put

Om=0m(t)= ). exp Qni((n+my/2)t(n+m,/2)

neZ2
+n+my2(m,/2)))  (1€9,).
X =(00000" +00010" +0o001* + 900114)/4 )
Y= (000009001000001 0001 1)2 > ‘
Z=(E¥+3Y—4X?)/12288,
where E} is the normalized Eisenstein series for Sp,(Z) of weight 4, and

K= (00100001 100100001 10001 i1 1)2)/4049 .

Then in the detail version of [5] (preprint), Ibukiyama showed the following fact:
let ¢, be the trivial Dirichlet character of modulo 2 and

F,=Y?Z+XYK—1024YZ?*=5120XYZ,
F,=13XYK—2X?YZ—4608YZ>+ 5760K*—9728XYZK—9F, /4
Then F,; and F, are cusp forms in S,(I'y(2), ¢,) and
Fy| T0m)y, = Am)F, ,
F, | T(m) o= A(m)F, .
It can be easily seen that {F,, F,} is a basis for S,(I'o(2), ¢y, 4), and that

-28 15 -1 0
Uy, =2° -
¢ <—16 —28)’ Uo < 0 1>'

Further he proved that the Fourier coefficients of F, and F, for (i, ;') are 6 and
—3/2 respectively. Therefore we can choose that R=Z][(—1 —-\/ —3)/2] and X is the
trivial character in the assumption (C1). Then 2, the level of the forms, remains prime

in Q(\/D(R))/Q. It is easy to see that a(l; y) =(6, —3/2). From Theorem 3, we have
the functional equation

d(s)=P(2—y3),
~ for @(s)=(2n) "> I (s)*2°Z5(s, Ppo)(1+7-28 75422072571,
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The author wishes to express his hearty thanks to Professor T. Ibukiyama who
kindly showed him the manuscript [5] before published and allowed him to use ex-
amples in it. Further the author wishes to express his hearty thanks to Professor S.
Ihara who encouraged him to accomplish the paper.

§1. Review on Siegel modular forms and Hecke operators

The Siegel upper half plane of degree n>1 is the complex manifold of the com-
plex dimension n(n+ 1)/2 defined by the following set:

Hy={Z=X+iYeM,(C); X, Ye M,(R), Z'=Z, Y>0},

where Z’ is the transpose of a matrix Z and Y>0 means that Y is positive definite.
Let E, be the unit matrix of order n and J, the alternating matrix (-9 %). Set

A B
GSp,(R)= {a = < C D) eM, (R); o'J o=r(a)J,, r(c)> 0} .
It is well-known that GSp,(R) acts transitively on $,;: if a=(¢ 5)e GSp,(R), then the
map
Z+— (Zy=(AZ+B)CZ+D)""  (Ze$,)

is a holomorphic automorphism of $,. For a function F on §,, a positive integer k and
=(¢ )€ GSp,(R), we define another function F|[«], on $, by the formula

(1.1 (F|[d)(Z)=r()™? | CZ+D|*FKZ>)  (Z€Hy),
where | X| is the determinant of a matrix X.
For a positive integer N, we call the set
rg(N)={M=(¢ 5)eSp,(Z); C=0 (mod N)}

a congruence subgroup of Sp,(Z). Let Y be a Dirichlet character modulo N and & a
positive integer. A modular form of degree n and weight k with respect to the pair
(I'5(N), ) is any holomorphic function on §, which satisfies the following condition:
for every M=(¢ )e'§(N) and Ze $,, we have the identity

(F|IMINZ)=Y(| AF(Z) .

In this definition, N is called the level of the form. All modular forms of degreen n and
weight k with respect to (I'g(N), y) form a vector space over C. We denote the space

by M (I'§(N), ). For Fe M(I'§(N), ¥), we can define another form F | @ of degree
n—1 by

(F|9XZo)= lim F(Z" M) (Zo€Du-1) -

The linear map @: M (I'j(N), y)e Fr—F | Se M ('3 Y(N), ¢) is called the Siegel
operator. An element of the set
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ST (N, )= {Fe M(I'§(N), ¥); (F|[M]y)| 2=0 for all MeSp,(Z)}

is called a cusp form of degreen n and weight k with respect to (I'§(NV), ¥).
It is easy to see that every modular form Fe M (I'5(N) ) has the Fourier
expansion ’

F(Z)=} a(T)exp (2nio(TZ)),

T

where T runs through all elements of the set
(1.2) P,={T=(t;)e M (D); T'=T=0, t;;, 2t;;€e Z}

and o(X) is the trace of a matrix X. In the definition (1.2) of P,, T=0 means that T'is
a positive semidefinite matrix. It is easy to see that

(1.3). \ aU'TU)=y( U Ua«(T),

for all Ue GL,(Z) and all Te P,, and that
a(T)=0( T\ T |#0),
F(Z)=0(Im Z|™"),

where O dépends only on F. Further if Fe S, (I'§(N), ¥), then

a(T)=0 for all Te P, with | T|=0
aT)=0(T|?),
where O depends only on F.
In the following, we consider Hecke operators on M (I'4(N), ¥). For further
details on the facts and definitions cited below, see [2] and [7]. For any positive integer
m, we put '

4,(N)={o=(& 5)€GSp,(R) " M(Z); (14|, N)= 1, r(@)=m, C=0 (mod N)} .

(1.4)

(1.5)

Further we put 4,= | ) 4,,(N) and we write simply I, or I'o(N) for I'3(N). Since 4,

m=1
form a semi-group, we can define the Hecke ring R(I'y, 4,). Especially we put
T(m)= z FOOCFOER(FO, Ao) .

ael'o\4dm(N)/To

For each double coset I’ 0olo € R(I'y, 4,) with a € 4,,(N), a Hecke operator [I'yal ] 4
on M (T, ¥) is given by the formula _
F[[Toololiy=m""> %  Y(IAQ)NF|[7])eMTo, ¥),
veI'g\I'pal'o

where y=(* ¥) runs through a complete system of representatives I'qal', modulo
I'y. Then, the Hecke operator

T(m)k,.p= z [roaro]k,w

ael'o\4dm(N)/T'o
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acts on M (I, ¥) by
1.6) F|T(m), = Y F|[Tool o)y, -
ael'o\dm(N)/To

We write simply 7'(m), or T(m) for T(m), .

Now let U denote the set of all complex-valued functions ¢ on the set P,
satisfying @(UTU")=¢(T) for all UeSL,(Z) and TeP,. By (1.3), the Fourier
coefficients of any modular form Fe M, (I, ¥) can be regarded as an element of 2.
Let I''=SL,(Z), g an element in M,(Z) with |g|>0, (|g|, N)=1, and let I"'gI"* =
(JI''g; be a decomposition into disjoint left cosets. For each function ¢ €, we set

: (TAr'gMe)T)=Y 0(g,Tg)  (TePy).

It is easy to see that T, is independent of the choice of the system of representatives
{g;} and that T,(I"'gI"")p € A. Now define operators A*(m), A~(m) on A for meN by
{(A T(me)T)=o¢(mT),

-1 -1
(4 _(m)¢)(T)={g(m 7) EZ_;Z?’;’
).

Further put, for meN with (m, N)=1,

(1.8) I(m)= n(rl((l) 2>F1)Al(m) .

1.7)

Then I1(m) is an operator on 2.
Let p be a prime and Fe M, (I, ) a common eigen function of all the Hecke
operators T(p%) (6=0, 1,2, --+):
F| T(p")=A(p°)F .
Then, it is easy to show from [Shimura 8] that
Py(1)
050’

(1.9) Z AP’ =
=0
where
{Pt(t)=1—p2k-4¢2(p)t,
QYO =1—-Apit+Ap>—Ap)—p* *2p)>  (pfN),
(1.10) —p** T3 A(p)Ard + p* Syt ppet

PYn=1,
QUt)=1—Ap)t (p|N)-

Using operators 4 (m), 47 (m) and II(m) [7, Lemma 2.1], we can show the following
proposition in the same manner as in [2, Proposition 2.2.1]

PROPOSITION 1.1.  Let the notation be as above. Suppose that
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F(Z)= Y aT)exp(2nio(TZ))e MyT,, V)

TeP;

is a common eigen function of all the Hecke operators T(p®) for a prime p and =0.
Then, for any positive definite matrix

T=<“ b£2>eP§={TeP2;|Tl>O}

b/2
such that (a, b, ¢, p)=1, we have the following equalities:
(1.11) a(T)—p*~2Y(p)II(p)a)(T)t
{ i a(pﬁf)tﬁ}Q . +{p* Y (p)(U1(p)* — I(p*) — a)(T) |
3=o ? +p* AN (A~ (pa)(T)}> (pfN),
a(T) (p|M).

§2. Fourier coefficients and Euler products of a form

VLet K =Q(\/ZI;) be the imaginary quadratic extension of Q with discriminant
d, (<0) and R=R(K) the maximal order of K. Put w=\/Z/2 if d, =0 (mod 4) and
w=(1+./dy)/2 if dy #0 (mod 4). Then R=Z +Zo. The order with conductor fin R

has the form

Clearly R= R,, and the discriminant of R, is equal to D=d, f>. For any lattice a in K,
put

R,={aeK;aaca}.

Then R, is an order in K. We call R, the order of a and a a proper R, -ideal. Two
lattice a,, a, in K are said to be similar if a, =aa, for some a#0 in K and then we
denote a, ~a,. For any two lattice a;, a, in K,

2.1) a,-a,={afek; aea,, fea,}
is also an lattice in K. If R, =R, R,,=R,, then
(2.2) Ra;az = Rf ’

where fis the greatest common divisor of f; and f,. Then norm N(a) of a is defined by
N(a)=[R,:a]. Then N(a,a,)=N(a;)N(a,). Let a be a lattice in K. Then a=
{ae K; dea} (d is the conjugate of € K over Q) is also a lattice in K, for which we
have R;=R, and

2.3) a-a=N(a)R, .

Fix an order R, in K. Then it follows from (2.2) and (2.3) that all proper R,-ideals
form a commutative group under the multiplication defined by (2.1). The quotient
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group of this group by the subgroup of ideals similar to R, is called the class group of
the order R, The class group is denoted by H(R,)=H(D), where D is the
discriminant of the order R,. For any order R, in K, the number A(D) of elements in
the group H(D) is finite. Suppose that [’ | f. Then the map

R(Q(/dp)) > a+— R (Q(\/dp)a

induces a surjective homomorphism from H(d,f?) onto H(d,f*), which we denote

by v(/f,f").

Every positive definite half-integral matrix

_(a b2 +
(24) T_<b/2 c)ePz

(see Proposition 1.1) can be regarded as the matrix of the positive definite integral
binary quadratic form

2.5 o(x, y)=ax*+bxy+cy?

and vice versa. When we need to make this correspondence clear, we denote T=T, 0
Q = Q7 for the matrix (2.4) and the binary quadratic form (2.5). For T=(,%, %*)e P,
let e(T)=e(Qr)=(a, b, c) be the greatest common divisor of a, b and c, and put
D(T)=D(Qr)=b*—4ac.

Let d, be a negative integer which is the discriminant of a quadratic field
K=Q(\/70). We denote by {a, f} the set Za+ZpB (x, feK). For any proper
Rf(Q(\/d_O))-ideal a and a Z-basis {a, B} of a such that Im(af—dp)>0, we can
define a binary quadratic form Q(a) and a matrix T(a)e P, by

26) {Q(a)(x, )= N(a)~ (ox+ By)dx+ By) ,
' T(a)=T g -
Then
- la]? (2B +ap)/2
27 T(a)=(N(a)" Y - .
&7 (@)= ((ocﬂ+o?ﬂ)/2 I )

Note that the class {T(a)}={UT(a)U’; Ue SL,(Z)} depends only on the ideal class
{a} of a. Further, we have e(T(a)) =1 and D(T(a))=d, f*. Coversely, for a matrix T'=
G5 ") eP; with e(T)=1 and D(T)=d,f?, put a(T)={a, (b—+/D(T))/2}. Then
(T) is a proper R,(Q(\/E(,—))-ideal. Further, the ideal class {a(7")} represented by
a depends only on the class {77}. It is well-known that this correspondence define
a bijection between the set of all classes {T}(TeP;,e(T)=1, D(T)=d,f?) and
all proper R(Q(,/d,)-ideal classes.

Let 9 be the set of all ideals in all imaginary quadratic extension of Q and let 9
be the space of all complex valued function ¢ on the set N x I with the property:
@(m; a;)=@(m; a,) if a; and a, are similar. Further, we set A*={peW; o(T)=0 if
| T|=0}. We say that Te P; is primitive if e(T)=1. Then, for any Te P, , we have
T=e(T)T, withsome T, primitive. Hence we can associate ¢ € A* with a function ¢ € &
by putting @(T)=@(e(T)Ty)=@(e(T); a(T,)). Since the mapping ¢ +—¢@ is an
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isomorphism from 2* to 91, we can regard any operator on A* as an operator on % and
conversely. In particular by definitions (1.7) for operators on A*, we have

(4" (m)@)(n; a) = ¢(mn; a) ,

o f@emTh e (m|n),
(4~ (m)@)n; a)—{ . o,

for m, neN and ¢ e . From [7, i) of Lemma 1-7] we can easily show that II(m) (see
(1.8)) with (m, N)=1 has the same properties as II(m) in [2, Theorem 2.3.1, 2.3.2 and
Lemma 2.3.2]. Namely we have the following facts.

Let meN and p a prime such that (p, m)=(p, N)=1. Suppose that a be a proper
R-ideal and let {a} denote the class represented by a in the proper R/-ideal class
group. Put e,=[R;: R] and

e ~
A=Y @(m; ag),
€ {ao)

where the sum extends over all {a,} such that {a,} € H(dy(pf)?) and v(pf, f){ao}=
{a}. Then the following formulae hold:

I) If (p,f)=1 and p=pp(p#p) in R, then
| I(p")@)(m; ) = @(m; pPa)+@(m; p%a)  (BeN),
(IT(p)p)(pm; a) = @(pm; pa)+ G(pm; pa)+ A .
I) If(p,f)=1and p=p*in R, then

o (fmpa)  (B=1),
(n(pﬂ)rpxm,a)—{ o (2.

(I(p)@)(pm; a) = G(pm; pa)+ 4 .
II) If (p,f)=1 and p remains prime in R, then
(I(p*)§)(m; 0)=0  (BeN),
- (p)g)pm;a)=4.
IV) If p|f, then
(II(p)@)(m; @)= (pm; R;,a)
((II(p)* — (p*) = D)@)(m; ) =0,
(II(p)@) pm; @)= G(p*m; Ry a)+ A .

Let a;. ap, -, a, (h=h(d,f?)) be a complete system of representatives of
H(d,f?), x be a character of H(d,f?). Suppose that

F(Z)= Y, a(T)exp 2nia(TZ))e M(To, ¥)

TeP,
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be a common eigen function of the Hecke operators T(p) for a prime p and =0, 1,
2’ .. ':

F|T(p")=Mp)F.
Since a(UTU")=a(T) for Ue SL,(Z) and the class {T(a)} ={UT(a)U’; Ue SL,(Z)}
depends only on the class {a} represented by a,
h

(2.8) alm; )=}, a(mT(a;))x(a)

i=1

is well-defined. By the equality (1.11) and properties I), II), III) and I1V) of II(m), in
some right half plane Res>o,, we can prove, by the similar way to [2, Theorem
2.4.1],

29) {i a(mp’; x)p“‘s}Q;ﬁ(p“)
0

=0

[ N
a0 T1(1-228EE)  ror p gy,
h 2 -
for p,f’N,p,f,
“a(m; %) for p|N

for (p, m)=1, where p runs through all the proper R;-ideals such that p | p. For a
integer n, if all prime factors of n divide N, then we denote n| N®. Put

h 2 -
s 1= % o [T {(1-4252) a2} rr.

Lt
Then
h 2
(2.10) Ds, 1, Y, N)= Z x(a) Z MQ—) a(ﬁ nT(Rmai))
i=1 vl f Y Y

(u is the Mbius function). For Te P, set

2]

(2.11) RHT, s)= Y, amT)m™*
m=1
and
h
(2.12) R, 9= __Zl R{T(ay), s)x(a;) .

Then we obtain
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[c¢}

R{y, 5)= Y, a(m; ym™*

m=1

(see (2.8)). Further we can prove that Rgy(7,s) and Rg(y,s) converge in
Res>2k-+1 (resp. k+1) if Fe M (T, Y) (resp. Si(I'y, ¥)) by the equalities (1.4) and
(1.5). For eigen values A(m) (m=1, 2, - - -) of a modular form Fin M (I, {), we can
show | A(m) | = O(m°), where O and ¢ depend only on k. Define a Dirichlet series

D¥s, ¥)= Y Amm~=.

(m,N)=1
then, we can see that the Dirichlet series D¥(s, ) converges in a right half plane
[
Res>c+1. Let L(s, y?) be a Dirichlet series 3 y%(m)m~°. Then L(s, %) has an
m=1
Euler products:

Lis, y2)=10-p~yXp) .

Hence we have, by (1.9) and (1.10),

1
_ 2\p¥ =17 —0

L(2(s—k+2), y*)D5(s, ¥) pl;[N 0%

Put
1
N, _

(2.13) Z (s, l/f)—};IN 0%
and
(2.14) ~ Lys, W)=Y da¥da)N(@)~*  (D=d,f?),

the L-series of R, with the character yy,(,(a)=y(N(a)), where a runs through all
the proper R -ideals whose norms are coprime to f. Then the identity

(2.15) L2(s—k+2), y*)DF(s, ¥)=Z (s, )
holds and by the equality (2.9), we have immediately

PROPOSITION 2.1. Suppose that Fe M(Ty, ) satisfy F | T(m)=A(m)F for
(m, N)=1. Then

LD(S—k+29 Xl//f)RF(X3 S)={ |ZN QF(S, X ‘//a n)n_s}zllg(sa ‘//) .
We also denote ZN(s, ) (resp. DX(s, ¥)) by
(2.16) ZY(s, ¥) (resp. D(s, ¥))

for FeS(I'o(N),y) with the condition F|T(m),=i(m)F(m, N)=1), because
Z (s, Y)(resp. D¥(s, y)) depend only on the set {A(m); (m, N)=1}.
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Especially if F is an eigen function of all T(m) (m=1, 2, - - -), then we get the
equality:
1
@ S, X, ‘//a n)n_s=¢F(s’ Xa l//9 1) Adr  —
anNw . ﬂv 5(p7™

Therefore if we put
Zds, =Z¥s, Y]] Qop™1,
pIN

2.17) w
Dg(s, ¥)= Zl Mmm=*  (F|T(m)=Am)F),

then we can show
L(2(s—k+2), Y*)D (s, ¥) = Z(s, ¥)
and
Lp(s—k+2, xp)Re(x, )= Pe(s, 1, ¥, DZp(s, ¥) -

§3. Discontinuous groups and Eisenstein series of Picard type

The set H={u=(z, v)eC xR; v>0} is said to be the upper half space of three
dimension. It is well-known that SL,(C) acts on H transitively by the following way:
if g=(* §)e SL,(C), u=(z, v) € H, then the map

(az+b)cz+d)+acv?: u
4 (u) " A,(u)

is an automorphism of H, where 4, (u)=|cz+d|*+|c|*®. An SL,(C)-invariant
metric (resp. volume element) of H is given by (dx? +dy? + dv*)' v (resp. dxdydv/v®)
(z=x+1y). .

Let K= Q(\/ dy) and R,=R/(K) be as in §2, a a proper R,-ideal such that
(N(a), N)=1, and let {a;, a,} be a Z-basis of a satisfying Im(x, @, —d, a,) >0. Further
we put

3.1 U — g(u)=<

o oy = (Jo O
J (o’z 022>eGL2(K), Ju—<0 J;1>eSp2(K),

1

~1/4
go=(D 0 )eSLz(C) (D=dof?)

0 D1/4
and
a 0 b O
0 a 0 b a b
g c 0 d 0 ESpZ(C) for g <C d)e 2( )
0 ¢ 0 d



118 1. MATSUDA MAKINO

Then we can define an injective homomorphism M, of SL,(C) into Sp,(R) by
SL2(C)Eg — Ma(g) =jagA0gAgAO_1jn_1 € SpZ(R) .

Set g =(""3" 5%s) € GL,(C). Then we can also define a map Z, from H into $, by

Hou=(z,v) — za(u)=J;gg<; l;)gﬁluesf)z :
Further, we can prove
M (9L (w)) = Z(9(w))

for any ge SL,(C) and any ue H. For a proper R-ideal a such that (N(a), N)=1, put

r(a)={g=<‘z Z)eSLz(K); a,deR;, ce Na?, bea‘z}

Fw(a)={g=<iol _f1>el"(a)}.

Then we can show
M (T(a))<T, .

We denote by D, (resp. S,) a fundamental domain for I'(a) (resp. I',(a)) on H with
respect to the action (3.1). For a cusp form FeSi(I'y, ) we put

F(u)=HZ,u) .

Though Z, depends on the choice of the basis {a,, a,} of a, F, depends only on the
ideal a. Further if we put y,(a)=y(N(a)) for a proper R(Q(\/d,))-ideal a, then F,
satisfies

F(gw) =y (a)A,)F(w)  ((a)=a,R))
for any g= (%, ¥)eI'(a). Moreover we have
F((z,0))=007"),
(3.2 F((z,v))=0(exp (—cv))  (v—>0)
F((z,0))=0(exp (=cv™ ") (-0, (z,v)eD,),

where ¢, ¢’ (>0) and O depend only on F and a. Especially we denote Fy, by F, and
Dy, by D,
For a cusp form
F(Z)= ) a(T)exp 2ni(a(TZ) €Sl ¥),
TeP,*t
we defined Rp(T(a), s) (see (2.7) and (2.11)) and F (u).We show a relation between
R((T(a), s) and F,(u) in the following
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PROPOSITION 3.1.  Put N(a)=N,, D=d,f?. For any cusp form Fe S,(T,, ), it
holds that :

J Fwp™™ du=Q2m) ™| D|~C"V2I(s)N 5 “* PRYT(a), )
Dﬂ

(du=dxdydv, u=(z, v) and z=x+iy) in Res>k+1.

For the proof, see [7, Lemma 3.1].
Let E (Y, u, s) (ue H, se C) be an Eisenstein series of Picard type defined by

I v )
(3.3) En(d’f, u, s)=? NO!//j(a) ﬁcia‘; (‘//f((d)) <m> .
Then we get

PROPOSITION 3.2.  For any cusp form Fe Si(I'y, ¥), then equality

(k—3)/2
J V*F o(u)
Do

(s—k+2)/2

(34) (4m)~*I(s)R{T(a), 5)= ‘%

xD
4

E(bpus—k+) % =)

holds in Res>k+1.

Proof. By a result in [6], we see that E (Y, u, s) converges absolutely and
uniformly in Res>2. Furthermore R(T(a),s) converges Res>k+1. For u=
(z, v) e H, we denote v(u)=v. Put

I= J F (wo(u)* ™ ‘du .
Sa

Since D, is a fundamental domain for I'(a) on H,
Se= U Dy
€ lw(a) \I'(a)

becomes a fandamental domain for I'(a) in H. Note that v*F (u) is invariant under the
transformation of I'(a). Therefore we have

I= I WW)*F (w)Y ¥, ((d)((t(w))* ~*+2 % ,
Dy -

where 7=(: 3;) runs through a complete system of representatives of I <@\ I'(a). By
a brief computation, we can see that there exists a matrix gla)=(" 2*)eSL,(K)

a2

2 N ~
such that a,, a, €a, o, € Na and af, af ea™. It is easy to see that J g,g(a)ds '/ & s
an element of I'y. If we put

P N AO Bo
Jodog(a)o g, ‘=(C0 D0>,
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then | 4, |= N(ofa) and
| CoZg, () + Do |=Ng ' Ay () .

Change the variable u to g(a)(v) in the integrand above and note that g(a)(D,) is a
fundamental domain for I'(a) in H, and we have

I= L @WN g Fo)Po*a) Y Y d))(e(rg)a)u))y ™ 2 % -

tel x(a) \I'(a)

Further put tg(a)=71,. Then 7, runs through a complete system of representatives of
I ,()\I'(a)g(a). Since d, = —c,af +d, of, we get () =y ((d,,0f)) and ‘

I=N o'k L (v(u)kFO(u))l//j(a) Z YA, O))U(to(u))s'“z i_‘: .

t0eI'n(a) \I'(a)g(a)

Moreover we can show that

F(a)g(a):{r(,:(j Z)e SL)K); a,bea™?, ceNaq, dea}

and that the inclusion (¢ %) eTI'(a)g(a) is equivalent to the conditions (¢, d)=a and
¢=0 (mod N). Thus we have

_ 1 " v Ydu
I= 2 N N (v(W)*F () {a) icgg(m l//;((d))<| cz+d]2+|cvlz> v3

and hence the equality (3.4) by Proposition 3.1.
It is easy to show the following two propositions.

PROPOSITION 3.3. Let a be a proper R;-ideal such that (N(a), N)=(N(a), f)=1.
Put ay={aeca; (N(a), N)=1} and
Ma)={(y", 6")eKx K; (Ny’, 6 )=a’, (N(8), N)=1}
for meN and an ideal o’ in R,, such that R, > R,,. Then
axay= |J F'J X¥ (@),
I o
U’sN)=1
where a’ extends over all ideals in R such that R, =R and (N(a"), nflf)=1.
PROPOSITION 3.4. In every class of the group H(d,f?), there exists a proper
R;-ideal a such that (N(a), f)=(N(a), N)=1.

By this proposition, we can choose a complete system of representatives of the
proper R -ideal classes a,, a,, - - - a;, (h="h(d,f 2)) such that (N(a;), /) =(N(a;), N)=1
(i=1,2, -+, h). Let x be a character of the group H(d,f?) satisfying the following
condition:



On the Meromorphy of Dirichlet Series 121

(3.5) for every f"eN such thatf’lf,f’>1 and (f’, N)=1, the
character y is non-trivial on the kernel of the surjective
homomorphism v(f, f|f"): H(dyf?) +—— H(dy(fIf)?).

Put

(36 EXWy, 6 9=N@YA) T (@) <| N T AN |2>

for u=(z, v)e H, se C and a proper ideal a such that (N(a), Nf)=1. Let Ly po(s, x¥y)
be the L-seies of R, defined by (2.14) and E (Y, u, s) the Eisenstein series (3.3). Then
we have ;

PROPOSITION 3.5. Let y satisfy the condition (3.5). Then, in the domain
{Res>2, ue H}, it holds that

h h
(37) ._Zl X(ai)E:('//ﬂ u, S)=2Ldﬂf2(sa Xl//f) ‘—21 X(ai)Eu,v(l//fa u, S) .

Further the both sides of the equality (3.7) converge absolutely in the domain Re s> 2.

Proof. Put a be a proper R,-ideal such that N(a)= N, is coprime to Nf. Then
via Proposition 3.4, we get

E:‘(l//f, u, S)=I//J(0)Nf) Z lpj((d)) (l CNZ+d,;)+ I CNUIZ>

(c,d)exan

=!ﬁf(a)N%Z| VAN '_25{2 Yyp(a)N(a)™*
S a’

X Y (@)N(a) Z l//f/f'((d)) <| ch+d|g+|ch|2> },-

(c,d)e XsIf 'N(a')

where a’ runs through all the proper Ry, -ideals in R .a satisfying (N(a’), ff")=
(N(a”), N)=1. Hence we obtain

E¥Wy, u, )=Ya)Ng fZU VA "“2{2 Uy (@IN(@) E oWy 1, s)} :

Let {a;; 1Sk =h"} (W' =h(dy(f]f’)*) be a complete system of representatives of the
ideal classes in H(dy(f/f")?) such that (N(ay), N(f)f")=1 for k=1, 2, ---, h’ and
put, for a proper R,-ideal a”’,

Lygnds; @', Y) =2 Yu(@*)N(@*) ™" (N(a*)=[R,,: a*], ¥,(a*)=Y(N(a*))),
where the sum is extended over all the R,,-proper ideals a* satisfying the conditions

a*~a’ and (N(a*), m)=1. Then by the fact that the Eisenstein series £ wWpypes Uy 5)
depends only on the class {a’}, we have
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Z ‘//f/f (a')N(a')°E (‘pf/f U, S)= Z Z ‘/’f/f (a')N(a)"°E,, (l//f/f U, S)

a ~ﬂk
o’ <Rj/f'a

W
=‘//f/f'(°(3)N(a'o)_s Z Ldo(f/f’)z(s, azag ', ‘//f/f')
k=1

XEy(bpystns)  (ao=Ryya).
From the equalities N(ag)=N(a)=N, and ¥, (ag)=V¥(a), it follows that

W

E:(l//j9 u, s)=2 ZI 'I/Z(fl)f'-zs kZ Ldo(f/f)z(sa a;c(Rf/fa)_ L '//f/f ’)Ea,’c(l//f/f'a u,s).
S =1

Hence we have

h

Zx(a)E*(l//pu 5)= 22 Z08Y i Z Y Aa)
g,

X Lyogiry8, 035 W )Eq (g 1, S) -
If (f’, N)>1, then y(f")=0. If (f’, N)=1 and /"> 1, then, by the condition (3.5),
for any j (1<j<h’) we have
Z x(a)=0.

1<ish
Ry/f'ai~aj

Namely, we have
() Y xa)=0 for 1<f'|f.
15izh

Rf/f ai~a

Thus we have proved the equality (3.7).
It is not difficult to prove the convergence of left hand side of (3.7).
For a character w of a group, put

%)= 1 (w is the trivial character),
10 (otherwise) .

For xeZ, put

1 (x=0)
o(x)= ’
» ) {O (x#0).
Further we denote by r(N) the number of elements of the set (Z/NZ)™.

In the same manner as in proving [7, Lemma 3.4], we can show

THEOREM 3.6. Let K, R; and \i; be as above. For a proper R, ideal a whose
norm N, is coprime to Nf, put
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E:(‘ﬁf’ u, S)=l/7f(a)Nf) C; l///((d)) <’ ch-i-dv|2|CNU'2>

and

s/

2
(3.8 Y (Y, u, s)=n"°I(s) E¥WYp u,s).

4

Then the following assertions hold:

1) Yoy, u,s) can be continued to the whole s-plane as a holomorphic function
except possibly for simple poles at s=2 and s=0. The possible residues are equal to
r(N)6*(;) and — (N —1) respectively;

i) ifN * do f* and ? is non-trivial or if N=1 (and \y must be the tivial character),
then the equation

N¥29 iy, u, )=(AN"YN>E=929 (-, 1(u), 2—5)

holds, where
A=AW)= Y Y{xR,)exp (mﬂ)
xeRy/NRy N\/F
and
TN:(—\jW \/f 1>ESL2(C).

From this Theorem we have immediately

COROLLARY. Put

h
(3.9 Yt ¥y u, 5)= ._Zl W)Yo Yy u,8)  (h=h(D))

JSor a character y of H(D). Then ¥ (x, Y, u, 5) can be continued to the whole s-plane as a
holomorphic function except possibly for simple poles at s=2 and s =0, and the possible
residues are 6*(Y)0*()r(N)h(D) and — (N —1)6*(x)h(D) respectively. Further if N is
a prime such that N * dyf* and y? is a non-trivial Dirichlet character modulo N, or if
N=1 (and y must be the trivial character), then we have the functional equation

(10) NP,y u ) =(ANTHON*IPY(E, ), 1y(u), 2—).

Note that if either N> 1, Y, is non-trivial or y is non-trivial, then ¥(y, Yy, u, S)
becomes an entire function of s. For the case that N=1 (and ¥ must be the trivial
character), Andrianov proved Eq. (3.10) in [2]. In this case , if we put

(311) W(Xa u’ s)='{l(Xa l//fa ua S)’ !
then we have

3.12) Dy, u, $)=D(F, u, 2—5) .
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From the definitions of Ry(y, s) ((2.12)), E, (Y, u, s) ((3.3)), EXYy, u, s) ((3.7)),
Y.y, u, 5) ((3.8)), Y(x, ¥y, u, 5) ((3.9)) and from Propositions 3.2 and 3.5, we have
2—-k

(3.13) Qr) " >I(s)[(s—k+ 2)Lp(s—k+2, x)Rp(x, 5)
(= 3)/2
2 |4 >

for any form FeS,(I',, ¥) and any character y of H(d,f?) satisfying the condition
3.5).

T D

—c* J WP E o) Pt w5~k +2) O <c*=
Do

§4. Proof of the main theorems

In this section, we assume that N is a prime. Let

(4.1) F(2)= ) a(T)exp 2nio(TZ))€ ST o, ¥)

TeP,
be a common eigen function for T(m),((m, N)=1):
F|T(m),=AmF  ((m,N)=1)  (see (1.6)).

If F is not identically zero, then we can find an integer D=d,f? (d, € Z, f €N) such
that

4.2) there esists a primitive matrix Te P, satisfying D(T)
(=—4|T|)=D and the series Ry(T,s)#0 (see (2.11));

4.3) ‘ d, is the discriminant of the field K= Q(\/d_o), and for
any integer f'>1, f’
D(Ty)=d,(flf)*, the series Ry(T,, s)=0.

Let qa,, ay, -+, a, (h=h(D)) be a complete system of representatives for proper
R/(K)-ideal classes such that (N(a;), Nf)=1(=1,2, - - -, h) (see Proposition 3.4), y a
character of H(D). Then, by the condition (4.3), @(s, x, ¥, n) should be a constant:

(4.4) ®y(s, 1, ¥, n)=a(m; y)  (see (2.8) and (2.10)).

Since RAT, s)= Y, a(mT)m *#£0 (D(T)=d,f?), we can choose an integer v=0

m=1

fand for any matrix 7T,eP; such that

such that
Y. a(mN'T)m™*#0.
(m,N)=1
From the properties of Hecke operators, for cusp forms F | (N,
F| T(N**"), € S(Ty, ¥), we can show equalities

{(F | T(NY),) | T(m), = A(m)F | T(N*),)  ((m, N)=1),

*3) (F| TON"*1),)| T(m), = Am)(F| TN'*Y,)  ((m, N)=1).
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Therefore, by using Proposition 2.1 and the equality (4.4), we get

Lp(s—k+2, XW/)RNT(Nv),,,(X, )=Z¥s, ) ), a(N"*% pN~%,
5=0

Lp(s—k+2, XW])RHT(N""'I)W(X’ $)=Zxs, ¥) zo a(NY*2H 4 N~
. o=

Since

7 Reyrom, (% )= N "R rvv+ 0yl )= (m,NZ)= N gm™
holds, we have

(4.8) Ly(s—k+2, 1) Y. a(mN"; pgm™*=Z¥(s, Y)a(N*; y) .

(m,N)=1
By the condition (4.5), we can choose a character y of H(D) satisfying
(4.9) 2. amN; X)m's<= ‘h[. ( Y. amN ”T(ai))m_s>x(ai)>‘¢0
(m,N)=1 i=1 (m,N)=1 ‘
(see (2.8)), and then
4.10) ' a(N*; x)#0.
Via property IV) of I1(p) (p | /) and [2, Lemma 3.8.1], we get the following

PROPOSITION 4.1.  Suppose that D=d,f? satisfies (4.2) and (4.3), and y is
chosen so that (4.9) holds. Then the character y satisfies the condition 3.5).

Let x satisfy (4.9) (so that (3.5)). Then we proved in §3, for any cusp form
FeS(I'y, ¥), the equality holds:
(k—s)/2>

@) "2 T($)(s—k+2)Lp(s —k+2, xy )Ry, s)
d
C*J (W) {(F | T(N"),)ow)— N ~5(F | T(NY*1),)o(u)} P(x, ¥, u, s—k+2) v_,:

D
4

—k
=c*j U(u)kFO(u)Y’(X, Y u s—k+2) d_g (C*=<n2 )
Do ’ ’ 2

(see (3.13)). Take F| T(N"),, F| T(N**1), for F. Then

=(2m)~ ZSF(S)F(S —k+2)Lp(s—k+ 2)(RF| T(N")w(x’ s)— N_SRF| TN+ 1)¢,(Xa s)) .
Hence according to (4.7), we obtain
du
C*J o(W){(F | T(N")y)o(w) — N ~*(F | T(N**1),)o(u)} P(x, ¥y, 4, s—k+2) pe
Do

=Qn) " PI()(s—k+2)Lpls—k+2, x¥) Y. a(mN®; pm™>.

(m,N)=1
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Therefore we have, by using the equality (4.8),
a(N"; )2m)~ #*I($)[(s—k+2)Z (s, ¥)

= c*‘JD v(w)*{(F | T(N")y)ow)—N"5(F | T(N*™Y),)o(u)} (%, Yy, U, s—k+2) i_'; )

Note'that a(N; y)#0 ((4.10)) and F|T(N"),, F| T(N**"),, are elements in S,(I'y, ¥).
From the equalities (3.2), the defnitions (2.16) of Z(s, ¥), (3.9) of ¥(y, Yy, u, s) and
Theorem 3.6, we get

THEOREM 4.2. The function 2n) *I'(s)[(s—k+2) Z%(s, ) can be continued
meromorphically to the whole s-plane and has possibly simple-poles at s=k and s=
k—2. ‘

If Fe S (I, ¥) has theAFourier expansion of the form (4.1), and we put W=
(_ng, )€GSP,(R), then F=F|[W], is an element in S(I';, ). We denote its

Fourier expansion by

F(Z)= Y &T)exp(2nio(TZ)).

TePj
Further, for any positive integer m with the condition (m, N)=1, we have F | T(m), =
Y2(m)A(m)F if F| T(m), = A(m)F. We consider the eigen values {A(m); (m, N)=1} of a
cusp form in the space S,(I'y, ¥). Put
SiLo, ¥, A)={Fe S(I'o, ¥); F| T(m), = Am)F (m, N)=1}.
It is easy to see that Si(I'y, ¥, A) is a subspace of Si(I'y, ¥). Let {F}, F,, - -+, F}} (I=
dim¢ Si(I'y, ¥, 4)) be a basis of S,(I'y, ¥, 4) and the Fourier expansion of F; be

(F{Z)= ¥ a{T)exp(mio(TZ)) (1Sj<I).

TePS )

Further, we put F=(F,, F,, ---,F) and F|T(m),=(F,|T(m),, F,|T(m),, -,
F,| T(m),) (meN) and

a(m; x)=(ar(m; ), a,(m; x), - - -, a(m; x))
for a positive integer m (see (2.8)). Then by the definitions (2.13) of Z}(s, ¥), (2.16) of
Z\(s, ), we get
(4.11) ZE (s, =23 (s, ) =" =Z} (s, ))=Z(s, ¥) .
Since T(m), T(N), = T(N), T(m), for (m, N)=1, the space S(Iy, ¥, 4) is invariant by
the action of the operator T(N),. Hence there exists a matrix U, e M,(C) such that
4.12) F|T(N),=FU, .

Further, it is easy to show that {£,, F,, - - -, F}} is a basis for Sg(I'y, ¥, ¥24). If
Si(I'y, Y, 2) #{0}, then we can choose an integer D=d, f 2 (d, is the discriminant of
the imaginary quadratic field Q(,/d,) and f is a positive integer), a character of
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H(D) and an integer v=0 such that
4.2)’ there exist a primitive matrix TeP, satisfying
D(T)=D and RFjO(T, s)#£0 for some j, 1gj,2D;
4.3) Ry (Ty, 5)=Rp (T, )=0 forall j=1,2,---,/ and all
primitive ﬁlatrix T,eP; with D(To)=dy(fIf "V A<f", f'|)
(if Rp (T, 5)#0 for some j, then we consider by changing roles
between S,(ly, ¥, ) and S (I, ¥, ¥24)), and
a(N”; x)#0 (see (4.10)) .

Compare the Fourier coefficients of F | T(N), and FUj,. Then from the definition
(4.12) of U, and the equality [7, (2.5)], we can see

a(N”; p)=a(l; YUy

Therefore, we get
(4.10)" a(l; x)#0.
It follows from the equality (2.10) and the condition (4.3)’ that equalikties
{¢Fj(s’ X wa Na)= aj(Nﬁ; X) H

QF"’(S’ X ‘//a N6)=61(N6’ X) P
(j=1,2, ---,land 6=0, 1, 2, ---) hold. Put

F=(F, F, -, F),

(4.13)

and

Re(x, 9)=(Rp, (1> 5), Re, (x> 9), * 5 Re(1:9))
and define a matrix ﬁ,,,eM,(C) by Fl T(N ),,,=FUW. For the Fourier coefficients
a(T) ofF"j g=1,2, ---, 1), we set

h

afm; y)= ._Zl a{T(a)x(ey)

(see (2.8)). Further we put a(m; x)=(a,(m; x), a,(m; x), - - -, a(m; 2()) for a positive
integer m. Then we have a(mN; y)=a(m; y)U,, a(mN; y)=4(m; x)U, and hence

{RF | T(N)‘,,(Xa 5)=Rgx, S)U./,
RF| T(N),;(X, $)=Rg, 5) ﬁu:
(see [7, (2.5)] and (2.12)).

From Proposition 2.1 and the first equality of (4.13), we can see
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o)

Lo(s—k+2, ¥R 1 5)= { Y. ai(N°% pN "’S}Z HORR

=1

0

Ly(s—k+2, xR, 1 1 s)={ Y. af{N°"h )N “’S}Z 2, )
=1
for j=1, 2, ---, . Hence we get
Ly(s—k+2, X‘/’f){RF(X> s)—N_sRn T(N),/,(Xa s)}=a(l; X)Zf(s’ ¥)

Namely we have

(4.14) Li(s—k+2, xy){Re(x, sNE,—N2Uy)} =a(l; NZ (s, ) .
Further, by Proposition 2.1 and second equality of (4.13), we can prove
(4.15) Lp(s—k+2, W) Re(T, IE,— N Uy} =4(1; DZ 2,8, ).
(§=2k—2—s). From (3.13), we have

(4.16) Qr)~Br(OI(s—k+2)Lp(s—k+2, ¥ )Re(x, 5)

= C*J v(u)kFO(u) T(X’ t//fa U, S— k+ 2) %1; ’
Do .

where Fo=((F;)o, (F2)o> * " 5 (F1)o), and ’
(4.17) Qn)"*TOIE—k+2)Lp(§—k+2, 1) Re(T, 5)
. _ B du
= C*Jv U(u)k(F)O(u) 'II(X’ ‘pfa U, §— k+ 2) F
First we consider the case that the conductor of  is N and /2 is non-trivial. In

this case, we have the following

THEOREM 4.3. Let y be a primitive character modulo N with > non-trivial and
put

DN(s, L, Y)=Q2n) 2T () [(s—k~+2)Z%(s, ) .

Suppose that
(C1) N does not divide }do 12, the discriminant of R,(Q(\/d—o)) , where

D=d,f? satisfies the condition (4.2)" and (4.3)".
Then we have the following equation:
(4.18) a(l; P N>2DN(s, A, y)E,~N"*U,) !

—Y(— Dod(l; PN¥PONE, 22, P)E~N0p) 1,

where §=2k—2—s and
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_N-1 2 . X=X
w=N | {XER§NRf (| x|?) exp (2111 Nfﬁ)}‘

(Note that a(1; 1) #(0, - - -, 0) (see (4.10)").)

Proof. If we note that

o(Th()) Fo(ta() = Y(— l)vk(F)O(u) (tN B <— \/W _ ))

~ N
and that ty(D,) is another fundamental domain for I'(R;), then by Theorem 3.6, we
get

d
j o) o)y, 5=k +2) S5

=Y(~Do f WO Ty, 0 5—k+2) 2

for F=(F,, F,, ‘-, F}). Hence from equalities (4.14), (4.15), (4.16) and (4.17), we
have the equality (4.18).

Next we consider the case that y = ¢, is the trivial Dirichlet character modulo N.
We can easily prove

PROPOSITION 4.4. If N is a prime which remains prime in Q(\/%)/Q, then
V(1 ($o)ys s )=N"(P(, ty@), )~ N"“¥(t, u, 9},
where Y (y, u, s) is defined by (3.11).

If FeSy(I'y, ¢, A), then Fe S, (I, ¢,, 4). Hence we can find a matrix U, such
that F=FU, with U2 =E,. Finally we have

THEOREM 4.5. Let the notation be as above and put
DN (s, l)=(27t)'25Nsl"(s)1"(s-—k+23Z’,{’(s, G)(E;—N~°Uy ) Y(E, =N~ 67k )1
Suppose that
C2) N remains prime in Q(/D)/Q, where D=d,f? satisfies
the condition (4.2)" and (4.3)" for some f .

Then the following equation holds:
4.19) a(l; PN (s, A)=(—D*a(l; )@"(, 4) $=2k—-2-y).

Proof. Put

(s, =N+ J W Fo) V(s By 15— k+2) %
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Then from (4.14), (4.16) and the definition of ®V(s, 1), we have
(4.20) cl(s, x)=a(l; ) N*®N(s, A)(E,—N~*U, )~*

where ¢=(n/N)* ¥ D/4|"“3’/2/2. Further according to Proposition 4.4, we get
» I x du
6 0= vW)'Fow)¥P(x, tyw), s—k+2) P
Do

—N“s"‘”’J 0 F o) P, 4y 5— Kk +2) % .
Do
Since v(Ty(u)*Fo(ty(4)) = v()“(F)o(1) = v(u)*F, Uy, we can easily see
' d
(4.21) I(s, )= L () Fo(w)P(x, tn(u), s—k+2) ;';(E, —N~G"kt2g )

Further we get
“4.22) P u,s—k+2)=Y({, u, §—k+2)
by (3.12). Therefore we obtain

d .
@23) 16 @=J PR P Tyl 5—k+2) S5 (- N65+D).
Do

From the equalities (4.20), (4.21), (4.23) and the fact a(1; §) =(— 1)*a(1; y), finally we
get (4.19).

§5. Examples

We shall exhibit some examples to make clear the meaning of our theorems.
Example 1. Put

n=q ] (-7 0= T g,

n= —oo

q=exp (2niz) and f(z)=06(z) " 1./n(2z). Then

f@O=aq+aq*+ag*+ - -

is an elliptic cusp form of half integral weight in &,,(I',(4)) (see [4]) and, for Hecke
operators T;,(m?) on S,,(I',(4)),

fITll(m2)=wm.f (m=15 2’ 33 ”')~
For T=(,, "?)eP;, set

a( T) = Z ¢O(m)a(4ac —b2)/m2 -

m|(a,b,c)

Then, by Kojima [4, Theorem 3] and Ibukiyama {5],



On the Meromorphy of Dirichlet Series 131

V(NZ)= Y a(T)exp 2nic)TZ))

TePj

is the cusp form in Ss(I'y(2), ¢,). Note that Ibukiyama showed dim Sg(I'(2), ¢p) =1
in [5]. So that we have

YD Tm)gy=mW(f)  (m=1,2, ),
Y(N=v().

Further we can show a((;}, '{))=a;= —80 and 2 remains prime in Q(\/—3).
Put

(s5)=2m) " T(H(s—H2(1 =27 ") (1= A2)27°) "' Z(s, ¢o) .
Then, by Theorem 4.5, we get
(EN)) D(s)=P(10—5) .
N.B. In [4], it was shown that
ZHs, do)=(1— U227 ZX(s, ¢o)
=(1-27¢"N1-27")(s—-5)(s— 4)
x l;[ (1—wp~*+¢o(p)p™ 37971

(see (2.17)).
Equation (5.1) can also be proved by using this product.

Example 2. Put
2 1 0

S,=

o B~
A O N -
O = O N
W b~ o0 O
N 0 A~
0 WO

1
0
0

S O &

and

3(2)= Y  expQmic(xXSxZ) (Ze$Hyj=1,2,3).

xeMa, 2(Z)

Then, in his paper [11], Yoshida showed that
F(Z)=(33(2)+9,(2)-29,(2))24

is a cusp form in S,(I'y(11), ¢,) and

5.2 F| T(m),,=A(m)F

for meN with (m, 2-11)=1. It is easy to see that if we put
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0 1 0 0 1 0 0 O
-1 0 0 0 0 1 0 O
U= 0 0 0 1) Sz“o 0-1 0}
0 0-1 0 0 0 0 —1
0 0-1 0
0 0-1 1
= L
S3 1 1 0 OGG 4(Z)9
0-1 0 0

then 11S;'=U;S;U; (j=1, 2, 3). Further, we can show
{xGM4)2(Z); x’ij= T} {J’EM4,2(Z); v V= 11T}
w w

(TeP;,j=1, 2, 3)is one-to-one and onto correspondence. By these facts, we get

F=F,
(5-3) F|T(11),,=F .
Put
' F(Z)= Y a(T)exp (2nio(TZ)).

TeP;

Then a(E)=1x0. Hence D=D(E)= —4 and y, (the trivial character of H(—4))
satisfy the conditions (4.2) and (4.3). Let

4
Q)= ), 27"a;T;,
j=0

where aqp=a,=1, a,= —1, a3=—2, a,=22, T,=T,=T(1), Ty =T;=T(2) and T, =
TQP-T(2»-T (1), and put
(F|Q(s)(Z)= T§w+ by(T)exp (2nia(T Z)) .
Further set v ; 2
2 @)= 10577 (see (1.10).

Since (F|T)| T(m),,=Am)F|T, for (m,2)=1 and, j=1, 2, 3, 4, we get, by
equations (2.9), (5.2), (5.3) and the definition of b,



On the Meromorphy of Dirichlet Series 133,

4
L_4s, ¢0N0rm){ 27 %a RE| Tj(X 0 S)}
=0

J

— 7% - I —0s __1_>_1
7165, 6 {6;0 b2°E)2 } I (1 o
inQ(J:ﬁ

=Z%(s, $o)a(E).

Hence we have, from (3.13),

4
(n) TP 2K g0 = 3 27, f (F | T)ow) ¥l $oNorm, u, 5) %

Do

Thus we have proved that (27) “**I'(s)>Z (s, ¢,) can be continued holomorphically to
the whole s-plane except possibly for simple pole at s=2. The functional equation of
Z (s, ¢o) is shown in the following. Put

FIQ®QsN2)= ¥ 27" aa(F|TTNZ)  (=2-3)

= )Y c(T)exp(nio(TZ)).

TeP}
Then we get, by using (2.9),

4
L_4s, ¢oNorm) ' 277 ®aaRp 1.1.(Xo, 5)

J>k=0

0

=Z3Gs, %){Z cs(2‘5E)2_‘“} H A-WE) ™™™

=0

= ZI(Sa ¢0)bs(E) .
Since the equality (4.16) holds and 11 remains prime in Q(\/tzl), we have

0 BTOBAEIZES, d)= 3 275 aq,

J,k=0
x L 03 (F | )o@ P1(xo> 14(u), ) % (1=1179.
Further, we can prove
b(E)=1-—27542172s_21-3s4 n2-4s
=(14+2" 7542172 (1—275)(1 =21 79)

Therefore, if we put
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&(s)=(2n) " T(s)*115(1 =115 "} (1 421 5421 72571
(1-27)71(1=2"") " Z3(s, o).

then we get the functional equation

(5.4)

P(s)=DP(2—5)

by the same way as Theorem 4.5.

N.B. In [10], the p-factor (px11) of Z#(s, ¢,) is calculated explicitly. By

using this result, it is again possible to get (5.4).
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