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Introduction

A proper submodule N of a module M over a ring R is said to be prime (or P-
prime) if re € N for re R and ee M implies that either ee N or re P=N: M. In other
words, N is a prime submodule if it is a primary submodule whose radical is identical
with P=N: M. Clearly this is a generalization of the notion of prime ideals of a ring.
In the theory of rings, prime ideals play important roles everywhere. But in the theory
of modules, especially Noetherian modules, primary submodules are the major
characters and a little attention has been paid to prime submodules.

The purpose of this paper is to introduce interesting and useful properties of
prime submodules of modules and show various applications of the properties.

In § 1 we establish the most fundamental theorem of prime submodules. It lists
seven conditions each of which is equivalent to that a proper submodule of a module
is prime. The theorem results in several corollaries stating some basic properties of
prime submodules.

In §2 we first point out that the notion of maximal P-primary submodules and
that of maximal P-prime submodules are equivalent. Applying this, we improve a
known result ([7]) concerning maximal P-primary submodules and simplify its proof.

Section 3 is devoted to study extended submodules PM of an R-module M for
prime ideals P of R. We prove that if M is a faithful Noetherian R-module, then
PM : M= P for every prime ideal P; consequently, there exists a P-prime submodule
in M. We also prove that if M is a flat R-module and P is a prime ideal of R such that
PM # M, then PM is P-prime; furthermore, QM is a P-primary submodule of M for
every P-primary ideal Q of R.

The study of extended submodules is continued to §4, where we deal with
content R-modules M with the content c(x)= N {4; A is an ideal of R such that
xe AM} for each xe M. We prove that if M is a content R-module, then re(x)<
Jc(rx) for every re R and xe M <> for each PeSpec(R), either PM=M or PM
is P-prime. In this theorem we characterize, using the notion of prime submodules,
a certain class of content R-modules which contains all flat content R-modules.

Section 5 is concerned with prime submodules of Noetherian modules. In [5], it
was proved that a finitely generated module M is Noetherian if, and only if, every
prime submodule of M is finitely generated. We give a proof of this theorem which is
more concise than the one in [5] and introduce its application to prove that if M is a
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Noetherian R-module, then M[x] is a Noetherian R[x]-module.
Throughout this paper, all rings are assumed to be commutative rings with
identity and all modules will be unitary.

§ 1. Basic properties of prime submodules

A proper submodule N of a module M over a ring R is said to be prime if ree N
for re R and ee M implies that ee N or re N: M=Anng(M/N).

Clearly, every prime ideal of a ring R is a prime submodule of the R-module R
and every prime submodule of a module is primary. If N is a prime submodule of an
R-module M whose residual N: M by N is P, then P is a prime ideal of R and N is P-
primary; under the circumstances, we shall call N a P-prime submodule of M. In the
following Result 1-Result 5, we consider simple examples of prime submodules.

RESULT 1. Every direct summand of a torsion free module is prime. In
particular, every proper subspace of a vector space is prime.

RESULT 2. A4 proper.submodule N of a torsion free R-module M is a pure
submodule if, and only if, it is prime in M with N: M =(0).

Here by a pure sumbodule of M we mean a submodule N such that rM A N=rN for
every re R.

RESULT 3. The torsion submodule T(M) of a module M over an integral domain
is a prime submodule if T(M)# M.

RESULT 4. Le B be an overring of a ring A. Then every prime ideal P of B is a
prime submodule of the A-module B with P: ,B=P N A.

RESULT 5. (0) is a prime submodule of an R-module M, if and only if,
Anng(M)=Zg(M), the set of all zero divisors on M.

PROPOSITION ‘1. (a) Let N be a primary submodule of an R-module M. Then N
is prime if, and only if, N: M is a prime ideal of R. (b) If K is a P-primary submodule of
M containing a P-prime submodule, then K is P-prime.

According to [3], p. 169, Ex. 12, d), every primary ideal of an absolutely flat (von
Neumann regular) ring is prime. Hence we have the following.

COROLLARY. If M is a module over a von Neumann regular ring, then every
primary submodule of M is prime.

THEOREM 1. Let N be a proper submodule of an R-module M with N: M =P.
Then the following statements are equivalent:

(@) N is a prime submodule of M;

(b) M|N is a torsion-free R/P-module;

() N:u(r)=N for every re R—P;

(d) N:,J=N for every ideal J < P;

(e) N:x(e)=P for every ee M —N;
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(f) N:xL=P for every submodule L of M properly containing N;
(&) Ass(M/N)={P};
(h) P=Zg(M|N).

The proof of the theorem is straightforward, hence we omit it.

We remark that, for any submodule N of an R-module M and any prime ideal P
of R, each of statements (c) and (d) in Theorem 1 is a necessary condition and (g) is a
necessary and sufficient condition in order that N be P-primary (cf. [3], p. 140; [7], p.
99 and p. 100).

PROPOSITION 2. If N is a submodule of an R-module M whose residual M : N by
N is a maximal ideal of R, then N is a prime submodule. In particular, mM is a prime
submodule of an R-module M for every maximal ideal m of R such that mM # M.

Proof. Since N: M =P is a maximal ideal, M/N is a vector space over the field
R/P, a torsion free R/P-module. Hence N is prime by Theorem 1.

Proposition 9 of [7], p. 200 states that if M is a Noetherian R-module and m is a
maximal ideal of R, then a proper submodule N of M is an m-primary submodule if,
and only if, m*M <N for some positive integer k. Without assuming that M is
Noetherian, we have the following proposition which is an easy result of Proposition
2 and is similar to the above mentioned Proposition 9 of [7], p. 200.

PROPOSITION 3. Let N be a proper submodule of an R-module M and let m be a
maximal ideal of R. Then N is m-prime if, and only if, mM = N. Consequently, if N is an
m-prime submodule of M, then so is every proper submodule of M containing N.

PROPOSITION 4. If N is a maximal submodule of an R-module M, then N is a
prime submodule and N : M is a maximal ideal of R.

Proof. N is a maximal submodule if, and only if, M/N is a simple R-module.
Hence M/N is a cyclic R-module mR and Ann git=Ann x(M/N)=M: N is a maxi-
mal ideal of R due to [1], p. 29, Proposition 3. It follows that N is prime from Propo-
sition 2.

Combining Proposition 4 and [1], p. 30, Proposition 4, we have

COROLLARY. If M is a finitely generated module, then every proper submodule of M
is contained in a prime submodule.

We remark that if m is a maximal ideal of a ring R, then not every m-prime
submodule of an R-module M is a maximal submodule. For example, (0) is a
maximal ideal of any field F and all maximal or non-maximal subspaces of a vector
space V over F are (0)-prime submodules in V.

PROPOSITION 5. Let Ny, N,, - - -, N, be submodules of an R-module M and let N
be a prime submodule of M. If Ny " N, - -+ n N, =N, then there exists an i such that
either NN N or N McN: M.
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Proof. Assume the contrary, then there exist an ee N; such that e ¢ N and
a p;e(N;: M) such that p;¢(N: M) for every i#1. Consequently, pee N, n N; for
every i#1 so that p,p;---peeNyNnN,n--- "N, SN. However, e¢ N and
DP2D3 D (N: M), which contradicts that N is prime.

§2. Maximal P-prime submodules

Following [7], we shall call a submodule N of an R-module M a maximal P-
primary submodule of M if N is a P-primary submodule which is not strictly
contained by any other P-primary submodule of M. Maximal P-prime submodules of
M can be defined in a similar way.

PROPOSITION 6. N is a maximal P-primary submodule of a module M if, and
only if, N is a maximal P-prime submodule of M.

Proof. Assume that N is a maximal P-primary submodule of M. If r¢ N: M,
then N:(r) is a P-primary submodule by [7], p. 100, Proposition 21. Thus N:(r)=N
for every r¢ N: M by the maximal property of N, whence N is a prime submodule by
Theorem 1. Since N: M is a prime ideal, N: M =./N: M= P, which means that N is a
P-prime submodule. Now that N is a maximal p-prime submodule is easy to see. The
converse can be verified by using Proposition 1.

In the following Proposition 7, we improve [7], p. 204, Proposition 12, in which
modules are assumed to be Noetherian and no notion of prime submodules is
involved. We also give a proof of the proposition, which is simpler than that of
Proposition 12 of [7], p. 204, by applying some of the basic properties of prime
submodules discussed previously.

PROPOSITION 7. Le M be a finitely generated R-module and N a P-primary
submodule. Then the following statements are equivalent:

(a) N is a maximal P-primary submodule of M,

(@") N is a maximal P-prime submodule of M,

(b) for each submodule L of M satisfying NcL<= M, we have N:L=P and
L: M> P (strict inclusion).

Proof. In view of Proposition 6, it suffices to prove only the equivalence of (a’)
and (b). To prove (b)=>(a’), let N be a submodule of M satisfying the two conditions
(i) N: L=P and (ii) L: M > P for every submodule L of M such that N L< M. Due
to Theorem 1, condition (i) is equivalent to that N is P-prime. Condition (ii) implies
that every submodule L containing N is not P-prime. Thus N is a maximal P-prime
submodule of M, so (b) implies (a’). Conversely, we assume that N is a maximal P-
prime submodule of M and let L be a submodule of M which contains N properly.
Then clearly L: M2 P and we have N: L= P from Theorem 1 again. Applying [7], p.
160, Theorem 10 and Proposition 6, we can see that Np is a maximal PR,-prime
submodule of the Ry-module M,. Now assume that L: M=P. Then since M is a
finitely generated R-module, Lp# M, by virtue of [7], p. 158, Proposition 13. It
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follows that L, is a proper submodule of M, which contains the PRp-prime
submodule N, therefore L, is a PRp-prime submodule by Proposition 3. By the
maximality of N, we have Np=Lp, whence N=Np,nM=L,nM=2L, a con-
tradiction. Thus L: M contains P properly, so (a’) implies (b). This completes the
proof of Proposition 7.

§3. Extended submodules IM

In this section we consider extended submodules IM of an R-module M, where 1
are ideals of R, which are prime or primary submodules of M.

PROPOSITION 8. Let M be a finitely generated R-module and let I be a radical
ideal of R. Then IM : M =1 if, and only if, Anng(M)< L.

Proof. The necessity is obvious. Assume that Anng(M)<I and let r be an
element of R which is contained in IM : M. If M is generated by » elements, then
there exists a yel such r"+yeAnng(M) <1 by [6], p. 50, Theorem 75. Accordingly
r"el and, therefore, IM: M < \/_I_=I as I is a radical ideal. Now we can see easily
that IM: M =1

COROLLARY 1 ([6], p. 7, Ex. 3). Let P be a finitely generated prime ideal of a ring
R such that Anng(P)< P. Then P?: P=Anng(P/P*)=P.

COROLLARY 2. Let P be a finitely generated prime ideal of a ring R such that
Anng(P)< P. Then the following statements are equivalent:

(a) P? is a P-primary ideal of R,

(b) P2 is a P-primary submodule of the R-module P;

() P?is a P-prime submodule of the R-module P.

Proof. The equivalence of (a) and (b) follows from [7], p. 199, Proposition 8§
and that of (b) and (c) follows from Proposition 1 and the above Corollary 1 to
Proposition 8. ‘

Let P be a prime ideal of a ring R which is not maximal. Then it is known that P?
is not necessarily a P-primary ideal of R. This together with the above Corollary 1
and Corollary 2 to Proposition 8 suggest that if N is a submodule of an R-module M
such that N: M = P for some prime ideal P of R, then N is not necessarily a P-prime
submodule of M.

COROLLARY 3. If M is a finitely generated R-module and m is a maximal ideal
of R containing Anng(M), then mM # M so that mM is a prime submodule of M. In
particular, if M is a finitely generated faithful R-module, then mM is a prime submodule
of M for every maximal ideal m of R.

COROLLARY 4 ([7], p. 232, Ex. 8). Let M be a finitely generated R-module having
primary decomposition for submodules and let P be a prime ideal containing Anng(M).
Then pM : M = P, consequently, there exists a submodule of M which is P-prime.
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Proof. We have seen that PM: M= P in Proposition 8. Now let (\*_, N, be a
primary decomposition of PM, where each N, is a P;-primary submodule. Then P=
PM: M=\, (N;: M), whence P=N;: M for some j because P is a prime ideal. It
follows that P=,/ P =,/N;: M=P ;and therefore N is a P-prime submodule of M by
Proposition 1.

Both Corollary 1 and Corollary 4 to Proposition 8 are slight refinements of [6], p.
7, Ex. 3 and [7], p. 232, Ex. 8, respectively.

Applying Corollary 4 to Proposition 8, now, we can give some characterization
of faithful Noetherian modules.

THEOREM 2. Let M be a faithful Noetherian R-module. Then, for every prime
ideal P of R, there exists a prime submodule N of M such that N: M= P.

COROLLARY. Let M be a Noetherian R-module and let P be a prime ideal of
R containing another prime ideal Q. If H is a Q-prime submodule of M, then there
exists a P-prime submodule K such that H< K.

Proof. Put M’'=M/H. The M’ is a faithful Noetherian module over R’ = R/Q.
Since P’= P/Q is a prime ideal of R’, there exists a P’-prime submodule K’ of M’ by
Theorem 2. Put K=#5""(K’), where 7 is the natural homomorphism of M to M’.
Then Kis a P-prime submodule of M which contains H due to Proposition 1 and [71,
p. 101, Proposition 25. ’

We remark that Theorem 2 and its corollary are, respectively, analogous to the
lying-over theorem and the going-up theorem for prime ideals of integral extensions
of rings.

THEOREM 3. Let M be a flat R-module and let P be a prime ideal of R such that
PM#M. If Q is a P-primary ideal of R, then QM is a P-primary submodule of M.
Consequently, PM is a P-prime submodule of M, so that PM is the intersection of all P-
prime submodules of M.

Proof. If ree QM for reR and ee M, then there exist a finite index set ,
{q:}: c1=Qand {e;};.; = M such that re=3",_; g;e;. According to [2], p. 43, Corollary 1
to Proposition13, there exist a finite set J, {x;};,.;<Mand {a;};.; <R such that

ieIU{0}

ajr=21939;€Q and e=3;_;x;a;. If r¢ P, then clearly aj, € Q for every j, whence
e=3;.;x;a;, belongs to QM. On the other hand if r e P, then r* e Q for some positive
integer k, hence r*M = QM and we can conclude that QM is a P-primary submodule
of M by [7], p. 99, Lemma 8. As a consequence, PM is a P-primary submodule. Now
it can be easily verified that PM: M =P, so PM is a P-prime submodule of M by
Proposition 1.

COROLLARY. Let M be a free R-module and let m be any maximal ideal of R.
Then mM is the intersection of all m-prime submodules of M; it is also the intersection
of all maximal submodules N with N: M =m.
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§4. Extended submodules of content modules

For any element x of an R-module M, the content c(x) of x is defined by c(x)=
(){4; A4 is an ideal of R such that xe AM}. M is called a content R-module if
x€c(x)M for every xe M. Content R-modules M can also be characterized by that,
for every family {4,};, of ideals 4; of R, (|4, )M =)(4;M). We remark that every
projective module is a content module ([8]).

The following theorem 4 is motivated by Theorem 1.2 of [9].

THEOREM 4. Let M be a content R-module. Then the next two statements are
equivalent:

@) re(x)=./c(rx) for every re R and xe M,

(b) For each PeSpec(R), either PM =M or PM is a P-prime submodule of M.

Proof. (a)=(b): Let PeSpec(R) such that PM # M. If rxe PM for re R and
x€ M, then clearly c(rx) < P which implies that re(x) = /c(rx) < P by (a). Since P is a
prime ideal, we have either re P< PM : M or ¢(x) S P, i.e., x€ PM. Therefore PM is a
prime submodule of M. To show that PM : M= P, we let s be an element of PM : M.
Then see PM for any ee M such that e¢ PM, whence c(se) = P but c(e) £ P. Since
sc(e) s \/ c(se) <= P by (a), se P so that we have PM : M = P. (b)=-(a): For any re R and
xe M, let P be a prime ideal of R containing c(rx). Then rxe PM. If PM # M, then
PM is a P-prime submodule of M by (b), hence we have either re P or xe PM. It
follows that rc(x) = P in both cases. On the other hand, if PM =M, then evidently
c(x)= P so that re(x)=P. We have seen that rc(x)< P for every prime ideal P
containing c(rx), therefore, rc(x) = \/c(rx).

As we have seen in Theorem 3, condition (b) of Theorem 4 is a necessary
condition for any module be flat. According to Corollary 1.6 of [8], p. 53, a content
R-module M is flat if and only if re(x) = c(rx) for every re R and x e M. Hence the set
of all content R-modules which satisfy the equivalent conditions listed in Theorem 4
contains all flat content R-modules. We can give other characterizations to content
modules in this set if they are finitely generated.

COROLLARY. If M is a finitely generated content R-module, then the following
Statements are equivalent:

(@) rce(x)=./c(rx) for every re R and xe M,

(b) For each PeSpec(R), either PM=M or PM is a P-prime submodule of M;

(© M/(PM) is a projective R/P-module for every Pe Spec(R);

(d) M/(PM) is a flat R/P-module for every PeSpec(R).

Proof. We have seen the equivalence of (a) and (b) in Theorem 4. Applying
Theorem 1, we can also see that (b) is equivalent to the following statement: (v’) For
each PeSpec(R), M/(PM) is a (zero or non-zero) torsion free module over the
integral domain R/P. Now the equivalence of (b’), (c), and (d) follows directly from
[4], p. 436, Theorem 2.14 due to the fact that M/(PM ) is a finitely generated content
module over the integral domain R/P.
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For any projective R-module M it is known that if J is the Jacobson radical of R,
then JM is the intersection of the maximal submodules of M. Since every projective
module is a content module, we consider a generalization of this fact of projective
modules to content modules.

THEOREM 5. Let J and I be, respectively, the Jacobson radical and the nilradical
of aring R, and let M be a non-zero content R-module. Then JM is the intersection of
all maximal submodules of M. Furthermore, if M satisfies the condition that
re(x)=./c(rx) for every re R and xe M, then IM is the intersection of all prime
submodules of M.

Proof. Let Q be the set of all maximal ideals m of R. Since M is a content R-
module, JM = (,,.omM and JM # M by [8], p. 57, Lemma 3.2. Hence, there exists a
maximal ideal m such that mM # M, whence M * = M/mM is a non-zero vector space
over the field R/m. By virtue of Corollary to Theorem 3, the intersection of all
maximal subspaces of M* consists of only the zero vector, namely, mM is the
intersection of all maximal submodules containing mM. Since each maximal
submodule of M contains mM for some m e Q, we can conclude that JM ="),,., mM
is the intersection of the maximal submodules of M. That IM is the intersection of the
prime submodules of m follows from Theorem 4 and the fact that IM=

nPeSpec (R)PM'

§5. Prime submodules of Noetherian modules

A theorem of I. S. Choen states that R is a Noetherian ring if every prime ideal of
R is finitely generated. Here we consider a similar theorem for modules.

LEMMA. Let N be a submodule of an R-module M. Then N is finitely generated
(resp. countably generated (c.g.)) if any of the following two conditions is satisfied: (a) If
there exists an element r € R such that both N+rM and N :\(r) are finitely generated
(resp. c.g.); (b) If there exists an element e€ M such that both N+eR and N :zeR are
finitely generated (resp. c.g.).

Proof. Clearly NnrM and N neR are, respectively, R-homomorphic images
of N:y(r) and N:zeR. Now the lemma follows from the two isomorphic relations
(N+rM)[rM=N/(NnrM) and (N+eR)/eR=N/(N N eR).

PROPOSITION 9. Let N be a proper submodule of an R-module M. Suppose that
N is not finitely generated (resp. not c.g.) and is maximal among all submodules that are
not finitely generated (resp. not c.g.). Then N is a prime submodule.

Proof. If reR—(N:M), then NSN:,(r) and NgN+rM. Assume that
N#N:p(r). Then both N:(r) and N+rM are finitely generated (resp. c.g.) by the
maximal property of N, whence N is finitely generated (resp. c.g.) by Lemma, a
contradiction. Therefore, N=N:,,(r) for every r€ R— (N : M) which means that N is
a prime submodule. ’
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In a finitely generated R-module M, any submodule that is not finitely generated
(resp. not c.g.) can be enlarged to one that is maximal with this property. We are now
ready for the next two theorems.

- THEOREM 6. A finitely generated R-module M is Noetherian if, and only if,
every prime submodule of M is finitely generated.

THEOREM 6’. Let M be a finitely generated R-module. Then every submodule of
M is countably generated if, and only if, every prime submodule is so.

Theorem 6 was proved in [5], but our proof is more concise than that of [5].

THEOREM 7. Let M be an R-module, N* a prime submodule of the module
M{[x] over R[x], and N the image of N* under the natural homomorphism n:
M x]|- M such that n(f(x))= f(0) for each f(x)e M[x]. Then N* is finitely generated
if, and only if, N is finitely generated. Furthermore, if M is generated by s elements and
N is generated by t elements, then N* is generated by either t+s elements or t elements
according as x belongs to N*: M[x] or not.

Proof. Suppose that M=3Y$5_,mR and N=Y!_, ¢,R. If xe N*: M[x], then

N*=N+xM[x]=Yi_,eR[x]+ Xy mxM[x]. If x¢N*:M[x], then N*=

{_1fiR[x], where f; is any element of N * which leads off with e, for each i (cf. Proof
of Theorem 70, [6], p. 48).

COROLLARY ([7], p. 68, Ex. 10). If M is a Noetherian module over R, then M [x] is
a Noetherian module over R[x].
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