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1. Introduction

A subsemigroup A4 of a semigroup S is called a bi-ideal of S if ASA<A. A bi-
ideal 4 of a semigroup S is called two-sided pure if

AnxSy=xAy

holds for all x, ye S. A semigroup S is called T*-pure if every bi-ideal of it is two-
sided pure, ([2]). A semigroup S is called weakly commutative if, for any a, be S, there
exists a positive integer n such that

(ab)"ebSa (5], p. 47).

As is well-known, ([5], II 5.6 Corollary), every weakly commutative semigroup
is a semilattice of archimedean semigroups. Since every T*-pure semigroup is weakly
commutative ([4], p. 110), it is a semilattice of archimedean semigroups. In this paper,
we shall give some properties of T*-pure semigroups and characterize T *-pure
archimedean semigroups. And we shall give the minimum group congruence 0 on a
T*-pure semigroup S, and prove that the set E of all idempotents of a T*-pure
semigroup S is a d-congruence class if and only if E is a unitary subsemigroup of S.

2. Fundamental properties of 7*-pure semigroups

An element a of a semigroup S is called regular if there exists an element x in S
such that

a=axa.

A semigroup S is called regular if every element of S is regular. An element a of a
semigroup S is called completely regular if there exists an element x in S such that

a=axa and ax=xa.
LEMMA 2.1. For any elements a and b of a T*-pure semigroup S,
aSb=a*Sh* .
Proof. Let a and b be any elements of S. Then, since Sis T *-pure, the bi-ideal
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aSh is two-sided pure. Thus we have
aSb=aSb n aSh=a(aSb)b=a*Sb* .

LEMMA 2.2. For any element a of a T*-pure semigroup S, a" (n=3) is a
completely regular element of S.

Proof. Let a be any element of S. Then for any positive integer n (n=3), by
‘Lemma 2.1, we have

a"=aa" 2acaSa=(a")?S(a")* .

Then it follows from [5, IV. 1.2 Proposition, p. 104] that a is completely regular. This
completes the proof.

We denote by E(S) the set of all idempotents of a semigroup S, and Z(S) the
center of S. Then we have the following:

LEMMA 2.3. For a T*-pure semigroup S,
E(S)cZ(S).

Proof. Let e be any element of E(S) and a any element of S. Since S is T*-pure,
the bi-ideal eSe is two-sided pure. Then we have

ae=qaeeee € a(eSe)e=aSe neSe<eSe .
This implies that there exists an element x in S such that
ae=exe .
Similarly, there exists an element y in S such that
ea=eye.
Then we have
ae=exe=(ee)xe=e(exe)=e(ae)
=(ea)e=(eye)e=ey(ee)=eye
=ea.
Therefore, we have
eeZ(S),
and so
E(S)=Z(S).
This completes the proof.

As is stated in § 1, any T*-pure semigroup is weakly commutative. The following
theorem shows that the converse of this and the converse of Lemma 2.3 hold for a
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regular semigroup.

THEOREM 2.4. For a regular semigroup S the following conditions are
equivalent.

(1) Sis T*-pure.
(2) S is weakly commutative.
(3) ES)=Z(S).

Proof. We shall prove that (2) implies (3), and (3) implies (1). Assume that (2)
holds. Let e and a be any elements of E(S) and S, respectively. Since S is regular,
there exists an element x in S such that

ea=(ea)x(ea) .
Then, since S is weakly commutative, there exists a positive integer # such that
((xe)a)" e aS(xe) .
Then, since x(ea)=(xe)a is idempotent, we have
ea=ea((xe)a)=ea((xe)a)"
eea(aSxe)=(eaaSx)e < Se .
This implies that there exists an element y in S such that
ea=ye.
It can be seen in a similar way that
ae=ez
for some z€ S. Then we have
ea=ye=y(ee)=(ye)e=(ea)e
=e(ae)=e(ez)=(ee)z=ez
=ae .
Thus we have
ecZ(S),
and so
E(S)=Z(S).

Thus we obtain that (2) implies (3). Assume that (3) holds. Let 4 be any bi-ideal of S,
and x and y any elements of S. Let a=xsy (a€ 4, s€ S) be any element of 4 N xSy.
Then, since S is regular, there exist elements x’, y’ and a’ in S such that

x=xx'x, y=yy’y and a=aa'a.

We note that
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aa’, a’ac E(S).
Since
E(S)=Z(S),
we have
a=xsy=(xx"x)s(y’y)=xx'(xsy)y’y
=xx"ay’y=xx"(aa’aa’a)y’y
=x(x"(aa"))a((a’a)y")y
=x((aa’)x")a(y’(a’a))y
=x(a(a’x’dy’a’)a)y
ex(ASA)yy=xAy,
and so we have
AnxSycsxAy.
Let xay (ae A) be any element of xAy. Then, since S is regular, there exists an
element a’ in .S such that
a=aa’a and aa’, a’aceE(S).
Then we have
xay=x(aa’aa’a)y =(x(aa"))a((a’a)y)

=((aa")x)a(y(a’a))=a(a’xaya’)a

€ASAc A,
and so we have
xAy<A.
Since the inclusion
xAy < xSy
always holds, we have
xAycAnxSy.
Therefore we obtain that
xAy=An xSy,

and that S is T*-pure. Thus (3) implies (1). This completes the proof of the theorem.

THEOREM 2.5. For a semigroup S the following conditions are equivalent.
(1) S is a semilattice of groups.
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(2) S is regular and weakly commutative.
(3) S is regular and E(S)= Z(S).

Proof. This follows from Theorem 2.4 and [3, Thoerem 9].

THEOREM 2.6. The set E(S) of all idempotents of a T*-pure semigroup S is a
semilattice.

Proof. Since S is a semigroup, it is non-empty. Let ae S. Then it follows from
Lemma 2.2 that a® is a completely regular element of S. Thus there exists an element x
in S such that

P=dxa® .

Then, as is easily seen, @’ is an idempotent element of S. Thus E(S) is non-empty.
On the other hand, it follows from Lemma 2.3 that E(S) is commutative. Therefore
E(S) is a semilattice.

3. The minimum group congruence on 7*-pure semigroups

A congruence relation f on a semigroup S is called a group congruence if S/Bisa
group. There is always at least one group congruence on a semigroup, namely the
universal congruence. In this section we shall give the minimum group congruence &
on a T*-pure semigroup.

THEOREM 3.1. Let S be a T*-pure semigroup, and let & be a relation on S
‘defined by the rule that

(a, b)ed if andonly if ea=eb  for some idempotent e of S.
Then 6 is the minimum group congruence on S.

Proof.  As is stated in the proof of Theorem 2.6, S has idempotents. Thus it is
clear that ¢ is reflexive. It also clear that § is symmetric. To show that ¢ is transitive,
let

(a, b)eé and (b, c)eé (a, b, ceS).

Then there exist idempotents e and f of .S such that
ea=eb and fb=fc.
Then it follows from Theorem 2.6 that fe is idempotent. Thus we have
(fe)a=f(ea)=f(eb)=(fe)b
=(ef)b=e(fb)=e(fc)
=(ef)c=(fe)c.

This means that
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(a, c)eo.
Thus 6 is transitive. To show that § is compatible, let
, (a, b)ed (a, beS)
and let x Be any element of S. Then there exists an idempotent e of S such that
ea=eb.
Then it follows from Lemma 2.3 that
e(xa)=(ex)a=(xe)a=x(ea)

=x(eb) =(xe)b=(ex)b

=e(xb) .
This means that

(xa, xb)eo .
It is clear that

(ax, bx)€o .

Thus we obtain that J is a congruence on S. We denote by x6 the 6-congruenceb class
mod § to which x belongs. If e and f are any idempotents of S, then by Theorem 2.6
we have

(efle=e(fe)=elef)=(ee) f
=ef=e(f)=ENSf -
Since ef is idempotent, this implies that 4
_ (e, Ned for all idempotents e and f of S :
Let e be any idempotent of S, and a any element of S. Then we have
‘ ea=(ee)a=e(ea) ,
and so we have
ad=(ea)d=(ed)(ad) .

Let a be any element of S. Then it follows from Lemma 2.2 that @® is a regular
element of S. Thus there exists an element x in S such that

ae=a’xa’ .
We note that xa® is idempotent. Then we have
(xa*)é)(ad)=((xa*)a)o
=(xa’)o=ed .
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This means that 5/J is a group. Let y be a congruence on S with the property that S/y
is a group. In order to prove that <=7, let
(a, b)eod (a, besS).

Then there exists an idempotent e of S such that

ea=eb .
Then we have

(ev)ay)=(ea)y =(eb)y=(ey)(by) -

Since ey is an idempotent of the group S/y, it is identity. Hence we have

ay=by,
that is,

(a, b)ey.

Therefore we obtain that §<7y, and that § is the minimum group congruence on S.
This completes the proof.

THEOREM 3.2. Let S be a T*-pure semigroup with semilattice E of idempotents,
and let 6 be the minimum group congruence on S. Then the following conditions are
equivalent.

(1) (a b)eo.

(2) ae=be for some ecE.

(3) xa=xb for some xeS.

(4) ax=bx for some x€S.

(5) ea=fb for some e, feE.

(6) ae=bf for some e, f€E.

Proof. 1t follows from Lemma 2.3 that (1) and (2) are equivalent, and that (5)
and (6) are equivalent. It is clear that (1) implies (5). Conversely, assume that (5)
holds, that is,

ea= fb
for some e, f e E. Then, since E is commutative by Theorem 2.6, we have
(ef)a=(fe)a=f(ea)= f((ee)a)

=f(e(ea))=(fe)(fb)=(ef)(fb)

=(e(ffNb=(ef)b.
Since ef € E, this means that

(a, b)eo.

Thus we obtain that (5) implies (1). It is clear that (1) implies (3). Conversely, assume
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that (3) holds. Then
xa=xb

for some x€S. Then it follows from Lemma 2.2 that x> is a regular element of S.
Thus there exists an element y in S such that

XB=x3yx>.
We note that yx® is idempotent. Then we have
(yx)a=(yx*)(xa)=(yx*)(xb)=(yx*)b,
which means that
(a, b)es .

Therefore we obtain that (3) implies (1). It cdn be seen in a similar way that (2) and (4)
are equivalent. This completes the proof of the theorem.

A non-empty subset 4 of a semigroup S is called right unitary [left unitary] if,
for any ae 4 and any se S, sae A [ase A] implies s€ 4, and unitary if it is both left
and right unitary. Then we have the following:

THEOREM 3.3. Let S be a T*-pure semigroup with semilattice E of idempotents.
Then the following conditions are equivalent.

(1) E is a 6-congruence class.

(2) E is a unitary subsemigroup of S.

(3) E is a right unitary subsemigroup of S.

(4) E is a left unitary subsemigroup of S.

Proof. 1t follows from Lemma 2.3 that (2), (3) and (4) are equivalent. Assume.
that (1) holds. Let e be any element of E and s any elements of .S such that ese E.
Then it follows from Lemma 2.3 that

(es)e=e(se)=e(es)=(ee)s=es .
Then it follows from Theorem 3.2 that
(e, 5)€0 .
Then, by the assumption FE is a -congruence class, we have
sekE.

This means that E is left unitary. Since by Theorem 2.6 E is a subsemigroup of S, we
obtain that (1) implies (4). Conversely, assume that (4) holds. Let e and f be any
elements of E. Then, as is stated in the proof of Theorem 3.1,

(e, f)ed.

Let a be any element of S and e any element of E such that
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(a, e)€d.
Then it follows from Theorem 3.1 that there exists an element g in E such that
ga=ge.
Then, since ge € E, and since E is left unitary, we have
ackE.

This means that F is a J-congruence class. Therefore we obtain that (4) implies (1).
This completes the proof.

4. T*-Pure archimedean semigroups

A semigroup S is called archimedean if, for any a, b€ S, there exists a positive
integer n such that

a'eSbS  ([5] p. 49).

As is well-known ([1] p. 135), an archimedean commutative semigroup can
contain at most one idempotent. For a T*-pure archimedean semigroup we have the
following:

THEOREM 4.1. For a T*-pure semigroup S the following conditions are
equivalent.

(1) S is archimedean.

(2) Every bi-ideal of S is archimedean.

(3) S has exactly one idempotent.

Proof. Assume that (1) holds. In order to prove that (3) holds, let e and fbe any
idempotents of S. Then, since S is archimedean, there exists a positive integer » such
that

e"eSfS.
Since S is T*-pure, the bi-ideal fSf is two-sided pure. Then we have
e=e"eSfS=S(ffHS=S(fSS)S
=SSSn fSfcfSf.
This implies that there exists an element x in S such that
e=fxf.
It can be seen in a similar way that there exists an element y in S such that
f=eye.

Then we have
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e=fxf=(fNHxf=f(fxf)=fe
=(eye)e=ey(ee)=eye=f .

As is stated in the proof of Theorem 2.6, E(S) is non-empty. Therefore we obtain that
S has exactly one idempotent, and that (1) implies (3). Next assume that (3) holds. In
order to prove that (2) holds, let 4 be any bi-ideal of S, and a and b any elements of
A. Then, since S is T*-pure, it follows from Lemma 2.2 that &® and b* are both
regular. Thus there exist elements x and y in S such that

@=a’xa® and b*=byb*.
We note that a®x and b3y are both idempotent. Thus by the assumption (3) we have
ax=by.
Then by Lemma 2.1 we have
a®caSa=a’Sa® =(a*xa®)Sa®

=(@x)a*Sa® = (b*y)a*Sa®

=bb(b(ya*Sa*)a) = Ab(ASA)

c AbA .

This means that A4 is archimedean. Therefore we obtain that (3) implies (2). It is clear
that (2) implies (1). This completes the proof of the theorem.

THEOREM 4.2. Any cancellative archimedean semigroup without zero does not
properly contain any two-sided pure bi-ideal.

Proof. Let A be any pure bi-ideal of S. Let a and s be any elements of 4 and S,
respectively. Then, since S is archimedean, there exist a positive integer n and
elements x and y in S such that

a‘=xsy .
Since A is a two-sided pure bi-ideal of S, we have
a"=xsyeAnxSy=xAy .
This implies that there exists an element b in A4 such that
xsy=uxby .
Since S is cancellative, and since x and y are both non-zero elements, we have
s=bed,

and so we have
ScA.
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Thus we obtain that
S=4,
which completes the proof.

THEOREM 4.3. For a T*-pure archimedean semigroup S the following con-
ditions are equivalent.

(1) S isagroup.

(2) S is a regular semigroup.

Proof. 1t is clear that (1) implies (2). Assume that (2) holds. Let 4 be any bi-
ideal of S. Let a and b be any elements of 4 and S, respectively. Then, since S is
archimedean, there exists a positive integer » such that

b"e Sas .

On the other hand, since Sis T*-pure, the bi-ideal aSa is two-sided pure. Then by the
regularity of S and by Lemma 2.1 we have

bebSb="b"Sb" = (SaS)S(SaS)

=5{a(SSS)a}S< S(aSa)S
=8SSnaSacaSac ASA< A,
and so we have
Sc4.
Therefore we have
A=S.

Then it follows from [1, p. 84] that S is a group. Thus (2) implies (1). This completes
the proof.

LEMMA 4.4. Let S be a T*-pure archimedean semigroup with idempotent e.
Then e€ A for any bi-ideal A of S.

Proof. Let A be any bi-ideal of S. Then, since S is T*-pure and archimedean, it
follows from [4, Theorem 4.1] that A4 is absorbing. Thus for some positive integer n,

e=e"eA.
This completes the proof.
For each idempotent element f of a semigroup S, we put
G,={a€S: af = fa=a, xa=ay=f for some x, ye S}

Then, as is well-known ([1], p. 23), G, is the maximal subgroup of S. We note that by
Theorem 4.1 a T*-pure archimedean semigroup has exactly one idempotent.

THEOREM 4.5. For a T*-pure archimedean semigroup S with idempotent e,
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G,=S3.

Proof. Let a be any element of the group G,. Then, since e is the identity of G,,
we have

a=eaecS?,
and so we have
G.cS*.

Conversely, let a=bcd (b, ¢, de S) be any element of S3. Then, by Lemma 2.2, 5> and
d? are both regular elements of S. Thus there exist elements x and y in S such that

B=bxb* and d*=d’yd®.

We note that b*>x and yd® are both idempotent. Then it follows from Theorem 4.1
that

Px=yd*=e.
Thus by Lemma 2.1 we have
a=bcdebSd=b’Sd> = (b>xb®)S(d3yd?)
=(B3x)(B3Sd?)(yd?) ceSe .

This implies that there exists an element z in S such that
a=eze.
Then we have
ae=(eze)e=ez(ee)=eze=a .
Note that by Lemma 2.3 that
ae=ea.

On the other hand, by Lemma 2.2, @® is a regular element of S. Thus there exists an
element « in S such that

& =dua’.
Then it follows from Theorem 4.1 that
FCu=ua’=e.
This implies that
a(@®u)=ua*)a=e .
Thus we obtain that

aeG

e
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and so that
S3caG,.
Therefore we obtain that
G,=S>.
This completes the proof.

LEMMA 4.6. Let S be any semigroup with idempotent e such that S*=G,. Then
G.<S A for any bi-ideal A of S.

Proof. Let A be any bi-ideal of S and let x be any element of G,. Then, since for
some ac A4,

aPeS*=G,,
we have
x=exe=(a*(@®) " Hx((a®) " 'a’)

=a(@®(@®) 'x(@®) 'a*)a

€ASAcS A,
and so we have

G.c4.
This completes the proof.
Now we give a characterization of a T*-pure semigroup which is archimedean.

THEOREM 4.7. For a semigroup S the following conditions are equivalent.
(1) S is a T*-pure archimedean semigroup.
(2) S has exactly one idempotent e and S*=G.,.

Proof. Assume that (1) holds. Then it follows from Theorem 4.1 that S has
exactly one idempotent. And it follows from Theorem 4.5 that S3=G,. Conversely,
assume that (2) holds. In order to prove that S is archimedean, let a and b be any
elements of S. Then, since

@, beS*=aG,,
we have

@ =ea® =B (b))
=b?b((b*)"'a®) e SBS .

This means that S is archimedean. In order to prove that S is T*-pure, let 4 be any
bi-ideal of S, and let x and y be any elements of S. Then, since

X3, y%eS=G,,
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and since by Lemma 4.6
G.,c4,
we have
AnxSycAnS*=4nG,
=G,=eG.e
=) G )
=x(x*() NG() Yy
=x(53G,S?*)y=xG,ycxAy.
And conversely, it follows from Lemma 4.6 that
xAyc S*=G,c4.

Since the inclusion

xAy<= xSy
always holds, we have
xAy=AnxSy.
Thus we obtain that
AnxSy=xAy,

and that S is T*-pure. Therefore we obtain that (2) implies (1). This completes the
proof.
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