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On Baskakov-type Operators

by
Suresh Prasad SINGH

(Received September 25, 1981)

The object of this note is to present an estimate on approximation of derivatives
by derivatives of Baskakov-type operators. The convexity property is studied also.

1. Introduction

Recently Papanicolau [3] studied some Bernstein-type operators proposed by A.
Lupas. Following [3], we define a sequence of linear positive operators {L, [},
© (—t)k
(L.1) (LX)= )

K=o k!

and which map C[0, R], the space of bounded continuous functions into itself. Here
the sequence of functions {¢,(¢)} (n=1, 2, - - -) possess the following properties on
[0, R]:

(a) ¢, is analytic on the interval [0, R] including the end points.

() ¢,0)=1

© (=D¢®(1#)>0if k=0, 1, --- and t€|0, R]

(d) There exists a positive integer m(n) not depending on k, such that

¢$lk)(t) =- n¢ g:(;)l)(t)[l + ak, n(t)] (k= la 27 o ')

where o, ,(f) converges to zero uniformly in k when n— co.

ér@f <x + %) ,  x€[0, R(R>0) fixed

. n
© lm o=t

The object of this note is to give some results on operators (1.1).
These are the special cases of operators (1.1).

[A] ¢,()=(1—1)". Then we get the Bernstein-type polynomials [3],
(12) (L= 3, (Z)m —t)""‘f<x+—k—>.
k=0 n

[B] ¢.()=e™™. Then we get the operators of Szasz and Mirakian-type,
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(13) L=ey g ( k)

K=o k!

[C] ¢.()=(1+1)"" Then we get some Bernstein-type operators as shown in

Bl
14 (LO=(1+07" Y, ("*,’j*)(L)"f(H%)

k=0 1+¢

2. Basic result

Let p be a positive integer, then

r 1
hd 2p rk gk v 2p <t— )
(2.1) Z (t —%—-—) Q___ <p(k+r)( ) ( 1) Z ( < p) nzpz_nl

2n n

szz-l l(—t)lp—l—s+1¢(2p—1—s+r+1)(0)+ ( 1)r¢(r)(0)< L)Zp
= ' 2n

=, p, () (s2Y).
where the constants A, are determined by the relation
@p—1—s+1yP"'=202p—1—5+1D)Q2p—1—9) 1+ +1,  2p—1—s+1).
Proof. Using
2p
k*P=Y Ak(k—1)---(k—2p+s)

s=1

where
Qp—s+1)**=22p—s+1)2p—s)- -1+
+Ap-12p—s+1)2p—5)+4,,2p—s+1).

The evaluation of (2.1) follows easily by the binomial expansion.

We prove the following theorems.

THEOREM 1. Let feC"[0, 00) with its modulus of continuity w,(f®; 8) (6>0)
and let p be a positive integer. Then for ne N,
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(3.1) L)) = O+ <|1=a,,l - [fOCx+1)]

n r t
+w,(f*; ) [(1 +ﬁ> +6_ﬂ,pr,_(271_]
(+-5)
where p, , () is given by (2.1) and
_(=1y¢P(0)

n,r— r
n

Proof. We note that for each n>1 and x€[0, o) fixed, (L,f)(x) is an infinitely
differentiable function of ¢.
After differentiating (1.1) r times w.r.t.t, we get

1)‘
Z( )()

k=0

(L= =L gy (x+E)

where A% -, f(x +(k/n)) represents the difference of order r of function f with step 1/n
starting from value x+ (k/n). Using the mean value theorem

A;—1f<x+£>=l, f"’<x+w> 0<6,<1
n) n n

we get
(LS )(x)_ f i _t)k S%+(r) f(r)( k+nr9k>.
Clearly
(LX) — O+ <[1—a,,] [fOx+1)]|
L3 ey ) S0 [ FOxt ) f(,,<x+k+r0k>]‘
K=o e

= S 1 + S 2 (Say) .
Using (2.1) and the inequality

n 2n

<4122 g g)

fOx+0)—f "’(x LAty +nr9">

we get
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®. .
SZ S wr(f > 5)|:<1 + 2n5>an,r

1
+—
0 |[t=(k/n)—(r/2n) | 26— (r/2n)

<o (f* 6)[(1 3 5>an,,
1 0 k 2p —1(— k
bt § (1R LT g

tkr
n 2n

n" k!

r
= a)r(f("); 5) [(1 + %>a,,’, + ——’r"—zp—_l
o{o-2)

This completes the proof.

Remarks.
1. In the case p=1, the result (3.1) is analogous to the result of Martini [1].
2. Let ¢, ()=(1—0)" and p=2 in (3.1). Then after a little calculation, we get

)= 040900~ 60 69101476204+ 0 108 10)

n4

4<t—L)
C N2 (et 0) 4 324 2(0) 1+ D(0)

n

t__..
2n
n?

(=)
6
+ (920~ 19 (0)

r 3
4t<t—%> S\
e g ’(0)+(t—2—n> ¢;'>(0)]

dr:;; l:3(n 2T +(n—rT(1—-6T)

r(n—r)4+3r) r# “
+‘—‘2—‘— T (1_2t)2+T6 (1-21) :|

where d, ,=n(n—1)- - -(n—r+1)/n" and T=1(1—1). Since d, , <1, then for 0<t<l1,
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1 3r+4
anr(t)_164|:3(n 2+ f("_#Jr_)H‘t]

=ur,  (say).
We get for polynomials (1.2),

(32) (LY f)x) = f Ax +t)|< f | fO(x+1)|
(r). u:‘,r
@df" 9) [(1 2n 5) 3]
5(5—-—r >
2n

We note that estimate (3.2) in case r=0 reduces to

(L=l <15 o %)

The above result may be compared to the estimate [2],

5 1
(LX) = f(X)| < w(f ﬁ> -
THEOREM 2. If f(¢) is convex of order s, then (L, f) (0) is also a convex function
of t of order s.
Proof. We get from (1.1) that

k+sik 4 (k+5),
()(L,.f)( )= 3 0. g(x4 )

k=0

where b, is a constant function of n and

sas{e g oo (5o )

and 45 _, is the s-th iterate of difference operator. By the use of mean value theorem,
we know that divided differences of any order are equal to a constant multiple times
derivatives of corresponding order evaluated at intermediate points.

Hence

d s
<E>(Lm(0)zo (s=1,2, -+
whenever f(¢) is convex of order s. This completes the proof.
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