On Kennedy's Problems

by

Ryûki Matsuda

(Received October 26, 1981)

Kennedy defined the notion of a Krull ring for a commutative ring $R \ni 1$ which is not necessarily an integral domain, and developed the Krull ring theory in [5] and in [6]. At the ends of these articles he poses two open questions:

- 1. If R is a Krull ring with the trivial divisor class group, then is R a unique factorization ring?
- 2. If R is completely integrally closed and every nonempty set of divisorial ideals of R has a maximal elment, then is R a Krull ring?

The aim of this paper is to answer these problems.

1. On Problem 1

Let k be a field and $\{X_1, X_2, X_3, \cdots\}$ a system of indeterminates. We set $\bigcup_{n=1}^{\infty} k[[X_1, \cdots, X_n]] = k[[X_1, X_2, X_3, \cdots]]_1$ ([3] p. 6). Let $(X_iX_j; i \neq j)$ be the ideal of $k[[X_1, X_2, X_3, \cdots]]_1$ generated by all the elements X_iX_j for $i \neq j$. We make $A = k[[X_1, X_2, X_3, \cdots]]_1 / (X_iX_j; i \neq j)$.

LEMMA 1.

- (1) A is its own total quotient ring.
- (2) A does not have idempotents except 0 and 1.
- (3) A is not a principal ideal ring.

The ideal of A generated by the set $\{X_n+(X_iX_j; j\neq j); n=1, 2, 3, \cdots\}$ is not principal.

Remark 2. Both Exercise 14 of the first edition of [4] p. 63 and Exercise 13 of [3] p. 110 state that, if a commutative ring with its own total quotient ring does not have nonzero nilpotent elements, it is a von Neumann regular ring. But Gilmer pointed out that the statement is false. The above ring A is due to Gilmer and author and gives a counter example for the statement.

PROPOSITION 3. Let R be a Krull ring with the trivial divisor class group. Then R need not be a unique factorization ring.

A Counter Example. Let D be a unique factorization domain which is not a field. We denote the divisor class group of a ring R by C(R). We have C(D)=0. From our

A and D we make a direct sum: $R = D \oplus A$. By [6] Proposition 2.5, R is a Krull ring. By [5] Proposition 1.10, (iii), we have $C(R) = C(D) \oplus C(A) = 0$. Next, let r = d + a be an idempotent of $R(d \in D \text{ and } a \in A)$. It follows $d^2 = d$ and $a^2 = a$. We have d = 0 or $d = 1_D$; also we have by Lemma 1, (2), a = 0 or $a = 1_A$ (1_D (resp. 1_A) is the identity of D (resp. A)). We see that D and A are only the direct summands of R. If R is a unique factorization ring, by [2] R is of the form $D_1 \oplus \cdots \oplus D_n \oplus A_1 \oplus \cdots \oplus A_m$ for unique factorization domains D_i and special principal ideal rings A_j . Since A is not even a principal ideal ring (Lemma 1, (3)), we have a contradiction. Therefore R is not a unique factorization ring.

2. On Problem 2

LEMMA 4 ([1] §1, Th. 2). Let G be a lattice ordered abelian group such that every nonempty set of positive elements has a minimal element. Then, if x is a minimal element among the strictly positive elements of G and $y+z \ge x$, $y \ge 0$, $z \ge 0$ for y, $z \in G$, it follows $y \ge x$ or $z \ge x$.

We denote the set of regular fractional ideals of R by F(R).

THEOREM 5. If R is completely integrally closed distinct from its total quotient ring K such that every nonempty set of divisorial ideals of R has a maximal element, then R is a Krull ring.

Proof. By [6] Proposition 1.1, the semigroup D(R) of divisors of R is a lattice ordered abelian group. By the hypothesis every nonempty set of positive elements of D(R) has a minimal element. Let P(R) be the set of minimal elements among the strictly positive elements of D(R). By Lemma 4, D(R) is a free abelian group with a free basis P(R) and a positive element of D(R) may be written as $n_1P_1 + \cdots + n_mP_m$ for $Z \ni n_i \ge 0$ and $P_i \in P(R)$. Let $P \in P(R)$ and $A \in F(R)$. We have div A = $nP + n_1P_1 + \cdots + n_mP_m$ for $n, n_i \in \mathbb{Z}$, $P_i \in P(R)$ and $P \neq P_i$ $(1 \leq i \leq m)$. Then we set n = 1 $v_P(A)$. For $x \in K$, we set $v_P(x) = \sup \{v_P(xR + A); A \in F(R)\}$. We see that v_P is a Zvalued valuation on K. Thus, $v_p(xy) \ge v_p(x) + v_p(y)$ is immediate for $x, y \in K$. Conversely, let $n \in \mathbb{Z}$ and $n \le v_p(xy)$. We may take $A \in F(R)$ such that $v_p(xyR + A) \ge n$ and $A \subseteq R$. Choose a regular $d \in R$ such that dx, $dy \in R$. We have div(xR + dA) + $\operatorname{div}(yR+dA) \ge \operatorname{div}(xyR+A) \ge n$. It follows $v_P(x) + v_P(y) \ge v_P(xy)$, hence $v_P(x) + v_P(y) \ge v_P(xy)$ $v_P(y) = v_P(xy)$. The inequality $v_P(x+y) \ge \inf(v_P(x), v_P(y))$ is immediate. Let A, B be divisorial ideals such that div A=P and div B=2P. Choose $a \in A \setminus B$. For each $A' \in F(R)$, we have div $A \le \text{div}(aR + (A' \cap B)) \ge \text{div } B$. It follows $v_P(a) = 1$. Therefore v_P is a Z-valued valuation on K. Let R_P be the valuation ring of v_P . Obviously $R \subseteq \bigcap_{P \in P(R)} R_P$. Conversely let $x \in \bigcap_{P \in P(R)} R_P$. We have $\operatorname{div}(xR + R) = n_1 P_1 + \cdots$ $+n_m P_m$ for $n_i \in \mathbb{Z}$ and $P_i \in P(R)$. Choose regular ideal $A_i \subseteq R$ such that $v_n(xR+$ $A_i \ge 0$. Since $n_1 P_1 + \cdots + n_m P_m \le \operatorname{div}(xR + A_1 \cdots A_m)$, we have $\operatorname{div}(xR + A_1 \cdots A_m)$ $A_m \ge 0$. It follows $x \in R$; and hence $R = \bigcap_{P \in P(R)} R_P$. Therefore R is a Krull ring.

Remark 6. Let R be a Krull ring. Let $P \in P(R)$ and P = div Q for a divisorial ideal Q. Then, as for a domain, Q is the center of v_P on R. And the valuation ring of v_P is the large quotient ring $R_{[O]} = \{x \in K; sx \in R \text{ for some } s \in R \setminus Q\}$.

References

- [1] BOURBAKI, N.; Algèbre, Hermann, Paris, 1964, Chapter 6.
- [2] FLETCHER, C.; The structure of unique factorization rings, *Proc. Cambridge Phil. Soc.*, **67** (1970), 535–540.
- [3] GILMER, R.; Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [4] KAPLANSKY, I.; Commutative Rings, Univ. of Chicago Press, 1974.
- [5] Kennedy, R.; A generalization of Krull domains to rings with zero divisors, Thesis, Univ. of Missouri-Kansas, 1973.
- [6] KENNEDY, R.; Krull rings, Pacific J. Math., 89 (1980), 131-136.

Department of Mathematics Faculty of Science Ibaraki University Bunkyo, Mito Ibaraki, Japan