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§0. Introduction

E. Hopf has proposed in [1] (see the footnotes in p. 272 and p. 276) a problem of
constructing an infinite measure preserving ergodic geodesic flow on a surface with
constant negative curvature. As is known from [1], [2], this problem is equivalent to
the one of constructing a Fuchsian group which is of the first class and whose non-
Euclidean (NE) area of the fundamental domain is infinite. In the footnote in p. 276
in [1] E. Hopf has indicated also that an example of a Fuchsian group of certain type
can be expected to satisfy these conditions. The purpose of this paper is to give a
concrete example of a Fuchsian group satisfying these conditions indicated by E.
Hopf, and thus we have succeeded in giving an example of infinite measure preserving
ergodic geodesic flow on a surface with constant negative curvature.

In §1, we show that the geodesic flow on a surface with constant negative
curvature is ergodic if and only if the Riemann surface associated with the Fuchsian
group is of null boundary in R. Nevanlinna’s sense. In § 2, we show that the example
of a Fuchsian group given by E. Hopf ([1]) is of the first class and the NE area of the
fundamental domain for it is infinite. Therefore, the geodesic flow associated with the
Fuchsian group of the example is ergodic and infinite measure preserving. In § 3, we
show that the entropy of any time changed flow obtained from the geodesic flow of
our example is infinite.

§1. Ergodic theory and Fuchsian groups

Let G be the group of all linear fractional transformations S taking the unit disk
U=(|z]|<1) onto itself:

(lal<1),

S' __ pia z—
.w=e 1—-a
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then

ldw|  |dz|
1—w]* 1—|z?

for any SeG. We introduce an NE metric ds and an NE surface element dV in U by

2|dz| 4dxdy .
ds—l—_W, dV—m (z=x+iy),
then ds and dV are invariant by any SeG. Let I" be a countable subgroup of G. z,
z’e U are called equivalent by I' if z’=S(z) for some SeT.

DEFINITION 1. A countable subgroup I of G is called a Fuchsian group if it is
properly discontinuous, namely, equivalents of each z € U have no cluster points in U.

For simplicity, in this paper we will be concerned with a Fuchsian group I for
which 0, the center of U, is not a fixed point of any S eI, different from the identity.
A domain D, in U is called a fundamental domain of I, if any two points of D, are
not equivalent and any point z e U has its equivalent in D,. Now we shall construct a
fundamental domain D, of I'. Let I'= {S,: n=0, 1, - - -}, Sy=1 (identity), z,=.5,(0)
be equivalents of z=0 and 4, be the set of z, such that s(z, 0) <s(z, z,) (n=1,2, - - -).
We call 4, a normal domain of I'. The boundary B of 4, consists of arcs on circles
orthogonal to the unit circle | z|=1 and a certain closed set on | z|=1, which may be
empty. 4, has the following properties:

(i) any two points of 4, are not equivalent,

(ii) any point ae U has its equivalent in 4, U B,

(iii) any point a € B has its unique equivalent a’ € B (a’ # a) such that |a|= |a’|.
By (iii), B U consists of equivalent pairs B,, By (k=1, 2, - ) of arcs on circles
orthogonal to |z|=1. We see easily that a fundamental domain D, is obtained from
4, by adding B, (k=1, 2, - - *) to 4,. We shall call the fundamental domain D, thus
constructed the canonical fundamental domain. Now we shall define a geodesic flow
associated with a Fuchsian group I'. Let Q= D, x T*, where T is the 1-dimensional
torus. (z, @) € Q is called a line element which makes an angle ¢ at z with the positive
real axis. We define a metric element do and a volume element dm in Q by

4|dz|? 4dxdyde
(1—|z| 1-z»*

then m(Q) =2nV(D,). The measure m is invariant by any SeG. For (z, @) € 2 we see
easily that there exists a unique circular arc C(z, @) orthogonal to |z|=1, which is
tangent to the line element (z, ¢) at z. C(z, ) is called a geodesic determined by
(z, 9). Let n, =€, n, =€ be its two end points on |z|=1, such that #, corresponds
to — oo point on C(z, ¢) and 5, + c© pomt Let z, be the mid-point of the arc n1n2 =
C(z, ¢) and s be the NE length of the arc 7oz of C(z, @), where s> 0 if z lies on Zoll>
and <0, otherwise. Then we have a one to one correspondence between (z, ¢) and
(1, - 8), so that we write (z, )=(n;, 7, 5). Now we consider a flow (T

do*= A_12P7 ————+do*, dm=
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— o0 <t<o0) in Q defined by

T (z, )=y, 12, )= (2", @)=(ny, 1, s+1),

then T* is a measure preserving transformation of Q onto itself. (7*) is called a
geodesic flow associated with I'. (z, ) € Q is said to disappear positively (negatively),
if for t— o0 (t—— ) a(T'(z, @), (2, ,))— 00 holds, where (z,, ¢,) is an arbitrarily
fixed point in Q.

DEFINITION 2. A flow (T") is called ergodic if whenever f(w) and g(w) >0 are
m-integrable in Q

J f(T*w)ds ffdm
lim 5,
e j g(Tw)ds jgdm

0

holds for almost all weQ in the sense of the measure m. (T*) is called dissipative
if almost every (z, @) e Q disappears positively as well as negatively.

Now we shall define an open Riemann surface of null boundary or of positive
boundary. Let I be a Fuchsian group and D, be its fundamental domain. If we
identify the equivalent points on the boundary of D,, then D, can be considered as a
Riemann surface F= U/I", which we call the Riemann surface associated with I ([3]).
Let F be an open Riemann surface. We exhaust F by a sequence of compact Riemann
surfaces F, (n=0, 1, - -+), | J2o F,=F, where F,cF,,, and the boundary I', of F,
consists of a finite number of analytic Jordan curves. Let w,(z) be the harmonic
measure of I', with respect to F, — Fy; namely, w,(z) is harmonic in F,— F,, w,=1 on
r,, ,=0on 1"0 Then by the maximum principle w,,(z) <w,(z) in F,— F,, so that
by Harnack’s theorem, lim,,_,,, ,(z)=w(z) uniformly in the wider sense in F,—F,.
(z) is called the harmonic measure of the ideal boundary of F with respect to F— F,.
There occur two cases: either (i) w(z)=0 or (i) w(z) 0. In case (ii), 0<w(z)<1 in
F—Fy, o=0o0n I,

DEFINITION 3 (R. Nevanlinnan [4]). F is said to be null boundary, or of
positive boundary, according as (i) w(z) =0 or (ii) w(z) %0 take place.

THEOREM 1. Let I' be a Fuchsian group, F=U|T the Riemann surface as-
sociated with I and (T") the geodesic flow associated with T'. Then (T") is ergodic if and
only if F=UJT is of null boundary. And (T") is dissipative if and only if F=U|TI is of
positive boundary.

Now we shall start to prove Theorem 1. Assume that F=U/I" is of positive
boundary. Then by the Theorem A we deduce that there exists a Green’s function on
F=U|I', namely, F=U|T € P; which is defined as follows (M. Tsuji [5]). We exhaust
F by a sequence of compact Riemann surfaces F, (n=0, 1, - --) U,‘I‘LOF,,:F, where
F,cF,,, and the boundary I, of F, consists of a finite number of analytic Jordan
curves. Let ae F; and g,(z, a) be the Green’s function of F,, with g as its pole, then by
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the maximum principle g,(z, a) <g,+(z, @) on F,, so that by Harnack’s theorem, (i)
lim,_, g,(z, @)= o0 or (i) lim ,_, ,, ¢,(z, @) =¢(z, a) uniformly in the wider sense on F.
In case (i), we say there exists no Green’s function on F and in case (ii), we call g(z, a)
the Green’s function of F. g(z, a) is harmonic on F, except at a, while

1
(z)=g(z, a)—log —a

is harmonic at a. We denote Fe Pg, or Fe Oy, according as there does or does not
exist a Green’s function on F.

THEOREM A (K. I. Virtanen [6]). Let F be an open Riemann surface. Then
FeOg if and only if F is of null boundary. Hence Fe Pg if and only if F is of positive
boundary.

It follows, by Theorem A, from the assumption that F=U/I" is of positive
boundary that we can deduce that F=U/I' € P;. Then by the next Theorem B we
deduce that the Fuchsian group I is of convergence type, which is defined as follows
(M. Tsuji [5]). Let I'={S,: n=0, 1, -- -}, D, be its canonical fundamental domain,
a,=S,(a) (ae D,) and z,= S,(0). We introduce another metric [a, b] for two points a,
bin U:

-b
lab

Then [a, b]=[b, a] and [S(a), S(b)]=[a, b] for any SeG. Since |a|=]a, 0]=]a,, z,], we
have

la, b]=

(1—la, )1 —|2,1%) _4(1—|a, )1 —]z,])

—lalP=
1=lal M-azn? = (=12
M1~ a, )1~z
1-japdi=labd =]z
(1_'an|)2
so that
(A —lal=z) M=z,
<1—|q, <20zl
4 1—|a|

From this we have that either
@ Y (A-lah<oo or (i) ) (1—|a,))=c0
n=0 n=0
independently of ae D,. A Fuchsian group I is said to be of convergence, or of
divergence type, according as the case (i) or (ii) occur.

THEOREM B (P. J. Myrberg [7], M. Tsuji [5]). Let F=UJI" be the Riemann
surface associated with a Fuchsian group I'. Then F=U|T € P; if and only if I is of
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convergence type. Hence F=U|I' € O if and only if T is of divergence type.

Thus by Theorem B, from the assumption that F= U/T" € P; we deduce that I' is
of convergence type. Then by the next Theorem C we deduce that lim, _,, |((re')) | =1
for almost all ¢?® on T*, where ((2)) is in D, and equivalent to ze U and | - | is the
absolute value of a complex number.

THEOREM C (Z. Y4jobo [8], M. Tsuji [S]). (i) If I is of divergence type, then
E(0)={((re®)); 0<Sr<1} n D, is everywhere dense in D, for almost all e® on T*.
(i) If I' is of convergence type, then lim,_,, |((re®))| =1 for almost all e*® on T*.

Thus by Theorem C, from the assumption that I' is of convergence type we
deduce that lim ,_; |((re*))| =1 for almost all & on T'. Now for ¢€[0, 2n) we
have

lim |((re) | =1 < lim s(Proj (T*(0, ¢)), 0)=c0,

r—1

where  Proj(z, )=z  for (z, 0)eQ,

< lim 6(T*(0, @), (0, 0)=c0,

t— o0

<> (0, @) disappears positively .

In this way, from the assumption that lim,_,, | ((re'?)) | =1 for almost all € on T* we
deduce that (0, ¢) disappears positively for almost all e on T!. Then, by the next
Theorem D we deduce that I is of the second class, which is defined as follows by E.
Hopf (1], [2]). A Fuchsian group I is of the first class, if the positively disappearing
orbits issuing from a fixed point z of D, form a set of directions at z of the angular
measure zero, i.e., |4,|=0, where 4,={¢; (z, ¢) disappears positively} and the
symbol |- | denotes the angular measure. If this is true for one fixed point z € D, it is
true for any other fixed point z € D,,. I' is said to be of the second class if it is not of the
first class.

THEOREM D (E. Hopf [1], [2]). For a Fuchsian group of the first class the
geodesic flow (T") associated with it is ergodic. For a Fuchsian group of the second class
(T?) is dissipative. In this case we obtain a somewhat sharper result: if a Fuchsian group
is of the second class, then for any point z€D,, (z, ¢) disappears positively and
negatively for almost all directions .

Thus by Theorem D, from the assumption that (0, ¢) disappears positively for
almost all e’ on T! we deduce that I' is of the second class, which is equivalent to say
that (7" is dissipative. Therefore from the assumption that F=U/I is of positive
boundary we have deduced that (77) is dissipative.

Secondly, from the assumption that (7%) is dissipativé we shall deduce that F=
U/T is of positive boundary. This can be obtained by analogous discussions from
Theorems A, B, C and D. Thus the proof of Theorem 1 is completed.
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COROLLARY. Let I" be a Fuchsian group, (T") the geodesic flow and F= UJI the
Riemann surface associated with I'. Then the following are equivalent,

(i) F=U/I is of null boundary,

(ii) I is of divergence type,

(iii) (T is ergodic,

(iv) T is of the first class.

§2. The construction of an example

We shall define an isometric circle of a linear fractional transformation. For a
linear transformation

az+b
=S = — =
w=23S(z) ord’ ad—bc=1 1
we have
dw 1
= SOy

whence, lengths are multiplied by | S’(z)| or |cz+d|~? and areas are multiplied by
|S’(2)|2, or |cz+d|™*. Then circle I: |cz+d|=1, c#0, which is the complete locus
of points in a neighbourhood of which lengths and areas are unaltered in magnitude
by the transformation (1), is called the isometric circle of the transformation (1). Its
center is —d/c, its radius 1/|c|. The inverse transformation

—dz+b
cz—a

w=

has the isometric circle I”:|cz—a|=1. Its center is a/c, its radius 1/|c|. The
transformation S carries I into I’. It is a well known fact that the isometric circles of
the transformations of a Fuchsian group are orthogonal to the principal circle | z|=1
(L. R. Ford [9], Theorem 1 in p. 67). We now explain a method of forming a Fuchsian
group by combination.

THEOREM E (L. R. Ford [9]). Given an infinite number of circles I, 1{; I, 1;;
o3 I, I}; -+ -, which are of equal radius in pairs, and which are exterior to one another
or are externally tangent we set up the transformation S; so that S; and S ;! have the
isometric circles I; and I | respectively. Then a group I generated by Sy, Sy, =+, Sj, * -
is a Fuchsian group and has for a fundamental domain D,
(*) {z; 50, 2)<s(z,, ) n=1,2, ---}= () (Bxt(I;) nExt(I}),

j=1
where z,=S,(0) are all equivalents to z=0, (n=1, 2, - - -), Ext(I;) = exterior region of
I;. Here we remark that 0, the center of | z| =1, is not a fixed point of any S€TI', different
from the identity.
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This Theorem follows from (b) in p. 58 and Theorem 9 in p. 71 of L. R. Ford [9].

Example (E. Hopf’s conjecture. See the footnote in p. 276 of [1]). Let a, K be
constants 0 <a<1, 0 <X such that

2 O;=m,
j=1
where 0,=a’/K. Let

A=exp {i(3n/2)}, Aj=exp {i<37n+ ZJ: 0k>}, (j=1,2, )

k=1

Aj=exp {1(3_71_ ZJ: 9k>}, (=12 )
2 =

be infinite sequences of points on | z|=1. Let 4;_, 4; be the circle orthogonal to | z|=

and

— — — L.
1 through 4;_, and 4, and I, =AA,, L=A4,, - -, [;=A4;_,4;, - - . Similarly let

J

' AA, I,=A[A), -+, [!=A,_, A}, ---. An infini ber of these circles I, I;
I{1=AA{, I,=A44;, ,Ii=A;_ 4], . An infinite number of these circles I, I{;
L,15 - 1,1} - are of equal radius in pairs, and are exterior to one another or

are externally tangent. (See Fig. 1.) Let S; be the transformation so that S; and S it
have the isometric circles /; and /; respectively. By Theorem E, we have that I', a
group generated by {S;, S,, - - -, S}, - -  },is a Fuchsian group and for its fundamental
domain D, (*) holds, and 0 is not a fixed point of any SeT, different from the
identity. E. Hopf has conjectured that I' is of the first class, that is, the geodesic flow
(T") associated with I' is ergodic.
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THEOREM 2. The example of infinite measure preserving geodesic flow on a
surface with constant negative curvature given above is ergodic.

For the proof of Theorem 2, first we shall show that the total mass m(Q)=
2nV(D,) of the invariant measure m is infinite. Let 4 be a triangle in U bounded by
three circles orthogonal to |z|=1 and 4, B, C, be the inner angles at its vertices. Let
V(4) be the NE area of 4, then ¥(4) =n—(4 + B+ C). The fundamental domain D, is
a union of a countable number of triangles 4;, the inner angles of which are 0, 0 and
0. So that we have V(D) = oo and m(Q) =2nV(D,) = 0. For the proof of ergodicity
of (T7), which is equivalent to the assertion that F=U/T is of null boundary by
Theorem 1, we begin with a sufficient condition that a Riemann surface associated
with a Fuchsian group may be of null boundary. A Fuchsian group which has an
infinite number of generators is called a Fuchsoid group.

THEOREM F (P. Laasonen [10]). Let I'={S,, S, S,, - -+, S,, * - -} be a Fuchsoid
group. Suppose that 0, the center of |z|=1, is not a fixed point of any SeT, different
Jfrom the identity. Let z,=S,(0) (n=1, 2, ---) be equivalents to z=0 and D, be the
canonical fundamental domain, that is, Dy={z; 5(0, z)<s(z,, z), n=1, 2, ---}. Let
I(r)=1|(z;|z|=r) " Dy |, where |-| denotes the ordinary Euclidean metric. Suppose that

|
J‘ l(—r)'dr=00,

then the Riemann surface F=U|I" associated with T is of null boundary.
For the Fuchsian group of our example we have the following lemma.
LEMMA 1.
()< C-r) in O<r<l,
where C=4(1+n)/1 —a is a constant independent of r.

The proof of this lemma will be given later.
Now we shall prove that (T”) associated with the Fuchsian group of our example

is ergodic. By Lemma 1,
1
1
J Hdr= oo,

and hence by Theorem F, F=U/TI" is of null boundary. Consequently, Theorem 1
yields that (T) is ergodic. The proof of Theorem 2 is now complete.

Remark. 1In [10], P. Laasonen has given an example of a Fuchsoid group such
that the Riemann surface associated with it is of null boundary and the NE area of its
fundamental domain is infinite and

|
j mdr<oo.
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For the proof of Lemma 1 we shall divide the proof into several steps.

Step 1. The circle S(r)={z; | z|=r} (0 <r<1) cuts the positive real axis at C,
and the radius OB, -B=(cos 0, sin 6) (0 <6 <), of the unit circle S={|z|=1} at C,.
The circle orthogonal to S through 4(1, 0) and B is denoted by C(4, B) and C(4, B)
cuts the circle S(r) at D, and D,. (See Fig. 2.) It is easily established that a necessary
and sufficient condition for the circle S(r) to intersect C(4, B) is that

cos (0/2) <2r/(14-r?). 2
In the following, we assume that C(A4, B) intersects S(r). Let I(r, ) be the difference
of the Euclidean lengths of circular arcs C,C, and D, D, on S(r), that is,
S TN .
I(r, 0)=C,C,— DD, = | {re¥; 0=y <6} N Ext {C(4, B)}| .

In Step 1 we shall show that I(r, 6) <4n(1 —r)?/6. Draw the tangents at C; and D, to
S(r) and extend them until they meet each other at E. C(4, B) cuts a straight line C, E
at F. (See Fig. 2.) Then we have easily that

—~
C,D;<C,E+D,E=2C,E<2C,F. 3)
On the other hand, the equation for C(4, B) is

(x—1)*+(y—tan g)*=tan’e,
—
where ¢ =0/2 and I(r, )=2C, D,. So that from (3) we have

I(r, 6)<4{tan o —/tan? 9 —(r —1)?} . 4

Y
B
C,
D,
D,
F
8 E
0 C, A X

Fig. 2.



172 H. SHIRAKAWA

For an arbitrary fixed constant k>0, we have an inequality
k—/k>*—x*<x*k in 0=<x=zk.
Setting k=tan @, x=1—r, we have

tan @ —./tan? o —(r—1)* <(1 —r)*/tan ¢ %)

for tangp=1-r>0, ie., l—tan ¢ <r<1. Since the inequality 2¢/rz<sin ¢
(0 < @ <m/2) yields

cot p<m/2¢ in O<p<mn/2, (6)
we have from (4), (5) and (6),
I(r, 0) <4n(1—r)*/6 . 7
Here we remark that (7) is valid if (2) holds.
Step 2. Now we recall 6, and I, in our example and set

L= Y 0+ Y 1Ir0).

LinS()#¢ HASr#¢

Since [; and I are of equal radius,

Ln=2 Y Ir6).
I;inS(r#¢
In Step 2 we shall show that
47
ll(r)<I-—a(1 —r) .

By (2) the condition I, n S(r) # ¢ is equivalent to

0,22 Cos'(2r/1+1?) ®)
Setting
N=Max {i; 6,=a'/K2=2 Cos~1Q2r/1 +r?)}, ©
we have
aV 22K Cos™*(2r/1+4r?), (10)
a"*! <2K Cos™1(2r/14r?). (11)

By (7), (8), (9) and 0,=d'/K, we have

ll(r)<8n(1—r)2§: ;1
i=1

1

=8nK(1-r)? i (@™
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<8nK(1 —r)z{(a' yl=@ I)N} ,

1—(a™ 1
and froma~1>1,
87K

N2(,— 1\
<1_a(1 rnN¥a ).
So that, by (10)
4n(1—r)? 1
W< ¥ CosTTariT ) (12)

The derivative of f(r)=1—r—Cos ™! (2r/1 +r?) is positive, so that f(r) is increasing in
0<r<1. Since f(1)=0, we have f(r) <0 in 0<r<1, that is,

1 1
Cos /147 1=r
By (12) and (13), we have

in O<r<l1. (13)

L)< (-1 (14)
1—a
Step 3. Set
Ln=Y Ir,6)+ Y Ir06),

I;nS(r)=¢ Ii'n S(r)=¢

then, since I, and I/ are of equal radius,

=2 Y Ir6),

IinS(r)=¢

and from (8) and (9) we have
=2 Z I'Qi .

i=N+1
In Step 3 we shall show that /,(r) <4(1—r)/1 —a. From 0,=ad'/K we have

2raN +1 0 ; 2raN +1

lZ(r)_ K <i;0a>_(1—a)K,
so that by (11),
4
<1—_%Cos' 12r/1412). (15)

The derivative of g(r)=1—r—r Cos ™! (2r/1 +r?) is negative in 0 <r < 1, so that g(r) is
decreasing in 0 <r<1. Since g(1)=0, we have g(r) >0, that is,

rCos™Q2r/1+r))<1—r in O<r<l. (16)



174 H. SHIRAKAWA

By (15) and (16),

L(n<4(l—r)/1—a. a7
Therefore, from (14) and (17), we have
1) <4(11f:) (1=7).

The proof of Lemma 1 is completed.

§3. The entropy of time changed flows obtained from an infinite
measure preserving ergodic geodesic flow

Let (T*) be an ergodic flow on a g-finite measure space (2, m).

DEFINITION 4 (G. Maruyama [11], H. Totoki [12]). Let Q be divided into two
disjoint (7*)-invariant measurable sets 2 — N and N such that m(N)=0. Let ¢(z, w)
be a real measurable function defined on (— oo, 00) x (2— N) with the following
properties: For every fixed we Q—N ,

(A.1) o(t, w) is finite for all ¢,

(A.2) o(t, w) is continuous and nondecreasing in ¢,

(A.3) o(s+1t, w)=0(s, w)+¢(t, T°w) for all ¢ and s,

(A4) ¢, w)=0,lim,,, , ¢(t, w)=o0, lim,_, _ @, w)=— 0.

Then ¢ is called an additive functional of (7%) with the carrier Q — N. An additive
functional is said to be integrable, if it is integrable in w for every fixed ¢. The regular
set Q of g is the totality of points we Q— N for which the property

(R) o(t, w)>0 forall ¢>0
holds. Define
T'o=T", (1, w)=sup {s; ¢(s, ®) <1}

for all —oo << oo and all we Q. Define

(B)= j (Jl 1e(T w)do(u, w))dm
Q 0

for Bc Q. Then (7) is a flow on the o-finite measure space (63, 7#7) and is called the
time changed flow obtained from (7™) by ¢. If ¢ is integrable, then (2, /71) is a finite
measure space. Let a(w) be non-negative, integrable and [padm >0. Define

o(t, w)= j ' a(T*w)du
0

for all 7. Then ¢ is an integrable additive functional of (T*), @ ={w; a(w)>0} and
dm=a(w)dm.

THEOREM 3. Let (T*) be our example of infinite measure preserving ergodic
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geodesic flow on a surface with constant negative curvature. Let ¢ be any integrable
additive functional of (T") and (T") be the time changed flow on (@, ) obtained from
(T") by @. Then the measure theoretical entropy h,(T") is infinite, that is, ha(T) = oo for
any t#0.

For the proof of Theorem 3, first we shall have Lemma 2 and Lemma 3
concerning horocycles, which are defined as follows. A horocycle in U is an ordinary
Euclidean circle which is internally tangent to the unit circle S. If (z, ¢) € U x T?, then
there is a unique horocycle such that (z, ¢) is an inward normal to the horocycle,
which is denoted by S *(z, ¢). Similarly there is a unique horocycle such that (z, ¢) is
an outward normal to the horocycle, which is denoted by S ~(z, ¢). To each (z, @) we
may associate a unique line element (z, ¢’) so that (z, ¢’), (z, ¢) have the same
orientation as the positive real and positive imaginary axes respectively. The
horocycle flow (H') in Ux T' is described as follows: (z, ¢) moves with the unit
velocity along the horocycle S *(z, ¢) in the direction of (z, ). Then, for a Fuchsian
group I' in UH" is a measure preserving transformation of Q=D, x T! onto itself.
(H") is called the horocycle flow on €.

LEMMA 2.
HY ‘'T'=T'H®  forany v,te(— o0, o0),
where (T") is the geodesic flow.
The proof is omitted. (See (10.2) in p. 285 in [1].)

Y

Fig. 3
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We shall introduce a new coordinate system in Ux T'. First the line element
wo=(0+0i, 3n/2) is translated by the NE distance 1 along S ~(w,) counterclockwise
into a line element w,. Secondly w, is translated by the NE distance v along S *(w,)
counterclockwise into a line element w,. Lastly w, is translated by the NE distance p
along the geodesic curve determined by w, into a line element w, the coordinates of
which are given by (z, ¢). Then (4, v, p) become new coordinates for w=(z, ¢) in U x
T!. (See Fig. 3.)

LEMMA 3.

4dxdydo
dm_(l—__lz—W_M/ldvdp .

The proof of Lemma 3 is given later.

For the special representation of the geodesic flow (77), now we shall define the
base transformation which plays an important role in the proof of Theorem 3. Let I’
be the Fuchsian group of our example which is constructed in §2, D, be its canonical
fundamental domain, Q be Dyx T* and (7%) be the infinite measure preserving
ergodic geodesic flow associated with I'. Let a, b and ¢ be small positive constants and
I'be the interval [0, a], J be [0, b] and K be [0, ¢), then the set A=1xJ x K={(4, v, p);
A€l veJ, pe K} may be regarded as a subset in Q. Let Ix Jx {0}={(4, v, 0); Ae],
veJ}, asubset in 4, be denoted by M. By the ergodicity of the flow (7*) we can define

DEFINITION 5. A base transformation on M of the geodesic flow (77) is a
transformation S: M— M defined by

S(0)=T"*w , 0(w)=Minimum {t>0; T'we M} for weM.

Let du be the normalized measure didv/ab on M. Since (T") preserveds dm and
dm=2d}dvdp on A by Lemma 3, S preserves y. Since (T*) is ergodic, S is ergodic on
(M, w). Since dm =2dAdvdp on A by Lemma 3, (T") is isomorphic to the special flow
constructed under the function 6 on the dynamical system (M, p, S).

PROPOSITION.  The base transformation S of the geodesic flow (T%) on M is
invertible, u-preserving and ergodic. The measure theoretical entropy h,(S) of the
invertible dynamical system (S, p) is infinite, that is, h,(8)=co. (T") is isomorphic to the
special flow (M, u, S, 0).

Remark. Since m(Q)= co, we have {,,0du= oo for the ceiling function 6.

The idea of the proof is due to Ya. Sinai [13]. In order to prove h,(S)=0, we
shall construct an increasing partition { with respect to .S such that the conditional
entropy H,(S¢ | {) is infinite. Let 5 be a partition of 4=1IxJ x K into the horocycle
arcs {(4) x Jx (p); A€ l, pe K} and 7 be a partition of Q whose elements are elements
of # and a single set Q— 4. Let T be a transformation in the flow (7%) at t=c, that is,
T=Tc¢, where c is the length of the interval K. Let us denote

0
(#)° , =the subdividing partition into connected components of V T"(#H) -

n=-—w
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Then from the analogous discussions as in the proofs of Theorem 5.1 and Theorem
5.2 of [13], it follows that almost every element of (§)° ., in A4 is a subarc of an
element of n and that (4)° . is (T")-increasing, that is, T((§)%.)>(#)°", for
any ¢>0. Set

{=the restriction of (§)°. , to the set M .

Then ( satisfies following conditions;

(i) S¢(>¢,

(ii) almost every element of { is a subarc of an element of the partition #,,
which is the restriction of 5 to M,

(i) |Cs(w)|=e 7' C(S'w)| aa. weM,
and by iterations, for n>0

Conlw) ’ =exp {— ké O(S—kw)} } C{S ™ "w)

where Cgn(w), C,(S™"w) are elements of the partitions S"{ and { of M containing w
and S ~"w e M respectively and | C| is the NE length of a subarc C.

In fact, (i) follows from the fact that (§)° ., is (T")-increasing. (ii) follows from
the fact that almost every element of ()% ,, is a subarc of an element of #. (iii) follows
from Lemma 2.

Now let us show that the conditional entropy H,(S{|{)=c0. H,(S{|(), the
conditional entropy of S{ with respect to {, is defined by

aa. weM, (15)

H(S{| 0=~ L log,u(Csyw)| Clw))dp,

where u(- | C{w)) is the conditional probability measure of u with respect to the
partition {. By du=dAdv/ab and (ii), we have

MCsn(w) | Clw))= | Csn(@) | /| Clw) | . (16)
Since S is ergodic,
1
H,(S{|)=—lim - log2u(Cyn(w) | Cw)) (17)

for a.a. we M. Let p and ¢ be positive constants such that
u(E) >0, where E={weM; p<|Clw)| <q}.

From the recurrence property of the transformation S to the set E with u(E)>0, we
have

wE N~ lim S"E)>0. (18)

For a fixed point w e E nlim,_, , S"E there exists an increasing sequence of positive
integers {m,, m,, -+, m;, - - -} such that
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weS™E  (i=1,2, ---). (19)
From (15), (16) and (19) we have
H(Cyn ()] C2) = | C )| /] C )|

1 1 i —
< | )| =— exp {— y e(S'kw)}x | C{S ™)
14 14 k=1

giexp{— 5 e(s—"w)},
p k=1

so that

1 1 m; 1
—10g i Con )| Cf@) 2225 3 0(S™+w)—

i k=1 m;

log, (4/p) -
Since S is ergodic and f,,0du= co, we have

lim L Y. (S *w)= 0 aa. weM,

n— oo n k=1
hence

1=
lim — Y 6(S*w)=o0.
i Mik=1
Therefore from (17) and (18) we have H,(S{ | {)=o0. Since S¢{>{ from (i), we have
h(S)z H,(S{ | {) and hence 4,(S)= co. This completes the proof of Proposition.

Proof of Theorem 3. By Proposition, (T") is isomorphic to the special flow
(S, M, p, 6). By Theorem 9.1 of [12] the time changed flow (T*) by ¢ obtained from the
special flow (0, S) is isomorphic to the special flow {¢(6(x), x, 0), S,}, where D=
{xe M; p(6(x), x, 0)>0}. Since the base transformation S on (M, p) is ergodic from
Proposition, the induced transformation S}, on (D, p) is ergodic. Thus by Lemma 10.2

of [12] and the formula of L. M. Abramov [14]

1y N ASDUD) _ th(SuM)
@(6(x), x, O)dp J @(6(x), x, O)du
D D

By Proposition 4,(S)= o0, so that hao(T") = oo for t#0. This completes the proof of
Theorem 3.

Proof of Lemma 3. We map U on to the upper half plane (Im (z) > 0) by f(z) =
i(i+z/i—z) and let the corresponding new and old coordinates in (Im (z) >0) x T* be
denoted by the same notations (4, v, p) and (x+iy, @), then we have ds=|dz|/y, dn=
dxdydp/y*. First w,=(0+1, 3n/2) € (Im (z) >0) x T! is translated by the NE distance
A along S ~(w,), the straight line y = 1 parallel to the real axis, counterclockwise into a
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e w,

1

Fig. 4

line element w, whose carrier point is denote by (x,, +i). Secondly w, is translated by
the NE distance v along S*(w,), the Euclidean circle with the center (x,, +(i/2)), and
radius 1/2, counterclockwise into a line element w,, the carrier point of which is
denoted by 4. Lastly w, is translated by the NE distance p along the geodesic curve
determined by w, into a line element w, the coordinates of which in (Im (z) >0) x T!
are given by (x+iy, ). (See Fig. 4.) The geodesic curve determined by w, is a
Euclidean circle with its center on the real axis, the radius of which is denoted by r.
For the proof of Lemma 3, we shall show that a functional determinant
D(x, y, 9)/D(4, v, p)=2y* and therefore we have dm=dxdydp/y?=2di\dvdp. Let a
carrier point of w be B, the angle between OA4 and the real axis be § and /. AOB=1.
Then the coordinates (z, p)=(x, y, @) of w are expressed as follows;

x=(x;—r)+rcos (0—y), 1
y=rsin(0—y), 2
o=0-y—=. 3)

Since w, is translated by the NE distance A along S~ (w,), we have

/1=J 1ds=J~ ldx=x;, . @)
Bowi 0

Since S*(w,) is a Euclidean circle with its center (x,, +(i/2)) and radius 1/2, the
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parametric representation of the circular arc @, w, on S*(w,) is given by

1. 1 1
X=Xy ——-sinu, y=?+7008u 0=u<h).

So that

1
dx=—%cosudu, dy= —Esinudu, ds=|dz|/y=du/(1 +cos u),

hence we have

®  du
V=Jm ldS—JO m—tan (0/2) .

Since r= OA is the radius of the circle and 6 is the angle between O 4 and the real axis,
we have

r=Q2tan (0/2))7!.
Hence by the above discussions, we have
r=Q2v)" . ©)
Similarly the parametric representation of the circular arc @, on C(w,) is given by
x=(x;—r)+rcosu, y=rsinu O—y=u=sh).
So that

dx=—rsinudu, dy=rcosudu, ds=|dz|/y=(sinu) du,

O du 1 1—cosu) [’
p= lds= ——=—log| ——— )
o o—y Sinu 2 I+cosu/ |o_,

_ (1 +cos B)—e~27(1 —cos 0)
" (14cos §)+e2°(1—cos )

hence we have

that is,

cos (0 —)

Since v=tan (6/2),
14 cos 0=2/(1+v?), 1—cos 0=2v*/(1+v?).

From above discussions, we have

1—v2e=2°
CoS (0 - l/l) =m_—27 (6)
From (6) we have
-p
sin (0— )= —2% (7)

14+v2e 27
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Now we shall calculate the functional determinant D(x, y, ¢)/D(4, v, p). By (1), (4),
(5) and (6) we have

0
—5:1 : 8)
By (2), (5) and (7) we have
0
==0, ©)
dy  —2ve” 3
v (1+ve 272’ 10
oy e P(1—v2e %)
o (I+vie 22 v
By (3) and (6) we have
a .
£=0, (12)
0 2e”°
v 1+vie 20’ (13)
dp  —2ve™?
e 19

From (8) ~(14), we have

-2p

D(x,y, ) 2e
D(Z, v, p) (1 +vZe™?7)?’

and from (2), (5) and (7)

=2y?,

so that dxdydo/y?=2dAdvdp. This completes the proof of Lemma 3.

Addendum: After this paper had been completed, Professor T. Kuroda in-
formed the author that the equivalence of the first class and the divergence type for
the Fuchsian group had been already shown by P. J. Nicholls [15].

Correction: Coordinates (¢, s, p) in Ux T' in my papers [16] and [17] were
given erroneously. Replace them by the coordinates (4, v, p) appearing in § 3 of this
paper.



182

H. SHIRAKAWA

Acknowledgments. The author wishes to express his hearty thanks to the

referee for careful readings and corrections of English and to Professor T. Onoyama
and Professor Yuji Ito for publishing this paper.

(1]
[2]

(3]
[4]

[5]
L6l

[7]

[8]
[91]
(0]

1]
(2]
(3]

[14]
[15]
(16]

17

References

Hopr, E.; Statistik der geodatischen Linien in Mannigfaltigkeiten negativer Kriimmung, Ber. Verh.
Sachs. Akad. Wiss. Leipzig, 91 (1939), 261-304.

; Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer.
Math. Soc., 77 (1971), 863-877.

LEHNER, J.; A Short Course in Automorphic Functions, Holt, Rinehart & Winston, New York, 1966.
NEVANLINNA, R.; Quadratisch integrierbare Differentiale auf einem Riemannschen Mannigfaltigkeit,
Ann. Acad. Fenn. A. 1., 1 (1941).

Tsun, M.; Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

VIRTANEN, K. I.; Uber die Existenz von beschrinkten harmonischen Funktionen auf offenen
Riemannschen Flichen, Ann. Acad. Sci. Fenn. A. 1., 75 (1950).

MYRBERG, P. J.; Uber die Existenz der Greenschen Funktionen auf einer gegebenen Riemannschen
Flache, Acta Math., 61 (1933).

YUi6B0, Z.; A theorem on Fuchsian groups, Mathematica Japonicae, 1 (1949), 168-169.

Forp, L. R.; Automorphic Functions, Chelsea, New York, 1951.

LAASONEN, P.; Zum Typenproblem der Riemannschen Flichen, Ann. Acad. Sci. Fenn. A. I, 11
(1942).

MARUYAMA, G.; Transformations of flows, J. Math. Soc. Japan, 18 (1966), 303-330.

Totoki, H.; Time changes of flows, Mem. Fac. Sci. Kyushu Univ. A, Math., XX (1966), 27-55.
SimNAL Ya. G.; Classical dynamical systems with countably multiple Lebesgue spectra II, Iszvestija
Akad. Nauk Ser. Mat., 30 (1966), 15-68.

ABRAMOV, L. M.; The entropy of induced automorphisms, Dokl. Akad. Nauk, 128 (4) (1959).
NicHoLLSs, P. J.; Transitivity properties of Fuchsian groups, Can. J. Math., XXVIII (1976), 805-814.
SHIRAKAWA, H.; The construction of a special flow for a geodesic flow on a surface of constant
negative curvature, Sci. Rep. Tokyo Kyoikudaigaku A, 11 (1972), 129-131.

SHIRAKAWA, H.; The entropy of geodesic flows on the Riemann spaces with constant negative
curvature, Sugaku, 24 (1972), 210-213 (in Japanese).

Department of Mathematics
Institute of Liberal Arts

Otaru University of Commerce
3-5-21, Midori, Otaru 047
Japan



