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Introduction

We consider the circle T=R/Z with addition mod. 1. For an irrational number
6, 0<f<1, and a real number 5, 0 <y <1, we define the transformation T, , as fol-
lows:

Ty, ,(x, »)=(x+6 (mod. 1), y+ xi0,,(X)—1) for (x,y)eTxE,

where E, is the closed additive subgroup of R generated by # and 1—# and y ,, is
the indicator function of [0, #).

It is easy to see that T, , preserves the Haar measure 72 of T x E, and that each
orbit of it is unbounded if n ¢ Z0 (mod.1). So when n ¢ Z6 (mod.1), there are following
two problems arising from the theory of uniform distributions (see Veech [9));

(i) Is Ty, ergodic with respect to ri?

(i) When T, ,is ergodic, does there exist a locally finite invariant measure for it

which is singular to #1?
These problems, mainly (i), have been considered by several authors (Conze [1],
Stewart [7], [8], Veech [9], etc.).

In the case of the group extension of a uniquely ergodic transformation with a
compact space, the relative unique ergodicity of the extended transformation follows
from its ergodicity, in general. The problem (ii) is connected with this question for
non-compact case.

In this note, we give the affirmative answer to the problem (ii). We show that
there exists a locally finite invariant measure for T, , which is singular with respect to
m whenever 5 ¢ Z6 (mod.1) and the measure is a product measure (§ 2). Furthermore
we show that there are uncountably many such measures which are singular with
respect to each other for almost all (8, #) (§3). Our arguments depend on the
conjugacy problem of piecewise linear homeomorphisms on T considered by Herman
[3]- So we discuss the properties of these transformations in § 1.

The construction of the measure in §2 is related to the associated flow of f; ; ,
defined in § 1. The argument in § 3 is modified from the proof of the non-existence of
the absolutely continuous invariant measure for f; ; , in Herman [3] and this method
is closely related to the computation of T-set for f; ; ,. Moreover, it is possible to
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calculate the ratio set of f; ; ,, which is analogous to the calculation of the essential
value of the cylinder flow. However, we do not treat this problem in this paper.

In the sequel, we denote by m the Haar measure of T, by 0 an irrational number
of (0, 1) and denote by # a real number of (0, 1).

I would like to thank Professor Y. Ito for his helpful comments and Professor T.
Kamae who brought this problem to my attention.

§1. Piecewise linear homeomorphisms of T

In this section, we consider the essential properties of the piecewise linear
homeomorphisms of T introduced by Herman [3], §6. For the properties of
orientation preserving homeomorphisms of T, we refer to Katznelson [4].

For 2>1 and >0, we define the mapping f; ; of [0, 1) onto itself as follows:

, A-x if xe€[0, a4, B))
fa, [i(x)= -8 .
AP (x—1)+1 if xela(4, p), 1)
where a(4, B) is determined by A-a(4, f)=1"(a(4, B)—1)+1.
Next we define the orientation preserving homeomorphism f,l, 5. of T by
Frpp()=f15(x)+b  (mod.l) for xe[0,1)

where 0 <b < 1. We denote by p(f 1,p,5) the rotation number of f, 2,p,5- Lhen the mapping

b — P(fz, 5.b)

is a continuous, non-decreasing function of [0, 1] onto [0, 1]. Indeed, the mappings
b —f, 2.5, and f Wb o(f; 2, 5,5) Are continuous with respect to the uniform topology
and the other properties are also evident.

Thus, for any a, O0<a<1, there exists a number b,, 0<b,<1, such that
p(f3.p.50) =0 Let us define 2, the rotation of 7, by

R (x)=x+a (mod. 1) for xeT.
We have the following lemma from Denjoy’s theorem:

LEMMA 1. If p(f, 5,5) = is irrational, then there exists an orientation preserv-
ing homeomorphism h of T such that

hofipp=R,oh and h(0)=0.
From this lemma, we have the following:

LEMMA 2. If a, O<a<], is irrational, the number b, having the property
o( f}, 8.bo) = is determined uniquely.

Proof. 1f by<by, then d(f 5 4o(x), fi.p.5,(x)) =by —b, Where d(-, -) is the usual
metric of 7. On the other hand, it follows from Lemma 1 that {f% ; , (x), ne Z} is
dense in T and that the order of the orbit coincides with that of {#%0), ne Z}. From



On a Family of Locally Finite Invariant Measures 185

these properties, it is easy to show that

P(Fr 5,50 % P(Fa5.5,) -
The same is true for the case of b, <b,. g.e.d.

DEFINITION. For any irrational number o, 0 <a <1, we define f; 4 , to be Fa 5.0
such that p(fl,ﬁ,bo) =a.

Thus we rewrite Lemma 1 as follows:

LEMMA 3. Ifa, 0<a<l,isirrational, then there exists an orientation preserving
homeomorphism h; z , of T such that
hl,ﬁ,a Oﬂ,ﬂ,a=‘%aohl,ﬁ,u and hl,ﬁ,a(0)=0‘
Moreover it is easy to show the following proposition (see Herman [3]).

PROPOSITION 1. For any A>1, >0 and irrational o, 0<a <1, we have

(1) hyp.(a(d, B)=B/(1+p),

(il) AT2*P<DfP, <22OD forall n>1,
where g, denotes the denominator of the n-th convergent of the continued fraction
expansion of a,

(iii) if B/(1+p) ¢ Zo (mod.1), then h; 4, is not absolutely continuous and so
f3.p.« does not have any absolutely continuous invariant probability measure.

Remark. In (ii), we adopt the right derivative when the right derivative differs
from the left one.

First, we prove the ergodicity of f; ; , with respect to the Haar measure m, which
would simplify the subsequent discussions.

THEOREM 1. For any irrational a, 0<a<1, (T, f; 4 ,,m) is ergodic.
The proof of this theorem is essentially due to Katznelson [5], p. 160.

Proof. For simplicity, we write # and f instead of #, and f; ; , respectively.
And g, denotes the denominator of the n-th convergent of «.
If n is even, then

{R[x, Ri(x)), 0= <q,+1} U{R[R"*(x), ), 0=j<q,}
is a partition of T for any xe T. So

{fx f2(x)), 0=/ <qu+1} O {fLf (%), %), 05 <q,}

is also a partition of T by Lemma 3. Moreover it follows from [5], Lemma 2-1 that

_ Dfi(y,) -
. A 2(1+ﬁ)3+_312(1+ﬁ)’ 0<j<gq,
N =Dy .

for any y,, y, €[x, f%(x)) and the same inequalities hold for any y,, y, e[f%*(x), x)
and 05j<gq,.
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Let U be a Borel subset of T with f(U)=U and m(U)>0. From the density
theorem and Lemma 3, we see that there exists x € U with the following property: for
any ¢ >0 there exists an integer n such that

m([x, f*(x)) 0 U) 2 (1 —e) m([x, f*(x))
and
m([f*1(x), x) " U)2(1—e)-m(f*+*(x), x)) .
Hence we have
m(fx, f7() N U2 (=24 *0) - m(fix, f(x))),  0=j<Guss >
and
m(fILf1(x), x) " V)2 (1= D)-m(fI[f41(x), x)),  0=j<q,,
by the assumption made on U and (1). Thus we get
m(U)21—e*t*h :

and this implies m(U)=1. q.e.d.

Remark. The same result holds for mappings of class P by the same argument

(see Herman [3], p. 74 and p. 86).

§2. A locally finite invariant measure for T, ,

For a fixed #, we consider the real number >0 such that n=g/(1+ ). Let Fy
(=F, p) be the closed subgroup of R generated by log A and §-log A for some fixed
4>1. We define S, 4 of T x F, by

S, (%, ) =(f3,5,6(x), y+1og Df, 4 o(x)) for (x,y)eTxF;.

We denote by v the restriction to Fj of the measure e ~>dy of R. It is easy to show that
m X v is an invariant measure for S, ; equivalent to the Haar measure of T x Fj;. And
we have

2) log Df; 44(x)=log A-(1+ p)- [X[O,a(l,ﬁ))(x)_%]

from the definition of f; ; ,.
Now we define the homeomorphism H, ; , of T x F; to T x E, by

H; g o(x, y)=<h,1,,,,0(x),——y—> for (x, y)eTxFy.

(1+p)log A
From Lemma 3, (2) and Proposition 1—(i), we have
3) To,noHl,[l,():Hl,ﬁ,OoS«‘),B'

Let us define measures h; ; ym and H, ; (m x v) by
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(h,5,m)(A)=m(h;, ;13 04) for A<=T
(H;, 5,6(m x v))(B)=(m x v)(H 75.6B) for BcTxE,,

then it follows from Theorem 1 and Proposition 1-(iii) that m and &, z om are singular
to each other if #¢ Z6 (mod.1), so u=H, ; ((m xv) and # are also singular to each
other in such a case.

THEOREM 2. Ifn¢Z0 (mod.1), then u=H, ; o(m x ) is a locally finite conserv-
ative invariant measure for Ty , which is singular with respect to .

Proof. For simplicity, we write fand H instead of f; ; , and H, ; ,. It is easy to
see that y is an invariant measure for T, , from (3), so we only need to prove the
conservativeness. Let K=Tx[—M, M] for M>(1+p)/2. We show that the in-
duced transformation S, , | x is well-defined with respect to m x v. If this statement
holds, then it is easy to see that (T, ,, p) is conservative.

We put

A;={x:log Df"(x)>0 ' forall n>0}
and
A,={x:log Df"(x)<0 for all n>0}.

Since (f, m) is ergodic, we have m(4,) =m(A4,)=0. Thus there exists a positive integer
I=I(x) for m-a.a. x such that

“log DfY(x)>0 and log Df'"*1(x)<0”
or
“log DfY(x)<0 and log Df'"*1(x)>0".
For such x and any y, —M<y< M, we get
Sopx, )eK  or Spi(x, p)ekK.

Thus the induced transformation S, 4 | k 18 well-defined (m x v)-a.e. q.ed.

§3. Singularity of 4, ; ;m

In this section, we consider the problem of singularity between 4, ; ym and
hy., 5 om for A# 2. If these are singular to each other, then the corresponding product
measures defined in §2 are also singular to each other.

We put

— L1
P=h; 501505

then we have

()] fa',ﬂ,o od=0 °f).,ﬁ,0
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from Lemma 3. So 4, ; om and h;, , ym are absolutely continuous to each other if and
only if ® and @~! are absolutely continuous to each other. Since both measures are
ergodic, they would be equivalent to each other if one of them can be shown to be
absolutely continuous with respect to the other.

THEOREM 3. Let g, be the denominator of the n-th convergent of 0. If {c,: ¢,=
B/(1+B)-q, (mod.1), n>0} has a limit point p#0, then h, ; ym and h,. z gm are
singular to each other for all distinct A and 1’

Proof. Suppose that @ and @' are absolutely continuous. It follows from
Proposition 1-(i) that

5) {108 Df ;. pox)=log - [(1+B)" Xi0, a0, py(X) — B]
log Df ;. 4.o(x)=log A-[(1+ B)" X0, a2, y(X) — B]

and that
(6 . a4, B)y=a(’, B) .
Hence we have

log DO~ (fy,4.0P(x)) +10g Dfy 5 o(P(x)) +1og DB(x) =log Df; 5 6(x) m-ae.
by (4). Thus we get
(7) (log A’ —log A)-[(1+ )" %0, a2, sy(X) — Bl =log DD(f; 5 ¢(x)) —log DP(x) m-a.e. .
If we put

Y(x)=exp [ —2mi- log D&(x) ] s

(log A’ —log A)(1+p)

then we get

Yo fip.6(X)=¢exp <2ni- 1 f ﬁ>~|//(x) m-a.e.
by (7). So we have
@®) Yo fin. o(x)=exp <2m‘- 1 fﬁ qn>-;j/(x)

=exp (2mi-c,) Y(x).

Now it is possible to show that y o f4, , converges to ¥ strongly in L*(T, m) (see
Herman [3], § 6). On the other hand, it follows from the assumption that there exists a
subsequence {c, } converging to p as n’ tends to co. Thus (8) does not converge to
and this contradicts the above statement. q.ed.

Remarks. 1) Since q,/q,., are always irreducible, {c,} has a non-zero limit
point for any rational 8. Moreover it is well-known that {c,} is uniformly distributed
for a.a. B (see Kuipers and Niederreiter [6]).

2) Recently Stewart [7] has shown that {c,} has a non-zero limit point for all 8,
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B/(1+B)¢ Z6 (mod.1), when 0 is of constant type.
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