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§0. Introduction

To determine the behavior of the continuum function 2% is one of the main
problems in set theory. If x is a singular cardinal with an uncountable cofinality, then
by [8], 2" is determined by the continuum function below . If « is a regular cardinal,
then by [1], 2* is independent of the continuum function below «. Nevertheless, if x
carries a x*-saturated ideal and if the generalized continuum hypothesis (GCH)
holds below «, then by [6], it holds at «; more generally, if k carries a precipitous ideal
and if GCH holds below x, then 2* is less than or equal to the saturation number of
the ideal. In [6], Jech and Prikry applied the method of generic ultrapowers which is a
combination of Cohen’s method of forcing and the method of ultraproducts used in
model theory and in the theory of large cardinals.

In this paper, it is showed how 2* is determined by the continuum function below
x and the saturation number of a precipitous ideal over k. In estimating 2%, the main
tool is the functionals which are canonical representatives for elements of the generic
ultrapower. In §2, we introduce the concepts of functionals and degrees of
functionals, and show some fundamental properties. Degrees of functionals cor-
respond to norms of ordinal functions introduced by Galvin and Hajnal in [2]. In § 3,
we investigate degrees of various functionals. In §4, we prove the main theorem,
which asserts that 2* is less than or equal to the degrees of a certain functional
depending upon the ideal over x and the continuum function below x, and apply it

. to some particular cases.

Our set theoretical notation is standard. In this paper, we define the precipitous
ideal in terms of functionals. For properties of ideals which are equivalent to
“precipitous,” the reader may refer to [3].

The author would like to express his gratitude to Professor M. Takahashi.
§1. Preliminaries

Let x be a regular uncountable cardinal number. A collection / of subsets of x is
an ideal over k if
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(1) ¢oeland k¢l

(i) if Xeland Y= X then Yel

(iii) if Xeland Yelthen XU Yel.

In this paper we deal only with nontrivial k-complete ideals over k:

@iv) {a}elfor all a<xk

(v) if y<x and X,e[ for all x<y, then ( J,.,X,€l.

Throughout the paper, ideal means a nontrivial k-complete ideal over «.

Let I be a given ideal, and X a subset of k. If Xe I, X¢ I or k— X € I then we say
that X has measure 0, positive measure or measure 1 respectively.

An ideal is prime if every subset of k has measure 0 or 1. An ideal is normal if for
any set S of positive meausre, if fis a function on S and f(«) <« for all xe S— {0},
then f'is a constant on some subset of S of positive measure. An example of normal
ideal is the ideal of thin sets; a subset X of x is thin if k—X contains some closed
unbounded subset of «.

A family W of subsets of « is almost disjoint if X N Y has measure 0 for any
distinct X, Ye W. Let A be a cardinal number. An ideal is A-saturated if there is no
almsot disjoint family of size 4 of sets of positive measure. A saturation number of an
ideal I, denoted by sat([), is the least cardinal number A such that 7 is A-saturated. If
sat([) is infinite, sat(J) is a regular uncountable cardinal.

Let S be a set of positive measure. An I-partition of S is a maximal almost disjoint
family of subsets of S of positive measure. Let W, and W, be I-partitions of S. W, is a
refinement of W, if every element of W, is a subset of some element of W,. The family
{Xon X, ¢ Xoe Wy, X; € W} of subsets of S is a common refinement of W, and
Wi.

For each ordinal y, let ¢, denote the constant function on x with value y.

Let «* denote the least cardinal number such that o <a®. We define the p-th
cardinal successor of «, denoted by o*#, by transfinite induction:

q P B = (g A

atP=sup a*? if B is a non-zero limit ordinal .
y<p
Throughout the paper, + and - denote the ordinal sum and the ordinal product
respectively. Let f and g be ordinal functions. Let f+g, f-g and f *9 denote the

functions on dom (f) N dom (g) defined by
(f+9)@)=f(a)+g(),
(fP@=f() - gla), and
fH)=f(0)*9@  respectively .
Let f g denote the function on {xedom (g):g(x) edom (f)} defined by
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S eg@)=r(g().

§2. Fundamental properties of functionals

Let I be an ideal over k. A functional is a collection F of ordinal functions such
that {dom (f): feF} is an I-partition of x and dom (f)#dom (g) for any distinct
f,geF.

Let S be a set of positive measure. We now define four binary relations ~g, #g,
<sand < between functionals as follows: F~ ¢ (resp. #5, <gand <;)G if and only if

{aedom (f) ndom(g): f(a)#(resp. =, = and >)g(a)} N Sel
for each f e F and for each geG. If S=«, we drop the subscript S.

PROPOSITION. The relation ~g is an equivalence relation, and moreover a
congruence with respect to #5, <g and <g.

Proof. First we shall prove that =~ is transitive. Suppose, on the contrary,
that F~ G, G~gH and F#gH, ie., for some feF and for some heH
{aedom (f) ndom (h): f(x) #h()} NS, denoted by [f #HA]s, has positive measure.
Since {dom(g): ge G} is an I-partition of x, for some ge G dom(g) N [f #h]s has
positive measure. However

dom(g) n[f#hlsS[f #9ls [g#h]sel, a contradiction .

It is proved similarly that ~ is a congruence w.r.t. #5, <gand <j. O

In this paper we shall consider only operations over functionals which are
compatible with the equivalence relation ~. In other words, operations may be
regarded as operations defined on equivalence classes. If fis an ordinal function on «,
we identify the function f with the functional {f}. Between ordinal functions the
relation < is not other than the well-founded relation introduced by Galvin and
Hajnal in [2], where they considered the ideal of thin sets (see Preliminaries).

An ideal I is precipitous if < is well-founded for any set S of positive measure. A
k*-saturated ideal over x is precipitous, see [6]. More precisely, if an ideal is k*-
saturated then every functional is equivalent to some ordinal function on k. But a
precipitous ideal is not always x *-saturated: Jech and Mitchell constructed a model
in which &, carries a precipitous and not ¥,-saturated ideal, in [5]. If k carries a k-
saturated ideal, then by [10], x is weakly Mahlo and hence weakly inaccessible.
Nevertheless the existence of a x*-saturated ideal over x does not necessarily entail
that x is a large cardinal: Kunen constructed a model in which N, carries an ,-
saturated ideal, in [7]. The existence of a precipitous ideal is equiconsistent with the
existence of a measurable cardinal, see [4].

For the remainder of this paper, we always assume that I is a precipitous ideal
over k. For a functional F and for a set S of positive measure, we define the S-degree
of F, denoted by deg 4(F), as follows:
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deg ((F)=sup {degs(G)+1: G< F}.

It is obvious that if F~ G then deg((F)=degs(G). If fis an ordinal function on x,
then deg (/) =deg J({/}). If S=x«, we drop the subscript S.

LEMMA 1. Let F be a functional, and S a set of positive measure. Then for any I-
partition W of S,

deg ((F)=min deg ,(F) .
XeWw

Proof. By <ginduction.

If X is a subset of .S of positive measure, then G < F implies G < yxF, and hence
deg (F) <deg x(F).

Suppose, on the contrary, that y=deg ((F) <miny_y deg 4(F). For Xe W, we
take a functional Fy <4F such that deg y(Fy)=y. Let Fy[ X denote the collection
{fIX: feFy, dom(f)n X¢I} of functions. We put

F*=XQW FylX U {c[(k—S)}.

For each Xe W, {dom (f) n X¢I: feFy} is an I-partition of X, and hence
XLe)W {dom (/)N X¢I feFy}

is an [-partition of S. Thus F* is a functional, and moreover F* < F. From induction
hypotbhesis,

y>deg ((F*)=min deg y(Fy)=7, a contradiction . O
XeW

Let S be a set of positive measure, and y an ordinal number. We say that a
functional F has S-degree y uniformly if deg ,(F)=1y for any subset X of S of positive
measure.

LEMMA 2. Let F be a functional. Then there is an I-partition W of k such that
for each X e W, F has the uniform X-degree.

Proof. Let P denote the collection of all sets of positive measure. Let us
consider the partially ordered set (P, <). If D={X e P: F has the uniform X-degree}
is dense, then a maximal almost disjoint family of D is a required I-partition of «.

Suppose, on the contrary, that D is not dense. Then there is a set S € P such that
D¥*={XeP: X<, degy(F)>degy(F)} is dense below S. Here we take a maximal
almost disjoint family W of D*, then W is an I-partition of S. By Lemma 1,

deg ¢(F) =min deg ,(F)>deg((F), a contradiction . O
Xew
THEOREM 1. For each ordinal y, there is a functional with uniform degree .

Proof. Let P denote the collection of all sets of positive measure. First we shall
prove that D={Xe P: there is a functional with uniform X-degree y} is dense in
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(P, ©). Let Se P. Since deg s(c,) =7, there is a functional F< sC, such that deg ((F) =
7. By Lemma 1 and Lemma 2, there is a set X € P such that X = S and F has X-degree y
uniformly.

Thus we get an [-partition W of x such that for each X € W, there is a functional
Fy with uniform X-degree y. Then )y, Fx| X (see the proof of Lemma 1) is a
functional and moreover, by the application of Lemma 1, has degree y
uniformly. O

The functional with uniform degree y is unique;

LEMMA 3. Let F and G be functionals with uniform degrees p and y respectively.
Then

(@) If B=y, then F~G.

(b) If B<y, then F<G.

Proof. a) Suppose, on the contrary, that F4G; i.e., {xedom (f) ndom (g):
S(®)#g(@)} has positive measure for some fe F and for some geG. Without loss
of generality, we can assume that S={xedom (f) n dom (g): f(a) <g()} has posi-
tive measure. Then F<sG and hence f=deg((F) <deg(G)=1y, a contradiction.

b) Similar. O

Remark that the assumption that 7 is precipitous can be weakened at all lemmas
in this section.

§3.. Degrees of various functionals

What form does the functional with a uniform degree have? It follows from x-
completeness that for any y <« the functional with uniform degree y is c,. If I is
normal (see preliminaries), then the functional with uniform degree  is the diagonal
Sfunction d on k defined by d(a)=a.

For two functionals F and G, we put

F+G={f+g: f€F, geG, dom(f+g)¢ I},
F-G={f-g: feF, geG,dom(f g)¢I}, and
F*S={f*9: feF, geG, dom(f*9¢1I}, see preliminaries .

It is obvious that F+G, F-G and F*S are functionals. Notice that the above
operations are compatible with ~.

For brevity we denote {C,} by y, and F*! by F*.

When we write that F={fy: Xe W} is a functional, it is understood that W is an
I-partition of x and dom (f) = X for each X € W. For two functionals Fand G, take a
common refinement W of {dom (f): f e F} and {dom(g): ge G} (cf. preliminaries),
then F~{fX: Xe W, feF, X<dom(f)} and G~{g| X: Xe W, geG, X=dom (g)}.
Thus, finitely many functionals have a common /-partition. In general, if {X,: £ <v}is
an J-partition of x and {Y,: &<v} is a family of sets with measure 0, then {X:— Y
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£ <y} is an I-partition of x. Thus when F< G, we can take functionals F*={f%:
XeW}~Fand G*={g%: Xe W}~G such that for each Xe W, f}(«) <g}(a) for all
aeXNS.

THEOREM 2. Let F and G be the functionals with uniform degrees B and v,
respectively. Then

(a) F+G has degree B+ uniformly.

(b) F-G has degree By uniformly.

Proof. By induction on 9.
a) For ¢ <y, let E¢ denote the functional with uniform degree &. Let S be a set
of positive measure. From induction hypothesis,

B+E=deg (F+E®) <deg(F+G) forall &<y,

and hence f+7y<deg((F+G). Suppose, on the contrary, that f+y <deg(F+G).
We take a functional H<¢F+ G such that deg (H)=f+7. Since F has S-degree f
uniformly, F<gH. Thus we can take a functional G* such that F+G*~zH. For
some subset X of S of positive measure, G*~yE¢ where ¢ =deg(G*)<y. From
induction hypothesis,

B+ Eé=deg W(F+E°)=deg y(H)>degs(H)=B+y,  a contradiction.

b) Casel. y=38+1. Let E be the functional with uniform degree 6. By (a) of
this theorem, G~ E+1 and hence F- G~(F- E)+ F. From induction hypothesis, F-G
has degree B-9+ f=pf-y uniformly.

Case II. v is a limit ordinal. First we shall prove that every value of function of
G is a limit ordinal; i.e., {xedom (g): g(«) is a successor ordinal} has measure 0 for
each geG.

Suppose, on the contrary, that S={xedom (g): g(«) is a successor ordinal} has
positive measure for some g € G. We take a function 4 on S such that 4+ 1=g. By the
application of Lemma 1 and Lemma 2,

y=deg (G)=degg(h+1)=deggs(h)+1, a contradiction .

For £ <y, let E¢ denote the functional with uniform degree ¢. From induction
hypothesis,

deg s(F-G) =sup degs(F- E¥)=sup B-{=p"y
&<y &<y

for any set S of positive measure.

Assume that S has positive measure and H<gF-G. Then we can take a
functional G * < ¢G such that H < ¢F-G*. For some subset X of S of positive measure,
G*~,E* where ¢ =deg (G*)<y. From induction hypothesis,

deg o(H) <deg ((F-G*)<deg y(F-E¥)=B-{<B-7.
Consequently, deg s(F-G)<By. O
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LEMMA 4. Let F be a functional, and S a set of positive measure. Assume that
either sat(I) or deg ((F) is infinite. If {F*: & <v} is a family of functionals, F& < sF for
all £<v and F* $5F" for any distinct £, y<v, then

v<max (sat (), (deg4(F))*).

Proof. We put pu=degs(F). For {<v, y,=deg (F%)<degs(F)=pu. Then F¢
has the uniform S,-degree y, for some subset S, of S of positive measure. For y <y,
{Sg y;=7v} is almost disjoint and hence | {¢ <v: y,=y}|<sat(I). From the regularity
of max (sat(Z), u™*),

v= ) {&<v: y,=y} <max(sat(l), u*). O
y<n

THEOREM 3. Let F and G be the functionals with uniform degrees B and vy
respectively. If sat (I) <p, then

F*$<  the functional with uniform degree B*'.

Proof.  We shall prove by induction on y that deg (F *6) < $*” for any set S of
positive measure.

Case 1. y=0. Then F*S~F*O~F

Case II. y is a non-zero limit ordinal. Similar to the proof of Theorem 2 (b)
case II.

Case IIl. y=06+1. If B*° is finite then obvious. Thus we assume that B*lis
infinite. Let E denote the functional with uniform degree 5. Then G~E+1.

Assume that S has positive measure and H<F*S~(F*E)*. Here we can
assume that E, F and H have the same I-partition W of ; i.e., E= {ex: Xe W}, F=
{fx: Xe W}, H={hy: Xe W} and moreover for any X e W and for any aeX N S,

hy(@) < (fx " *(@))*

hence there is a one-to-one mapping y , from /,(x) to f; +e*(c). We put v=deg ((H).
For ¢ <v, let E*={e}: Ye W?} denote the functional with uniform degree &. Since
E*®<gH, we can assume that W¢ is a refinement of W, see preliminaries, and for each
Ye W¥, ef(a) e hy(a) for all ae Y N S where X is the unique element of W such that
Y< X. For Ye W¢, let n(e$) denote the function on ¥ defined by

& .
oo [maaei@), if aeS,
) {ef,(a) > otherwise ,
where X is the unique element of W such that Y=< X. We put
Fé={n(e}): Ye W%} .

Then F*<F** for all £ <v and moreover, since my , is one-to-one, Fé#¢F" for any
distinct £, n <v. From induction hypothesis, degg(F *¥) <f*°. By Lemma 4,
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deg (H)=v<max (sat(I), (B*9)*)=p*".
Consequently, degg(F*¢)<p*”. O

The degree of F* ¢ is not necessarily f*”. Let x be a measurable cardinal, and I a

normal prime ideal over k. If d** has degree k**, then k"=

deg(d**)<deg(x)<(xk)*=(2)* and hence x* <2*. This contradicts the con-
sistency of the GCH with the existence of a measurable cardinal, see [9].

By Lemma 2, every functional consists of some functionals with uniform
degrees. If eigher F or G has the uniform S-degree, by the application of Lemma 1,

deg(F+G)=degs(F)+degs(G),
deg ((F-G)=degs(F)-degs(G), and
deg (F*9) <deg (F)Tees@  (if degs(F)=sat())).
THEOREM 4. Let F be the functional with uniform degree p. If f <sat(I), then
F* < the functional with uniform degree sat(I).

Proof. If B is finite, then the theorem is obvious. Thus we assume that f is
infinite. We put A=sat(/). Let E denote the functional with uniform degree A.
Suppose, on the contrary, that F* £E; i.e., E<gF* for some set S of positive
measure. By the similar argument in the proof of Theorem 3, we get a family {F*:
& < A} such that F¢ < ¢F for all ¢ </ and F*#5F" for any distinct £, n <v. By Lemma 4,
A <max (sat(I), B*)=sat(l), a contradiction. O

§4. Degrees of functionals and the size of 2*

For an ordinal function f and a functional G, we put
foG={f-g:9eG}, see preliminaries .

Although f oG is not necessarily a functional, if {xedom(g): g(a) ¢ dom(f)} has
measure 0 for all g€ G then f oG is a functional. Moreover, if f - G is a functional
and G~H, then f o H is a functional and f -G~ f o H.

Recall that we assume that an ideal [ is precipitous.

THEOREM 5. Let E be the functional with uniform degree k, and f the function
on x such that 2*=(*)"® for all a<xk. Then f o E is a functional and

2xsi+deg(foE)
where J=max (sat(l), k¥).

Proof. degg(d)>«k for any set S of positive measure, and hence E<d<k.
Without loss of generality, we can assume that E={e,: X€ W} and for each Xe W,
ex(o) <k for all o€ X. For each a <k, we take a one-to-one mapping =, from 2* onto
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(a*)*/®. Let {X,: £ <2*} be an enumeration of the power set of k. For & <2*, we put
E*={e%: Xe W}, where é% is the function on X defined by

ei(“) = nex(a)(Xg N ex(oc)) < (ex(a) +) +f(ex@)

Then E¢<(E*)* “E for all £ <2 and for any distinct &, § <2*, since a < E, where o =
min (X, —X,) U (X,—X,), E‘#E". We put f=deg(f -E). By Theorem 3 and
Theorem 4, E*<the functional with uniform degree A and hence
deg((E*)* *E)<A*f. By Lemma 4,

2*<max (sat(Z), (A*#*)=(1"#)* and hence 2*<Ai*’. O
We put A=max (sat(/), «*) in the following corollaries.
COROLLARY 1. Assume that I is normal. Let f be as above. Then
g jraee)
Proof. The functional with uniform degree « is d. O

It seems to be open whether the existence of a precipitous ideal implies the
existence of a normal one, although the existence of a normal precipitous ideal is
equiconsistent with the existence of a precipitous ideal, cf. [4]. When the above
function f has one of some special forms, we can omit the assumption “normal”;

COROLLARY 2. Let y<k.

@ If2*<(a*)*? for all a<k, then 2*<A*7.

(b) If2*<a*®* for all a<k, then 2 < )T+,
(© If2*<a**” for all a<k, then 2< A%,

d) If2*<oa™** for all a<k, then 2°< A %,
() If2*<a*@ for all a<x, then 2°<A**,

) If2°<a*@™™ for all a<k, then 2<AtG+™ |

Proof. Let E and f be as before.

a) f(x)<y for all @<k, and hence f - E<y.

b) foE<(d+7y)°E~E+y and deg(E+7y)=x+}y.

c) foE<(d'y)oE~E-yanddeg(E y)=x"y.

d) foE<(d-d)oE~E-E and deg(E-E)=kx"k.

e) foE<d* o E~E™" and deg(E*)<A.

f) foE<d*'cE~E™*Eand deg(E*F)<deg(F*E)<A*¥,

where F is the functional with uniform degree A. O

COROLLARY 3. Let k=v".

(@) If2’=k"" where y<k, then 2*<1™".
(b) If2'=x"*, then 2°<A*%.

© If2=k*®* then 25 < A+ G+,

(d) If2'=K**"", then 2°<A™ %

(€ If2°=x*®"™ then 2<A*G*H,
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Proof. Let E and f be as before, and F the functional with uniform degree /.

Since v<E<v™, f o E~f(v).

(1]
(2]
[3]
[4]

(5]
(el

(71
(8]

(91

[10]

a) f(v)=y and deg(y)=y.

b) deg(k)=deg(E*)<.

¢) deg(ic+xk)<deg(F+F)=1+4.

d) deg(x-k)<deg(F-F)=41-A.

e) deg(x**)<deg(F*H)<i*™ O

This proof is an elementary proof of Theorems 3.3.1 and 3.3.2 in [6].
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