On the Transversal Elements of an Open Ideal

by

Tetsuo WATANABE

(Received April 9, 1982)

Let I be an open ideal of a semi-local Cohen-Macaulay ring A of Krull dimension 2 and assume that A/P is infinite for each maximal ideal P of A. Then there exist elements x, y of I such that x is a superficial element of I and $(xA+yA)I^n=I^{n+1}$ for some positive integer n. From the consideration of Poincaré series, we know that the multiplicity of I is equal to the length of A/(xA+yA). Furthermore, we show that there exist transversal elements x, y of I such that $(xA+yA)I=I^2$ iff I has a stable superficial element x and I/xA is a stable ideal of one dimensional semi-local Cohen-Macaulay ring A/xA. Then the Poincaré series associated with I has no polynomial part.

1. Introduction

Let I be an open ideal of a semi-local Cohen-Macaulay ring A of Krull dimension 1. Then we say that I is stable if one of the following equivalent conditions is satisfied ([2]);

- (i) The length $\lambda(A/I^n)$ is a polynomial in n for all n > 0.
- (ii) There is an element x of I such that $xI = I^2$.
- (iii) The Pincaré series associated with I is of the form $a(1-t)^{-1} + b$ for some integers a, b.

In this paper we investigate properties of an open ideal I of a semi-local Chohen-Macaulay ring A of Krull dimension 2. We say that elements x, y of I are transversal elements of I if $(xA+yA)I^n=I^{n+1}$ for some positive integer n. Let x, y be an A-regular sequence and I the integral closure of xA+yA, then x, y are transversal elements of I ([2], 2(c)). If x is a superficial element of I and if y is an element of I such that its image in A/xA is I/xA-transversal, then $(xA+yA)I^n=I^{n+1}$ for some positive integer n (Lemma 6). If A/P is infinite for each maximal ideal P of A, then each integrally closed open ideal I is the integral closure of xA+yA, where x is any superficial element of I and y is any element of I such that its image in A/xA is I/xA-transversal. We show in Theorem 9 that $(xA+yA)I=I^2$ for some x, y in I iff x is a stable superficial element of I and $yI\equiv I^2$ mod. xA. When I has a stable superficial element x, we show in Theorem 12 that $(xA+yA)I=I^2$ for some y in I iff the Poincaré series associated with I has no polynomial part.

2. The Poincaré series associated with an ideal of a Noetherian ring

Let $A = \bigoplus_{n=0}^{\infty} A_n$ be a Noetherian graded ring, $M = \bigoplus_{n=0}^{\infty} M_n$ a finitely generated graded A-module and λ an additive function with values in \mathbb{Z} on the class of all finitely generated A_0 -modules. Then the Poincaré series of M with respect to λ is the formal power series $P(M, t) = \sum_{n=0}^{\infty} \lambda(M_n)t^n$. We denote the formal power series $\sum_{n=0}^{\infty} t^n$ by 1/(1-t) or $(1-t)^{-1}$.

LEMMA 1. Let $P(t) = \sum_{n=0}^{\infty} \lambda_n t^n$ be a formal power series in $\mathbf{Z}[[t]]$, d an integer ≥ 1 and r an integer ≥ -1 . Then λ_n is a polynomial in n of degree d-1 for all $n \geq r+1$ iff there are integers a_1, \dots, a_d ($a_d \neq 0$) and $f(t) \in \mathbf{Z}[t]$ with $\deg f \leq r$ such that $P(M, t) = a_d(1-t)^{-d} + a_{d-1}(1-t)^{-d+1} + \dots + a_1(1-t)^{-1} + f(t)$ (note that $\deg 0 = -\infty$).

Proof. Since $1/(1-t)^d = \sum_{n=0}^{\infty} {n+d-1 \choose d-1} t^n$, this follows from [4] (20.8).

Remark that, if $r \ge 0$, then λ_n is a polynomial in n of degree d-1 for all n > r iff the Hilbert characteristic function $\chi(n) = \lambda_0 + \cdots + \lambda_{n-1}$ is a polynomial in n of degree d for all n > r.

THEOREM 2 (Hilbert-Serre). Let A be a Noetherian ring, I an ideal of A and $G_I(A) = \bigoplus_{n=0}^{\infty} I^n/I^{n+1}$ ($I^0 = A$) the associated graded ring. Then the Poincaré series $P(G_I(A), t) = \sum_{n=0}^{\infty} \lambda(I^n/I^{n+1})t^n$ of $G_I(A)$ is of the form $a_d(1-t)^{-d} + \cdots + a_1(1-t)^{-1} + f(t)$, where a_1, \dots, a_d are integers and $f(t) \in \mathbb{Z}[t]$.

Proof. Since A is Noetherian, I is finitely generated. Let x_1, \dots, x_s be generators of I and \bar{x}_i be the image of x_i in I/I^2 . Then $G_I(A) = (A/I)[\bar{x}_1, \dots, \bar{x}_s]$. By [1] Theorem 11.1, $P(G_I(A), t)$ is of the form $g(t)/(1-t)^s$, where $g(t) \in \mathbb{Z}[t]$. Expressing g(t) as a polynomial of 1-t and cancelling powers of 1-t, we have the result.

Remark. If A is a Noetherian semi-local ring of Krull dimension ≥ 1 , I an open ideal of A and λ the length function, then $d = \dim A$ and a_d is a positive integer called the multiplicity of I and denoted by $\mu(I)$. We define the degree of the Poincaré series P(t) as the degree of its polynomial part f(t) and denote it by r(P). If $P(t) = P(G_I(A), t)$, we denote r(P) by r(I).

THEOREM 3. Let I be an open ideal of a Noetherian semi-local ring A and $I=I_1\cap\cdots\cap I_s$ the primary decomposition of I such that $\sqrt{I_i}\neq\sqrt{I_j}$ $(i\neq j)$. Then $P(G_I(A),\ t)=\sum_{i=1}^s P(G_{I_i}(A),\ t)$.

Proof. Since I is an open ideal, each $\sqrt{I_i}$ is a maximal ideal. Thus $\sqrt{I_i}$ and $\sqrt{I_j}$ are coprime for each $i, j \ (i \neq j)$. Therefore I_i^n and I_j^n are coprime for each n > 0. Thus $A/I^n \cong A/I_1^n \times \cdots \times A/I_s^n$. So we have $P(G_I(A), t) = \sum_{i=1}^s P(G_{I_i}(A), t)$.

PROPOSITION 4. Let I be an open ideal of a Noetherian semi-local ring A. If $r(I) = r \ge 0$ (resp. $r(I) = -\infty$), then $r(I^m) = 0$ for each $m \ge r + 1$ (resp. $r(I^m) = -\infty$ for each $m \ge 1$).

Proof. By Lemma 1, there is a polynomial $g(x) \in \mathbb{Q}[x]$ such that $g(n) = \lambda(I^n/I^{n+1})$ for each $n \ge r+1$ (resp. $n \ge 0$). So we have

$$\lambda((I^m)^n/(I^m)^{n+1}) = \lambda((I^m)^n/I^{mn+1}) + \dots + \lambda(I^{mn+m-1}/I^{mn+m})$$

= $g(mn) + g(mn+1) + \dots + g(mn+m-1)$

for each $n \ge 1$ and each $m \ge r+1$ (resp. $n \ge 0$ and $m \ge 1$). Now the proposition follows from Lemma 1.

- *Examples.* 1) Let A be an Artinian local ring with the maximal ideal $m \neq 0$ and n the maximal integer such that $m^n \neq 0$. Then the Poincaré series $P(G_m(A), t)$ is a polynomial of degree n.
- 2) Let A be a regular local ring of dimension d and m its maximal ideal. Then $P(G_m(A), t) = 1/(1-t)^d$ ([1], Theorem 11.22).
- 3) Let A be a ring, $a_1, \dots, a_d \in \text{rad}(A)$ and $I = (a_1, \dots, a_d)$. If a_1, \dots, a_d is an A-regular sequence, then $P(G_I(A), t) = \lambda (A/I)/(1-t)^d$. This follows from [3] Theorem 27.
- 4) Let A be a semi-local Cohen-Macaulay ring of Krull dimension 1 and I an open ideal. Then I is stable iff $P(G_I(A), t)$ is of the form $a(1-t)^{-1} + b$ for some a, b in \mathbb{Z} ([2], Theorem 1.9). I is a principal ideal iff $P(G_I(A), t)$ is of the form $a(1-t)^{-1}$ ([2], the proof of Theorem 1.9).

3. The Poincaré series associated with an open ideal

Throughout this section we assume that I is a proper open ideal of a semi-local Cohen-Macaulay ring A of Krull dimension 2. Moreover, to guarantee the existence of superficial elements, we assume that A/P is infinite for every maximal ideal P of A. Then, if a regular element x of A is in I, I/xA is an open ideal of the semi-local Cohen-Macaulay ring A/xA of Krull dimension 1. Recall that an element x of an ideal I is called a superficial element of I if there is an integer $r \ge 0$ such that $(I^n: x) \cap I^r = I^{n-1}$ for each n > r.

LEMMA 5 ([2], Lemma 1.8. (ii)). Let B be a semi-local Cohen–Macaulay ring of Krull dimension 1, J a stable ideal of B and y a J-transversal element (i.e. $yJ^r = J^{r+1}$ for some integer r > 0). Then $yJ = J^2$.

Remark that there exists an (I/xA)-transversal element of A/xA for each regular element x in I.

- LEMMA 6. (i) If $(xA+yA)I^n = I^{n+1}$ for some integer n>0, then x, y is an A-regular sequence.
- (ii) If x is a superficial element of I, then there is an element y of I such that $(xA+yA)I^n=I^{n+1}$ for some n>0.
- *Proof.* (i) We have $2 = ht(I) = ht(I^{n+1}) \le ht(xA + yA) \le ht(I) = 2$. So ht(xA + yA) = 2. Thus x, y is an A-regular sequence.

216 T. Watanabe

(ii) Since altitude I/xA = 1 by [4] (22.8) and A is a Cohen-Macaulay ring, I/xA is an open ideal of the semi-local Cohen-Macaulay ring A/xA of Krull dimension 1. By the above remark, there exists an element y of I such that $yI^m \equiv I^{m+1} \mod xA$ for some m>0. Hence $xA+yI^m \supseteq I^{m+1}$. Let r be a positive integer such that $(I^n: x) \cap I^r = I^{n-1}$ for each n>r. Muliplying I^r , we have $xI^r + yI^{m+r} \supseteq I^{m+r+1}$. Let z be any element of I^{m+r+1} . Then z=ax+by for some $a \in I^r$ and $b \in I^{m+r}$. So ax=z-by is in I^{m+r+1} . Hence a is in I^{m+r} . Thus $(xA+yA)I^{m+r} = I^{m+r+1}$.

PROPOSITION 7. Let x be a superficial element of I. Then there is an integer s > 0 such that I^n : $x = I^{n-1}$ for each n > s.

Proof. Let r>0 be an integer such that $(I^n: x) \cap I^r = I^{n-1}$ for each n>r and y be an element of I such that $(xA+yA)I^m=I^{m+1}$. We will show that $I^n: x=I^{n-1}$ for each n>m+r. For any element a of $I^n: x$, $ax \in I^n=(xA+yA)^rI^{n-r}$. So we have

$$ax = a_0x^r + a_1x^{r-1}y + \dots + a_{r-1}xy^{r-1} + a_ry^r$$
 for some $a_i \in I^{n-r}$ $(0 \le i \le r)$

Thus $a_r y^r \equiv 0 \mod xA$. Since y is regular mod. xA, $a_r \equiv 0 \mod xA$, i.e. $a_r = bx$ for some $b \in A$. Dividing by the regular element x, we have

$$a = a_0 x^{r-1} + a_1 x^{r-2} y + \cdots + a_{r-1} y^{r-1} + b y^r \in I^r$$
.

Hence $a \in I^{n-1}$.

DEFINITION. If x is a superficial element of I, we denote by r(x) the infimum of the integers s>0 such that I^n : $x=I^{n-1}$ for each n>s. If r(x)=1, we say that x is a stable superficial element of I.

LEMMA 8. For all sufficiently large integer s>0, I^s has a stable superficial element.

Proof. If I^n : $x = I^{n-1}$ for each n > s, then x^s is a stable superficial element of I^s .

THEOREM 9. Let x, y be elements of I. Then $(xA+yA)I=I^2$ iff x is a stable superficial element of I and $yI \equiv I^2 \mod xA$.

Proof. Suppose $(xA+yA)I=I^2$. Then it is clear that $yI\equiv I^2 \mod xA$. Let z be any element of I^n : $x \ (n>1)$. Since $(xA+yA)I^{n-1}=I^n$, xz=ax+by for some a, b in I^{n-1} . By Lemma 6, y is a regular element mod. xA. Hence $b\equiv 0 \mod xA$, i.e. b=cx for some $c\in A$. Substituting b=cx and dividing by the regular element x, we have z=a+cy. By induction on n, we may assume that c is in I^{n-2} . So z is in I^{n-1} . Thus x is a stable superficial element of I. Conversely, assume that $yI\equiv I^2 \mod xA$ and x is a stable superficial element of I. Then $xA+yI\supseteq I^2$, which implies that any element z of I^2 is of the form ax+by with $a\in A$ and $b\in I$. So $ax=z-by\in I^2$. Thus a is in I. Hence $xI+yI=I^2$.

THEOREM 10. If there exist elements x, y of I such that $(xA+yA)I=I^2$, then the Poincaré series associated with $G_I(A)$ is of the form $a_2(1-t)^{-2}+a_1(1-t)^{-1}$ for some integers a_1 , a_2 , i.e. $r(I)=-\infty$.

Proof. By Theorem 2 and the remark after it, $P(G_I(A), t)$ is of the form $a_2(1-t)^{-2} + a_1(1-t)^{-1} + b_0 + b_1(1-t) + \cdots + b_r(1-t)^r$. Let $N_n = xA \cap I^n$ and $N = \bigoplus_{n=0}^{\infty} N_n/N_{n+1}$. Then from the exact sequence;

$$0 \longrightarrow xA/N_n \longrightarrow A/I^n \longrightarrow \bar{A}/\bar{I}^n \longrightarrow 0$$

it follows that

(*)
$$P(G_{I}(A), t) = P(N, t) + P(G_{\bar{I}}(\bar{A}), t)$$

where $\bar{I} = I/xA$ and $\bar{A} = A/xA$. Since

$$\lambda(xA/N_n) = \lambda(xA + I^n/I^n) = \lambda(A/(I^n: x)) = \lambda(A/I^{n-1}),$$

we have

$$P(N, t) = \sum_{n=1}^{\infty} \lambda (I^{n-1}/I^n) t^n = t P(G_I(A), t) = P(G_I(A), t) - (1-t) P(G_I(A), t)$$

$$= a_2 (1-t)^{-2} + (a_1 - a_2)(1-t)^{-1}$$

$$+ b_0 - a_1 + (b_1 - b_0)(1-t) + \dots + (b_r - b_{r-1})(1-t)^r - b_r (1-t)^{r+1}.$$

Since \bar{I} is stable in \bar{A} , $P(G_{\bar{I}}(\bar{A}), t) = a(1-t)^{-1} + b$ for some integers a, b. It follows from (*) that $b_r = b_{r-1} = \cdots = b_0 = 0$, $a = a_2$ and $b = a_1$.

THEOREM 11. Let x, y be I-transversal elements such that x is a superficial element of I. Then $\mu(I) = \lambda(A/(xA + yA))$.

Proof. Just as the proof of Theorem 10, we know that P(N, t) is of the form $a_2(1-t)^{-2} + (a_1-a_2)(1-t)^{-1} + f(t)$, where f(t) is a polynomial with deg $f(t) \le r(x)$. From (*), we know that $P(G_{\overline{I}}(\overline{A}), t)$ is of the form $a_2(1-t)^{-1} + g(t)$, for some polynomial g(t). So $\mu(I) = \mu(\overline{I})$. By [2] the proof of Theorem 1.9, $\mu(\overline{I}) = \lambda(\overline{A}/\overline{y}\overline{A})$. Thus $\mu(I) = \lambda(A/\overline{y}\overline{A}) = \lambda(A/(xA+yA))$.

THEOREM 12. Let x be an element of I, $\bar{A} = A/xA$ and $\bar{I} = I/xA$. Then following conditions are equivalent.

- (i) $(xA+yA)I=I^2$ for some y in I.
- (ii) $r(I) = -\infty$ and x is a stable superficial element of I.
- (iii) $r(I) = -\infty$ and $P(G_{\bar{i}}(\bar{A}), t) = (1-t)P(G_{\bar{i}}(A), t)$.

Proof. (i) \Rightarrow (ii). This follows from Theorem 9 and Theorem 10. (ii) \Rightarrow (iii). Since x is a stable superficial element, $P(N, t) = tP(G_I(A), t)$. So by (*), we have $P(G_{\bar{I}}(\bar{A}), t) = (1-t)P(G_I(A), t)$. (iii) \Rightarrow (i). Let $P(G_I(A), t)$ be of the form $a_2(1-t)^{-2} + a_1(1-t)^{-1}$. Then $P(G_{\bar{I}}(\bar{A}), t)$ is of the form $a_2(1-t)^{-1} + a_1$, which implies that \bar{I} is stable. Moreover, $P(N, t) = tP(G_I(A), t)$ by (*). From the proof of Theorem 10, this implies that, for each n > 1, $\lambda(A/(I^n: x)) = \lambda(A/I^{n-1})$, i.e. $I^n: x = I^{n-1}$. So x is a stable superficial element of I. Let Y be an element of I such that \bar{Y} is \bar{I} -transversal. Then (i) follows from Lemma 5 and Theorem 9.

LEMMA 13. Let J be an open ideal of a semi-local Cohen-Macaulay ring B of

Krull dimension 1 and y a transversal element of J. Then r(J) = r - 1 iff r is the minimum of the integers n > 0 such that $yJ^n = J^{n+1}$.

Proof. This follows from [2] Lemma 1.8. (ii) and Theorem 1.9.

THEOREM 14. Let x be a superficial element of I with $r(x) \le r$. If $r(I) \le r - 1$, then $r(I/xA) \le r$ and $(xA + yA)I^{r+1} = I^{r+2}$ for some y in I. In particular, if r(I) = 0 and x is a stable superficial element of I, then $(xA + yA)I^2 = I^3$ for some y in I.

Proof. Let N be as in the proof of Theorem 10. Since $r(x) \le r$, we have $\lambda(xA/xA \cap I^n) = \lambda(A/(I^n:x)) = \lambda(A/I^{n-1})$ for each n > r. Thus $(xA/xA \cap I^n)$ is a polynomial in n for each n > r. So, by Lemma 1, $r(P(N), t) \le r$ and $P(N, t) = tP(G_I(A), t) + f(t)$, where f(t) is a polynomial in Z[t] with deg $f(t) \le r$. It follows from (*) that $r(\bar{I}) \le r$. By Lemma 13, there exists an element y of I such that $yI^{r+1} \equiv I^{r+2} \mod xA$. So $xA + yI^{r+1} \supseteq I^{r+2}$. Let z = ax + by $(a \in A, b \in I^{r+1})$ by an element of I^{r+2} . Then $ax = z - by \in I^{r+2}$. Hence $a \in I^{r+1}$, which shows that $(xA + yA)I^{r+1} = I^{r+2}$.

THEOREM 15. (i) If $r(I) = -\infty$, then $(xA + yA)I^m = I^{2m}$ for some integer m and x, y in I^m .

(ii) If $r(I) \ge 0$, then $(xA + yA)I^{2m} = I^{3m}$ for some integer m and x, y in I^m .

Proof. By Lemma 8, I^m has a stable superficial element for sufficiently large m. By Proposition 4, for all large m, $r(I^m) = -\infty$ if $r(I) = -\infty$, and $r(I^m) \le 0$ if $r(I) \ge 0$. Now (i) and (ii) follow from Theorem 12 and Theorem 14, respectively.

Bibliography

- [1] ATIYAH, M. F. and MACDONALD, I. G.; Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.
- [2] LIPMAN, J.; Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649-685.
- [3] MATSUMURA, H.; Commutative Algebra, 2nd Ed., Benjamin, New York, 1980.
- [4] NAGATA, M.; Local Rings, Interscience Tracts in Pure and Applied Math., 13, John Wiley, New York, 1962.

Department of Mathematics The National Defense Academy Yokosuka, Japan