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A Stable Harmonic Map of a Manifold with Boundary
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The purpose of this paper is to give sufficient conditions for a harmonic map of a
manifold with boundary to be stable (Theorems 1 and 2), and also give a property of
a harmonic map without boundary (Proposition 4).

1. Introduction

Let (M,g) and (N, h) be smooth Riemannian manifolds. A smooth map
f: M- N is said to be harmonic if it is a critical point of the energy integral

B= [ iz, dp=gldsel?,

where | df(x)| is the norm of the differential of f at x € M, dx the volume element of
M, and e(f) is called the energy density of . A harmonic map is called stable if it has
positive second variations, namely if

A*E(f)/dF] ;=0 >0

for any one-parameter family f, with fy=f. Otherwise a harmonic map is called
unstable. We are interested in knowing whether a harmonic map is stable or not.

If N has negative sectional curvature, then it is easy to see any harmonic map is
stable. Eells and Sampson [3] showed that any smooth map f: S"—S" with degree #0
does not have minimizing energy for n>2, hence the identity map f: S"—»S" is
unstable. In fact, Smith [5] showed that its index is 7+ 1. Xin [6] generalized this result
showing that there is no nonconstant stable harmonic map from S" with n>2 to any
Riemannian manifold. Suppose that M, N are two Kaehler manifolds. Then a
holomorphic map f: M— N is harmonic and stable [2].

2. Statement of results

THEOREM 1. Let (M, g) be a compact Riemannian manifold with piecewise
smooth boundary M, dim M=m. Let (N, h) be a complete Riemannian manifold
whose sectional curvature is bounded from above by a constant C=0. Let f: M— N be
harmonic and A,(M) the first eigenvalue of the Laplacian acting on functions. Assume
furthermore that
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2.1) 2-C-su%){e(f)(x)<ll(M).

Then f is stable.

_ Ay(M) is the smallest positive real number such that there exists a solution
@eH(M) of Ap+ Ap =0, where H(M) is the space of C?-functions on M which are
not identically zero and vanish on dM. It is well-known that

j | Vo | 2dx
22 A(M)= inf M
@eHg(M) J¢2dx
M

where H (M) is the space of functions ¢ on M such that they are not identically
zero and vanish on M, and ¢ and ¢ and |V¢| are integrable on M. We denote by
Vo the gradient of function ¢.

Next we get Theorem 2 in which a condition is a form of integral of energy

density e(f).
THEOREM 2. Let (M, g), (N, h) and f be as in Theorem 1. Assume Sfurthermore

that

D-(m-2) .
2.3  C - le(NH V| pm < ————"— if m>=3
@3) . S2m—1)

D
2.4) V C - lle()?|pe<——nr—r if m=2.
( ” (.f) ”L 2'\/7V01(M) f
Then f is stable.
Here D is the Sobolev constant depending only on manifold M, and satisfies

(2.5) IVolli=D- |l mm-1  forany @eHyM),

vol (M) being the volume of M, and |- ||, denoting the L? norm.

COROLLARY 3. Let (M, g) be a compact Riemannian manifold with piecewise
smooth boundary OM. Then a harmonic map f: M—R" (n>1) is stable.

Next we show a property of a harmonic map similar to that of a minimal
submanifold.

PROPOSITION 4. Let (M, g) be a compact Riemannian manifold without bound-
ary, and S™(1) a unit sphere with the standard metric. Then for a nonconstant harmonic
map f: M—S"(1) (cR"*") f(M) is not contained in an open hemisphere.

3. Preliminaries

Let (M, g) be a compact Riemannian manifold with boundary (possibly without
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boundary), dim M =m, and (N, 4) a complete Riemannian manifold. Let f: M— N be
a smooth map. The differential df: TM— TN of f is a map of the tangentbundle of M
into that of N. We denote by V, V, V the canonical Riemannian connections of
Riemannian vector boundles TM, f “'TN, TN. f~'TN is the induced vector bundle
over M by f. For any vector field V along f, let £, be one-parameter family with f,=f
and 0f/dt|,—,=V. The first variation formula is

d
(3.1 E;E(ﬂ)

=—J V, Af)dx=J 2V, V,dfeydx,
M M

t=0

where

41: = 3. (V.(dfte) ~df(V.e)

is the tension field defined as a section of f "' TN, {e;} an orthonormal frame in M,
and ¢,) the Riemannian metric in N. Hence the Euler-Lagrange equation for a
harmonic map is 4f=0. For any given harmonic map f, the second variation
formula is [5]:

dz
(32 S E)
where VR is the curvature tensor of the manifold N; i.e.

NRX, Y)=[Vy, Vi1 -V 115

=J <—ZV—— i NR(V, dfe)dfe;, V>dx,
=0 JM i=1

and

av:=traceV?V=(V,V,V-Vy V).

The index form for a harmonic map is

I(V, W)=J <—ZV~—ZNR(V, dfe)dfe, W>dx
M i

=J IV, Whdx,
M
where

JV=—AV =Y R(V, dfe)dfe,.

Therefore a harmonic map is stable if I(V, V) >0 for any vector field V along f.

4. Proof of Theorem 1
We need a lemma

LEMMA. Let (M, g) be a compact Riemannian manifold with boundary, (N, h) a
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complete Riemannian manifold whose sectional curvature is bounded from above by a
constant C=0. Let f: M— N be a harmonic map. If for any pe Hy (M)

@1 J |V¢|2dx>2CI o%e(f)dx,
M M
then f is stable.
Proof of Lemma. We set a variation vector field ¥ along f as follows:
(4.2) - V=X  @eHyM),

X being a unit variation vector field along f; i.e.

XN X(F)>=1.

Let {e;} be orthonormal frame on M. We calculate AV.

4.3) AV =trace V¥V =3 (V. V,(¢X))—Vy, . (0 X))
=(49)X +@AX +2) efp)V, X ,

where A is the Laplacian of ¢. Hence
AV, Vy=pdo+¢*X, Xy, since <V, X, X>=0

From (3.8) we have the formula
a9 1v.0=| | —0d0-0%CX, 2X>= 9T 'R, dfefe, x5 Jax.
M i

We denote by ky(X A Y) the sectional curvature of N spanned by two independent
vectors X and Y.
"R(X, dfe)dfe, X)

@4.5) XA )= e T X [ —(df ey X7

By the condition of lemma
46) Y ("R(X, dfe)dfe, X)<CY {|dfe;|*|X|*—<dfe; X)*} <2Ce(f).

On the other hand,
4.7 (X, AX Y=Y <X, V,V, X —Vy, XD
=Z <Xs veivei‘)(>= —Z | VeiX |2 <0.
Here we used the identities
(X, VyXy=0 and 0=YX, V;X>=|V,X|2+<X, V,V;X>
for each vector field Y on M. Therefore from (4.6) and (4.7) we get the following
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formula

4.8) v, V)>J {— A9 —2Cp%(f)} dx
M

=j {IVo|>—2Cop?e(f)} dx .

M

We used Green’s formula
J (pdp+<Vo, V(p})dxzj LoV, v)dx,
M oM

where v is a unit outer normal vector. The lemma follows under its condition.

Proof of Theorem 1. For any ¢ e Hy(M)

j |Vo|2dx
J p3dx
M

2-CJ @2e(f)dx <2-C sup ()| 2dx<J | Vo |2dx
M

xeM

4.9) L(M)<

hence

This implies the condition of lemma. Therefore the theorem follows.

5. Proof of Theorem 2

(a) when m>3, replacing ¢ by | @ [*™~1/™=2) in the Sobolev inequality, we get

2m—1 (m—1)/m
J —(m—-—ll(plm/‘"’_z)lV(pldXZD(J |(p|2"'/("'_2)dx> s
M M

m-—2

using the Horder inequality

(5'1) <J |go‘2'”/('”_2’dx>(m_2)/2m %(J‘ |V(p|2dx>”2_
M 2\ Ju

Also by the Horder inequality and (5.1)

‘1/m (m—2)/2m
( f wze(f)dX)”zsq e(f)""de> ( J |<p|2m/<"‘-2’dx)
M M M
) 1 1/m 12
< D('(”m %( f (f)""zdx> (fMWde) ,

hence by the hypothesis of Theorem 2,
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1/2 1/2
<2CJ o?e(f) dx> S(J Vo | de) .
M M

We get the stable condition of lemma by squaring both sides.

(b) When m=2, replacing ¢ by ¢? in the Sobolev inequality, and using the
Horder inequality,

1/2 1/4 1/2
D<J (p4dx> <J 2|9||Vep|dx<2 V01(M)”4<J q)“dx) (j |V¢|2dx> .
M M M M

Hence

1/4 2 1/2
(5.2) ( qo“dx) <=vol(M)V4 | |Ve|2dx) .
M D M

Again by the Horder inequality and (5.2)

12 1/4 1/4
<2CJ (pze(f)dx> g./ZC(J e(f)zdx> (J qo“dx)
M M M

2,/2C 12
<lletN)" s vol (M)”“(f Vo Izdx> ,
M

D

the hypothesis of lemma follows, and theorefore the theorem follows.

6. Proof of Proposition 4
Choose any ee R"*1, (g, ¢)=1. Let (,) be Riemannian metric in R"*!. We use
the first variation formula (3.6). We put a variation vector field V along f
(6.1) V(x)=e— (e, y(f NI f(x)),
where y is the position vector of /(M) in R
VoV =V V=V le— (e »)yD"
=(~'85 dfei)y—(g, y)dfei)T
= _(87 ,V)dfe, )
where V, V, V are the Riemannian connection of f~!7S"(1), TR"*', TS"(1)

respectively. ()T the tangent component of S"(1). It follows

- J (& y)).Kdfe, dfeydx= — j (& y)e(f)dx=0.

By e(f)+#0 (nonconstant map). It is impossible to be (g, y) >0 or (e, y) <0.
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7. Appendix

7.1.  An example of stable harmonic maps

Define M, N, and f as follows.
M:={(x*, x% - -, x"eR":Y (x)*=1, x">c>0, n>2}

N:=8"(cR"*'): a n-dimension unit sphere with the standard metric
fiM—N; f(xt, X%, -, x)=(x', x2, -+, x", 0): totally geodesic map.
Then using the same notation as in Theorem 1, it is easy to see that e(f)=(n—1)/2,
C=1, ,(M)>n—1 (see [1] for 1,(M).) Therefore it is a stable harmonic map.

7.2. A relation with a minimal submanifold

Let /:(M, g)—(N, h) be a Reimannian immersion (f/*h=g). Then fis harmonic if
only if it is minimal [3]. Let f, be a one-parameter family of Riemannian immersions
with fy=£. Put

V(): ='J det(f¥h)ydx .

Then fis minimal if it is a critical point of V(¢). When we identify M with f(M), the
second variation formula of minimal submanifold is [4];

(7.1)  d*V(e)/de?

=J‘ [_<Ea AE> —Z(<B(eia ej)a E>)_Z <R(Ea ej)eﬁ E>:|dx s
t=0 M i,j J

where {e;} is an orthonormal frame, E the variation vector field along f vanishing on
boundary dM. B denotes the second fundamental form of M in N. By comparing
(3.7) with (7.1), a stable minimal submanifold yields a stable harmonic map.
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