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The main aim of this paper is to give some additional explanations
about the results of the previous paper [2].*

In [2] we obtained the following theorem (Theorem 5 in [2]);

There exist relative abelian extensions E,/K, and E,/K, of algebraic
number fields such that each Hecke L-fumction on E,/K, coincides with
that on E,/K, and yet two Galois groups of E,/K, and E,/K, are not
isomorphic.

In Section I, we prove that it is able to take K,=K, in the above
theorem. (See also Theorem 2 of Addition.)

Using the functional equation of the zeta function, Perlis proved
that if algebraic number fields have the same decomposition of all but
a finite number of rational primes, then their zeta functions are the
same.

Using Artin L-functions and the Cebotarev density theorem, we
obtain in Section II that the above statement goes through even if we
replace “all but a finite number of rational primes” by “all rational
primes in a set of density 1”. (cf. Corollary of Theorem 1)

In Section III it is showed that for every positive number N we can
find a field to which the number of arithmetically equivalent fields up
to conjugate fields is larger than N. (See also Theorem 2 of Addition.)

Notations used here are kept in [2].

Let G, be a group of order 16 generated by elements P, @, R with
relations;

P=1, @=1, R°=1, Q'PQ=P™, P°=@Q*, R"'QR=Q, R"'PR=P .

Let G, be a group of order 16 generated by elements S, T with
relations;

St=1, T*=1, T7'ST=S""*.

I. We prove that it is able to take K,=K,(=K,) in Theorem 5
in [2].

Let the indices of irreducible characters of G, and G, be as in
Section 6 in [2]. The direct product G, X G, is embedded in the sym-

* This paper and [2] form the author’s doctoral thesis (Rikkyo University, November
1978).
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metric group S,; of degree 256 via its regular representation. Let
Irr(G) be the set of all irreducible characters of a group G. It holds

Irr(G, X Gy)={X; X 0;; X; e Irr(G)), 0; € Irr(G,)}

where (X;x8,)(o, 7)=X;(0)0;(z) for (¢, 7)eG,XG, Put ¥,=X,x0, and
G;=X,x80;, where X, and 6, are the principal characters of G, and G,
respectively. Then characters XF and ¥ of S, induced from ¥, and
d;, satisfy that

Xx=0y, Ar=0r, Xr=0F Xr=0y :
Put H,=(P)x@G, and H,=G,x{S). Then H, and H, are normal sub-
groups of G,XG@,.- Further the quotient group (G, X G,)/H, is the Krein’s

four group and the quotient group (G, xG,)/H, is a cychc group of order
4. Here it holds that

Il’l‘((G1 X Gz)/Hl) = {ZO, Zz: 24, zs} ’
Irr((G, x Gy) | Hy) ={8,, 8,, 8,, 8, ,

Let E/K be a normal extension of algebraic number fields with
Gal(E/K)=S,, Let E, E, and K, be the fixed fields of H,, H, and G, xG,
respectively. Similarly to the argument in Section 6 in [2], we see
that two abelian extensions E,/K, and E,/K, have the same set of
Hecke L-functions and yet their Galois groups are non-isomorphie.

The proceeding comment gives a negative solution to the following
problem; Do only the Hecke L-functions determine a finite abelian
extension uniquely, when a basic field is fixed? We take an interest
in this solution, comparing it with class field theory.

II. We keep notations in Section 2 in [2].

Let K/k be a finite Galois extension of algebraic number fields
with G=Gal(K/k) and + be its generalized character. For a positive
rational integer m and a prime ideal p in %k, we put

O =151 5, 4050,

where o, is a Frobenius substitution of an arbitrary prime factor P
of p in K and I, is its inertia group. Let p» be a rational prime, and
define L, (s, v, K/k) by
K/k) = ¥ (p™)
Lo, v, K9 =Tl exp {5~ 5|

for Re(s)>1, where p runs over all prime factors of p in k. The
following properties of L,(s, 4, K/k) are obtained in process of proving
the corresponding properties of Artin L-function L(s, +, K/k). But
they are not usually specified. Therefore we enumerate list here because
of reference later on.
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(1) Ls, 4, K/R)=TI, Ly(s, v, K/k)
for Re(s)>1, where p runs over all rational primes.

(2) Lp(s’ '¢’l+"ﬁ'2, K/k):LP(S’ "1"1! K/k)Lp(s, "ﬁ\zy K/k)'

(8) If E is a finite Galois extension field of % including K, then

L,(s, +, K[k)=L(s, 4, E[k).

(4) If KoF>ok and o is a generahzed character of Gal(K/F),
then L,(s, 4, K/F)=L,(s, v*, K/k), where 4* is the character of Gal(K/k)
induced from .

Let A be a set of rational primes. If

hm(

8140 \pe 4 p 3—
éxists, then its value is said to be the Dirichlet density of A and
denoted by p(A4).

THEOREM 1. The following conditions are equivalent.

(1) L, Vv, K/k)=1-

(ii) Ly(s, ¥, K[k)=1 for every rational prime p.

(ili) There exists a set A of rational primes such that p(A)=
and L,(s, 4, K/k)=1 for every pc A.

Proof. (i)==(ii). Let E be the Galois closure of K over Q. Applying
the independence theorem on Artin L-functions (Theorem 1 in [2]) to
L(s, v*, E/Q)=L(s, +, Klk)=1, we have *=0. Therefore it holds for
every p

L,(s, ¥, K/k)=Lp(s, ¥v*, EjQ)=

(il )==(ili). This is trivial.

(iii)==(1i) It suffices to check that L,(s, v, E/Q)=1 for every pc A
implies =0 when E is a finite Galois extension field of @ with G=
Gal(E/Q) and when +r is a generalized character of G. Then we obtain
¥(0y)=0 for an unramified prime ideal % in E above pe A. For it
follows from 3}, 4(p™)/mp™=0 for R(s)>1 that (p)=0, in particular,
4(05)=0 for unramified primes . (For the details, cf. Theorem 1
in [2].) Let o be any element in G and let B, be a set of all rational
primes p whose prlme factors in E correspond to ¢ as Frobenius sub-
stitution. By the Cebotarev density theorem, we get ¢(B,)>0. Hence
ANB,+#¢ and so there exists pe A such that o= 0y for an unramified
prime factor P of p in E. Therefore it holds that (c)=0 for all
o €@, that is, 4=0. : _ Q.E.D.

The following corollary is detail'ed more than Cassels-Frohlich [1,
Exercise 6.4]. Compare it with Corollary 8 to Theorem 8 in [2] too.

COROLLARY. In order that (g (s)=Cg,(s), it is mecessary and
sufficient that there exists a set A of rational primes with pt(A)=1 such
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that for every pc A the decomposition of p in K, and K, is the same,
in sence that the collection of degrees of the factors of p in K, is
identical with the collection of degrees of the factors of p in K.

Proof. The necessity follows from Cassels-Frohlich [1, Exercise
6.4] or Perlis [3, Theorem 1]. (There we can take the set of all rational
primes as A.)

Here we give only a proof of the sufficient. It follows from the
assumption of the sufficient condition that

n ) B0 5er)

for every pe A, where p, and p, run over all prime factors of p in K,
and K, respectively. Since

Cx(s)=L(s, 1, K;/K))
and
1 ~1
L 1, K,/K,)= 1——
oo 1, KJE)=TI (1= 5o
for 1=1, 2, we obtain
Lp(s’ 1} Kl/Kl):Lp(s’ 1, K2/K2) .

Let E be a finite Galois extension field of @ including K, and K, with
G=Gal(E/Q) and let H,=Gal(E/K,) for i=1,2. Now X, and X, denote
the characters of G induced from the principal characters of H, and
H, respectively. Then for every pec A,

L, (s, X,—X,, E/@)=1.
By Theorem 1, we get L(s, X,—X,, E/Q)=1, that is,
CK1(3)=CK2(3) . Q.E.D.

III. Two algebraic number fields K,, K, are said to be arithme-
tically equivalent if (g (s)=Cg,(s). Let A(K) be the set of all ar-
ithmetically equivalent fields to an algebraic number field K. We
define an equivalent relation in A(K) by the following; Fields K, and
K, in A(K) are equivalent if K, and K, are conjugate. Now n(K)
denotes the number of equivalent classes of A(K) with respect to the
relation. It follows from Corollary to Theorem 4 in [2] that the number
of arithmetically equivalent fields to a given field is always finite. Thus
every n(K) is finite. However the following proposition holds.

PROPOSITION. For any positive number N, there exists a algebraic
number K with n(K)=N.

Proof. Let G,, G, be finite groups. Suppose that subgroups H,,, H,,
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of G, are Gassmann equivalent in G, and subgroups H,, H,, are G, are
Gassmann equivalent in G,. (Subgroups H,, H, of a finite group G are
said to be Gassmann equivalent if | H,NC|=|H,NC| for every conjugate
class C of G. For the details, see [2] or Perlis [3].) Then H, X H,, and
H,x H,, are Gassmann equivalent in G, xG, Groups G, G, given at
the beginning of this paper are Gassmann equivalent and non-conjugate,
in fact non-isomorphic, as subgroup of the symmetric group S,; of degree
16. (For the details, see Section 6 in [2].) When we regard the direct
product Gy as subgroup of the direct produet S?, the number of
Gassmann equivalent subgroups of S% to G™ which are non-conjugate
to each other is larger than 2. Further there exists a Galois extension
E,/Q with Gal(E,/Q)=S%. Therefore, by Corollary 8 to Theorem 3 in
[2], it suffices to take as K the fixed field of G in E, for m=log, N.

Q.E.D.

Addition. The argument in Section I and III suggests the following
theorem. But its proof is omitted here owing to avoidance of repetition.
Now H(L/K) denotes the set of all Hecke L-functions attached to an
abelian extension L/K.

THEOREM 2. For any positive number N, there exists an algebraic
number field K which has finite abelian extensions F\/K, ---, F,/K for
some m=N such that Gal(F\/K), ---, Gal(F,/K) are not isomorphic to
each other as abstract group while H(F\/K)=---=H(F,/K).
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