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Summary

The first half of the present work is essetially a sequel to the
authors’ recent paper [11], and it gives expansion formulas for the
multiple H-function in a series of products of several generalized
hypergeometric polynomials (cf. Theorems 1 and 2 below); it also
demonstrates how these expansion theorems would admit themselves
of further generalizations given by Theorems 3 and 4 below. The
second half deals with various classes of generating relations involving
the H-function of several complex variables. Finally, some possible
applications of the results presented here and their relevant connections
with a number of known results are indicated briefly.

1. Introduction and definitions.

For the generalized Lauricella function ([6], p. 454; cf. also [8],
p- 19 et seq.) :

£
A:B';---; B™[ .

1.1 F s,
(1) C:D’; ---; D\ *
2

we gave the expansion formula [8, p. 24, Eq. (3. 6)]

A:B'+E'; -5 B‘”+E‘”([(a): g, e, 67]:
C: D' +G'; - s DN +GO \[(0): 4, « -, ¥
[(&): 11, [(0): #'); -+ +5 [(e7): 1], [(B): s
[(@): 11, [(@): 8T - -+ [(g*): 1], [(@): 31T;
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together with its confluent form [op. cit., p. 30, Eq. (4.5)]

2t
A:B'+E'; «--; B"+E"[
(1.3) e tor | '+ i + :
C:D'+G';--+; D7 4G p
Zely

=3 o ERLIEN LB,
_7;) Gnlzv s %] II=1 { n! [(g(i))]_pi[(k(i))]pi Bn,i(ti)} ’

where the generalized Lauricella functions on the left-hand sides of
(1.2) and (1.3) are the same,
A:B+H'+1; -+ ; BP+H" +1/[(a): &, +--, 6"]:
C:D'+K'+2; - D‘”+K‘”+2<[(c): LARERNE AM E
[1+p0.:1], [()+0.: 11, [(B): 6]« <5
[L1—n+p:1], [L+n+7,+0.: 1], [(E)+0.: 1], [(d): 8'1; -« 3
[1+p,:1], [(B")+p,: 1], [(B): ¢; — )
[L—n+0,: 1], [L+n+7,+0,: 1], [(57)+p,: 1], [(@): 6]; 7 %) »
A:B'+H'+1; «++; B+ H" 11
(1.5) G.lz, -, al=F DA s e D K1
[(@): ¢, -+, 87F: [1+p.: 1, [(W) +0.: 11, [(): 8'); -+ 5
([(0)‘ Wy O L=t 0 1], (W) +0,0 11, [(@): 6 -+ 5
[1+0.: 1], [()+0,: 1], [(6"): 7]; . )
[1—n+p,:1], [(E")+p,: 1], [(@): 677" 2 B |y
—n, B+, (69)—p,, (ka));t]
(0)—p;, (R9):

(1'4) F’n[zly ] zr]:F

1.6) B,m-(t{)=E(i)+K<i)+2Fg<i>+Hu)[

and

—n, @)~ ) k(i);
1.7 B;:,i(ti):E(’i)+K(i)+1Fg(i)+H(i)|: (™)=p., ( )tJ,

(9)— 04 (B™); ’
(’n=0, 1, 2, ey 1::1, e, /,') .

{For the sets of sufficient conditions of validity of the expansion
formulas (1.2) and (1.3) see Theorem 1, p. 24 and Theorem 3, p. 29,
respectively, of reference [8].}

Here as well as throughout this paper we use the abbreviation
(@) to denote the sequence of A parameters a,, ---, a4 for each 1=
1, -+, 7, (b¥) abbreviates the sequence of B* parameters b, 5=
1, .-, B®, with similar interpretations for (¢), (d), ete., i=1, e,
it being understood, for example, that d®=8, b®=p", and so on.
Also, for the sake of brevity, we employ the following contracted
notations: :
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a8  (@L=T] [l (9= LBl =1, -, ricte.,

where [a], is the Pochhammer symbol defined by
T'(a+mn) { 1, if »n=0.
1.9 ==
(1.9) [ec], () a(@+1)---(a+n—1), if n=1,2,8, - .

In the present paper we first derive extensions of the expansion
formulas (1.2) and (1.8) to hold for the H-function of several complex
variables z,, -+, 2,, which is defined by the multiple contour integral

([10], Eq. (4.1) et seq.; see also [11])

0% % s ) (O - o)
A, C:[B, DT; -+ +; [B”, DI\[(0): ¥, -+, ¥]:

[©): 6T -5 10767 )
[(d): 8]; «--; [(@m): 0] 7"

B (273-60)1' Sy o S.S’ (I)I(CI). : 'q)f(cr)\P(Cu M) Cr)
e 2heee2bdl - - dG, w0=1"1,

(1.10) H

where

() V(3
T1 Tlay —¢] T TIL—b +45C]
(1.11) D,(C)=—m— f=t

D) B(1) ’
II T[l—d®+60C] II TP —e¢]
j=p 41 j=v(0 41

=1, «-, 7 ;

1 I‘[l—a,j—l— Y a;.ﬂci]
(1.12) W, -, L)=— = = _ ,
i1 1o~ 300c LT[ 1+ Sy |

+1 =1

ij=

an empty product is interpreted as 1, the coefficients' 6°, j=1, ---, 4;
¢, j=1, -+, B 4P, j=1, ..., C; 8, j=1, .-+, D9, (1=1, ---, 1),
are positive numbers, and A, g£®, v, A B% C, D¥ are integers such
that 0<A<A, 0Zpuv< D%, C=0, and 0=v¥<B%, ¢=1, .., r. The
contour &%, in the complex {,-plane is of the Mellin-Barnes type which
runs from —w> to w> with indentations, if necessary, in such a manner
that all the poles of T[d{»—d{¢], j=1, ---, ¥, are to the right,
and those of T[1—b{+¢%¢], 5=1, ---,v¥, and T[l—a;+ >, 07C],
j=1,-+-,\, to the left, of &, the various parameters being so restricted
that these poles are all simple and none of them coincide; and with

t The special case of (1.10), when these coefficients &, ¢, ¥, and J are all equated to
1, was considered by Khadia and Goyal [2].
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the points 2,=0, ¢=1, ---, r, being tacitly excluded, the multiple
integral in (1.10) converges absolutely if

(1.13) larg (z:) | < —;—ﬂAi , t=1, -7,
where
2 4 o B() )
(1.14) A=230— 3, 094+~ >, ¢
j=1 Fi=2+1 j=1 G=v() 4
¢ G D) ) .
=2 PP+ 00— 3 >0, t=1, -0, r.
Jj=1 J=1 F=p(2) 4y

Conditions corresponding to the aforementioned ones will be assumed
to hold throughout the present paper, and for convenience, we shall
employ a contracted notation and write the first member of (1.10) in
the abbreviated form
“
0, N (e, )5 -5 (17, 017)
4, C[B, DY -+ [B”, D7\ - |’
2

r

(1.15)

wherever no confusion arises.
Thus it is easily verified that

0, % (¢, V) -5 (i, 0y [

4, C:[B, D'l -+ [B, D7)\ °

{0(121 [« | 2, %), max{|z], -+, |2, [}—0,
O(l z1l—ﬂ1"']zrl—ﬁr)’ A=0, min {]zl I’ Tty !zr”-——)oo ’

1.16) H

where, with 1=1, ---, r.

(e 5
Bi=[1—-0b{]/p$", =1, «--, v,

The aforementioned extensions of (1.2) and (1.8), contained in
Theorems 1 and 2 below, together with Theorems 3 and 4 of our
previous paper [11], are intended to complete the development of
expansion theory of the multiple H-function (1.10) in series of various
classes of generalized hypergeometric polynomials or their products.
Indeed, we also show the main expansions (2.8) and (2.22), given by
Theorems 1 and 2 below, admit themselves of further generalizations
involving hypergeometric polynomials in several variables.

The remainder of this work is concerned with a considerably large
variety of generating relations for the H-function of several complex
variables. And we conclude this paper by presenting a brief discussion

(1.17)
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on the possible applications of the various results obtained here and
on the relevant connections of these results with certain known ones.

2. The main expansion theorems.

By letting z,=---=2,=0 our expansion formula (1.2) yields
= (TA+0)[(g)], [(R“))],
2.1 thre - tr=11 - < ‘
®D *‘=1{ [(e)]o I (B )], }
. i f[ (=1)"Cn+7)l(n+7,)
i (!l TA—n+o)TA+n+7,+0;)

—n, n+7,, (e?), (k?); }}
(@9), (h); 1)’

where, for convenience, the contracted notations in (1.8) are used, and
the result holds, by the principle of analytic continuation, whenever
the series converges to the indicated sum.

As a consequence of (2.1) we shall derive a generalization of our
expansion formula (1.2) contained in

THEOREM 1. With A, and «a, defined by (1.14) and (1.17), respec-
tively, let 0,>0, B9+ K®+1=G*"+H®Y,

) +K(i)+2Fg(i)+H(i)|:

2.2)  A+[E9—G9]e,>0, |arg (z.) ]<-%7C{Ai+ (B9 —G%]s) ,

and

{Re {1—p,—e}>0, j=1, ---, B9,

[Re {£"}>0, j=1, -+, K¥; i=1, -+, r.
Also let 0<t, <1, i=1, -+, 7,

(2.3)

@4 Re {3} (o ro)}>—1ir-1),
and
(2.5) Re {g, (Qi—pi—oiai)}<-%(fr—1) . if 0<t,<1,
or
(2.6) Re {g (ri—20.—20@+4Q)} <(r—1), if t,=1,
where
1 (1) x(4) G (4) ) (4 )
(2.7) Qi:__ 2 e;i) + Z k;’l) + Z g?)_ 2 h}'l/)
2 = = =i =

+(L—p)ED—GD], i=1, -+, 7.

Then



124 H. M. SR1vasTAVA and R. Panpa

0, N: (&, Y+ E"); « -5 (1, v+ E™)
A C:[B+E,D+G); --+; [B"+E®, D +G"]
([(@; 0, oo, 071 [(0): 0], [(0): 4T; -5
[(e): 9, <o, ™1 [(d): 8], (9'): 0,); -+ 3
[(e™): a,], [(5): ¢];
[@™): 6], [(9): o,];
=§‘6 H,lz, -+, 2] ;H; {Ai(—~1)”(2n 4;;01‘(%4-%)&'1.(&)} ’

(2.8) tre . tirH

zltfl’ ooy, zrtz'r)

uhere, for convenience,
E ) k)

I T[1—p,—e] II Tlk}"]
(2.9) Ai=35 i) ,
Fl1—p.—g"] 1T T[;"]
Jj=1

Jj=1

—n, n+7;, 1—0,—(e®), (£?);
(2.10) Pn,i(ti);E(i)+K(i)+2Fg(i)+H(i)[ ! £ =(e™), ( )ti:l,

1-0—(@"), (b
(=1, -+, 1),
and
(2.11) H,[z, ---, z,.]
=H0’ N (LY HH); -y (7, 14p™ + H™)
A C[1+B+H,2+D'+K'; --+; [1+B"+H™, 24+D" + K"]
([(a): 0, e, 0]
[@: ', -, L
[—p:0l], [1—p—(R): 0], [(): 6']; - -3
[(@): 9], [n—p.: 0], [-0,—V,—n: 0], [L1—p,—(&): 0,]; -+ -3
[—prio] l—p,~(): 0], [07): 6% )
[(@"): 0], [n—p,:0,], [-0.—7,—n: 0], [1—p,—(E"): 0, ;" 7))
n=0.
Proof. In order to establish the expansion formula (2.8) we first
replace the H-function on its left-hand side by means of the corre-
sponding multiple Mellin-Barnes integral given by (1.10), apply (2.1)
with the ¢ and g parameters replaced by 1—p;,—e® and 1—p,—g®,
respectively, ¢=1, -+, 7, and then interchange the order of summation
and integration. On interpreting the resulting multiple contour integral
as an H-function of r variables z, ---, z,, by using (1.10) again, we
shall arrive formally at the expansion formula (2.8).
So far we have only shown that formula (2.8) is a formal identity.

We now proceed to demonstrate that (2.8) is indeed valid under the
hypotheses of Theorem 1 above.
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To begin with, notice that since
(2.12) vie{l, -+, 7}, ,>0 and E9+K%4+1=G®+H%,

the inequalities in (2.2) are sufficient to insure that the H-functions
occurring on both sides of equation (2.8) are well defined.

On the other hand, the precise (sufficient) conditions of convergence
of the infinite series in (2.8) may be determined by considering the
asymptotic behaviours of the function H,[z,, ---, z,] for large n and
fixed |2,|, -+, |2,|, and of the product

@13) A, e, =[] {ELEETNOI TP )

when n—c and 0<¢,51, 0=, <00, 7.
Indeed, for bounded z, ---,z,, it is readily verified by using
(1.10), (1.16), (2.11), and the familiar result (cf., e.g., [3], Vol. I, p. 33)

Fnta) __ o o
(2.14) —P(n+B) n ! [L+0(1/n)] , N ,

that

—-'r—-.i (ry+204+205a;)
(2.15) H,[z, «--, 2, ]~n ! , n—o0 ,
where «; is given by equation (1.17).

Also, since E94+K%+1=G@¥9+HY, ¢=1, ---, r, by appealing to
(2.14) and the known result ([3], Vol. I, p. 250, Eq. (8); cf. also Vol.
II, p. 8, Eq. (7)), we have

PIg) ; 1—p,—e
Vo _2(1_91;_8;) 3 3 )
(2'16) P”’i(t’) g‘{ n gE(i)+K(i)+2’ G(i)+H(i)(t‘)
&) (3]

-
TR L go ko s, gor o™

nzai
+ K, .(t), 0<t, <1, n—oo ,
ﬁAi ) ( t) << ©0

where | K, ,(¢t,)| is bounded for all », and Q;, A, are given by (2.7)

and (2.9), respectively.

The precise nature of the “terms in (2.16) are available in the
literature cited. For our purpose, however, it would be sufficient to
know the order estimate

(&5)
E9+K%®42 GY+H®

where E,; is independent of » and ¢, i=1, ---, 7.
These considerations, followed by another appeal to (2.14) and the

(@)

2.17) (t)=Bdr P IL+0Un)], n—oo,
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known asymptotic estimate [op. cit., p. 259, Eq. (28)] in order to dispose
of the situation with ¢ =.--=¢t.,=1, will evidently lead to the
hypotheses (2.3) through (2.6), and our demonstration of Theorem 1
is completed.

In a similar manner, we now apply the formula

@18) i o= {FAEOAG IR

= [(e“)],,[(E)],,
el w69, (RO
nz=:'0 ;l;[l {n! F(l—’ﬂ,+pi) E(%)+K(z)+1FG(n+H(a) (g(i)), (h(i)); t,, ’
which obviously would follow either as a special case of our expansion
formula (1.8) when z,=---=2,=0, or as a confluent case of (2.1), when
each t, is replaced by t,/v;, and V,—o, i=1, ---, r, since
. —n, n+7, (a); —n, (a);
(2.19) ITIEE A+2FB|: ®): t/’y]:A+1FBli ®); t;

by making use of the asymptotic estimates [3, Vol. I, p. 264, Eq. (2),
and p. 265, Eq. (7); see also Vol. II, p. 10], we are thus led to

THEOREM 2. With A, a, and Q, defined by (1.14), (1.17) and
(2.7), respectively, let ¢,>0, 1=1, ---, r, and the hypotheses (2.2) and
(2.3) of Theorem 1 hold.

Also let 0<t; <<, and

(2.20) Re {g (pi—Qi+aiai)}>1—'r, if B9+ KD 1=G9+H%
or
(2.21) Re {i(pi—29i+oiai)}>1—%r, if B9 +K9=G%+H%

1=1, cee, 1.
Then

0, \: .
2.22) tfre. trH .
(2.22) A C:.[B+E,D+GY); -+ [B"+E™, D" +G"]

e
()u', p’+E’); ceny (#(r)’ i +E(r))<z )

z2,tor

=5 Kle, -+, 2] T A P2

n!
where the H-functions on the left-hand sides of (2.8) and (2.22) are
identical, A, is given by (2.9),
—n, 1=0—(e), (6); ]
1—0,—(g®), (A¥); "]’
(1=1, .-+, 1),

(2.23) P:,i(ti)=E<i>+K<i)+1FG“)+H(i>l:
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and
0, \: W, 1+v'+H'); -+
A C.[1+B'+H',1+D'+K']; -+ +;
(#(r)’ 1_}_”(7‘)_|_H(7'))
[1+B"+H®", 1+ D"+ K™]
([(“)1 0y -, 07 [—p: 0], [1—p0,—(R): 0], [(0): ¢ -+ 5
[@: ', <+, ¥71: [(@): '], [n—pi: 0], 1—0,—(K): 0.]; - -5
[—o.:0,], [1—p0,— (") 0,], [(67): 6] -
[(d): 8], [n—p,: 0,], 1— 0, — (k™) 0,]; "

Remark 1. The hypotheses (2.20) and (2.21) stem, among other
considerations, from the asymptotic estimates

2.249) Klz, -+, 2]=H

.., z,) , n=0.

r
—r— El“’z“"”i“i)

Kz, ---, 2]
2.25 ol s Frd ,
(2.25) (nl) "

max {|z|, ---, |2, 1}<M,, for some M,>0,

’r‘,'-—)OO 9

which would follow fairly readily from the definition (2.24) in conjunc-
tion with (1.10), (1.16) and (2.14)

Remark 2. Since
(2.26) lim P, ,(t:,/7:)=P(t), =1, -+, 7,
T
which is an immediate consequence of (2.19), it is not difficult to
verify that Theorem 2 is essentially a confluent form of Theorem 1.

Free use will be made here of the familiar principle of confluence
exhibited, for instance, by

227 lim (€2/1el} =" lim LG =t 5 (1=0,1,2, ---).

3. Generalizations of theorems 1 and 2.

The desired generalizations of our expansion formulas (2.8) and
(2.22) are contained in the following theorems.

THEOREM 3. Let the hypotheses (2.3) through (2.6) of Theorem 1
be satisfied. Also, in addition to the wvarious coefficients in (1.11)
and (1.12), let &%, j=1, ---, U; 9, j=1, ---, V, and o, 1=1, ---, 7,
be all positive such that

@3.1) A+ E9-G9+Z 8- 3 7 >0,
j=1 =i
(3.2) U+ B9+ K9 +1=V+G+H" ,
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and
1 ) o
(3.3) I arg (zz) [ <E7T{Ai+ltE(t) —G® +Z 5(” 2 7)(7,)] }
(1’=1y tt 'r) ’
where, as before, A, is given by (1.14).
Then
0, v+ U: W,V +EY; - (", v 4 B

(3.4) to---trH
A+ U, C+V:[B+E,D+GY; ---; [B”+E", D +G"]

<[(u)= 0.8, -, 0,87), [(@): 0", -+, 07L:[(€): 0], [(B): 85 -+ 5
[@): 007, -+, 0.97), [(©): 4, -+ o, w1 [(@): 0], [(9'): 015 -+ <5

(COE AN GO t%)
[(d(r)): 3(7)]’ [(g(r)): O.r]; 1¥17y y Kyplp

T T(L—u;— M) . .
&0 )zH,,[z“---,z,lﬂ{ (=1)@n +7)ln+ 7))
LIF(l v;—N;)"" = n

 F

U.E'+K +2; -+ ; E"+ K" +2([1—(u)—M: &, ---, &)
ViG+H'; - -; G+ H™ ([1_(1,)_1\7: 7, -ee, 9
[—n:1], [n+7:1], [1—p,—(e): 1], [(K): 1]; -+ +;
[1—0,—(9"): 1], [(R'): 1; - -3
[=ni 1], It 1], (=, — () 11, 1) 25, )
[1-0,—(@@"):1], [(W):1; 7 7))
where A, and H,[z,, -+, 2] are given by (2.9) and (2.11), respectively,
and

(3.5) Mi=%040, N=3 01,

1t being understood that 1—(w)—M stands for the set of U parameters
1—w,—M, -, 1—uy—M,;,,
with stmilar interpretation for 1—(v)—
THEOREM 4. Let £°>0, j=1, ..., U; 9">0, j=1, ---, V; 0¢,>0,
1=1, «--, r, and let the assumptions (3.1) and (8.8) of Theorem 3 be

satisfied. Furthermore, let 0<t,;<oo, i=1, ---, r, and suppose that
the imequality in (2.20) or (2.21) holds according as (8.2) or

(8.6) U+E9+K9=V+G@9+H®, i=1, ---, r.
Then
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(3.7) tfl. . .tf‘r

W

0, v+ U: W,V +E) - (1, v + E™) ? .
A+U,C+V:[B'+E,D +G];--+;[B"+E™, D" +G™] ;:a
Zplr"

U
%F(l u;—M;) i;o Kle -, z,]lf[ {Ai(_l')n}
I TA—v;—N;) ™ -
U:E'+K+1; -+ E"+ K" +1{[1—(w)—M: &, ---, &7]:
VG H' s G HY GL«@—Nwz~uww:
[—n:1], [1—p0,—(¢): 1], [(K'): 1]; - - -5
[1—p,—(¢): 1], [(R)):1]; - - -5
[—n: 1, [L—p,—(e"): 1], [(&"): 1]; ._.t)
[L—p,—(g": 1], [(R): 1), " 7)7
where the H-functions on the left-hand sides of equations (3.4) and
(8.7) are identical, the M, N are defined by (3.5) with the same

notational convention as already stated in Theorem 3, and A,
K,[z, +--, 2,] are given by (2.9) and (2.24), respectively.

Proofs. Our proofs of Theorems 3 and 4 are by induction on the
nonnegative integers U and V. In fact, the special cases of (3.4)
and (8.7) with U=V =0 are the same as our expansion formulas (2.8)
and (2.22), respectively. We content ourselves by giving an outline
of our demonstration of Theorem 3 as follows.

Assuming (3.4) to hold true for some fixed positive integers U and
V, we replace each t, by tt%, i=1, ---, r, multiply both sides by ¢,
and (formally) take their Laplace transforms using the familiar result

(3.8) S” e t'dt=T(z), Re(z)>0.

0

Now replace o on both sides by 1—po— P, where

39 P=304

and the induction on U is evidently completed.

Next we effect the induction with respect to V by first replacing
each ¢, in (3.4) by ¢,/C%, i=1, ---, r, multiplying both of its members
by (¢, and then (formally) taking their inverse Laplace transforms
- by means of the known result
1

T+
3.10 —-S 2l =
( ) 2w r—w”ec ¢

1

TG’ Re (2)>0, o=1"—1.
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If we write 1-0—Q for o, where

(3.11) Q=3 0.7,

we shall thus observe that V is replaced by V+1.

This evidently completes a (formal proof of the expansion formula
(3.4) by induction, and indeed the final result as stated in Theorem 3
would follow by appealing, as before, to the principle of analytic
continuation.

Similar is our demonstration of Theorem 4, and we omit details.

4. Generating function.

In this section we derive a number of generating relations
involving the H-function of several complex variables. The first set
of such relations would stem from the following consequence of the
Lagrange (expansion) theorem [4, p. 349, Problem 216]
atE+m) 140

_——l—BC ,
where «, B are complex parameters independent of %, and ¢ is a
function of ¢ defined by
(4.2) C=t1+0)F, {(0)=0.
Indeed, we have
o (=10, ML (e, V); e e (17, v
4.3 —=H
(4.3) Zﬁ n! A+1, C+1:[B, D']; ---; [B™, D]
(l1+“+6n: 0, e 0 [@: 8, -, 07
l+a+(B+Lm:0, ---, 0,], [(c): ¥, -+, 7]
(G GO )tn
[@): 0 -5 [@n): 63 ™ T

— (1+C)a+1 HO, Al (#’; U’); .. . (#("), u(r)) (Zl/(lz-l-C)”l)
- 1- A, C:[B, D] --+;[B™, D™ : ,
B , C:[B', D'] [ ] o (LD

where { is given by (4.2), 6,>0, i=1, ---, r, and the inequalities in
(1.13) and (1.14) hold;

. B . . 0 N: ” p, ; .. .; (i), v(i) +1 ; .. '; (7‘)’ v(r)
oty 5 D0 N ) s (0, 951 - 7, )
= n! A, C: [BI, D ]; . [B(t)+1, D(‘l)_Jr_l]; ceey [B(r)’ D(r)]

Lok RO
[(e): ', « =+, ] [(d): 0'); - +;

(4.1) 2 <

n
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Lywipmol 000G, ),
[@): 2], [L-+a+(8+Dm: ol; «+ (@) 07 ™ %
2,
LA 0, N (1, V) e (1, 97) el
= 1—IBC HA, C: [B’, D,]; ...;[B(f)’ D(r)] zz/(l.'i‘(:) ’

2,

where 1<i<r, { is defined by (4.2), ¢>0, and the conditions given by
(1.13) and (1.14) are satisfied.

To prove (4.3) or (4.4), we replace the H-function on the left-hand
side by its Mellin-Barnes contour integral given by (1.10), invert the
order of summation and integration, and then apply (4.1) above. By
interpreting the resulting multiple integral by means of (1.10), and
appealing to the principle of analytic continuation, we thus arrive at
the generating relations (4.3) and (4.4) under the aforementioned
conditions.

By a similar application of Gould’s identity [1, p. 196, Eq. (6.1)]

s o o (a+(,8+1)n) .

=Y+ (B+1)n n
o - 1\~ n
—aror S (")) ()

7=0 " "

where a, 8, ¥ are arbitrary complex numbers independent of %, and
¢ is defined by (4.2), we shall obtain generalizations of (4.3) and (4.4)
given by

THEOREM 5. With A, given by (1.14), let A,>0, |arg(z)|<
1/2)zA,, 0,>0, i=1, ---, r, and 6>0. Also let
0, MA1: (¢, V)5 -+ o5 (17, ¥7)
A+1, C+1:[B, D']; ---; [B™, D™]
l+a—v—nio, -+, 0] [(@):0, -, 07 [(0): '] =+ +;
([1+a—vz Gy oy O LA, ey P [@): 0L -5
(T z)

(4°6) L’n[zly ) zr] =H

[(d(')): 3(”]; Ry v
and

0, N: (g, V)5 oo o5 (P, V9 41); 5

4' Lni RN ":H . .
@D Laden o 2128 g, Dy (B9 4L, DO -
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(e, v) (l(a)= Oy oo, 6L [(0): 6] -5 [I+a—7—m: 0],
(B, DOI(@): 9, -+, b1 [@): 0T; -5 [(@9): 9],

[(09): ¢9T; -5 [(07): ¢7]; 1<i<
[L+a—:g]; --o; [(d0): o)y 20 7770 Fr)p 2S0ET

Then
S (=1 24 a, n
(4.8) > Wl 7T Dn Hy Pz =+ -, 2,)t
=1+0"0(z,/1+L), - -+, 2,/A4L)r; /A +L))
and
(4.9) SEW T gesg, ...z

= n!l YH(B+1)n
:(1+C)a®i(z1y ° zl/(l—l-C)”, cry Ry C/(l'i‘C)), 1§’l/§7’ s
where H,*P(z, -++,2,) and H\5" (2, -+, 2.) are the H-functions

occurring on the left-hand sides of equations (4.3) and (4.4), respec-
tively, C is given by (4.2), and

< (m+7/[(B+1)\ "
(410) @[zu R t]: Z (n /(B )> L"‘[zly Tty zr]t_y )
n=0 n a
(4.11) 0z, -+, 2,5 1]
o | v 1 —1 tn
_% (n-l— /(B+ )) L.z, -+, 2=, 1<i<r.
n=0 n n.

Remark 3. The parameters «, 8 and 7 are assumed to take on
such values that our equations like (4.3), (4.4), (4.8) and (4.9) make
sense.

Remark 4. For Y=a, the generating function (4.8) and (4.9)
would simplify considerably. On the other hand, their limiting cases
when Y—oo correspond formally to our formulas (4.8) and (4.4), re-
spectively. Thus it would seem obvious that, for bounded v, 7=a,
Theorm 5 may be looked upon as being independent of the generating
relations (4.3) and (4.4).

5. Multiple series relations.

The generating-function relations of the preceding section would
admit themselves of further generalizations involving multiple series.
Indeed, if we let 6,>0, 0?>0, 4,5=1, ---, r, and define
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0, Mt (g, V); -0 o5 (17, V7))

A+r, C+r:[B’, D'}; --+; [B™, D]

l+a,+Bm:al, -+, 00, -+, 1+a,+B8.n,: 0", -+, 0],

([1+a1+(,81+1)n1: o), -, 00, -+, [1+a,+(B,+1)n,: 0", -+, 017,
[(@): @, =, 0CF [®): ¢'L -- 5 [07): 67T )
[(0): ', « =, ¥ [(@): 8T; -+ o5 [(@7): 607 7

(5'1) Pq(f,’é').,nr(zly T zr)z-H

and
0, n: (¢, V' 41); « -+ (7, 1 +1)
A, C:[B'+1, D'+1]; --+; [B"+1, D" +1]
([(a): @, -+, 00 [L+a,+B8m;: 0], [(): ']« -+
[(e): ', ===, v [(d): 0], L4+, +(B+1)n:0,]; « -+
[1+a.+8.m,: 0], [(67): 7]
[(d): 67, [L+a,+(8,+m,:a,l; 7 7 z,) ’
where, for convenience, ¢ and 8 stand for the linear arrays a,, ---, ,
and B, -+, B, respectively, we . shall readily get the following results.

(5'2) P;E’é).,nr(zu ] Z,)’——H

L Nyt tnge a
(5.3) 2 . (—;1/—1'-)—17"—"—.P;1 ﬂ) (zly LN zr)tI”' . .t':"'r
Nyyereyp= n

{ (1+Ci)—at+1}H0’ Al (f"” U'); ) (#(r)y v™)
1-5&, A C.[B, DY --+;[B™, D]
(zl/[(l FL)E (@) )

=11

=1

e[+ 8) (LT

(5.4) i _(—li)’bi:‘:_Q(a A (zl, N zr)t’;‘l. O Al
nyeion.=0 1, nr
. 2, /(1+E)™
i [ O 0 1 ) ( e
=l 1—-8C A, C:.|B, DY) -+ [B™, D" : ’
s [ ] [ ] R
where ¢, is a function of ¢, defined by
(5-5) Ci:ti(1+ci)pi+1r Ci(O):O, 7::1, e, T
Remark 5. For n,=---=mn,=0, the series relations (5.3) and (5.4)

would evidently correspond to our generating functions given by (4.3)
and (4.4), respectively. Similar generalizations of the assertions (4.8)
and (4.9) of Theorem 5 are contained in

THEOREM 6. Let a,, B; and 7; (i=1, -+, r) be arbitrary complex
numbers independent of n,, ---, n,, and let {, be defined by (5.5). Also
let



134 H. M. SRIVASTAVA and R. PANDA

_HO, Nbr (g, V); e (e, V™)
A+r, C+r:[B, D']; --+; [B™, D]
[l+a,—7,—n,: 0, «+-, 0v], -~ o +a,—7,—n,: o, een 0],
([1+6¥1—’Yﬁ gy, -+, 00, -+, l+a,—7,: 0, -+ -, 6],
[(@): 0, -, 6L [(®): 8']; -+ 5 [(07): 67]; _ )
[e): v, =, ™ [(d): 8]; -+ -5 [(@™): 60,7 2 °7)

(5.6) L....lz, -, 2]

0, A: (g, V' +1); -5 (™, v 41)

A, C:[B'+1, D'+1]; -+ +; [B™ +1, D" +1]

[(@): 8, -, 00 [1+a,—Y,—n;: 0], [(0): 6']; - +;

([(c): Py e, POl @) 8, L@ =Yg -
[l+a,—7,—n,: 0] [(B7): 7]

[(@™):07], [1+a.—7.: 0,]; v z) ’

5.7 Jun 2y, 2 ]=H

0,>0,09>0,14,j=1, -+, r, and suppose that the inequalities in (1.13)
and (1.14) hold true.
Then

oo r _1)717, Y. (a,8)
5.8 {( ) }P~~ 2yt Ry tie o otlir
(5-8) nl,-g‘zﬁog ! Y+ (B + 1), (B )i

=LY (L) @w, =+, w53 GIAHE), -+, CIA+E)]

and

oo r _1)*»1 v (a,B)
5.9 {( ) } ~' 2y v, 2, t"”l...t:r
( ) nl,'§r=0 ;.[_-[=1 ’}’Li! f)’i +(Bi + 1)%1’ in,.. v"‘r( 1 ) 1

= (1 +C1)a1 °c (1 +CT)°‘1‘\P[0)1, teey @, Cl/(l +C1)y ) Cr/(l + Cr)] ’
where

(5.10)  w,=2 /(ALY ()], o=z /L), i=1, .., 7,

(5'11) (I)[zu tery R by, ey tr]: i Inl,u-,n,.[zly ] zr]

Nyyeee, np=0

{(ni‘l")’i/(lgi'{‘l))—lﬁ} ’

N, n,.!

=1

and

(5.12) Wz, e, 2ty ey b= S Taenlz cce, 2]
(]

Ny, =

. ;l:[:l {(ni+vi/(6i+1))~l_tﬁ} )

N, n,;!
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Remark 6. A number of variations of the generating-function
relations (4.4), (4.9), (5.4), and (5.9) may be proven fairly easily. For
example, one such variation of our formula (4.4) has the form

o 0, N (g, V) e (D, 095 e (0, 7))
(5.13) %HA’ C: [B', Dl]; . [B(i)_l_l’ D(i)_l_l]; cees [B(r)’ D(r)]
([(a)t R NUAN B ((03F- 4 HEERH
[(): 9y ooy 1 [(d): 05 - -5
[09): 9], [L+a+(B+1)n: a];--- 5 [(07): 6] 2 )t”

[1+a+pBn: o], [(d9):09]; -+ +; [(A7): 6]; n!
2
(L 0, N (1, V)5 =05 (1, ') :
. ‘ o
1-8C A C:[B, D; --+; [B™, D] zz/(l'—i-C) ,
2y

where, as before, 1<i<r, { is defined by (4.2), 6>0, and the
inequalities in (1.13) and (1.14) hold.

It is not difficult to verify that this last generating-function
relation (5.18) is essentially equivalent to (4.4).

6. Applications.

At the outset we must remark that Theorems 1 through 6 above
are very general in character; these and their various special forms
considered in the preceding sections can be suitably applied to obtain
several classes of expansion formulas or generating-function relations
involving a fairly large variety of useful functions (or products of
geveral such functions) that are expressible as the G or H functions
in one or more variables. For example, if A=A=C=0, the second
member of (1.10) would obviously degenerate into the product of
mutually independent (and single) Mellin-Barnes contour integrals, each
representing the familiar H-function of argument z,, ¢=1, ..., 7.
Thus the various results presented here can be first reduced fairly
easily to hold for the product of several H-functions (and hence also
G-functions, the Wright’s generalized or ordinary hypergeometric
functions, etc.) of different arguments.

Next we recall the known relationship ([10], Eq. (4.7); see also
[6], p. 455, and {11], Eq. (4.11))

0, A: (1, B'); cees (1’ B(r)) ([(a). 01’ e, 0(1‘)]:

6.1 H
©D A, C:[B', D'+1]; -5 [B™, D" +1]\[(0): 4", -+, ¥*"]:
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(©): 6T -+ T67): 67 .
[0: 1], [(d): 0'); -+ -5 [0: 1], [(@): 67 ™ 77
11 (L —a,] 7T T8 11 T[1—by7)

D)

fl T[1—c,] 11 T[1—d}]--- I [[1—dy]
J=1 j=1 =1

A B B(”<[1—(a)z 0, -, 6]:
C:D';-++; D\[L—(c): ', + -+, ¥"]:

[L=@): T 5 1= 0 _z)

[1—(@):0']; - s [1—(d"): 6™]; 7 ’ ")
which evidently would enable us to apply our results to derive expan-
sion formulas and generating relations for the generalized Lauricella
function of several complex variables or more particularly, for
Lauricella’s hypergeometric functions F\”, F§', F\” and F} of r
variables (cf. [6], p. 454 et seq.). Indeed, Theorems 1, 2, 3 and 4
above would thus reduce, respectively, to Theorems 1, 3, 2 and 4 of
our earlier work [8] on expansions in series of products of several
generalized hypergeometric polynomials. Notice, in this connection,
that the hypergeometric polynomials involved in our expansion formulas
(2.8) and (2.22) can be appropriately specialized to yield the correspond-
ing expansions in series of products of several Jacobi or Laguerre
polynomials or their various known special or limiting cases (cf. [11],
§3, for details). On the other hand, our Theorems 5 and 6 provide
elegant extensions, in terms of the multiple H-function defined by
(1.10), of a number of known results on generating functions of one
or more complex variables (cf., e.g., [7]).

Finally the special cases r=1 and r=2 of some of our results are
worthy of note. Indeed, when r=1, Theorems 1 and 2 would yield
generalizations of several results in the theory of special functions
including, for instance, Theorems III through VI of Wimp and Luke
([12], pp. 359-361; see also [3], Vol. II, p. 14 et seq.), involving the
familiar G-function; while, in the special case r=2, our generating
relation (4.3) would obviously provide an interesting extension, involving
the H-function of two variables, of the main result in a recent paper
[6, p. 70, Eq. (3)]. In view of the triviality of the analysis to be
applied in order to deduce these and other generalizations of known
results, however, we omit details, which may well be left as an
exercise to the interested reader.

- F
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