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Introduction

A purpose of this thesis is to study properties of toric rings and toric ideals associated
with various configurations. In particular, we study them targeted at configurations
associated with a cut of graphs and matroids.

This thesis is concerned with the strongly Koszul property of the toric ring
associated to a cut ideal and a Grobner basis for a toric ideal of a matroid.

Standard graded algebras R over a field K are said to be Koszul if the R-module
K = R/m has a linear minimal free resolution over R, where m is the graded
maximal ideal of R. Koszul algebras have been introduced by Priddy in 1970 [27].
A strongly Koszul algebra is the stronger notion of Koszulness and was introduced
by Herzog, Hibi and Restuccia [13]. For a toric ring R and a toric ideal I, it is
known that

I has a quadratic Grobner basis, or R is strongly Koszul

I
R is Koszul

4

I is generated by quadratic binomials.

In general, the converse hierarchy is not true.

The outline of this thesis is as follows.

In Chapter 1, we introduce notation and recall known results about Koszul al-
gebras, Grobner bases, toric rings, toric fiber products, graphs and matroids.

In Chapter 2, we study properties of the toric ring associated to a cut ideal
arising from a graph. A cut ideal was introduced by Sturmfels and Sullivant (see
[34]). A cut ideal of a graph records the relations among the cuts of the graph. Cut
ideals are used in algebraic statistics to study statistical models defined by graphs.

Let Rg be a toric ring associated to a cut ideal [ arising from a graph G. The
following facts are known for R and Ig:

e R is compressed if and only if G has no Ks-minor and every induced cycle
in G has length 3 or 4 [34];

o If R¢ is normal, then G has no Ks-minor [34];

e If G has no (K5 \ e)-minor, then R¢ is normal [21];



e If I is generated by binomials of degree < 4, then G has no Ks-minor [34];

e [; is generated by quadratic binomials if and only if G has no K,-minor
[11, 19, 34].

As stated above, ring-theoretic properties of Rg and I5 are classified in the class of
a graph. Moreover Nagel and Petrovi¢ showed that the cut ideal I4 associated with
ring graphs has a quadratic Grébner basis [19]. However we do not know generally
when the cut ideal I has a quadratic Grobner basis and when R is Koszul except
for trivial cases. We give a necessary and sufficient condition for Rg to be strongly
Koszul, that is, we characterize the class of graphs such that R¢ is strongly Koszul.
The following are main results in Chapter 2.

Theorem 1 ([30]). Let G be a finite simple connected graph. If G has no (K4, Cs)-
manor, then Ig has a quadratic Grobner basis.

Theorem 2 ([30]). Let G be a finite simple connected graph. Then Rg is strongly
Koszul if and only if G has no (K4, Cs)-minor.

In Chapter 3, we study a Grobner basis for a toric ideal associated with bases
of a matroid. A matroid was introduced by Whitney in 1935 [39]. A matroid is a
structure that captures and generalizes the notion of linear independence in vector
spaces. The bases of a matroid M with the ground set [d] = {1,...,d} define a
standard graded toric ring Ry C K][si,...,sq] which is generated by squarefree
monomials whose support forms a basis of M. The toric ring Rj; is called the
base monomial ring of M and was introduced by White [37]. White proved that,
for any matroid M, the base monomial ring Rj; is normal, in particular, Cohen-
Macaulay. White conjectured that, for any matroid M on [d], the toric ideal Jy; of
M is generated by the quadratic binomials z;2; — x;2; such that the pair of bases
By, By can be obtained from the pair of bases B;, B; by a symmetric exchange (see
(33, 38]).

Let Mg be the class of matroids such that the toric ideal Jy; has a Grobner
basis consisting of quadratic binomials and Mg be the class of matroids for which
Jyr is generated by quadratic binomials. Blum defined base-sortable matroids and
proved that the class of base-sortable matroids is contained in Mgg [2]. By using
the theories of toric fiber products and combinatorial pure subrings, we have

Theorem 3 ([31]). Classes Mgg and Mg are closed under series and parallel
extensions, series and parallel connections and 2-sums.

Chaourar showed that a matroid M is a minor of 1-sums and 2-sums of uniform
matroids if and only if M has no minor isomorphic to any of M(K,), W3, Qs and
Ps [5]. Since uniform matroids belong to Mgg [32] and the class Mgg is closed
under 1-sums and taking minors [2], by Theorem 3 and Chaourar’s result, we have

Theorem 4 ([31]). Let M be a matroid. If M has no minor isomorphic to any of
M(Ky), W3, Q¢ and Ps, then the toric ideal Jy; has a Grobner basis consisting of
quadratic binomials.



The result in Chapter 2 is scheduled to be published (see [30]). The result in
Chapter 3 is submitted (see [31]).

Acknowledgement

First of all, I would like to thank Professor Hidefumi Ohsugi for his warm encour-
agement and both spiritually and materially. Without his helps, I could not write
this thesis. I also would like to thank Professor Kazuhiro Yokoyama and Professor
Masayuki Noro for holding a seminar on a regular basis. I am grateful to Kazunori
Matsuda for useful comments and suggestions. Finally, I would like to thank my
parents for their support.



Chapter 1

Background

In this chapter, we introduce notation and give basic definitions and recall some
results. A detailed introduction on the fundamental facts in Section 1.1 and Sec-
tion 1.2 is in books by Eisenbud [9], and Ene and Herzog [10]. In Section 1.3 and
Section 1.4, we consider the powerful tools of Grobner bases, toric rings and toric
ideals (see [14, 32]). Toric fiber products, which we consider in Section 1.5, are
introduced by Stullivant [36]. Section 1.6, which we consider the graph theory, is
based on Diestel’s book [8]. The aim of Section 1.7 is to recall some basic facts
about matroid theory. For a detailed introduction to matroid theory, see Oxley’s
book [26].

1.1 Standard graded algebras

Let K be a field and S = K|[xy,...,z,] the polynomial ring with standard grading
deg(z;) = 1 for 1 < i < n. A polynomial f is said to be homogeneous of degree
i if all monomials appearing in f are of degree i. We write deg(f) = i. Let
f = Eaezgo caX?, where X? = z{*--- 2% for a = (ay,...,a,) and ¢, € K, be

a polynomial. Then we set
fi = Z CaXav

angOJa\:z‘

where |a|] = a; + -+ + a,. Then f; is homogeneous of degree i and called the i-th
homogeneous component of f. We have f = Zizo fi and this decomposition into
homogeneous components is unique. It follows that

S=s;
J20

where S; is the K-subspace of S consisting of all homogeneous polynomials in S of
degree j.

A graded ideal is an ideal I C S which is generated by homogeneous polynomials.
Let I; denote the K-vector space spanned by all homogeneous polynomials in [ of
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degree . Then the quotient ring R = S/I has a natural decomposition
R=r,
>0

where R; = S;/1;. Each graded component R; is a finite dimensional K-vector space
and Ry = K. We have R;R; C R;,; for all 7,j € Z>, and R is finitely generated as
a K-algebra by elements of R;.

Definition 1.1.1. A K-algebra R is said to be standard graded if it is of the form
R = S/I, where I C S is a graded ideal.

1.2 Koszul algebras

In this section, we introduce the definition of Koszul algebras and strongly Koszul
algebras. Let R be a commutative ring. A maximal ideal of R is a proper ideal not
contained in any other proper ideal.

Definition 1.2.1. Let K be a field and R be a standard graded K-algebra with
graded maximal ideal m. The K-algebra R is said to be Koszul if the R-module
K = R/m has a linear minimal free resolution over R.

Let R and R’ be two standard graded K-algebras. The Segre product we denote
with R * R is defined as the graded algebra

R+ R =R @k R,

i>0
The tensor product R ®k R’ is naturally standard graded with components

(Rek R)i= @ R @k Ri.

k+l=i

For R = Klxy,...,2,)/{f1,..., f.) and R = K[yi,...,Ym]/{(91,...,9s), it has a
presentation of the form

ROk R =Klx1, ..., %0 Y1 Y]/ f1se s frrG1se s s)-
Proposition 1.2.2. Let R and R be two K -algebras.
(1) If R and R are Koszul, then R* R is Koszul.
(2) R®@x R is Koszul if and only if R and R are Koszul.

Next, we introduce the following stronger notion of Koszulness given in [13].



Definition 1.2.3 ([13, Definition 1.1]). The homogeneous K-algebra R is said
to be strongly Koszul if its graded maximal ideal m admits a minimal system of

homogeneous generators uq,...,u, such that for all subsequences w;,,...,u; of
Uy, ..., U, with 1 <147 < --- <14, <n,and for all j = 1,...,r, the colon ideal
(Wiy, ... ug;_,) - ug, of Ris generated by a subset of elements of {uy,...,u,}.

Theorem 1.2.4 ([13, Theorem 1.2]). Let R be strongly Koszul with respect to the

minimal homogeneous system uy, . .., u, of generators of the graded maximal ideal m
of R. Then any ideal of the form (u;,, ... ,w; ) has a linear resolution. In particular,
R 1s Koszul.

1.3 Grobner bases

Let X be a set. A partial order on ¥ is a binary relation < over Y such that, for all
x,1y, 2z € X, one has

1) x <z (reflexivity);

y
(2) if x <y and y < x, then z = y (antisymmetry);
(3) if x <y and y < z, then z < z (transitivity).

We write x < y if x <y and = # y. A partially ordered set is a set ¥ with a partial
order < on Y. A partial order < on ¥ is called a total order if, for any x,y € X, one
has z <y ory < x.

Let K[X] = K|z1,...,x,] be the polynomial ring in n variables over a field K
and M,, denote the set of all monomials in K[X].

Definition 1.3.1. A monomial order on K[X] is a total order < on M,, such that
o 1 <uforall 1#ue M,;
e if u,v € M,, and u < v, then wu < wv for all w € M,,.

We introduce some monomial orders on K[X].

Example 1.3.2. Let v = z{* - - - 2% and v = 25" - - - 2% be two monomials in K[X].
For a fixed order z; > --- > x,, of the variables, we have

(1) the lexicographic order <jox: We set u <jex v if the leftmost nonzero component
of the vector (b — ay,...,b, — a,) is positive.

(2) the reverse lexicographic order <,e,: We set u <,ey v if the rightmost nonzero
component of the vector (by — aq,...,b, — ay,|a] — |b|) is negative, where
la| =a;1+ -+ an, bl =by + -+ by



For a nonzero polynomial

f: - a;U; (O#CL»LEK)

=1

of K[X], where uy,...,u, are monomials, the support of f is the set of monomials
appearing in f. It is written as supp(f). For any nonzero polynomial f in K[X],
the largest monomial u € supp(f) with respect to < is called the initial monomial
of f and written as in.(f). Let I C K[X] be a nonzero ideal. The initial ideal of I
is the monomial ideal

inc(I) = (in<(f) | f €1, f#0).

If I = (0), then in.(I) = (0). In general, the initial monomials of a generating set
of I do not generate in_(I).

Example 1.3.3. Let K[X] = K[xy,...,27] and < be the lexicographic order on
K[X] with ordering x7 < zg < --- < x1. We set I = (f,g), where f = z124 — 2273
and g = x4x7 — x526. Then in (f) = z124 and in.(g) = z4z7. However h =
T1x5%6 — Tow3ry = x7f — x19 € I and in.(h) = z1x5706 ¢ (x124, T477). Therefore
{z124, x427} is nOt a generating set of in. (7).

Definition 1.3.4. We fix a monomial order < on K[X]. Let I be an ideal of K[X]
with I # (0) and let G = {¢1, ..., gs} be a finite set of nonzero polynomials belonging
to I. We say that G is a Grébner basis of I with respect to < if {in<(¢g1),...,in<(gs)}
is a generating set of the initial ideal in (7).

Theorem 1.3.5. Let K[X] be the polynomial ring and I be an ideal of K[X]. If G
18 a Grobner basis of I with respect to some monomial order, then G is a generating
set of I.

However the converse of Theorem 1.3.5 is not true in general.
We say that a Grobner basis G = {g1, ..., gs} of I is a minimal Grébner basis if
the following conditions are satisfied:

e {in_(g1),...,in<(gs)} is a minimal generating set of in(/);
e The coefficient of in_(g;) is equal to 1 for 1 <7 < s.

A minimal Grobner basis exists. However a minimal Grobner basis is not unique.
A Grobner basis G = {g1,. .., 9gs} is said to be reduced if the following conditions
are satisfied:

e The coefficient of in_(g;) is equal to 1 for 1 < i < s;

e None of the monomials belonging to supp(g;) is divided by in.(g;) for i # j.



A reduced Grébner basis exists and is unique.
Let f and g be nonzero polynomials in K[X]. Let ¢; (resp. ¢4) be the coefficient
of inc(f) (resp. in.(g)). Then the polynomial

o LCM(in.(f),in<(g)) . LCM(in.(f),in<(g))
S<f7 g) a Cy 1n<(f) Cqg - in< (g)

is called the S-polynomial of f and g, where LCM denotes the least common multiple
of two monomials in K[X].

f

Theorem 1.3.6 (Buchberger’s Criterion). Let I be an ideal of K[X]| and G =
{g1,-..,9s} be a generating set of I. Then G is a Grébner basis of I with respect
to some monomial order on K[X] if and only if, for all i # j, the S-polynomial
S(gi, g;) reduces to 0 with respect to gy, ..., gs.

1.4 Toric rings and toric ideals

Let Z%™ denote the set of all d x n integer matrices. A configuration of R? is a
matrix A € Z%¥", for which there exists a hyperplane H C R? not passing the
origin of R% such that each column vector of A lies on H. Let K be a field and
K[T*] = K[, ..., t5"] the Laurent polynomial ring in d variables over K. For
each column vector a = *(ay,...,aq) € Z% we denote T? = t{*---t}%. Let A =
(ai,...,a,) € Z¥" be a configuration of R?. The toric ring of A is the subalgebra
K[A] of K[T*'] that is generated by the Laurent monomials 72 ... T3 Let
K[X] = K|z1,...,x,] be the polynomial ring in n variables over K. Then we define
the surjective ring homomorphism

m : K[X]— K[4], x—T%forl<i<n.
We call the kernel /4 of 7 the toric ideal of A.

Proposition 1.4.1. Let A € Z%*" be a configuration. Then

_ b; —b; Ab=0
[A_<H$i_Hxi b="t0b,....b,) €L |

b;>0 b; <0
Proposition 1.4.2. The reduced Gréobner basis of 14 consists of binomials.

In general, it is not easy to compute a generating set of [4. In the case of a toric
ideal, there exists the following useful result.

Proposition 1.4.3 (See [25, 32]). Let A € Z¥™ be a configuration and G =
{g1,...,9s} C Ia. Let M, denote the set of monomials belonging to K[X] and
in (G) = (inc(g;) | 1 <i <s). Then the following conditions are equivalent.

(1) G is a Grébner basis with respect to <;
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(2) {m(u) | v € My,u ¢ in(G)} is linearly independent over K;
(3) m(u) # w(v) for all u,v ¢ in(G) with u # v, where u,v € My;

(4) for any binomial u — v € 14, where u,v € M,, either u or v is divided by
in_(g;) for some 1 <i <s.

In the case of a toric ring, there is the equivalent condition of a strongly Koszul
algebra (see [13]).

Proposition 1.4.4 ([13, Proposition 1.4]). Let K[A] be a toric ring generated by
Uy ..., Uy. Then K[A] is strongly Koszul if and only if the ideals (u;) N (u;) are
generated in degree 2 for all i # j.

In general, it is known that, for a toric ring K[A] and a toric ideal 14,

I4 has a quadratic Grobner basis, or K[A] is strongly Koszul
\
K[A] is Koszul
\

1, is generated by quadratic binomials.

The converse hierarchy is not true (for example, see [23, Example 2.1 and 2.2]).

Conjecture 1.4.5 ([13, 7]). Let K[A] be a toric ring and 15 be a toric ideal. If
K[A] is strongly Koszul, then 14 has a quadratic Grébner basis with respect to some
monomial order.

Hibi, Matsuda and Ohsugi showed that Conjecture 1.4.5 is true for edge rings
[15].

Proposition 1.4.6. Let K[A] and K[A'] be toric rings, and Q be the tensor product
or the Segre product of K[A] and K[A']. Then Q is strongly Koszul if and only if
both K[A] and K[A'] are strongly Koszul.

Definition 1.4.7 ([13]). We say that a toric ring K[A] is trivial if, starting with
polynomial rings, K[A] is obtained by repeated applications of Segre products and
tensor products.

It is clear that any trivial toric ring is strongly Koszul. However there exists a
non-trivial strongly Koszul toric ring (for example, see [13]).

Let K[A] be a toric ring. Then K[A] is said to be squarefree if K[A] is isomorphic
to a toric ring generated by squarefree monomials. A toric ring K[A] is said to be
compressed [35] if the initial ideal of 14 is squarefree with respect to any reverse
lexicographic order.

Theorem 1.4.8 ([18]). Any squarefree strongly Koszul toric ring is compressed.

11



Let A = (ay,...,a,) € Z¥" be a configuration and K[A] C K|ty,...,tq) be a
toric ring. For a nonempty subset 7 of {1,...,d}, we set K[Ar] = K[A|NK]|t; | j €
T]. Then a subring K[A7| of K[A] is called a combinatorial pure subring of K[A]
(see [22]). If Ar = (a;,...,a;,.), then we write K[Xr] = Klz;,,...,2;.]. Thus
T4, = 14N K[X7] (see [32, Proposition 4.13]).

Proposition 1.4.9 ([20, 22|). If G is a generating set (resp. the reduced Grébner
basis) for 14, then G N K[X7| is a generating set (resp. the reduced Grobner basis)
for Iu,.

Proposition 1.4.10 ([22]). Let K[A7| be a combinatorial pure subring of K[A]. If
K[A] is normal, Koszul or strongly Koszul, then K[Ar] has this property, too.

1.5 Toric fiber products

In this section, we introduce the toric fiber product which is defined by Sullivant
[36].
Let r be a positive integer and «, 8 € ZZ, be two vectors. Let
K[X] =Kz} |i€[r],j€a]], K[Y]=Kly,|i€lr],kelsl

where «; (resp. ;) is the i-th entry of « (resp. ), be multigraded polynomial rings
subject to the multigrading

deg(z?) = deg(y;) = a' € Z°.

We write A = {a',...,a"} and assume that there exists a vector w € R? such that
w-a’ =1 for all 4, where w - a’ is the usual inner product of R%. This means that
ideals in K[X] or K[Y] which are homogeneous with respect to the multigrading
are homogeneous in the usual sense. If I and J are homogeneous ideals of K[X]|
and K[Y] with respect to the grading A, then the quotient rings R; = K[X]/I and
Ry = K[Y]/J are also multigraded by A. Consider the polynomial ring

K[Z] = K[z}, | i € [r],j € [ei], k € [B]
and the ring homomorphism
(ﬁ[ﬁ] : K[Z]—)Rl ®KR2, Z]Zk'—>$;®y;€

The toric fiber product I x 4 J of I and J is the kernel of ¢; ; [36]. The following
result is in [36, Theorem 12 and Corollary 14].

Theorem 1.5.1. Suppose that the set A of degree vectors is linearly independent.
Let F1 and Fy be homogeneous generating sets for I and J, respectively. Then

N = Lift(F;) U Lift(F2) U Quad 4

1s a homogeneous generating set for I X 4 J. Moreover, if F1 and ¥y are Grobner
bases of I and J, then there exists a monomial order such that N is a Grobner basis
for I x4 J. The sets Lift(F), Lift(F2) and Quad 4 are defined in [36].
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On the other hand, if I and J are toric ideals, then I x 4 J is also a toric ideal.
Let B ={b}|iec[r],jc ]} CZ" and D = {d}, | i € [r],k € [Bi]} C Z" be
two vector configurations. Let Iz C K[X] and Ip C K[Y] be toric ideals of B and
D. Toric ideals Iz and Ip are homogeneous with respect to the grading by A. We
consider the following new vector configuration that is the toric fiber product of the
vector configurations.

b
w3

Then the toric fiber product Iz X 4 Ip is the toric ideal

i€ r],j €,k € [ﬁi]} C 74tz

Ip XA Ip = Iy ,p.
Indeed, if K[S] and K[T] are polynomial rings, and

¢: K[X] — KI[S], 2%~ fi(9),
¢ K[Y] = K[T), yp+— g(T)

are ring homomorphism, then we can form the toric fiber product homomorphism
¢ xatp: K[Z] = K[S,T], 2w f;(S)gi(T).

If I = ker(¢) and J = ker()) and both ideals are homogeneous with respect to the
grading by A, then I x 4 J = ker(¢ x 4 ¢) (see [12]).

1.6 Graphs

In this section, we introduce a graph and its several properties (see [8]).

A graph is a pair G = (V, E) of sets such that the elements of E are 2-element
subsets of V. The elements of V' are called the vertices of the graph G and the
elements of E are called the edges of G. A graph with vertex set V' is called a graph
on V.

We say that two vertices u, v of G are adjacent or neighbours if uv is an edge of G.
Two different edges e, e’ of G is said to be adjacent if they have an end in common.
A graph G is said to be complete if all the vertices of G are pairwise adjacent. The
complete graph on n vertices is denoted by K.

Let G = (V,E)and G = (V', E') be two graphs. We set GUG" = (VUV', EUE").
If V' ¢ Vand E' C E, then G is called a subgraph of G. It is written as G C G.
If @ C G and G’ contains all edges uwv € E with u,v € V', then G is called an
induced subgraph of G, or G' is induced by V'. Tt is written as G' = G[V']. A clique
in a graph G is a subset V' of V such that G[V'] is complete.

A path is a non-empty graph P = (V, E) with

V ={ug,u,...,ur}, E = {uour,wus,...  up_1u;},

13



where u; # u; for @ # j. The vertices up and uy, are linked by P and are called its
ends. The number of edges of a path is called length of P. If uy = u; and k > 3,
then the graph (V, E) is called a cycle. The length of a cycle is its number of edges.
The cycle of length £ is denoted by C}.

The minimum length of a cycle contained in a graph G is called the girth of G
and the maximal length of a cycle in G is called the circumference. Note that if G
does not contain a cycle, then we set the former to oo, the latter to zero. An edge
which joins two vertices of a cycle but is not itself an edge of a cycle is called a
chord of that cycle. Hence, an induced cycle in G, a cycle in G forming an induced
subgraph, is one that has no chords.

A non-empty graph G is said to be connected if any two vertices of G are linked
by a path in G. We say that connected subgraphs Gy,...,G, of G are connected
component of G if the following conditions are satisfied:

e G=G U---UG;

o If k # [, then there exists no edge ugyu; of G such that uy (resp. ;) is a vertex
of Gy, (resp. Gy).

A non-empty graph G = (V| F) is said to be k-connected, where k € N, if |[V| > k
and G|V \ X] is connected for any set X C V with |X| < k.

A 2-connected component is a maximal 2-connected subgraph. Any connected
graph decomposes into a tree of 2-connected components called the block tree of the
graph.

A graph that does not contain any cycles is called a forest. A connected forest
is called a tree.

Let G = (V,E) and G' = (V', E') be graphs. We say that G' C G is a spanning
subgraph of G if V =V".

An edge uv of a graph GG, where u, v are vertices of G, is called a loop if u = v. If
G has several edges between the same two vertices u, v, then such edges are called
multiedges. A graph G is said to be simple if G has neither loops nor multiedges.

A graph G = (V, E) is said to be r-partite if V' admits a partition into r classes
such that every edge has its ends in different classes: vertices in the same partition
class must not be adjacent. We say that an r-partite graph is complete if every
two vertices from different partition classes are adjacent. We write K, ;. for the
complete r-partite graph on V3 U --- UV, where |V;| = [; for 1 < ¢ < r and
VinV; =0 for i # j. The complete r-partite graphs for all r together are the
complete multipartite graphs.

Let e = uv be an edge of a graph G = (V,E). By G/e = (V',E'), we denote
the graph obtained from G by contracting the edge e into a new vertex w,, which
becomes adjacent to all the former neighbours of x and y, that is,

/

Vo= (V\{u,v}) U{wc},

/

E = {ijeE|{i,j}n{u,v}=0}U{wk |uk e E\{e} orvk € E\ {e}}.

14



By G\ e, we denote the graph obtained from G by deleting the edge e.
A graph H is a minor of a graph G if H can be obtained from G by a sequence
of deleting and contracting edges of G.

Figure 1.1: G Figure 1.2: G/e Figure 1.3: G\ e

1.7 Matroids

In this section, we introduce a matroid and its properties (see [26]).

Definition 1.7.1. A matroid is a pair (E,Z), where E is a finite set and Z is a
collection of subsets of F, that satisfies the following conditions:

e NeT.
elf/eZandI C1I,thenI 7.
o If 1,15 € T and |[;| < |I5|, then there exists e € I3\ I; such that I U{e} € Z.

We call a member of Z an independent set of M. A subset of E that is not
contained in Z is said to be dependent. A dependent set C'is called a circuit if any
proper subset of C' is independent and we write C(M) for the set of circuits of M.

Example 1.7.2. Let A = (ay,...,a5) be a 2 x 5 matrix over the field R, where

S 1 B )

We set E' = {aj,ay,a3,a4,as} and Z denotes the collection of subsets X of E such
that X is linearly independent in R, i.e.,

T= {(b’ {al}v {a2}7 {84}, {aS}v {ah a2}7 {alv a5}7 {a27 a4}’ {a27 a5}7 {347 35}}'

Then a pair (F,Z) is a matroid and it is written as M[A]. Hence the set of dependent
sets of this matroid is

{{as} {a1, as}, {a1, a1}, {az, a3}, {as, a4}, {as, a5} } U{X C E'| |X]| > 3}.

The set of circuits of this matroid is {{as}, {ai, a4}, {a1, a2, a5}, {as,ay,a5}}
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Proposition 1.7.3. Let C be a collection of subsets of a finite set E. Then C is the
collection of circuits of a matroid on E if and only if C has the following properties:

e ¢C.
o IfC,Cy €C and Cy C Cy, then C; = Cs.

o [fC,CyeC, Cy # Cy and e € Cy N Cy, then there is a member Cs of C such
that 03 C (Cl U Cg) \ {6}

An independent set B is said to be maximal if there does not exist z € F \ B
such that BU {z} is a member of Z. A maximal independent set is called a basis of
M and we write B(M) for the collection of bases of M. The collection of bases in
Example 1.7.2 is

B(M[AD = {{a17 82}, {ala 35}, {a27 3-4}7 {3-27 35}7 {214, 3—5}}'
Each member of B(M[A]) is a basis of the vector space R?.
Proposition 1.7.4. All members of B(M) have the same cardinality.

Proposition 1.7.5. Let M be a matroid on E and B be a collection of subsets of
E. Then B is the collection of bases of M if and only if B satisfies the following
conditions:

e 3 is nonempty.

e For every B,B" € B, for any v € B\ B, there exists y € B\ B such that
(BU{y}) \ {z} is a member of B.

Proposition 1.7.5 is called the exchange azxiom. The exchange axiom is equivalent
to the following stronger axiom, known as the symmetric exchange axiom.

Proposition 1.7.6. Let M be a matroid on E and B be the collection of bases of
M. Then

e forevery B, B' € B, for any x € B, there existsy € B’ such that (BU{y})\{z}
and (B U {z})\ {y} are in B.

Example 1.7.7. We give two examples:

(1) Let r,d be two integers with 0 < r < d and Z be the collection consisting of
all subsets with size < r of F with |E| = d. Then a pair (F£,Z) is a matroid.
This matroid is said to be uniform and it is written as U, 4. The collection of
bases of U, 4 consists of all r-element subsets of E/ and the collection of circuits
of U, 4 consists of all (r + 1)-element subsets of E.
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(2) Let G be a finite connected graph on the vertex set V' with the edge set E.
Let Z be the collection consisting of edges of forests in G. Then a pair (F,Z)
is a matroid. This matroid is said to be graphic and it is written as M (G).
The collection of bases of M (G) consists of edges of spanning trees in G and
the collection of circuits of M (G) consists of edges of cycles in G.

Let M = (E,Z) be a matroid and X C E. Let
IIX={ICcX|IeT}

Then (X,Z|X) is a matroid. We call this matroid the deletion of E — X from M. It
is denoted by M \ (E — X). We define the rank of X to be the cardinality of a basis
of M\ (E — X) and it is written as rk(X). The rank of a matroid M is defined by
rk(M) = rk(E). The function rk, called the rank function of M, maps 2¥ to Zs.

Proposition 1.7.8. Let E be a finite set. A function vk : 28 — Zsq is the rank
function of a matroid on E if and only if tk has the following properties:

o [f X CFE, then 0 <rk(X) <|X]|.
o I[fX CY CE, then rtk(X) <rk(Y).
o IfX,Y CE, thentk(X UY) +1k(X NY) < tk(X) + rk(Y).

Let K be a field and K[X] = KJz1,...,z,] the polynomial ring over K. Let
B(M) ={B,...,B,} denote the collection of bases of M on E = [d] = {1,...,d}.
We consider the ring homomorphism

v K[X]| — K[S] = K[s1,...,84], z;— Hsl.

lEBj

The toric ideal Jy; is the kernel of my;. The toric ring Ry = K[X]/Jy is called the
bases monomial ring of M and it was introduced by N. White [37]. White proved
that the bases monomial ring R, is normal, in particular, Cohen-Macaulay for any
matroid M (see [37]). White presented the following conjecture.

Conjecture 1.7.9 ([38, 33]). For any matroid M, the toric ideal Jys is generated
by the quadratic binomials z;z; — x,2; such that the pair of bases By, B; can be
obtained from the pair of bases B;, B; by a symmetric exchange.

It is natural to ask whether the following variant of White’s conjecture holds.

Conjecture 1.7.10. For any matroid M, the toric ideal J,; has a Grobner basis
consisting of quadratic binomials.

White’s conjecture can be posed as two separate conjectures (see [1]).

Conjecture 1.7.11. For any matroid M, the toric ideal J; is generated by quadratic
binomials.
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Conjecture 1.7.12. For any matroid M, the quadratic binomials of Jy; are in the
ideal generated by the binomials z;z; — x,2; such that the pair of bases By, B; can
be obtained from the pair B;, B; by a symmetric exchange.

Conjecture 1.7.9 is true for

e graphic matroids [1];

e matroids with rank < 3 [16];

e sparse paving matroids [4]; and

e strongly base orderable matroids [17].
Conjecture 1.7.10 is true for

e uniform matroids [32];

e matroids with rank < 2 [24, 2];

e graphic matroids with no M (K,)-minor [2]; and

lattice path matroids [29)].

In [6], Conca proved that Conjecture 1.7.11 holds for transversal polymatroids.

Let Mg be the class of matroids such that J); has a Grobner basis consisting of
quadratic binomials and Mg be the class of matroids for which Jj; is generated by
quadratic binomials. In Chapter 3, we show that classes Mg and Mg are closed
under the following operations:

e series and parallel extensions;
e series and parallel connections;
e 2-sums.

We prove that Conjecture 1.7.10 and Conjecture 1.7.11 are true if a matroid M
has no minor isomorphic to any of M(K,), W3, Bs and Qg.
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Chapter 2

Toric rings associated to cut ideals

A cut ideal of a graph was introduced by Sturmfels and Sullivant [34]. In this
chapter, we give a necessary and sufficient condition for toric rings associated to cut
ideals to be strongly Koszul. In Section 2.1, we introduce the definition and known
results of a cut ideal. In Section 2.2, we show that the set of graphs such that Rs is
strongly Koszul is closed under contracting edges, induced subgraphs and 0-sums.
In Section 2.3, we compute a Grobner basis for cut ideals without (K4, Cj)-minor.
In Section 2.4, by using results of Section 2.2 and Section 2.3, we prove that the
toric ring Rg is strongly Koszul if and only if G has no (K}, Cs)-minor.

2.1 Cut ideals

Let G be a finite simple connected graph on the vertex set V(G) = [n] ={1,...,n}
with the edge set F(G). For two subsets A and B of [n] such that AN B = ) and
AU B = [n], the (0, 1)-vector §45(G) € ZIFl is defined as
1t [An{i j} =1,

0 otherwise,

da(G)ij = {

where 77 is an edge of G. Let

X, = {<5A1ET(G)) N <5AN|BIN(G))} c 7IEG)I+1 (N =2"1).

As necessary, we consider X as a collection of vectors or as a matrix. Let K be a
field and

K[Q} = K[QA1|BU"'7QAN|BN]7
K[S,T} = K[S,tl]|2]€E(G)]

be two polynomial rings over K. Then a ring homomorphism is defined as follows:

e @ Klg) = K[s,T), qu, — s- H tij

[Ain{i,7}=1
ijEB(G)
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for 1 <1 < N. The cut ideal I of G is the kernel of mg and the toric ring R of
X¢ is the image of mg. We put uap = 7¢(qas)-

In [34], Sturmfels and Sullivant introduced a cut ideal and posed the problem of
relating properties of cut ideals to the class of graphs. For the toric ring Rg and
the cut ideal I, the following results are known:

Theorem 2.1.1 ([34]). The toric ring Rg is compressed if and only if G has no
Ks-minor and every induced cycle in G has length 3 or 4.

Theorem 2.1.2 ([11]). The cut ideal I is generated by quadratic binomials if and
only if G has no K4-minor.

Nagel and Petrovi¢ showed that the cut ideal /5 associated with ring graphs has
a quadratic Grobner basis [19]. However we do not know generally when the cut
ideal I has a quadratic Grobner basis and when Rg is Koszul except for trivial
cases.

On the other hand, in [28], Restuccia and Rinaldo gave a sufficient condition
for toric rings to be strongly Koszul. In [18], Matsuda and Ohsugi proved that any
squarefree strongly Koszul toric ring is compressed.

2.2 Clique sums and strongly Koszul algebras

In this section, we prove that strong Koszulness of the toric ring associated to the
cut ideal is closed under the 0-sum, induced subgraphs and contracting edges but is
not always closed under the 1-sum.

Recall that a graph H is a minor of a graph G if H can be obtained by deleting
and contracting edges of G. We say that a subgraph H is an induced subgraph of a
graph G if H contains all the edges ij € E(G) with i,j € V(H).

Proposition 2.2.1. Let G be a finite simple connected graph. Assume that Rg is
strongly Koszul. Then

(1) If Hy is an induced subgraph of G, then Ry, is strongly Koszul.
(2) If Hy is obtained by contracting an edge of G, then Ry, is strongly Koszul.

Proof. By [20] and [34], Ry, and Ry, are combinatorial pure subrings of Rg. There-
fore, by [22, Corollary 1.6], Ry, and Ry, are strongly Koszul. O

Let Gh = (Vi, Ey) and Gy = (Vs, Es) be finite simple connected graphs such that
Vi NV, is a clique of both graphs. The new graph G = G1#G4y with the vertex set
Vi UV, and the edge set By U Es is called the clique sum of G and G5 along Vi N V5.
If the cardinality of V4 NV, is k + 1, then this operation is called a k-sum of the
graphs. It is clear that if R, 4¢, is strongly Koszul, then both R, and Rg, are
strongly Koszul because G; and G5 are induced subgraphs of G1#G5.
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Proposition 2.2.2. The set of graphs G such that Rg is strongly Koszul is closed
under the 0-sum.

Proof. Let G; and G5 be finite simple connected graphs and assume that Rs, and
R, are strongly Koszul. Then the toric ring Rq,4q,, where G1#G is the 0-sum
of G; and Gy, is the usual Segre product of Rg, and Rg,. Thus it follows by
Proposition 1.4.6. []

However the set of graphs G such that R is strongly Kosuzl is not always closed
under the 1-sum.

Recall that K, denotes the complete graph on n vertices, C),, denotes the cycle
of length n and K, _; denotes the complete r-partite graph on the vertex set
ViU---UV,, where |Vj| =1l for 1 <i<rand V;NV; =0 for i # j.

Example 2.2.3. Let G1 = Og#Cg(Z K4 \ 6), G2 = 04#03 and Gg = <K4 \ 6)#03
be graphs shown in Figures 2.1-2.3. All of R¢,, R¢, and Rg, are strongly Koszul
because R¢, is isomorphic to the polynomial ring and I, and I, have quadratic
Grobner bases with respect to any reverse lexicographic order, respectively (see
28, 34]). However neither Rg, nor Rg, is strongly Koszul since an ideal (ug)) N
(uq1,34))42,5)) of Rg, is generated by monomials

Up|{1,...,53U{1,3,4}|{2,5}» W{1,3,4,5}|{23 U{1,2,5}|{3,4} U{1,2,3}|{4,5}» U{1}|{2,3,4,5} U{1,3,4}|{2,5} U{1,2,3}|{4,5}»
UL1}1{2,3,4,5} U{1,2,5}|{3,4} U{1,2,4}|{3,5}» U{1}|{2,3,4,5} U{1,5}|{2,3,4} U{1,2,4}|{3,5}
and an ideal (ugs)) N (uq1,3,4312,51) of Re, is generated by monomials

UP|{1,...,53U{1,3,4}|{2,5} > U{1,3,4,5}|{23 U{1,2,5}|{3,4} U{1,2,3}|{4,5} > U{1}|{2,3,4,5} U{1,3,4}|{2,5} U{1,2,3}|{4,5}»

Ug|{1,...,5}U{1,3,5}|{2,4} W{1,2,5}|{3,4}» U{1}|{2,3,4,5} U{1,2,3,5}|{4} U{1,3,4}|{2,5} "

5 5
4 3 4 3 4 q 3
1 2 1 2 1 2
Figure 2.1: C3#C} Figure 2.2: Cy#C}s Figure 2.3: (K4 \ e)#C5

The cut ideal I, 4, is the toric fiber product of Ig, and I, [34]. Therefore,
from Example 2.2.3, the set of toric rings R such that R is strongly Koszul is not
closed under the toric fiber product.
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2.3 Grobner bases for cut ideals

In this section, we compute a Grobner basis of I such that G has no (K4, Cs)-minor.

Lemma 2.3.1. Let G be a finite simple 2-connected graph on the vertex set V(G).
Then G has no (K4, Cs)-minor if and only if G is K3, Ky,—2 or Ky 1,9 forn > 4.

Proof. Since G is 2-connected, GG contains a cycle. Let C be the longest cycle in
G. It follows that |V(C)| < 4 because G has no Cs-minor. If |V(C)| = 3, then
G = Kj since G is 2-connected. Suppose that [V (C)| = 4. If |V(G)| = [V (C)|, then
G is either Ky or Kj ;5. Next, we assume that |V(G)| > |V(C)| = 4. Consider
v e V(G)\V(C). Let P and @ be two paths each with one end in v and another
end in V(C), disjoint except for their common end in v and having no internal
vertices in C'. Such paths exist since G is 2-connected. If |V (P)| > 2, or |[V(Q)] > 2,
or the ends of P and @) in C are consecutive in C, then P U @ together with a
subpath of C' form a cycle of length longer than C. Hence every vertex v ¢ V(C)
has exactly two neighbors in V(C'), which are not consecutive. Moreover, if some
two vertices vy,ve € V(G) \ V(C) are adjacent to different pairs of vertices in C,
then a cycle of length six is induced in G by {vy,v2} U V(C). Therefore there exist
uy,us € V(C), which are both adjacent to all vertices in V(G) \ {uy,us}. If two
vertices in V(G) \ {u1,us} are adjacent, then together with {u;,us} and any other
vertex they induce a cycle in G of length five. Therefore G is either Ky ,,_5 or K 1 2.
It is easy to see that all of K3, Ky, and K} 1,2 have no (K4, Cs)-minor. O

It is already known that the cut ideal Ir, ,_, for n > 4 has a quadratic Grobner
basis since K ,,_9 is 0-sums of Ky and I, = (0) [34, Theorem 2.1]. In this section, to
prove Theorem 2.3.3, we compute the reduced Grobner basis of I, , ,. Let < be a
reverse lexicographic order on K'|g] which satisfies gajp < goip with min{|A[, |B|} <
min{|C|, |D|}.

Lemma 2.3.2. Let G = K ,_2 be the complete bipartite graph on the vertex set
Vi UVa, where Vi = {1} and Vo = {3,...,n} for n > 4. Then the reduced Grébner
basis of I with respect to < consists of

qa|B4c|p — qanciBupqaucienp (L€ ANC,AZ C, C ¢ A).
The initial monomial of each binomial is the first monomial.

Proof. Let G be the set of all binomials above. It is easy to see that G C I5. Let
in(G) = (in.(g) | g € G). Let v and v be monomials that do not belong to in(G):

= H q{l}UA”B[ 7 H Q{l}uCﬂDl L
=1 =1

where 0 < py, p; € Z for any [. Since neither u nor v is divided by q4Bqc|p, it
follows that
ACcA,C---CA,, CiCCyC---CC,.
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Let
A=A u bt Y, Be= U b, b ),
Cy=Cr u{d,....di '}, Dy=ULdds, ... d5}

for k > 1 and [ > 2, where A = V5 \ By, C; = Vo \ D;. We suppose that
mo(u) = ma(v):

’

)22:1 p;c'

—=.

m
1
SpH bypt - tlbl =P () = 87 ] [ (fa - v
=1

o~
Il

1

Here we set p =", p and p = Yoy p;- Assume that A; # Cy. Then there exists
a € A such that a ¢ C,. Hence, for some I, € [m/], a € {d", ..., dgl}. However, for
any | € [m], a ¢ {b},..., b }. This contradicts that m¢(u) = 7g(v). Thus Ay = C4
and p; = p/l. By performing this operation repeatedly, it follows that A, = C,
By = D; and p; = p; for any [. Since u = v, G is a Grobner basis of I5. It is trivial
that G is reduced. 0

Theorem 2.3.3. Let G = Ky ,,_2 be the complete bipartite graph on the vertex set
ViU Vy, where Vi = {1,2} and Vo = {3,...,n} for n > 4. Then a Grobner basis of

1 consists of

qAIBYEIF — q0|[n]9{1,2}|{3,...n} (le A,2€ B), (i)
qA|B4c|D — 4Anc|BuDYAUC|BND (1 ceANC,2e BND,AZC.C¢ A)7 (ﬁ)
qA|B4c|D — 4ANC|BUDYAUC|BAD (L2e ANC,AZ C,C ¢ A), (iii)

where E = (BU{1})\ {2} and F = (AU{2})\ {1}. The initial monomial of each
binomials is the first binomial.

Proof. Let G be the set of all binomials above. It is easy to see that G C I5. Let u
and v be monomials which do not belong to in(G):

mi ma2

u = H(Q{l}uAl|{2}UBl lH Q{lz}uclml L
=1 =1
m, m,

vo= H(q{1}uA;|{2}uB Hq{12}uo|p )
=1 =1

where 0 < pl,n,pg,r; € 7Z for any [. Since neither u nor v is divided by initial
monomials of (ii) and (iii), it follows that

A1C"'CAm1, 01C"'C0m2,
Ajc---cA, C,c---ccC,.
my My
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Suppose that 7g(u) = mg(v):

mi m2
ra(w) = ]lmoareos)” ] [(wnaoan)™,
1=1 =1
- ;™ ,
ta(v) = H(U{1}uA;\{2}uB{)pl H(u{l»Z}UCz’\Dz’yl'
1=1 =1

Let Y be the matrix consisting of the first n — 2 rows of X, , ,. Then X is the
following matrix:

Y Y
Y 1n72,2"_2 -Y )
1 1

where 1, 59n-2 is the (n — 2) x 2”72 matrix such that each entry is all ones. Note
that

Y
(Y> - (§P1|Q1 (KQJL*?) e 5P2n72|Q2"*2 <K2’”72)) ’

Y
(1n_2,2n_2_Y) = (Oruisi (Kan2) - Oryalsyua (K2n-2)

where 1,2 € P, 1 € Rjand 2 € S; for 1 <1 < 2" 2. By elementary row operations
on X¢, we have

2Y - 1n_272n—2 O
XIG - O 2Y - 1n,2’2n—2
1 1
Each column vector of 2Y —1,,_9 on-2 is the form *(ey,...,&,_2), where &; € {1, -1}

for1 <7< n-—2. Let [X/G denote the toric ideal of X'G.Then u—1v € Ig if and
only if u—wv € ]Xé;‘ Let ap|g denote the column vector of 2Y — 1, _59n—2 in Xé;
corresponding to the column vector dpjg(G) of Xg. Then

m1 0 m2 a{1,2}UCl | Dy mll , 0 m; , a{l,Q}UCl/ |DZ
v | amuageon | X 0| =3 p | Ao | Do |0
=1 1 I=1 1 I=1 1 I=1 1

In particular,
/ /
mi my ma My
! /
§ :pla{l}qu\&}uBl = E Pidgiyual|{23uB)> E :Tla{lz}ucz\Dz = E "8 2300 |D;
=1 =1 =1 =1

hold. Let p =Y "o, 7= >0, p =Y p, and ' = 3" r,. Since neither
u nor v is divided by initial monomials of (i), it follows that either A; # 0 or
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A, # 0]\ {1,2} (resp. A} # 0 or A;n, # [n] \ {1,2}). If A; # (), then there
exists 7 € [n] \ {1,2} such that i € A4, for any [ € [m4]. If A,,, # [n]\ {1,2}, that
is, By, # 0, then there exists i € [n] \ {1,2} such that i € B,,,, and i ¢ A; for
any | € [my]. Thus either p or —p appears in the entry of Y | pagiua|t2us,-

Similarly, either p’ or —p" appears in the entry of Sk p;a{l}U A l{2}UB,- Therefore

p= p/. Hence
mi mll , mo m; l
H(u{l}UAlH?}UBl)pl - H<u{1}uA§|{2}UBl’)pla H(u{1,2}UCZ|DZ)TZ = H(u{1,2}uq’\D;)n
=1 =1 I—1 11
hold. Thus
mi m/1 )
H(q{l}UAl\@}UBl )pl - H(q{l}UA;|{2}UBl’ )pl € ly,
=1 =1
m2 m; .
H(Q{IQ}UCHDZ)TZ - H(q{1»2}UCZ‘DlI>Tl S IZZ;
=1 =1

where Z; (resp. Z) is the matrix consisting of the first (resp. last) 2”72 columns of
Xé;. Here 14, and I, are toric ideals of Z; and Z,. By elementary row operations
on Zy (resp. Z,), we have

’ ’

mi my m2 My
[ @oane)™ =T Taqons)? TI@moam)™ = TT@uoc o)™ € I
=1 =1 =1 =1

By Lemma 2.3.2, u = v holds. Therefore G is a Grobner basis of 1. O

Corollary 2.3.4. If G has no (K4, Cs)-minor, then Ig has a quadratic Grébner
basis.

Proof. If G is not 2-connected, then there exist 2-connected components G, ..., G,
of G such that G is 0-sums of G, ..., Gs. By [34, Theorem 2.1] and Lemma 2.3.1, it
is enough to show that Ir,, Ir,, Ix,, , and Ik, ,,_, have quadratic Grobner bases.
It is trivial that Ik, and I, have quadratic Grobner bases because Ik, = (0) and
I, = (0). Since Kj),—2 is obtained by 1-sums of K3, Ik, ,, , has a quadratic
Grobner basis. Therefore, by Theorem 2.3.3, I has a quadratic Grobner basis. [

2.4 Strongly Koszul toric rings of cut ideals

In this section, we characterize the class of graphs whose toric rings associated to
cut ideals are strongly Koszul.
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Proposition 2.4.1. Let G4 = K112 and Gy = Ks,,_o forn > 4. Then Rg, and
R, are strongly Koszul.

Proof. By elementary row operations on X¢g,, we have

0 1 0 1 0 1 0 1
. Y Y LYy Y| [y Y| |oY
GTHY 19902 Y Y Y Y O Y O
1 1 1 1 11 10

Hence Rg, & Rg,, , ®kx Rk,, ,. Since Rk, , is Segre products of Rg,, Rg, is
strongly Koszul. Next, by the symmetry of X/ in the proof of Theorem 2.3.3, it is
enough to consider the following two cases:

(1) (ugim)) N (ugyjgz,..n})s
(2) (up|m) N (uqr2304B)-

-----

with respect to the reverse lexicographic order <, by [18] and Theorem 2.3.3,
(ugi)) N (ugiy|{2,...n}) is generated in degree 2. Assume that (ugp,) N (uq1,230418)
is not generated in degree 2. Then there exists a monomial ug, |, - - - ug,|r, belong-
ing to a minimal generating set of (ugn) N (ug12304)8) such that s > 3. Since
Up, |, - UE,|F, 18 I (ug)p)) N (ug23uai), it follows that

« B o7 )
q{1,2}UA|B H q{1,2}0u4,|B H q{1yuc;|{2yuD; — 40|[n) H q{1,2}uP|Q; H q{1}yUR|{2}US; € Ig,.
I=1 =1 I=1 =1
If one of the monomials appearing in the above binomial is divided by initial mono-
mials of (i) in Theorem 2.3.3, then wp,|p - - - ug,|p, is divided by w1 2}((3,...0}-
This contradicts that wg, g, - - - g, r, belongs to a minimal generating set of (ug|p,) N
<U{1,2}UA\B> since for aly uA|B and Uc|p with UA|B 7& UC|D, Up|[n)U{1,2}|{3,...,n} belongs
to a minimal generating set of (u4 ) N (ucip). If one of Hlﬁzl qr13uc|{23up, and
H?Zl q1}ury|{2)us, is divided by initial monomials of (ii) in Theorem 2.3.3, the mono-
mial is reduced to the monomial which is not divided by initial monomials of (ii)
with respect to G, where G is a Grobner basis of I,. Thus we may assume that

Ci;c---cCs Ry C---CRs.
Similar to what did in the proof of Theorem 2.3.3, we have
a v
U{1,2YUA|B H U{1,2}uA)|B;, — Up|[n] H UL1,2}UP|Qy»
1=1

= =1
B s

Hu{l}UCz\{2}UDz = Hu{l}URz\{2}USz'
=1 =1
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It follows that a =, 8 =9, C; = R;, D; = 5, for any [, and

ayoas | [ ayonts — awmve [ aorion € I,
=1 =1

Hence the ideal (ug1yua8) N (Ugjpm\(2}) of Rk, .,,_, is not generated in degree 2. How-
ever this contradicts that Rk, , , is strongly Koszul. Therefore Rg, is strongly
Koszul. [

Lemma 2.4.2. Let G be a finite simple 2-connected graph without Ky-minor. If G
has Cs-minor, then by only contracting edges of G, we obtain one of Cs, the 1-sum
of Cy and Cs, and the 1-sum of K4\ e and Cs.

Proof. Let G be a graph with Cs5-minor and C' a longest cycle in G. It follows
that |V(C)| > 5. Then, by contracting edges of G, we obtain a graph G’ of five
vertices such that Cj is a subgraph of G'. Assume that G' # Cs. Then there exist
u,v € V(Cs) with uwv ¢ E(C5) such that uv € E(G'). Since G has no Ky-minor,
there do not exist o, 3 € V(Cs) \ {u, v} such that a8 € E(G')\ E(Cs). Therefore
we obtain one of the 1-sum of Cy and Cj, and the 1-sum of K, \ e and Cs. ]

Theorem 2.4.3. Let G be a finite simple connected graph. Then Rq is strongly
Koszul if and only if G has no (K4, Cs)-minor.

Proof. Let G be a graph without (K4, Cs)-minor. If G is not 2-connected, then there
exist 2-connected components G, ..., G of G such that G is 0-sums of G, ..., Gs.
By Lemma 2.3.1, it is enough to show that Rg,, Rg,, Rk,, , and Rk, ., , are
strongly Koszul. It is clear that Ry, and Rg, are strongly Koszul. By Proposi-
tion 2.4.1, Rk, ,_, and Ry, ., are strongly Koszul. Next, we suppose that G has
K, -minor. Then the cut ideal I is not generated by quadratic binomials [11]. In
particular, Rq is not strongly Koszul. Assume that G has no K -minor. If G has
Cs-minor, then, by Lemma 2.4.2, we obtain one of C5, C4#C5 and (Kj \ e)#C3 by
contracting edges of G. By Example 2.2.3, neither R, 4c, nor Rk ,\e)#c, is strongly
Koszul. Since R¢, is not compressed [34, Theorem 1.3], R, is not strongly Koszul
[18, Theorem 2.1]. Therefore, by Proposition 2.2.1, Rg is not strongly Koszul. [

By using above results, we have

Corollary 2.4.4. The set of graphs G such that Rg is strongly Koszul is minor
closed.

Corollary 2.4.5. If Rq is strongly Koszul, then I has a quadratic Grobner basis.

The converse of Corollary 2.4.5 is not true because the cut ideal I, has a
quadratic Grébner basis [19], but Rg, is not strongly Koszul.
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Chapter 3

Toric ideals associated to matroids

In this chapter, we consider the toric ideal associated to a matroid. In Section 3.1, we
introduce known results about properties of toric rings and toric ideals of matroids.
In Section 3.2, we prove that the class of matroids such that the toric ideal Jy,
has a quadratic Grobner basis is closed under series and parallel extensions. In
Section 3.3, we show that the class of matroids such that the toric ideal Jy; has a
quadratic Grobner basis is closed under series and parallel connections and 2-sums.

3.1 Operations on matroids

In this section, we introduce several operations on matroids.

Let M be a matroid on £ = [d] and B(M) = {By,..., B,} be the collection of
bases of M. An element ¢ € E is called a loop of M if it does not belong to any
basis of M. Dually, an element ¢ € F is said to be a coloop of M if it is contained
in all the bases of M. Let

B*(M)={E\ B | B e B(M)}.

Then a pair (E,B*(M)) is a matroid. This matroid is called the dual of M and
denoted as M~.

Let M and B(M) be as above, and let ¢ € E. We consider the following collection
of subsets of E \ {c}:

{B\{c} | BeB(M)} ifcisa coloop of M,

B(M)\ c= {{B | c¢ BeB(M)}  otherwise.

A pair (E\ {c},B(M)\ ¢) is a matroid. This matroid is called the deletion of ¢ from
M and denoted as M \ c¢. Dually, let M/c, the contraction of ¢ from M, be given
by M/c = (M*\ ¢)*. We call a matroid M" a minor of a matroid M if M" can be
obtained from M by a finite sequence of contractions and deletions.
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Let M; and M, be matroids with £y N Ey = 0. Let B(M;) and B(M,) be
collections of bases of M; and M,, and let

B(M,) @ B(Ms) = {BUD | B € B(M,),D € B(My)}.

Then a pair (E,B(M;) @ B(Ms)), where E = E; U Ey, is a matroid. This matroid
is called the 1-sum of M; and M,, and it is denoted as My & M.

Proposition 3.1.1 ([2, 38]). Classes Mgg and Mg are closed under duality, taking
manors and 1-sums.

Note that
e R« is isomorphic to Ry, as K-algebra, in particular, Jy, = Jy-,
® Ry and Ryp . are combinatorial pure subrings of Ry,

® Runanm, is the Segre product of Ry, and Ryy,.

3.2 A series and parallel extension of a matroid

In this section, we introduce a series and parallel extension of a matroid and show
that Mg and Mg are closed under series and parallel extensions.

Let M be a matroid on E = [d] and B(M) be the collection of bases of M. Then
a series extension of M at ¢ € E by d+ 1 is a matroid on F U {d + 1} that has

{BU{d+1} | BeBM)}u{BU{c}|c¢ BeB(M)}

as the collection of bases and is denoted as M +, (d + 1). Dually, we call a matroid
[M* +. (d+ 1)]* a parallel extension of M at ¢ by d+ 1. A series-parallel extension
of M is any matroid derived from M by a finite sequence of series and parallel
extensions. We suppose that M does not have ¢ € F as a coloop. Let B(M) =
{By,...,B,,...,B,} be the collection of bases of M, where ¢ ¢ B; for j € [v]
and ¢ € Bj for j € [n] \ [y]. We renumber the bases of M, if necessary. Let
Dy = {bj | j € [n]} C Z7 denote a vector configuration satisfying b = 37, ey,
where €; is the [-th standard vector. As necessary, we consider D,; as a collection
of vectors or as a matrix.
Now we consider a new vector configuration

ue{()

that satisfies b} = b? for j EN[V]7 where (§1) = (:), al = (}) and a® = (}). We
define a ring homomorphism 7,; as follows:

i=1,2, j€ [ai]} C 742

T K(X] = K[2t |i=1,2,j €[] = K[S,W]=Klsp,w | ked,l=1,2],

LE; — SPiTYR,
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Then J3 = ker(mar).
Let w € Z%, and let < be an arbitrary monomial order. We define a new
monomial order <,, as follows:

w-a<w-b; or

X2 <, XP e
w-a=w-band X2 < XP

for a,b € Z%,. We call a monomial order <, a weight order on Klzy,...,z,). We
use the following useful result:

Proposition 3.2.1 ([32, Proposition 1.11]). For any monomial order < and any
ideal I C K[X], there exists a vector w € Z%, such that in,(I) = in.([I).

Let F be a homogeneous generating set for Jp,,, and let

!

!
uf vy Uy Yy
_ 1 1 1 1
=TI 00 - T I e v
=1 =1 =1 =1

where j;,5, € [v], ki, k; € [n] \ [y). However, if u; # u'f, then mp(f) # 0 since the
c-th entry of 7,7, b} does not coincide with the c-th entry of Z?j ) bjl,,, and the c-th
!

entries of >,7, b, and Zlvi L bllv; are zero. Therefore uy = u'f and vy = v}. Now let
I =(i1,...,1,) € {1,2}" and consider the binomial f' € K[X] defined by

uf vy ug vy
I i 1 i 1
f—”%”% lejl,”a:k;.
=1 =1

=1 = =1
Since f belongs to Jp,,, the new homogeneous binomial f! belongs to J5,,- We set

ﬁ:{fl | feF,Ic {172}uf}U{95}2$?1 —5531'195?2 |1 <j1<jo <}

Theorem 3.2.2. Let M be a matroid on E, and let F be a Grobner basis for Jp,, .
Then ¥ is a Grobner basis for Jp .

Proof. First, it is easy to see that F C Jp,,- Letw = (wi,...,w,) be a weight vector,
We denote the underlined monomial of f as the initial monomial of f with respect to
a weight order w. Let @ = (wy,...,w,,w?,...,w2) denote a weight vector satisfying
wjl- = wJQ- for j € [y]. Then the underlined monomial of fI is the initial monomial of
f1 with respect to a weight order <z. We choose a tie-breaking monomial order on
K [X] that makes the monomial 23 for 1 < j; < j, < 7 the initial monomial. Let

30



in(F) = (in,(f) | f € F) and in(F) = (in._(f) | f € F). Let u and v be monomials
that are not in in(F):

m1 mo ms

u = H(I’}l)pl H(szj)ql H(xllcl)rl7
=1 =1 =1
/ ’ /

my , M2 m3 ,

v o= [J@Hr @) [

1 Ji 1

=1 =1 =1

where py, q, 71, Py, @5 7y € Lo for any [, and T = {iy, ... i, s T = {iy,-..,i .},
my
T =41 Jmp}, and J = {ji,...,5 .} are subsets of [y] with cardinalities m,
My
my, my, and m., respectively; and K = {ki,... , kp,} and K = {k;,...,k ,} are
mg

subsets of [n] \ [y] with cardinalities ms and my, respectively. Since neither u nor
v is divided by zj,2% for 1 < j; < jy <, it follows that 4, < jy for I € [m4] and
I' € [my], and 4, < jl/, for I € [m}] and I € [mj,]. We suppose that 7y (u) = Tas(v):

mi mo ms3
~ bl b2 ribl
Tv(u) = w?wngqHHSpl i HSC“ 7 | |Sl b

=1 1=1 =1

/ / ’
my /o Mo 1o Mg ’q
! NI p; b, q,b% r b7,
=~ — q,.p+q+r L L "k
mnu(v) = wiw) HS lHS LS M
I=1 I=1 1=1

Here we set p =Y pr, ¢ = D0 @i, m = D0 m, P = D0 p ¢ = D2 ¢, and

r' =" 7. Since bl =b? for j € [4], it follows that my(u') = 7 (v'), where

m1 mo ms
/
U - H('Tzll )pl H(w}l)ql H(xllcl)”7
=1 =1 =1
mll , m, , m; ,
Vo= H(%l;)pl H@;l/)ql H(xllg;)r’

Hence u' — v’ belongs to Jp,,. If ¥ and v" belong to in(F), then v and v" are in
in(F). In particular, u and v are in in(F). This is a contradiction. Therefore neither
u nor v’ belongs to in(F). Since F is a Grébner basis for Jp,,, it follows that ' = v’
In particular, Z=7Z, 7 =7, K=K, p = p;, q = ql', and r; = 7“2 for any [. Thus

u = v. Therefore F is a Grobner basis for JﬁM' O]

Corollary 3.2.3. Let M be a matroid on E. If F is a homogeneous generating set
for Jp,,, then ¥ is a generating set for Jg .
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Proof. We assume that F and F' are generating sets for Jp,,- Then F and F’
generate the same ideal. In particular, this holds if F' is a Grobner basis for JDM

Thus (F) = (F ). By Theorem 3.2.2, if F' is a Grébner basis for Jp,,, then F isa

generating set for Jz , since F' is a Grébner basis for J By O]

Corollary 3.2.4. Let M be a matroid on E, and let M +. (d + 1) denote a series
extension of M at ¢ by d+ 1. Then, by replacing variables, F becomes a generating
set (resp. a Gréobner basis) for Jyry, (dt1)-

Proof. By elementary row operations on 5M, we obtain the vector configuration
arising from M +. (d + 1). O

Remark 3.2.5. If c is a coloop of M, then Jyri . (a41) = Ju-

Corollary 3.2.6. Classes Mgg and Mg are closed under series and parallel ex-
tensions.

Example 3.2.7. Let M = M(K,) and

01 1011100101O0T1O00O0
11 01001111001O0O00O0
Dy = 101110001O01100¢0°1
1010011 1001O001T1@O0
01011101000O01O0T11
0000O0OO0OO0OO0OT1TT1TT1TT1TT1T1T1S:1

Let < be the lexicographic order on K[x1,...,z{s] with ordering

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1
> Ty > Tiy > Tg > Tig > Ty > Tg.

From (3], Jys has a quadratic Grobner basis with respect to <. Then

6011011100101 0100j011011T1F0
110100111 10010O0O01 10100171
160111000101 100O01{j1 0111000

D 16010011 100100110{101O00O01T171
M 0601ro01110100001011{0101T1T1F0°1
oooo0oo0oo0o0o011111111j00000000
oooo0oo0oo0o00000O0OO0OO0OCO0OCO0O(LI T1T1TT1T1IT1T1
1111111111111 111/1 1111111
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By elementary row operations on D,;, we have

0601r101110010101O00(011011T10
110100111 1001O0001 1010011
160111000101 100O01{1 0111000
10100111001 0011O0101O0O01T11
0601ro01110100001011{0101T1T1F0°1
oooo0o00o0o011111111/1711111T171
111111111111 1111[{00O0O0O0O0O0O0
1111111111111 111/1 1111111

Therefore Jz —has a quadratic Grobner basis with respect to the lexicographic order
with ordering

1 1 1 1 2 1 1 2 1 2 1 1 2 1

2 1 1 2 1 1 2 1 2 1
> X5 > Ty > Ty > Ty > Ty > Tig > Ty > Ty > Tg > Tg.

3.3 A series and parallel connection of matroids

Let M; and M, be matroids with E; N Ey = {c} and F = F; U E,. Suppose that
for both M; and Ms, c is neither a loop nor a coloop. Let

Bg — {BUD | BGB(M1>,DEB(M2),BQD:®},
Bp = {BUD|BeB(M),DeB(M),ce BND}
U{(BUD)\{c} | Be€B(M),D € B(Ms),cis in exactly one of B and D}.

Then pairs (E,Bs) and (E, Bp) are matroids. These matroids are said to be the
series and parallel connections of M; and M, with respect to the basepoint c¢. We
denote them as S((My; c), (Ms; ¢)) and P((My;c), (Ma;c)), or briefly, S(M;, M,) and
P(Mj, Ms) [26, Proposition 7.1.13].

On the other hand, when c is a loop of My, then we define

P(Ml,MQ) :Ml@(MQ/C) and S(Ml,MQ) = (Ml/C)EBMQ
When c is a coloop of M7, then we define
P(Ml,MQ) = (Ml\C)@MQ and S(Ml,MQ) :Ml@(MQ\C)

(see [26, 7.1.5 - 7.1.8]). Moreover, the 2-sum M@y M, of My and My is S(M;, Ms)/c,
or equivalently, P(M;, Ms) \ ¢, where ¢ is neither a loop nor a coloop of either M,
or MQ.

Let M; and Ms be matroids on Ey = [dq] and Ey = [dy]. We identify the set [ds]
with the set {dy + 1,...,dy + do}. Assume that ¢; € E; is not a coloop of M; for
1=1,2. Let

B(M))={Bi,....,B.,,....Ba,} and B(M,)={D,....D.,...., Dy}

s Hy1 s v
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be collections of bases of My and M, where ¢; ¢ B; for j € [v1] and ¢y ¢ Dy, for
k € [72]. Let Dy, = {bj | j € [n1]} C Z" and Dy, = {d} | k € [no]} C Z% be two
vector configurations satisfying bjl- =D e B, € and di = e p, € We define ring
homomorphisms 7y, and m,, by setting

mn s Klzh |jem]] — K[S],  alw S%,
T K2 | ken] — K[T),  y2w T%

Similar to what we did in Section 3.2, we consider two new vector configurations
_ bi
~ d¢

such that bl = b? for j € [y] and dj = df for k € [y], where (%) = (™),

a2 71

(g;) = (Zz), al = ((1)), and a? = G) We define ring homomorphisms 7, and 7y,

as follows:

=12, )¢ m} c 7,

i=1,2 ke [ﬁi]} C Z%+2

T K(X] = K2t |i=12 j€la]] — K[SSW],  al~ S®We,
%MQ : K[Y] = K[yllﬂ ‘ P = 1727 k€ [/BZH - K[T7 W]v yllc = Td;cWal‘
Then J5 = ker(@ay,) for i = 1,2. Moreover, we consider the vector configuration
- b;

D= |d.| | i=1,2, j€ ] ke|B]p Czhtet2

ai

Let K[Z] = K[z}, | i = 1,2, j € [ay],k € []] be the polynomial ring over K. The
ring homomorphism 7 is defined by
7 K[Z) = K[S,T,W],  zi s SBThwe.

Then Jz = ker (7).
Let F; and Fy be homogeneous generating sets for Jp,, and Jp,, , respectively.

Then we define f‘l and f‘g in a way analogous to what we did in Section 3.2. Let
_ o ]
f‘H%‘} H%? € Fy,
=1 =1

and let k& = (ky,..., k) with & € [3;] for 1 <1 < uy. We consider the binomial
fx € K[Z] defined by

uf uf
i 1
I E I E.
f H itk 2k
=1 =1

34



Since f belongs to Jz -, the new homogeneous binomial fi belongs to Jz. If F, is
1
any set of binomials in J5 -, then
1

Lift(F,) = { f

~ 'U«f
feFke]]iB) } .

=1
We define Lift(ﬁQ) in an analogous way. Furthermore, the quadratic binomial set

Quad(Dyy,, Da,) is defined by

> D) _ i i i i L
Quad(DMl’ DM2) - {Zjlk’QZijl T FjikiFgake | T 1,2,

1 <751 <j2 <y
1<k <k <B |°

We set N = Lift(F;) U Lift(F3) U Quad(Dyy,, D, )-

Theorem 3.3.1. Let My and My be matroids on Ey = [di] and Ey = [ds], respec-
tively; and assume that ¢; € E; is not a coloop of M; fori =1,2. Let S(My, Ms) be
a series connection of My and My with respect to the basepoint ¢ = ¢; = co. Then,
by replacing variables, B R

N =NnNKI[Z]

~

is a generating set for Js, am). Here we set K[Z] = K[23, | i=1,2, j € o], k €
Vil, where Vi = [yo] and Vi = [nao] \ [72]. Moreover, if Fy and Fy are Grobner bases
for Jp,, and Jp,, , then there exists a monomial order such that N is a Grobner
basis for Js(n, ) -

Proof. Let Fy and Fy be generating sets (resp. Grobner bases) for Jp,, and Jp,,, .

From Theorem 1.5.1, Theorem 3.2.2 and Corollary 3.2.3, Nisa generating set (resp.
a Grobner basis) for J5. Now we consider two vector configurations

bt

~, J

D = d. i=1,2, j €|, ke [p]yp CZMT2T2
c}k
b;

D = d. i=1,2, j €],k €V, p CZNTRT2
az’

where ¢}, = a' and

C N
k .
J a! otherwise.

) _{a2 if k € [),

Then Jz = J5z because D' can be obtained by an elementary row operation on D.
Let 0 = (0,...,0,—1,0) € Z#*%*2_ Since the usual inner product § - (b}, d}, ci;)
equals

0 otherwise,

{—1 if i =2 and k € [y,
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it follows that a subring K[Z]/Jp of K[Z]/ Jz is a combinatorial pure subring of

-~

K[Z]/Jz (see [20]). Thus Jp = Jz N K[Z]. In particular, N is a generating set
(resp. a Grobmer basis) for Jp. Furthermore, by elementary row operations on
D, we can obtain the vector configuration arising from S(M;, My) with respect to
the basepoint c¢. Therefore, by replacing variables, N is a generating set (resp. a
Grobner basis) for Jsar, ap)- O

Corollary 3.3.2. Classes Mgg and Mg are closed under series and parallel con-
nections and 2-sums.

Proof. Let M; and M, be matroids with Ey N Ey = {c}. Let S(My, Ms) (resp.
P(Mji, My)) denote a series (resp. parallel) connection of M; and M, with respect
to the basepoint c.

In the case of series and parallel connections, if ¢ is a loop or a coloop of M;, then
Mg and Mg are closed under series and parallel connections. Suppose that neither
M nor Ms has c as a loop or a coloop. Then by Theorem 3.2.2 and Theorem 3.3.1,
Mg and Mg are closed under series connections. Also, Mgg and Mg are closed
under parallel connections from Proposition 3.1.1, and P(M;, My) = [S(M;, M3)|*
for any matroids M; and M, [26, Proposition 7.1.14].

In the case of the 2-sum, since My @y My = S(My, Ms)/c, Mgg and Mg are
closed under 2-sums. O

Example 3.3.3. Let Uy 4 be the uniform matroid on £ = {1,2,3,4} with rank 2.
Then Jy,, has a quadratic Grobner basis [32]. By Corollary 3.3.2, the toric ideal
Ju, 4@205.4 has a quadratic Grobner basis. Moreover, it is known that Us 4 @9 Ua 4 18
isomorphic to Rg (see [26]). Therefore it follows that Jg, has a quadratic Grébner
basis.

Using the above results, we have

Theorem 3.3.4. Let M be a matroid. If M has no minor isomorphic to any of
M(Ky), W3, Ps and Qg, then the toric ideal Jy; has a Grobner basis consisting of
quadratic binomials.

Since uniform matroids belong to M og [32] and M g is closed under 1-sums and
taking minors by Proposition 3.1.1 [2, 38], Theorem 3.3.4 holds from the following
result:

Theorem 3.3.5 ([5, Corollary 3.1]). A matroid M is a minor of 1-sums and 2-sums
of uniform matroids if and only if M has no minor isomorphic to any of M(Ky),

W3, Py and Q.

Let rk be the rank function of a matroid M and let Ay (X) = rk(X) + rk(E —
X) — k(M) for X C E. We call A\ys the connectivity function of M. For X C E, if
A (X) < k, where k is a positive integer, then both X and (X, £ — X) are called
k-separating. A k-separating pair (X, £ — X)) for which min{|X|,|F — X|} > k is
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called a k-separation of M with sides X and £ — X. For all n > 2, we say that M
is n-connected if, for any k < n, it has no k-separation.

Any matroid that is not 3-connected can be constructed from 3-connected proper
minors of itself by a sequence of the operations of 1-sums and 2-sums. Therefore,
in order to prove Conjecture 1.7.10 and Conjecture 1.7.11, it is enough to prove the
following conjecture:

Conjecture 3.3.6. The class of all 3-connected matroids belongs to Mg and Mgg.
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