
Dissertation

Toric Rings and Toric Ideals Arising
from Various Configurations

Kazuki Shibata

Department of Mathematics

Graduate School of Science

Rikkyo University

2014



Contents

Introduction 3

1 Background 6
1.1 Standard graded algebras . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Koszul algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Introduction

A purpose of this thesis is to study properties of toric rings and toric ideals associated
with various configurations. In particular, we study them targeted at configurations
associated with a cut of graphs and matroids.

This thesis is concerned with the strongly Koszul property of the toric ring
associated to a cut ideal and a Gröbner basis for a toric ideal of a matroid.

Standard graded algebras R over a field K are said to be Koszul if the R-module
K = R/m has a linear minimal free resolution over R, where m is the graded
maximal ideal of R. Koszul algebras have been introduced by Priddy in 1970 [27].
A strongly Koszul algebra is the stronger notion of Koszulness and was introduced
by Herzog, Hibi and Restuccia [13]. For a toric ring R and a toric ideal I, it is
known that

I has a quadratic Gröbner basis, or R is strongly Koszul
⇓

R is Koszul
⇓

I is generated by quadratic binomials.

In general, the converse hierarchy is not true.
The outline of this thesis is as follows.
In Chapter 1, we introduce notation and recall known results about Koszul al-

gebras, Gröbner bases, toric rings, toric fiber products, graphs and matroids.
In Chapter 2, we study properties of the toric ring associated to a cut ideal

arising from a graph. A cut ideal was introduced by Sturmfels and Sullivant (see
[34]). A cut ideal of a graph records the relations among the cuts of the graph. Cut
ideals are used in algebraic statistics to study statistical models defined by graphs.

Let RG be a toric ring associated to a cut ideal IG arising from a graph G. The
following facts are known for RG and IG:

• RG is compressed if and only if G has no K5-minor and every induced cycle
in G has length 3 or 4 [34];

• If RG is normal, then G has no K5-minor [34];

• If G has no (K5 \ e)-minor, then RG is normal [21];
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• If IG is generated by binomials of degree ≤ 4, then G has no K5-minor [34];

• IG is generated by quadratic binomials if and only if G has no K4-minor
[11, 19, 34].

As stated above, ring-theoretic properties of RG and IG are classified in the class of
a graph. Moreover Nagel and Petrović showed that the cut ideal IG associated with
ring graphs has a quadratic Gröbner basis [19]. However we do not know generally
when the cut ideal IG has a quadratic Gröbner basis and when RG is Koszul except
for trivial cases. We give a necessary and sufficient condition for RG to be strongly
Koszul, that is, we characterize the class of graphs such that RG is strongly Koszul.
The following are main results in Chapter 2.

Theorem 1 ([30]). Let G be a finite simple connected graph. If G has no (K4, C5)-
minor, then IG has a quadratic Gröbner basis.

Theorem 2 ([30]). Let G be a finite simple connected graph. Then RG is strongly
Koszul if and only if G has no (K4, C5)-minor.

In Chapter 3, we study a Gröbner basis for a toric ideal associated with bases
of a matroid. A matroid was introduced by Whitney in 1935 [39]. A matroid is a
structure that captures and generalizes the notion of linear independence in vector
spaces. The bases of a matroid M with the ground set [d] = {1, . . . , d} define a
standard graded toric ring RM ⊂ K[s1, . . . , sd] which is generated by squarefree
monomials whose support forms a basis of M . The toric ring RM is called the
base monomial ring of M and was introduced by White [37]. White proved that,
for any matroid M , the base monomial ring RM is normal, in particular, Cohen-
Macaulay. White conjectured that, for any matroid M on [d], the toric ideal JM of
M is generated by the quadratic binomials xixj − xkxl such that the pair of bases
Bk, Bl can be obtained from the pair of bases Bi, Bj by a symmetric exchange (see
[33, 38]).

Let MQG be the class of matroids such that the toric ideal JM has a Gröbner
basis consisting of quadratic binomials and MQ be the class of matroids for which
JM is generated by quadratic binomials. Blum defined base-sortable matroids and
proved that the class of base-sortable matroids is contained in MQG [2]. By using
the theories of toric fiber products and combinatorial pure subrings, we have

Theorem 3 ([31]). Classes MQG and MQ are closed under series and parallel
extensions, series and parallel connections and 2-sums.

Chaourar showed that a matroid M is a minor of 1-sums and 2-sums of uniform
matroids if and only if M has no minor isomorphic to any of M(K4), W3, Q6 and
P6 [5]. Since uniform matroids belong to MQG [32] and the class MQG is closed
under 1-sums and taking minors [2], by Theorem 3 and Chaourar’s result, we have

Theorem 4 ([31]). Let M be a matroid. If M has no minor isomorphic to any of
M(K4), W3, Q6 and P6, then the toric ideal JM has a Gröbner basis consisting of
quadratic binomials.
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The result in Chapter 2 is scheduled to be published (see [30]). The result in
Chapter 3 is submitted (see [31]).
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Chapter 1

Background

In this chapter, we introduce notation and give basic definitions and recall some
results. A detailed introduction on the fundamental facts in Section 1.1 and Sec-
tion 1.2 is in books by Eisenbud [9], and Ene and Herzog [10]. In Section 1.3 and
Section 1.4, we consider the powerful tools of Gröbner bases, toric rings and toric
ideals (see [14, 32]). Toric fiber products, which we consider in Section 1.5, are
introduced by Stullivant [36]. Section 1.6, which we consider the graph theory, is
based on Diestel’s book [8]. The aim of Section 1.7 is to recall some basic facts
about matroid theory. For a detailed introduction to matroid theory, see Oxley’s
book [26].

1.1 Standard graded algebras

Let K be a field and S = K[x1, . . . , xn] the polynomial ring with standard grading
deg(xi) = 1 for 1 ≤ i ≤ n. A polynomial f is said to be homogeneous of degree
i if all monomials appearing in f are of degree i. We write deg(f) = i. Let
f =

∑
a∈Zn

≥0
caX

a, where Xa = xa11 · · · xann for a = (a1, . . . , an) and ca ∈ K, be

a polynomial. Then we set

fi =
∑

a∈Zn
≥0,|a|=i

caX
a,

where |a| = a1 + · · · + an. Then fi is homogeneous of degree i and called the i-th
homogeneous component of f . We have f =

∑
i≥0 fi and this decomposition into

homogeneous components is unique. It follows that

S =
⊕
j≥0

Sj,

where Sj is the K-subspace of S consisting of all homogeneous polynomials in S of
degree j.

A graded ideal is an ideal I ⊂ S which is generated by homogeneous polynomials.
Let Ii denote the K-vector space spanned by all homogeneous polynomials in I of
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degree i. Then the quotient ring R = S/I has a natural decomposition

R =
⊕
i≥0

Ri,

where Ri = Si/Ii. Each graded component Ri is a finite dimensional K-vector space
and R0 = K. We have RiRj ⊂ Ri+j for all i, j ∈ Z≥0 and R is finitely generated as
a K-algebra by elements of R1.

Definition 1.1.1. A K-algebra R is said to be standard graded if it is of the form
R = S/I, where I ⊂ S is a graded ideal.

1.2 Koszul algebras

In this section, we introduce the definition of Koszul algebras and strongly Koszul
algebras. Let R be a commutative ring. A maximal ideal of R is a proper ideal not
contained in any other proper ideal.

Definition 1.2.1. Let K be a field and R be a standard graded K-algebra with
graded maximal ideal m. The K-algebra R is said to be Koszul if the R-module
K = R/m has a linear minimal free resolution over R.

Let R and R
′

be two standard graded K-algebras. The Segre product we denote
with R ∗R′

is defined as the graded algebra

R ∗R′
=

⊕
i≥0

Ri ⊗K R
′

i.

The tensor product R⊗K R
′

is naturally standard graded with components

(R⊗K R
′
)i =

⊕
k+l=i

Rk ⊗K Rl.

For R = K[x1, . . . , xn]/⟨f1, . . . , fr⟩ and R
′

= K[y1, . . . , ym]/⟨g1, . . . , gs⟩, it has a
presentation of the form

R⊗K R
′

= K[x1, . . . , xn, y1, . . . , ym]/⟨f1, . . . , fr, g1, . . . , gs⟩.

Proposition 1.2.2. Let R and R
′
be two K-algebras.

(1) If R and R
′
are Koszul, then R ∗R′

is Koszul.

(2) R⊗K R
′
is Koszul if and only if R and R

′
are Koszul.

Next, we introduce the following stronger notion of Koszulness given in [13].
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Definition 1.2.3 ([13, Definition 1.1]). The homogeneous K-algebra R is said
to be strongly Koszul if its graded maximal ideal m admits a minimal system of
homogeneous generators u1, . . . , un such that for all subsequences ui1 , . . . , uir of
u1, . . . , un with 1 ≤ i1 < · · · < ir ≤ n, and for all j = 1, . . . , r, the colon ideal
⟨ui1 , . . . , uij−1

⟩ : uij of R is generated by a subset of elements of {u1, . . . , un}.

Theorem 1.2.4 ([13, Theorem 1.2]). Let R be strongly Koszul with respect to the
minimal homogeneous system u1, . . . , un of generators of the graded maximal ideal m
of R. Then any ideal of the form ⟨ui1 , . . . , uir⟩ has a linear resolution. In particular,
R is Koszul.

1.3 Gröbner bases

Let Σ be a set. A partial order on Σ is a binary relation ≤ over Σ such that, for all
x, y, z ∈ Σ, one has

(1) x ≤ x (reflexivity);

(2) if x ≤ y and y ≤ x, then x = y (antisymmetry);

(3) if x ≤ y and y ≤ z, then x ≤ z (transitivity).

We write x < y if x ≤ y and x ̸= y. A partially ordered set is a set Σ with a partial
order ≤ on Σ. A partial order ≤ on Σ is called a total order if, for any x, y ∈ Σ, one
has x ≤ y or y ≤ x.

Let K[X] = K[x1, . . . , xn] be the polynomial ring in n variables over a field K
and Mn denote the set of all monomials in K[X].

Definition 1.3.1. A monomial order on K[X] is a total order < on Mn such that

• 1 < u for all 1 ̸= u ∈ Mn;

• if u, v ∈ Mn and u < v, then wu < wv for all w ∈ Mn.

We introduce some monomial orders on K[X].

Example 1.3.2. Let u = xa11 · · · xann and v = xb11 · · · xbnn be two monomials in K[X].
For a fixed order x1 > · · · > xn of the variables, we have

(1) the lexicographic order <lex: We set u <lex v if the leftmost nonzero component
of the vector (b1 − a1, . . . , bn − an) is positive.

(2) the reverse lexicographic order <rev: We set u <rev v if the rightmost nonzero
component of the vector (b1 − a1, . . . , bn − an, |a| − |b|) is negative, where
|a| = a1 + · · · + an, |b| = b1 + · · · + bn.
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For a nonzero polynomial

f =
m∑
i=1

aiui (0 ̸= ai ∈ K)

of K[X], where u1, . . . , um are monomials, the support of f is the set of monomials
appearing in f . It is written as supp(f). For any nonzero polynomial f in K[X],
the largest monomial u ∈ supp(f) with respect to < is called the initial monomial
of f and written as in<(f). Let I ⊂ K[X] be a nonzero ideal. The initial ideal of I
is the monomial ideal

in<(I) = ⟨in<(f) | f ∈ I, f ̸= 0⟩.

If I = ⟨0⟩, then in<(I) = ⟨0⟩. In general, the initial monomials of a generating set
of I do not generate in<(I).

Example 1.3.3. Let K[X] = K[x1, . . . , x7] and < be the lexicographic order on
K[X] with ordering x7 < x6 < · · · < x1. We set I = ⟨f, g⟩, where f = x1x4 − x2x3
and g = x4x7 − x5x6. Then in<(f) = x1x4 and in<(g) = x4x7. However h =
x1x5x6 − x2x3x7 = x7f − x1g ∈ I and in<(h) = x1x5x6 /∈ ⟨x1x4, x4x7⟩. Therefore
{x1x4, x4x7} is not a generating set of in<(I).

Definition 1.3.4. We fix a monomial order < on K[X]. Let I be an ideal of K[X]
with I ̸= ⟨0⟩ and let G = {g1, . . . , gs} be a finite set of nonzero polynomials belonging
to I. We say that G is a Gröbner basis of I with respect to < if {in<(g1), . . . , in<(gs)}
is a generating set of the initial ideal in<(I).

Theorem 1.3.5. Let K[X] be the polynomial ring and I be an ideal of K[X]. If G
is a Gröbner basis of I with respect to some monomial order, then G is a generating
set of I.

However the converse of Theorem 1.3.5 is not true in general.
We say that a Gröbner basis G = {g1, . . . , gs} of I is a minimal Gröbner basis if

the following conditions are satisfied:

• {in<(g1), . . . , in<(gs)} is a minimal generating set of in<(I);

• The coefficient of in<(gi) is equal to 1 for 1 ≤ i ≤ s.

A minimal Gröbner basis exists. However a minimal Gröbner basis is not unique.
A Gröbner basis G = {g1, . . . , gs} is said to be reduced if the following conditions

are satisfied:

• The coefficient of in<(gi) is equal to 1 for 1 ≤ i ≤ s;

• None of the monomials belonging to supp(gj) is divided by in<(gi) for i ̸= j.
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A reduced Gröbner basis exists and is unique.
Let f and g be nonzero polynomials in K[X]. Let cf (resp. cg) be the coefficient

of in<(f) (resp. in<(g)). Then the polynomial

S(f, g) =
LCM(in<(f), in<(g))

cf · in<(f)
f − LCM(in<(f), in<(g))

cg · in<(g)
g

is called the S-polynomial of f and g, where LCM denotes the least common multiple
of two monomials in K[X].

Theorem 1.3.6 (Buchberger’s Criterion). Let I be an ideal of K[X] and G =
{g1, . . . , gs} be a generating set of I. Then G is a Gröbner basis of I with respect
to some monomial order on K[X] if and only if, for all i ̸= j, the S-polynomial
S(gi, gj) reduces to 0 with respect to g1, . . . , gs.

1.4 Toric rings and toric ideals

Let Zd×n denote the set of all d × n integer matrices. A configuration of Rd is a
matrix A ∈ Zd×n, for which there exists a hyperplane H ⊂ Rd not passing the
origin of Rd such that each column vector of A lies on H. Let K be a field and
K[T±1] = K[t±1

1 , . . . , t±1
d ] the Laurent polynomial ring in d variables over K. For

each column vector a = t(a1, . . . , ad) ∈ Zd, we denote T a = ta11 · · · tadd . Let A =
(a1, . . . , an) ∈ Zd×n be a configuration of Rd. The toric ring of A is the subalgebra
K[A] of K[T±1] that is generated by the Laurent monomials T a1 , . . . , T an . Let
K[X] = K[x1, . . . , xn] be the polynomial ring in n variables over K. Then we define
the surjective ring homomorphism

π : K[X] → K[A], xi 7→ T ai for 1 ≤ i ≤ n.

We call the kernel IA of π the toric ideal of A.

Proposition 1.4.1. Let A ∈ Zd×n be a configuration. Then

IA =

⟨∏
bi>0

xbii −
∏
bi<0

x−bi
i

∣∣∣∣ Ab = 0
b = t(b1, . . . , bn) ∈ Zn

⟩
.

Proposition 1.4.2. The reduced Gröbner basis of IA consists of binomials.

In general, it is not easy to compute a generating set of IA. In the case of a toric
ideal, there exists the following useful result.

Proposition 1.4.3 (See [25, 32]). Let A ∈ Zd×n be a configuration and G =
{g1, . . . , gs} ⊂ IA. Let Mn denote the set of monomials belonging to K[X] and
in<(G) = ⟨in<(gi) | 1 ≤ i ≤ s⟩. Then the following conditions are equivalent.

(1) G is a Gröbner basis with respect to <;
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(2) {π(u) | u ∈ Mn, u /∈ in<(G)} is linearly independent over K;

(3) π(u) ̸= π(v) for all u, v /∈ in<(G) with u ̸= v, where u, v ∈ Mn;

(4) for any binomial u − v ∈ IA, where u, v ∈ Mn, either u or v is divided by
in<(gi) for some 1 ≤ i ≤ s.

In the case of a toric ring, there is the equivalent condition of a strongly Koszul
algebra (see [13]).

Proposition 1.4.4 ([13, Proposition 1.4]). Let K[A] be a toric ring generated by
u1, . . . , un. Then K[A] is strongly Koszul if and only if the ideals ⟨ui⟩ ∩ ⟨uj⟩ are
generated in degree 2 for all i ̸= j.

In general, it is known that, for a toric ring K[A] and a toric ideal IA,

IA has a quadratic Gröbner basis, or K[A] is strongly Koszul
⇓

K[A] is Koszul
⇓

IA is generated by quadratic binomials.

The converse hierarchy is not true (for example, see [23, Example 2.1 and 2.2]).

Conjecture 1.4.5 ([13, 7]). Let K[A] be a toric ring and IA be a toric ideal. If
K[A] is strongly Koszul, then IA has a quadratic Gröbner basis with respect to some
monomial order.

Hibi, Matsuda and Ohsugi showed that Conjecture 1.4.5 is true for edge rings
[15].

Proposition 1.4.6. Let K[A] and K[A
′
] be toric rings, and Q be the tensor product

or the Segre product of K[A] and K[A
′
]. Then Q is strongly Koszul if and only if

both K[A] and K[A
′
] are strongly Koszul.

Definition 1.4.7 ([13]). We say that a toric ring K[A] is trivial if, starting with
polynomial rings, K[A] is obtained by repeated applications of Segre products and
tensor products.

It is clear that any trivial toric ring is strongly Koszul. However there exists a
non-trivial strongly Koszul toric ring (for example, see [13]).

Let K[A] be a toric ring. Then K[A] is said to be squarefree if K[A] is isomorphic
to a toric ring generated by squarefree monomials. A toric ring K[A] is said to be
compressed [35] if the initial ideal of IA is squarefree with respect to any reverse
lexicographic order.

Theorem 1.4.8 ([18]). Any squarefree strongly Koszul toric ring is compressed.
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Let A = (a1, . . . , an) ∈ Zd×n be a configuration and K[A] ⊂ K[t1, . . . , td] be a
toric ring. For a nonempty subset T of {1, . . . , d}, we set K[AT ] = K[A]∩K[tj | j ∈
T ]. Then a subring K[AT ] of K[A] is called a combinatorial pure subring of K[A]
(see [22]). If AT = (ai1 , . . . , air), then we write K[XT ] = K[xi1 , . . . , xir ]. Thus
IAT

= IA ∩K[XT ] (see [32, Proposition 4.13]).

Proposition 1.4.9 ([20, 22]). If G is a generating set (resp. the reduced Gröbner
basis) for IA, then G ∩K[XT ] is a generating set (resp. the reduced Gröbner basis)
for IAT

.

Proposition 1.4.10 ([22]). Let K[AT ] be a combinatorial pure subring of K[A]. If
K[A] is normal, Koszul or strongly Koszul, then K[AT ] has this property, too.

1.5 Toric fiber products

In this section, we introduce the toric fiber product which is defined by Sullivant
[36].

Let r be a positive integer and α, β ∈ Zr
>0 be two vectors. Let

K[X] = K[xij | i ∈ [r], j ∈ [αi]], K[Y ] = K[yik | i ∈ [r], k ∈ [βi]],

where αi (resp. βi) is the i-th entry of α (resp. β), be multigraded polynomial rings
subject to the multigrading

deg(xij) = deg(yik) = ai ∈ Zd.

We write A = {a1, . . . , ar} and assume that there exists a vector w ∈ Rd such that
w · ai = 1 for all i, where w · ai is the usual inner product of Rd. This means that
ideals in K[X] or K[Y ] which are homogeneous with respect to the multigrading
are homogeneous in the usual sense. If I and J are homogeneous ideals of K[X]
and K[Y ] with respect to the grading A, then the quotient rings R1 = K[X]/I and
R2 = K[Y ]/J are also multigraded by A. Consider the polynomial ring

K[Z] = K[zijk | i ∈ [r], j ∈ [αi], k ∈ [βi]]

and the ring homomorphism

ϕI,J : K[Z] → R1 ⊗K R2, zijk 7→ xij ⊗ yik.

The toric fiber product I ×A J of I and J is the kernel of ϕI,J [36]. The following
result is in [36, Theorem 12 and Corollary 14].

Theorem 1.5.1. Suppose that the set A of degree vectors is linearly independent.
Let F1 and F2 be homogeneous generating sets for I and J , respectively. Then

N = Lift(F1) ∪ Lift(F2) ∪ QuadA

is a homogeneous generating set for I ×A J . Moreover, if F1 and F2 are Gröbner
bases of I and J , then there exists a monomial order such that N is a Gröbner basis
for I ×A J . The sets Lift(F1), Lift(F2) and QuadA are defined in [36].

12



On the other hand, if I and J are toric ideals, then I ×A J is also a toric ideal.
Let B = {bi

j | i ∈ [r], j ∈ [αi]} ⊂ Zd1 and D = {di
k | i ∈ [r], k ∈ [βi]} ⊂ Zd2 be

two vector configurations. Let IB ⊂ K[X] and ID ⊂ K[Y ] be toric ideals of B and
D. Toric ideals IB and ID are homogeneous with respect to the grading by A. We
consider the following new vector configuration that is the toric fiber product of the
vector configurations.

B ×A D =

{(
bi
j

di
k

) ∣∣∣∣ i ∈ [r], j ∈ [αi], k ∈ [βi]

}
⊂ Zd1+d2 .

Then the toric fiber product IB ×A ID is the toric ideal

IB ×A ID = IB×AD.

Indeed, if K[S] and K[T ] are polynomial rings, and

ϕ : K[X] → K[S], xij 7→ f i
j(S),

ψ : K[Y ] → K[T ], yik 7→ gik(T )

are ring homomorphism, then we can form the toric fiber product homomorphism

ϕ×A ψ : K[Z] → K[S, T ], zijk 7→ f i
j(S)gik(T ).

If I = ker(ϕ) and J = ker(ψ) and both ideals are homogeneous with respect to the
grading by A, then I ×A J = ker(ϕ×A ψ) (see [12]).

1.6 Graphs

In this section, we introduce a graph and its several properties (see [8]).
A graph is a pair G = (V,E) of sets such that the elements of E are 2-element

subsets of V . The elements of V are called the vertices of the graph G and the
elements of E are called the edges of G. A graph with vertex set V is called a graph
on V .

We say that two vertices u, v of G are adjacent or neighbours if uv is an edge of G.
Two different edges e, e

′
of G is said to be adjacent if they have an end in common.

A graph G is said to be complete if all the vertices of G are pairwise adjacent. The
complete graph on n vertices is denoted by Kn.

LetG = (V,E) andG
′

= (V
′
, E

′
) be two graphs. We setG∪G′

= (V ∪V ′
, E∪E ′

).
If V

′ ⊂ V and E
′ ⊂ E, then G

′
is called a subgraph of G. It is written as G

′ ⊂ G.
If G

′ ⊂ G and G′ contains all edges uv ∈ E with u, v ∈ V
′
, then G

′
is called an

induced subgraph of G, or G
′

is induced by V
′
. It is written as G

′
= G[V

′
]. A clique

in a graph G is a subset V
′

of V such that G[V
′
] is complete.

A path is a non-empty graph P = (V,E) with

V = {u0, u1, . . . , uk}, E = {u0u1, u1u2, . . . , uk−1uk},
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where ui ̸= uj for i ̸= j. The vertices u0 and uk are linked by P and are called its
ends. The number of edges of a path is called length of P . If u0 = uk and k ≥ 3,
then the graph (V,E) is called a cycle. The length of a cycle is its number of edges.
The cycle of length k is denoted by Ck.

The minimum length of a cycle contained in a graph G is called the girth of G
and the maximal length of a cycle in G is called the circumference. Note that if G
does not contain a cycle, then we set the former to ∞, the latter to zero. An edge
which joins two vertices of a cycle but is not itself an edge of a cycle is called a
chord of that cycle. Hence, an induced cycle in G, a cycle in G forming an induced
subgraph, is one that has no chords.

A non-empty graph G is said to be connected if any two vertices of G are linked
by a path in G. We say that connected subgraphs G1, . . . , Gs of G are connected
component of G if the following conditions are satisfied:

• G = G1 ∪ · · · ∪Gs;

• If k ̸= l, then there exists no edge ukul of G such that uk (resp. ul) is a vertex
of Gk (resp. Gl).

A non-empty graph G = (V,E) is said to be k-connected, where k ∈ N, if |V | > k
and G[V \X] is connected for any set X ⊂ V with |X| < k.

A 2-connected component is a maximal 2-connected subgraph. Any connected
graph decomposes into a tree of 2-connected components called the block tree of the
graph.

A graph that does not contain any cycles is called a forest. A connected forest
is called a tree.

Let G = (V,E) and G
′

= (V
′
, E

′
) be graphs. We say that G

′ ⊂ G is a spanning
subgraph of G if V = V

′
.

An edge uv of a graph G, where u, v are vertices of G, is called a loop if u = v. If
G has several edges between the same two vertices u, v, then such edges are called
multiedges. A graph G is said to be simple if G has neither loops nor multiedges.

A graph G = (V,E) is said to be r-partite if V admits a partition into r classes
such that every edge has its ends in different classes: vertices in the same partition
class must not be adjacent. We say that an r-partite graph is complete if every
two vertices from different partition classes are adjacent. We write Kl1,...,lr for the
complete r-partite graph on V1 ∪ · · · ∪ Vr, where |Vi| = li for 1 ≤ i ≤ r and
Vi ∩ Vj = ∅ for i ̸= j. The complete r-partite graphs for all r together are the
complete multipartite graphs.

Let e = uv be an edge of a graph G = (V,E). By G/e = (V
′
, E

′
), we denote

the graph obtained from G by contracting the edge e into a new vertex we, which
becomes adjacent to all the former neighbours of x and y, that is,

V
′

= (V \ {u, v}) ∪ {we},
E

′
= {ij ∈ E | {i, j} ∩ {u, v} = ∅} ∪ {wek | uk ∈ E \ {e} or vk ∈ E \ {e}}.
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By G \ e, we denote the graph obtained from G by deleting the edge e.
A graph H is a minor of a graph G if H can be obtained from G by a sequence

of deleting and contracting edges of G.

Figure 1.1: G Figure 1.2: G/e Figure 1.3: G \ e

1.7 Matroids

In this section, we introduce a matroid and its properties (see [26]).

Definition 1.7.1. A matroid is a pair (E, I), where E is a finite set and I is a
collection of subsets of E, that satisfies the following conditions:

• ∅ ∈ I.

• If I ∈ I and I
′ ⊂ I, then I

′ ∈ I.

• If I1, I2 ∈ I and |I1| < |I2|, then there exists e ∈ I2 \ I1 such that I1∪{e} ∈ I.

We call a member of I an independent set of M . A subset of E that is not
contained in I is said to be dependent. A dependent set C is called a circuit if any
proper subset of C is independent and we write C(M) for the set of circuits of M .

Example 1.7.2. Let A = (a1, . . . , a5) be a 2 × 5 matrix over the field R, where

a1 =

(
1

0

)
, a2 =

(
0

1

)
, a3 =

(
0

0

)
, a4 =

(
1

0

)
, a5 =

(
1

1

)
.

We set E = {a1, a2, a3, a4, a5} and I denotes the collection of subsets X of E such
that X is linearly independent in R, i.e.,

I = {∅, {a1}, {a2}, {a4}, {a5}, {a1, a2}, {a1, a5}, {a2, a4}, {a2, a5}, {a4, a5}}.

Then a pair (E, I) is a matroid and it is written as M [A]. Hence the set of dependent
sets of this matroid is

{{a3}, {a1, a3}, {a1, a4}, {a2, a3}, {a3, a4}, {a3, a5}} ∪ {X ⊂ E | |X| ≥ 3}.

The set of circuits of this matroid is {{a3}, {a1, a4}, {a1, a2, a5}, {a2, a4, a5}}
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Proposition 1.7.3. Let C be a collection of subsets of a finite set E. Then C is the
collection of circuits of a matroid on E if and only if C has the following properties:

• ∅ /∈ C.

• If C1, C2 ∈ C and C1 ⊂ C2, then C1 = C2.

• If C1, C2 ∈ C, C1 ̸= C2 and e ∈ C1 ∩ C2, then there is a member C3 of C such
that C3 ⊂ (C1 ∪ C2) \ {e}.

An independent set B is said to be maximal if there does not exist x ∈ E \ B
such that B ∪ {x} is a member of I. A maximal independent set is called a basis of
M and we write B(M) for the collection of bases of M . The collection of bases in
Example 1.7.2 is

B(M [A]) = {{a1, a2}, {a1, a5}, {a2, a4}, {a2, a5}, {a4, a5}}.

Each member of B(M [A]) is a basis of the vector space R2.

Proposition 1.7.4. All members of B(M) have the same cardinality.

Proposition 1.7.5. Let M be a matroid on E and B be a collection of subsets of
E. Then B is the collection of bases of M if and only if B satisfies the following
conditions:

• B is nonempty.

• For every B,B
′ ∈ B, for any x ∈ B \ B′

, there exists y ∈ B
′ \ B such that

(B ∪ {y}) \ {x} is a member of B.

Proposition 1.7.5 is called the exchange axiom. The exchange axiom is equivalent
to the following stronger axiom, known as the symmetric exchange axiom.

Proposition 1.7.6. Let M be a matroid on E and B be the collection of bases of
M . Then

• for every B, B
′ ∈ B, for any x ∈ B, there exists y ∈ B

′
such that (B∪{y})\{x}

and (B
′ ∪ {x}) \ {y} are in B.

Example 1.7.7. We give two examples:

(1) Let r, d be two integers with 0 ≤ r ≤ d and I be the collection consisting of
all subsets with size ≤ r of E with |E| = d. Then a pair (E, I) is a matroid.
This matroid is said to be uniform and it is written as Ur,d. The collection of
bases of Ur,d consists of all r-element subsets of E and the collection of circuits
of Ur,d consists of all (r + 1)-element subsets of E.
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(2) Let G be a finite connected graph on the vertex set V with the edge set E.
Let I be the collection consisting of edges of forests in G. Then a pair (E, I)
is a matroid. This matroid is said to be graphic and it is written as M(G).
The collection of bases of M(G) consists of edges of spanning trees in G and
the collection of circuits of M(G) consists of edges of cycles in G.

Let M = (E, I) be a matroid and X ⊂ E. Let

I|X = {I ⊂ X | I ∈ I}.

Then (X, I|X) is a matroid. We call this matroid the deletion of E−X from M . It
is denoted by M \ (E−X). We define the rank of X to be the cardinality of a basis
of M \ (E −X) and it is written as rk(X). The rank of a matroid M is defined by
rk(M) = rk(E). The function rk, called the rank function of M , maps 2E to Z≥0.

Proposition 1.7.8. Let E be a finite set. A function rk : 2E → Z≥0 is the rank
function of a matroid on E if and only if rk has the following properties:

• If X ⊂ E, then 0 ≤ rk(X) ≤ |X|.

• If X ⊂ Y ⊂ E, then rk(X) ≤ rk(Y ).

• If X, Y ⊂ E, then rk(X ∪ Y ) + rk(X ∩ Y ) ≤ rk(X) + rk(Y ).

Let K be a field and K[X] = K[x1, . . . , xn] the polynomial ring over K. Let
B(M) = {B1, . . . , Bn} denote the collection of bases of M on E = [d] = {1, . . . , d}.
We consider the ring homomorphism

πM : K[X] → K[S] = K[s1, . . . , sd], xj 7→
∏
l∈Bj

sl.

The toric ideal JM is the kernel of πM . The toric ring RM = K[X]/JM is called the
bases monomial ring of M and it was introduced by N. White [37]. White proved
that the bases monomial ring RM is normal, in particular, Cohen-Macaulay for any
matroid M (see [37]). White presented the following conjecture.

Conjecture 1.7.9 ([38, 33]). For any matroid M , the toric ideal JM is generated
by the quadratic binomials xixj − xkxl such that the pair of bases Bk, Bl can be
obtained from the pair of bases Bi, Bj by a symmetric exchange.

It is natural to ask whether the following variant of White’s conjecture holds.

Conjecture 1.7.10. For any matroid M , the toric ideal JM has a Gröbner basis
consisting of quadratic binomials.

White’s conjecture can be posed as two separate conjectures (see [1]).

Conjecture 1.7.11. For any matroidM , the toric ideal JM is generated by quadratic
binomials.
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Conjecture 1.7.12. For any matroid M , the quadratic binomials of JM are in the
ideal generated by the binomials xixj − xkxl such that the pair of bases Bk, Bl can
be obtained from the pair Bi, Bj by a symmetric exchange.

Conjecture 1.7.9 is true for

• graphic matroids [1];

• matroids with rank ≤ 3 [16];

• sparse paving matroids [4]; and

• strongly base orderable matroids [17].

Conjecture 1.7.10 is true for

• uniform matroids [32];

• matroids with rank ≤ 2 [24, 2];

• graphic matroids with no M(K4)-minor [2]; and

• lattice path matroids [29].

In [6], Conca proved that Conjecture 1.7.11 holds for transversal polymatroids.
Let MQG be the class of matroids such that JM has a Gröbner basis consisting of

quadratic binomials and MQ be the class of matroids for which JM is generated by
quadratic binomials. In Chapter 3, we show that classes MQ and MQG are closed
under the following operations:

• series and parallel extensions;

• series and parallel connections;

• 2-sums.

We prove that Conjecture 1.7.10 and Conjecture 1.7.11 are true if a matroid M
has no minor isomorphic to any of M(K4), W3, P6 and Q6.

18



Chapter 2

Toric rings associated to cut ideals

A cut ideal of a graph was introduced by Sturmfels and Sullivant [34]. In this
chapter, we give a necessary and sufficient condition for toric rings associated to cut
ideals to be strongly Koszul. In Section 2.1, we introduce the definition and known
results of a cut ideal. In Section 2.2, we show that the set of graphs such that RG is
strongly Koszul is closed under contracting edges, induced subgraphs and 0-sums.
In Section 2.3, we compute a Gröbner basis for cut ideals without (K4, C5)-minor.
In Section 2.4, by using results of Section 2.2 and Section 2.3, we prove that the
toric ring RG is strongly Koszul if and only if G has no (K4, C5)-minor.

2.1 Cut ideals

Let G be a finite simple connected graph on the vertex set V (G) = [n] = {1, . . . , n}
with the edge set E(G). For two subsets A and B of [n] such that A ∩ B = ∅ and
A ∪B = [n], the (0, 1)-vector δA|B(G) ∈ Z|E(G)| is defined as

δA|B(G)ij =

{
1 if |A ∩ {i, j}| = 1,

0 otherwise,

where ij is an edge of G. Let

XG =

{(
δA1|B1(G)

1

)
, . . . ,

(
δAN |BN

(G)

1

)}
⊂ Z|E(G)|+1 (N = 2n−1).

As necessary, we consider XG as a collection of vectors or as a matrix. Let K be a
field and

K[q] = K[qA1|B1 , . . . , qAN |BN
],

K[s, T ] = K[s, tij | ij ∈ E(G)]

be two polynomial rings over K. Then a ring homomorphism is defined as follows:

πG : K[q] → K[s, T ], qAl|Bl
7→ s ·

∏
|Al∩{i,j}|=1
ij∈E(G)

tij
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for 1 ≤ l ≤ N . The cut ideal IG of G is the kernel of πG and the toric ring RG of
XG is the image of πG. We put uA|B = πG(qA|B).

In [34], Sturmfels and Sullivant introduced a cut ideal and posed the problem of
relating properties of cut ideals to the class of graphs. For the toric ring RG and
the cut ideal IG, the following results are known:

Theorem 2.1.1 ([34]). The toric ring RG is compressed if and only if G has no
K5-minor and every induced cycle in G has length 3 or 4.

Theorem 2.1.2 ([11]). The cut ideal IG is generated by quadratic binomials if and
only if G has no K4-minor.

Nagel and Petrović showed that the cut ideal IG associated with ring graphs has
a quadratic Gröbner basis [19]. However we do not know generally when the cut
ideal IG has a quadratic Gröbner basis and when RG is Koszul except for trivial
cases.

On the other hand, in [28], Restuccia and Rinaldo gave a sufficient condition
for toric rings to be strongly Koszul. In [18], Matsuda and Ohsugi proved that any
squarefree strongly Koszul toric ring is compressed.

2.2 Clique sums and strongly Koszul algebras

In this section, we prove that strong Koszulness of the toric ring associated to the
cut ideal is closed under the 0-sum, induced subgraphs and contracting edges but is
not always closed under the 1-sum.

Recall that a graph H is a minor of a graph G if H can be obtained by deleting
and contracting edges of G. We say that a subgraph H is an induced subgraph of a
graph G if H contains all the edges ij ∈ E(G) with i, j ∈ V (H).

Proposition 2.2.1. Let G be a finite simple connected graph. Assume that RG is
strongly Koszul. Then

(1) If H1 is an induced subgraph of G, then RH1 is strongly Koszul.

(2) If H2 is obtained by contracting an edge of G, then RH2 is strongly Koszul.

Proof. By [20] and [34], RH1 and RH2 are combinatorial pure subrings of RG. There-
fore, by [22, Corollary 1.6], RH1 and RH2 are strongly Koszul.

Let G1 = (V1, E1) and G2 = (V2, E2) be finite simple connected graphs such that
V1 ∩ V2 is a clique of both graphs. The new graph G = G1#G2 with the vertex set
V1∪V2 and the edge set E1∪E2 is called the clique sum of G1 and G2 along V1∩V2.
If the cardinality of V1 ∩ V2 is k + 1, then this operation is called a k-sum of the
graphs. It is clear that if RG1#G2 is strongly Koszul, then both RG1 and RG2 are
strongly Koszul because G1 and G2 are induced subgraphs of G1#G2.
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Proposition 2.2.2. The set of graphs G such that RG is strongly Koszul is closed
under the 0-sum.

Proof. Let G1 and G2 be finite simple connected graphs and assume that RG1 and
RG2 are strongly Koszul. Then the toric ring RG1#G2 , where G1#G2 is the 0-sum
of G1 and G2, is the usual Segre product of RG1 and RG2 . Thus it follows by
Proposition 1.4.6.

However the set of graphs G such that RG is strongly Kosuzl is not always closed
under the 1-sum.

Recall that Kn denotes the complete graph on n vertices, Cn denotes the cycle
of length n and Kl1,...,lr denotes the complete r-partite graph on the vertex set
V1 ∪ · · · ∪ Vr, where |Vi| = li for 1 ≤ i ≤ r and Vi ∩ Vj = ∅ for i ̸= j.

Example 2.2.3. Let G1 = C3#C3(= K4 \ e), G2 = C4#C3 and G3 = (K4 \ e)#C3

be graphs shown in Figures 2.1-2.3. All of RC3 , RC4 and RG1 are strongly Koszul
because RC3 is isomorphic to the polynomial ring and IC4 and IG1 have quadratic
Gröbner bases with respect to any reverse lexicographic order, respectively (see
[28, 34]). However neither RG2 nor RG3 is strongly Koszul since an ideal ⟨u∅|[5]⟩ ∩
⟨u{1,3,4}|{2,5}⟩ of RG2 is generated by monomials

u∅|{1,...,5}u{1,3,4}|{2,5}, u{1,3,4,5}|{2}u{1,2,5}|{3,4}u{1,2,3}|{4,5}, u{1}|{2,3,4,5}u{1,3,4}|{2,5}u{1,2,3}|{4,5},

u{1}|{2,3,4,5}u{1,2,5}|{3,4}u{1,2,4}|{3,5}, u{1}|{2,3,4,5}u{1,5}|{2,3,4}u{1,2,4}|{3,5}

and an ideal ⟨u∅|[5]⟩ ∩ ⟨u{1,3,4}|{2,5}⟩ of RG3 is generated by monomials

u∅|{1,...,5}u{1,3,4}|{2,5}, u{1,3,4,5}|{2}u{1,2,5}|{3,4}u{1,2,3}|{4,5}, u{1}|{2,3,4,5}u{1,3,4}|{2,5}u{1,2,3}|{4,5},

u∅|{1,...,5}u{1,3,5}|{2,4}u{1,2,5}|{3,4}, u{1}|{2,3,4,5}u{1,2,3,5}|{4}u{1,3,4}|{2,5}.

Figure 2.1: C3#C3 Figure 2.2: C4#C3 Figure 2.3: (K4 \ e)#C3

The cut ideal IG1#G2 is the toric fiber product of IG1 and IG2 [34]. Therefore,
from Example 2.2.3, the set of toric rings R such that R is strongly Koszul is not
closed under the toric fiber product.
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2.3 Gröbner bases for cut ideals

In this section, we compute a Gröbner basis of IG such that G has no (K4, C5)-minor.

Lemma 2.3.1. Let G be a finite simple 2-connected graph on the vertex set V (G).
Then G has no (K4, C5)-minor if and only if G is K3, K2,n−2 or K1,1,n−2 for n ≥ 4.

Proof. Since G is 2-connected, G contains a cycle. Let C be the longest cycle in
G. It follows that |V (C)| ≤ 4 because G has no C5-minor. If |V (C)| = 3, then
G = K3 since G is 2-connected. Suppose that |V (C)| = 4. If |V (G)| = |V (C)|, then
G is either K2,2 or K1,1,2. Next, we assume that |V (G)| > |V (C)| = 4. Consider
v ∈ V (G) \ V (C). Let P and Q be two paths each with one end in v and another
end in V (C), disjoint except for their common end in v and having no internal
vertices in C. Such paths exist since G is 2-connected. If |V (P )| > 2, or |V (Q)| > 2,
or the ends of P and Q in C are consecutive in C, then P ∪ Q together with a
subpath of C form a cycle of length longer than C. Hence every vertex v /∈ V (C)
has exactly two neighbors in V (C), which are not consecutive. Moreover, if some
two vertices v1, v2 ∈ V (G) \ V (C) are adjacent to different pairs of vertices in C,
then a cycle of length six is induced in G by {v1, v2} ∪ V (C). Therefore there exist
u1, u2 ∈ V (C), which are both adjacent to all vertices in V (G) \ {u1, u2}. If two
vertices in V (G) \ {u1, u2} are adjacent, then together with {u1, u2} and any other
vertex they induce a cycle inG of length five. ThereforeG is eitherK2,n−2 orK1,1,n−2.
It is easy to see that all of K3, K2,n−2 and K1,1,n−2 have no (K4, C5)-minor.

It is already known that the cut ideal IK1,n−2 for n ≥ 4 has a quadratic Gröbner
basis since K1,n−2 is 0-sums of K2 and IK2 = ⟨0⟩ [34, Theorem 2.1]. In this section, to
prove Theorem 2.3.3, we compute the reduced Gröbner basis of IK1,n−2 . Let < be a
reverse lexicographic order on K[q] which satisfies qA|B < qC|D with min{|A|, |B|} <
min{|C|, |D|}.

Lemma 2.3.2. Let G = K1,n−2 be the complete bipartite graph on the vertex set
V1 ∪ V2, where V1 = {1} and V2 = {3, . . . , n} for n ≥ 4. Then the reduced Gröbner
basis of IG with respect to < consists of

qA|BqC|D − qA∩C|B∪DqA∪C|B∩D (1 ∈ A ∩ C,A ̸⊂ C, C ̸⊂ A).

The initial monomial of each binomial is the first monomial.

Proof. Let G be the set of all binomials above. It is easy to see that G ⊂ IG. Let
in(G) = ⟨in<(g) | g ∈ G⟩. Let u and v be monomials that do not belong to in(G):

u =
m∏
l=1

(q{1}∪Al|Bl
)pl , v =

m
′∏

l=1

(q{1}∪Cl|Dl
)p

′
l ,

where 0 < pl, p
′

l ∈ Z for any l. Since neither u nor v is divided by qA|BqC|D, it
follows that

A1 ⊂ A2 ⊂ · · · ⊂ Am, C1 ⊂ C2 ⊂ · · · ⊂ Cm
′ .
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Let

Al = Al−1 ∪ {bl−1
1 , . . . , bl−1

βl−1
}, Bk =

∪m
i=k{bi1, . . . , biβi

},

Cl = Cl−1 ∪ {dl−1
1 , . . . , dl−1

δl−1
}, Dk =

∪m
′

i=k{di1, . . . , diδi}

for k ≥ 1 and l ≥ 2, where A1 = V2 \ B1, C1 = V2 \ D1. We suppose that
πG(u) = πG(v):

πG(u) = sp
m∏
l=1

(t1bl1 · · · t1blβl )
∑l

k=1 pk , πG(v) = sp
′

m
′∏

l=1

(t1dl1 · · · t1dlδl )
∑l

k=1 p
′
k .

Here we set p =
∑m

l=1 pl and p
′

=
∑m

′

l=1 p
′

l. Assume that A1 ̸= C1. Then there exists
a ∈ A1 such that a /∈ C1. Hence, for some l1 ∈ [m

′
], a ∈ {dl11 , . . . , dl1δl1}. However, for

any l ∈ [m], a /∈ {bl1, . . . , blβl
}. This contradicts that πG(u) = πG(v). Thus A1 = C1

and p1 = p
′
1. By performing this operation repeatedly, it follows that Al = Cl,

Bl = Dl and pl = p
′

l for any l. Since u = v, G is a Gröbner basis of IG. It is trivial
that G is reduced.

Theorem 2.3.3. Let G = K2,n−2 be the complete bipartite graph on the vertex set
V1 ∪ V2, where V1 = {1, 2} and V2 = {3, . . . , n} for n ≥ 4. Then a Gröbner basis of
IG consists of

qA|BqE|F − q∅|[n]q{1,2}|{3,...,n} (1 ∈ A, 2 ∈ B), (i)

qA|BqC|D − qA∩C|B∪DqA∪C|B∩D (1 ∈ A ∩ C, 2 ∈ B ∩D,A ̸⊂ C,C ̸⊂ A), (ii)

qA|BqC|D − qA∩C|B∪DqA∪C|B∩D (1, 2 ∈ A ∩ C,A ̸⊂ C,C ̸⊂ A), (iii)

where E = (B ∪ {1}) \ {2} and F = (A ∪ {2}) \ {1}. The initial monomial of each
binomials is the first binomial.

Proof. Let G be the set of all binomials above. It is easy to see that G ⊂ IG. Let u
and v be monomials which do not belong to in(G):

u =

m1∏
l=1

(q{1}∪Al|{2}∪Bl
)pl

m2∏
l=1

(q{1,2}∪Cl|Dl
)rl ,

v =

m
′
1∏

l=1

(q{1}∪A′
l |{2}∪B

′
l
)p

′
l

m
′
2∏

l=1

(q{1,2}∪C′
l |D

′
l
)r

′
l ,

where 0 < pl, rl, p
′

l, r
′

l ∈ Z for any l. Since neither u nor v is divided by initial
monomials of (ii) and (iii), it follows that

A1 ⊂ · · · ⊂ Am1 , C1 ⊂ · · · ⊂ Cm2 ,

A
′

1 ⊂ · · · ⊂ A
′

m
′
1
, C

′

1 ⊂ · · · ⊂ C
′

m
′
2
.
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Suppose that πG(u) = πG(v):

πG(u) =

m1∏
l=1

(u{1}∪Al|{2}∪Bl
)pl

m2∏
l=1

(u{1,2}∪Cl|Dl
)rl ,

πG(v) =

m
′
1∏

l=1

(u{1}∪A′
l |{2}∪B

′
l
)p

′
l

m
′
2∏

l=1

(u{1,2}∪C′
l |D

′
l
)r

′
l .

Let Y be the matrix consisting of the first n − 2 rows of XK1,n−2 . Then XG is the
following matrix: Y Y

Y 1n−2,2n−2 − Y
1 1

 ,

where 1n−2,2n−2 is the (n − 2) × 2n−2 matrix such that each entry is all ones. Note
that (

Y
Y

)
=

(
δP1|Q1(K2,n−2) · · · δP2n−2 |Q2n−2 (K2,n−2)

)
,(

Y
1n−2,2n−2 − Y

)
=

(
δR1|S1(K2,n−2) · · · δR2n−2 |S2n−2 (K2,n−2)

)
,

where 1, 2 ∈ Pl, 1 ∈ Rl and 2 ∈ Sl for 1 ≤ l ≤ 2n−2. By elementary row operations
on XG, we have

X
′

G =

2Y − 1n−2,2n−2 O
O 2Y − 1n−2,2n−2

1 1

 .

Each column vector of 2Y −1n−2,2n−2 is the form t(ε1, . . . , εn−2), where εi ∈ {1,−1}
for 1 ≤ i ≤ n − 2. Let IX′

G
denote the toric ideal of X

′
G.Then u − v ∈ IG if and

only if u − v ∈ IX′
G

. Let aP |Q denote the column vector of 2Y − 1n−2,2n−2 in X
′
G

corresponding to the column vector δP |Q(G) of XG. Then

m1∑
l=1

pl

 0
a{1}∪Al|{2}∪Bl

1

+

m2∑
l=1

rl

a{1,2}∪Cl|Dl

0
1

 =

m
′
1∑

l=1

p
′

l

 0
a{1}∪A′

l |{2}∪B
′
l

1

+

m
′
2∑

l=1

r
′

l

a{1,2}∪C′
l |D

′
l

0
1

 .

In particular,

m1∑
l=1

pla{1}∪Al|{2}∪Bl
=

m
′
1∑

l=1

p
′

la{1}∪A′
l |{2}∪B

′
l
,

m2∑
l=1

rla{1,2}∪Cl|Dl
=

m
′
2∑

l=1

r
′

la{1,2}∪C′
l |D

′
l

hold. Let p =
∑m1

l=1 pl, r =
∑m2

l=1 rl, p
′

=
∑m

′
1

l=1 p
′

l and r
′

=
∑m

′
2

l=1 r
′

l . Since neither
u nor v is divided by initial monomials of (i), it follows that either A1 ̸= ∅ or
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Am1 ̸= [n] \ {1, 2} (resp. A
′
1 ̸= ∅ or A

′

m
′
2

̸= [n] \ {1, 2}). If A1 ̸= ∅, then there

exists i ∈ [n] \ {1, 2} such that i ∈ Al for any l ∈ [m1]. If Am1 ̸= [n] \ {1, 2}, that
is, Bm1 ̸= ∅, then there exists i ∈ [n] \ {1, 2} such that i ∈ Bm1 , and i /∈ Al for
any l ∈ [m1]. Thus either p or −p appears in the entry of

∑m1

l=1 pla{1}∪Al|{2}∪Bl
.

Similarly, either p
′

or −p′
appears in the entry of

∑m
′
1

l=1 p
′

la{1}∪A′
l |{2}∪B

′
l
. Therefore

p = p
′
. Hence

m1∏
l=1

(u{1}∪Al|{2}∪Bl
)pl =

m
′
1∏

l=1

(u{1}∪A′
l |{2}∪B

′
l
)p

′
l ,

m2∏
l=1

(u{1,2}∪Cl|Dl
)rl =

m
′
2∏

l=1

(u{1,2}∪C′
l |D

′
l
)r

′
l

hold. Thus

m1∏
l=1

(q{1}∪Al|{2}∪Bl
)pl −

m
′
1∏

l=1

(q{1}∪A′
l |{2}∪B

′
l
)p

′
l ∈ IZ1 ,

m2∏
l=1

(q{1,2}∪Cl|Dl
)rl −

m
′
2∏

l=1

(q{1,2}∪C′
l |D

′
l
)r

′
l ∈ IZ2 ,

where Z1 (resp. Z2) is the matrix consisting of the first (resp. last) 2n−2 columns of
X

′
G. Here IZ1 and IZ2 are toric ideals of Z1 and Z2. By elementary row operations

on Z1 (resp. Z2), we have

m1∏
l=1

(q{1}∪Al|Bl
)pl −

m
′
1∏

l=1

(q{1}∪A′
l |B

′
l
)p

′
l ,

m2∏
l=1

(q{1}∪Cl|Dl
)rl −

m
′
2∏

l=1

(q{1}∪C′
l |D

′
l
)r

′
l ∈ IK1,n−2 .

By Lemma 2.3.2, u = v holds. Therefore G is a Gröbner basis of IG.

Corollary 2.3.4. If G has no (K4, C5)-minor, then IG has a quadratic Gröbner
basis.

Proof. If G is not 2-connected, then there exist 2-connected components G1, . . . , Gs

of G such that G is 0-sums of G1, . . . , Gs. By [34, Theorem 2.1] and Lemma 2.3.1, it
is enough to show that IK2 , IK3 , IK2,n−2 and IK1,1,n−2 have quadratic Gröbner bases.
It is trivial that IK2 and IK3 have quadratic Gröbner bases because IK2 = ⟨0⟩ and
IK3 = ⟨0⟩. Since K1,1,n−2 is obtained by 1-sums of K3, IK1,1,n−2 has a quadratic
Gröbner basis. Therefore, by Theorem 2.3.3, IG has a quadratic Gröbner basis.

2.4 Strongly Koszul toric rings of cut ideals

In this section, we characterize the class of graphs whose toric rings associated to
cut ideals are strongly Koszul.
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Proposition 2.4.1. Let G1 = K1,1,n−2 and G2 = K2,n−2 for n ≥ 4. Then RG1 and
RG2 are strongly Koszul.

Proof. By elementary row operations on XG1 , we have

XG1 =


0 1
Y Y
Y 1n−2,2n−2 − Y
1 1

 →


0 1
Y Y
Y −Y
1 1

 →


0 1
Y Y
Y O
1 1

 →


0 1
O Y
Y O
1 0

 .

Hence RG1
∼= RK1,n−2 ⊗K RK1,n−2 . Since RK1,n−2 is Segre products of RK2 , RG1 is

strongly Koszul. Next, by the symmetry of XG
′ in the proof of Theorem 2.3.3, it is

enough to consider the following two cases:

(1) ⟨u∅|[n]⟩ ∩ ⟨u{1}|{2,...,n}⟩,

(2) ⟨u∅|[n]⟩ ∩ ⟨u{1,2}∪A|B⟩.

Since q∅|[n] is the smallest variable and q{1}|{2,...,n} is the second smallest variable
with respect to the reverse lexicographic order <, by [18] and Theorem 2.3.3,
⟨u∅|[n]⟩ ∩ ⟨u{1}|{2,...,n}⟩ is generated in degree 2. Assume that ⟨u∅|[n]⟩ ∩ ⟨u{1,2}∪A|B⟩
is not generated in degree 2. Then there exists a monomial uE1|F1 · · ·uEs|Fs belong-
ing to a minimal generating set of ⟨u∅|[n]⟩ ∩ ⟨u{1,2}∪A|B⟩ such that s ≥ 3. Since
uE1|F1 · · · uEs|Fs is in ⟨u∅|[n]⟩ ∩ ⟨u{1,2}∪A|B⟩, it follows that

q{1,2}∪A|B

α∏
l=1

q{1,2}∪Al|Bl

β∏
l=1

q{1}∪Cl|{2}∪Dl
− q∅|[n]

γ∏
l=1

q{1,2}∪Pl|Ql

δ∏
l=1

q{1}∪Rl|{2}∪Sl
∈ IG2 .

If one of the monomials appearing in the above binomial is divided by initial mono-
mials of (i) in Theorem 2.3.3, then uE1|F1 · · · uEs|Fs is divided by u∅|[n]u{1,2}|{3,...,n}.
This contradicts that uE1|F1 · · ·uEs|Fs belongs to a minimal generating set of ⟨u∅|[n]⟩∩
⟨u{1,2}∪A|B⟩ since for any uA|B and uC|D with uA|B ̸= uC|D, u∅|[n]u{1,2}|{3,...,n} belongs

to a minimal generating set of ⟨uA|B⟩ ∩ ⟨uC|D⟩. If one of
∏β

l=1 q{1}∪Cl|{2}∪Dl
and∏δ

l=1 q{1}∪Rl|{2}∪Sl
is divided by initial monomials of (ii) in Theorem 2.3.3, the mono-

mial is reduced to the monomial which is not divided by initial monomials of (ii)
with respect to G, where G is a Gröbner basis of IG2 . Thus we may assume that

C1 ⊂ · · · ⊂ Cβ, R1 ⊂ · · · ⊂ Rδ.

Similar to what did in the proof of Theorem 2.3.3, we have

u{1,2}∪A|B

α∏
l=1

u{1,2}∪Al|Bl
= u∅|[n]

γ∏
l=1

u{1,2}∪Pl|Ql
,

β∏
l=1

u{1}∪Cl|{2}∪Dl
=

δ∏
l=1

u{1}∪Rl|{2}∪Sl
.
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It follows that α = γ, β = δ, Cl = Rl, Dl = Sl for any l, and

q{1}∪A|B

α∏
l=1

q{1}∪Al|Bl
− q∅|[n]\{2}

α∏
l=1

q{1}∪Pl|Ql
∈ IK1,n−2 .

Hence the ideal ⟨u{1}∪A|B⟩∩ ⟨u∅|[n]\{2}⟩ of RK1,n−2 is not generated in degree 2. How-
ever this contradicts that RK1,n−2 is strongly Koszul. Therefore RG2 is strongly
Koszul.

Lemma 2.4.2. Let G be a finite simple 2-connected graph without K4-minor. If G
has C5-minor, then by only contracting edges of G, we obtain one of C5, the 1-sum
of C4 and C3, and the 1-sum of K4 \ e and C3.

Proof. Let G be a graph with C5-minor and C a longest cycle in G. It follows
that |V (C)| ≥ 5. Then, by contracting edges of G, we obtain a graph G

′
of five

vertices such that C5 is a subgraph of G
′
. Assume that G

′ ̸= C5. Then there exist
u, v ∈ V (C5) with uv /∈ E(C5) such that uv ∈ E(G

′
). Since G has no K4-minor,

there do not exist α, β ∈ V (C5) \ {u, v} such that αβ ∈ E(G
′
) \ E(C5). Therefore

we obtain one of the 1-sum of C4 and C3, and the 1-sum of K4 \ e and C3.

Theorem 2.4.3. Let G be a finite simple connected graph. Then RG is strongly
Koszul if and only if G has no (K4, C5)-minor.

Proof. Let G be a graph without (K4, C5)-minor. If G is not 2-connected, then there
exist 2-connected components G1, . . . , Gs of G such that G is 0-sums of G1, . . . , Gs.
By Lemma 2.3.1, it is enough to show that RK2 , RK3 , RK2,n−2 and RK1,1,n−2 are
strongly Koszul. It is clear that RK2 and RK3 are strongly Koszul. By Proposi-
tion 2.4.1, RK2,n−2 and RK1,1,n−2 are strongly Koszul. Next, we suppose that G has
K4-minor. Then the cut ideal IG is not generated by quadratic binomials [11]. In
particular, RG is not strongly Koszul. Assume that G has no K4-minor. If G has
C5-minor, then, by Lemma 2.4.2, we obtain one of C5, C4#C3 and (K4 \ e)#C3 by
contracting edges of G. By Example 2.2.3, neither RC4#C3 nor R(K4\e)#C3 is strongly
Koszul. Since RC5 is not compressed [34, Theorem 1.3], RC5 is not strongly Koszul
[18, Theorem 2.1]. Therefore, by Proposition 2.2.1, RG is not strongly Koszul.

By using above results, we have

Corollary 2.4.4. The set of graphs G such that RG is strongly Koszul is minor
closed.

Corollary 2.4.5. If RG is strongly Koszul, then IG has a quadratic Gröbner basis.

The converse of Corollary 2.4.5 is not true because the cut ideal IC5 has a
quadratic Gröbner basis [19], but RC5 is not strongly Koszul.
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Chapter 3

Toric ideals associated to matroids

In this chapter, we consider the toric ideal associated to a matroid. In Section 3.1, we
introduce known results about properties of toric rings and toric ideals of matroids.
In Section 3.2, we prove that the class of matroids such that the toric ideal JM
has a quadratic Gröbner basis is closed under series and parallel extensions. In
Section 3.3, we show that the class of matroids such that the toric ideal JM has a
quadratic Gröbner basis is closed under series and parallel connections and 2-sums.

3.1 Operations on matroids

In this section, we introduce several operations on matroids.
Let M be a matroid on E = [d] and B(M) = {B1, . . . , Bn} be the collection of

bases of M . An element i ∈ E is called a loop of M if it does not belong to any
basis of M . Dually, an element i ∈ E is said to be a coloop of M if it is contained
in all the bases of M . Let

B∗(M) = {E \B | B ∈ B(M)}.

Then a pair (E,B∗(M)) is a matroid. This matroid is called the dual of M and
denoted as M∗.

Let M and B(M) be as above, and let c ∈ E. We consider the following collection
of subsets of E \ {c}:

B(M) \ c =

{
{B \ {c} | B ∈ B(M)} if c is a coloop of M ,

{B | c /∈ B ∈ B(M)} otherwise.

A pair (E \{c},B(M)\ c) is a matroid. This matroid is called the deletion of c from
M and denoted as M \ c. Dually, let M/c, the contraction of c from M , be given
by M/c = (M∗ \ c)∗. We call a matroid M

′
a minor of a matroid M if M

′
can be

obtained from M by a finite sequence of contractions and deletions.
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Let M1 and M2 be matroids with E1 ∩ E2 = ∅. Let B(M1) and B(M2) be
collections of bases of M1 and M2, and let

B(M1) ⊕ B(M2) = {B ∪D | B ∈ B(M1), D ∈ B(M2)}.

Then a pair (E,B(M1) ⊕ B(M2)), where E = E1 ∪ E2, is a matroid. This matroid
is called the 1-sum of M1 and M2, and it is denoted as M1 ⊕M2.

Proposition 3.1.1 ([2, 38]). Classes MQG and MQ are closed under duality, taking
minors and 1-sums.

Note that

• RM∗ is isomorphic to RM as K-algebra, in particular, JM = JM∗ ,

• RM/c and RM\c are combinatorial pure subrings of RM ,

• RM1⊕M2 is the Segre product of RM1 and RM2 .

3.2 A series and parallel extension of a matroid

In this section, we introduce a series and parallel extension of a matroid and show
that MQG and MQ are closed under series and parallel extensions.

Let M be a matroid on E = [d] and B(M) be the collection of bases of M . Then
a series extension of M at c ∈ E by d+ 1 is a matroid on E ∪ {d+ 1} that has

{B ∪ {d+ 1} | B ∈ B(M)} ∪ {B ∪ {c} | c /∈ B ∈ B(M)}

as the collection of bases and is denoted as M +c (d+ 1). Dually, we call a matroid
[M∗ +c (d+ 1)]∗ a parallel extension of M at c by d+ 1. A series-parallel extension
of M is any matroid derived from M by a finite sequence of series and parallel
extensions. We suppose that M does not have c ∈ E as a coloop. Let B(M) =
{B1, . . . , Bγ, . . . , Bn} be the collection of bases of M , where c /∈ Bj for j ∈ [γ]
and c ∈ Bj for j ∈ [n] \ [γ]. We renumber the bases of M , if necessary. Let
DM = {b1

j | j ∈ [n]} ⊂ Zd denote a vector configuration satisfying b1
j =

∑
l∈Bj

el,
where el is the l-th standard vector. As necessary, we consider DM as a collection
of vectors or as a matrix.

Now we consider a new vector configuration

D̃M =

{(
bi
j

ai

) ∣∣∣∣ i = 1, 2, j ∈ [αi]

}
⊂ Zd+2

that satisfies b1
j = b2

j for j ∈ [γ], where
(
α1

α2

)
=

(
n
γ

)
, a1 =

(
0
1

)
and a2 =

(
1
1

)
. We

define a ring homomorphism π̃M as follows:

π̃M : K[X] = K[xij | i = 1, 2, j ∈ [αi]] → K[S,W ] = K[sk, wl | k ∈ [d], l = 1, 2],

xij 7→ Sbi
jW a.
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Then JD̃M
= ker(π̃M).

Let ω ∈ Zn
≥0, and let < be an arbitrary monomial order. We define a new

monomial order <ω as follows:

Xa <ω X
b ⇔

{
ω · a < ω · b ; or

ω · a = ω · b and Xa < Xb

for a,b ∈ Zn
≥0. We call a monomial order <ω a weight order on K[x1, . . . , xn]. We

use the following useful result:

Proposition 3.2.1 ([32, Proposition 1.11]). For any monomial order < and any
ideal I ⊂ K[X], there exists a vector ω ∈ Zn

≥0 such that inω(I) = in<(I).

Let F be a homogeneous generating set for JDM
, and let

f =

uf∏
l=1

x1jl

vf∏
l=1

x1kl −
u
′
f∏

l=1

x1
j
′
l

v
′
f∏

l=1

x1
k
′
l

∈ F,

where jl, j
′

l ∈ [γ], kl, k
′

l ∈ [n] \ [γ]. However, if uf ̸= u
′

f , then πM(f) ̸= 0 since the

c-th entry of
∑uf

l=1 b
1
jl

does not coincide with the c-th entry of
∑u

′
f

l=1 b
1
j
′
l

, and the c-th

entries of
∑vf

l=1 b
1
kl

and
∑v

′
f

l=1 b
1
k
′
l

are zero. Therefore uf = u
′

f and vf = v
′

f . Now let

I = (i1, . . . , iuf
) ∈ {1, 2}uf and consider the binomial f I ∈ K[X] defined by

f I =

uf∏
l=1

xiljl

vf∏
l=1

x1kl −
uf∏
l=1

xil
j
′
l

vf∏
l=1

x1
k
′
l

.

Since f belongs to JDM
, the new homogeneous binomial f I belongs to JD̃M

. We set

F̃ = {f I | f ∈ F, I ∈ {1, 2}uf} ∪ {x1j2x
2
j1
− x1j1x

2
j2

| 1 ≤ j1 < j2 ≤ γ}.

Theorem 3.2.2. Let M be a matroid on E, and let F be a Gröbner basis for JDM
.

Then F̃ is a Gröbner basis for JD̃M
.

Proof. First, it is easy to see that F̃ ⊂ JD̃M
. Let ω = (ω1

1, . . . , ω
1
n) be a weight vector.

We denote the underlined monomial of f as the initial monomial of f with respect to
a weight order ω. Let ω̃ = (ω1

1, . . . , ω
1
n, ω

2
1, . . . , ω

2
γ) denote a weight vector satisfying

ω1
j = ω2

j for j ∈ [γ]. Then the underlined monomial of f I is the initial monomial of
f I with respect to a weight order <ω̃. We choose a tie-breaking monomial order on
K[X] that makes the monomial x1j2x

2
j1

for 1 ≤ j1 < j2 ≤ γ the initial monomial. Let
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in(F) = ⟨inω(f) | f ∈ F⟩ and in(F̃) = ⟨in<ω̃
(f) | f ∈ F̃⟩. Let u and v be monomials

that are not in in(F̃):

u =

m1∏
l=1

(x1il)
pl

m2∏
l=1

(x2jl)
ql

m3∏
l=1

(x1kl)
rl ,

v =

m
′
1∏

l=1

(x1
i
′
l

)p
′
l

m
′
2∏

l=1

(x2
j
′
l

)q
′
l

m
′
3∏

l=1

(x1
k
′
l

)r
′
l ,

where pl, ql, rl, p
′

l, q
′

l , r
′

l ∈ Z>0 for any l, and I = {i1, . . . , im1}, I ′
= {i′1, . . . , i

′

m
′
1

},

J = {j1, . . . , jm2}, and J ′
= {j ′1, . . . , j

′

m
′
2

} are subsets of [γ] with cardinalities m1,

m
′
1, m2, and m

′
2, respectively; and K = {k1, . . . , km3} and K′

= {k′
1, . . . , k

′

m
′
3

} are

subsets of [n] \ [γ] with cardinalities m3 and m
′
3, respectively. Since neither u nor

v is divided by x1j2x
2
j1

for 1 ≤ j1 < j2 ≤ γ, it follows that il ≤ jl′ for l ∈ [m1] and

l
′ ∈ [m2], and i

′

l ≤ j
′

l′
for l ∈ [m

′
1] and l

′ ∈ [m
′
2]. We suppose that π̃M(u) = π̃M(v):

π̃M(u) = wq
1w

p+q+r
2

m1∏
l=1

Splb
1
il

m2∏
l=1

Sqlb
2
jl

m3∏
l=1

S
rlb

1
kl ,

π̃M(v) = wq
′

1 w
p
′
+q

′
+r

′

2

m
′
1∏

l=1

S
p
′
lb

1

i
′
l

m
′
2∏

l=1

S
q
′
lb

2

j
′
l

m
′
3∏

l=1

S
r
′
lb

1

k
′
l .

Here we set p =
∑m1

l=1 pl, q =
∑m2

l=1 ql, r =
∑m3

l=1 rl, p
′

=
∑m

′
1

l=1 p
′

l, q
′

=
∑m

′
2

l=1 q
′

l , and

r
′

=
∑m

′
3

l=1 r
′

l . Since b1
j = b2

j for j ∈ [γ], it follows that πM(u
′
) = πM(v

′
), where

u
′

=

m1∏
l=1

(x1il)
pl

m2∏
l=1

(x1jl)
ql

m3∏
l=1

(x1kl)
rl ,

v
′

=

m
′
1∏

l=1

(x1
i
′
l

)p
′
l

m
′
2∏

l=1

(x1
j
′
l

)q
′
l

m
′
3∏

l=1

(x1
k
′
l

)r
′
l .

Hence u
′ − v

′
belongs to JDM

. If u
′

and v
′

belong to in(F), then u
′

and v
′

are in

in(F̃). In particular, u and v are in in(F̃). This is a contradiction. Therefore neither
u

′
nor v

′
belongs to in(F). Since F is a Gröbner basis for JDM

, it follows that u
′

= v
′
.

In particular, I = I ′
, J = J ′

, K = K′
, pl = p

′

l, ql = q
′

l , and rl = r
′

l for any l. Thus

u = v. Therefore F̃ is a Gröbner basis for JD̃M
.

Corollary 3.2.3. Let M be a matroid on E. If F is a homogeneous generating set
for JDM

, then F̃ is a generating set for JD̃M
.
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Proof. We assume that F and F
′

are generating sets for JDM
. Then F̃ and F̃′

generate the same ideal. In particular, this holds if F
′

is a Gröbner basis for JDM
.

Thus ⟨F̃⟩ = ⟨F̃′⟩. By Theorem 3.2.2, if F
′

is a Gröbner basis for JDM
, then F̃′ is a

generating set for JD̃M
, since F̃′ is a Gröbner basis for JD̃M

.

Corollary 3.2.4. Let M be a matroid on E, and let M +c (d + 1) denote a series

extension of M at c by d+ 1. Then, by replacing variables, F̃ becomes a generating
set (resp. a Gröbner basis) for JM+c(d+1).

Proof. By elementary row operations on D̃M , we obtain the vector configuration
arising from M +c (d+ 1).

Remark 3.2.5. If c is a coloop of M , then JM+c(d+1) = JM .

Corollary 3.2.6. Classes MQG and MQ are closed under series and parallel ex-
tensions.

Example 3.2.7. Let M = M(K4) and

DM =


0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0
1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0
1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1
1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0
0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

 .

Let < be the lexicographic order on K[x11, . . . , x
1
16] with ordering

x19 > x110 > x111 > x112 > x11 > x113 > x12 > x13 > x114 > x14
> x15 > x115 > x16 > x116 > x17 > x18.

From [3], JM has a quadratic Gröbner basis with respect to <. Then

D̃M =



0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0
1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1
1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1
0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.
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By elementary row operations on D̃M , we have

0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0
1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1
1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1
0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

Therefore JD̃M
has a quadratic Gröbner basis with respect to the lexicographic order

with ordering

x19 > x110 > x111 > x112 > x21 > x11 > x113 > x22 > x12 > x23 > x13 > x114 > x24 > x14
> x25 > x15 > x115 > x26 > x16 > x116 > x27 > x17 > x28 > x18.

3.3 A series and parallel connection of matroids

Let M1 and M2 be matroids with E1 ∩ E2 = {c} and E = E1 ∪ E2. Suppose that
for both M1 and M2, c is neither a loop nor a coloop. Let

BS = {B ∪D | B ∈ B(M1), D ∈ B(M2), B ∩D = ∅},
BP = {B ∪D | B ∈ B(M1), D ∈ B(M2), c ∈ B ∩D}

∪{(B ∪D) \ {c} | B ∈ B(M1), D ∈ B(M2), c is in exactly one of B and D}.

Then pairs (E,BS) and (E,BP) are matroids. These matroids are said to be the
series and parallel connections of M1 and M2 with respect to the basepoint c. We
denote them as S((M1; c), (M2; c)) and P ((M1; c), (M2; c)), or briefly, S(M1,M2) and
P (M1,M2) [26, Proposition 7.1.13].

On the other hand, when c is a loop of M1, then we define

P (M1,M2) = M1 ⊕ (M2/c) and S(M1,M2) = (M1/c) ⊕M2.

When c is a coloop of M1, then we define

P (M1,M2) = (M1 \ c) ⊕M2 and S(M1,M2) = M1 ⊕ (M2 \ c)

(see [26, 7.1.5 - 7.1.8]). Moreover, the 2-sumM1⊕2M2 of M1 and M2 is S(M1,M2)/c,
or equivalently, P (M1,M2) \ c, where c is neither a loop nor a coloop of either M1

or M2.
Let M1 and M2 be matroids on E1 = [d1] and E2 = [d2]. We identify the set [d2]

with the set {d1 + 1, . . . , d1 + d2}. Assume that ci ∈ Ei is not a coloop of Mi for
i = 1, 2. Let

B(M1) = {B1, . . . , Bγ1 , . . . , Bn1} and B(M2) = {D1, . . . , Dγ2 , . . . , Dn2}
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be collections of bases of M1 and M2, where c1 /∈ Bj for j ∈ [γ1] and c2 /∈ Dk for
k ∈ [γ2]. Let DM1 = {b1

j | j ∈ [n1]} ⊂ Zd1 and DM2 = {d2
k | k ∈ [n2]} ⊂ Zd2 be two

vector configurations satisfying b1
j =

∑
l∈Bj

el and d2
k =

∑
l∈Dk

el. We define ring
homomorphisms πM1 and πM2 by setting

πM1 : K[x1j | j ∈ [n1]] → K[S], x1j 7→ Sb1
j ,

πM2 : K[y2k | k ∈ [n2]] → K[T ], y2k 7→ Td2
k .

Similar to what we did in Section 3.2, we consider two new vector configurations

D̃M1 =

{(
bi
j

ai

) ∣∣∣∣ i = 1, 2, j ∈ [αi]

}
⊂ Zd1+2,

D̃M2 =

{(
di
k

ai

) ∣∣∣∣ i = 1, 2, k ∈ [βi]

}
⊂ Zd2+2

such that b1
j = b2

j for j ∈ [γ1] and d1
k = d2

k for k ∈ [γ2], where
(
α1

α2

)
=

(
n1

γ1

)
,(

β1

β2

)
=

(
γ2
n2

)
, a1 =

(
0
1

)
, and a2 =

(
1
1

)
. We define ring homomorphisms π̃M1 and π̃M2

as follows:

π̃M1 : K[X] = K[xij | i = 1, 2, j ∈ [αi]] → K[S,W ], xij 7→ Sbi
jW ai

,

π̃M2 : K[Y ] = K[yik | i = 1, 2, k ∈ [βi]] → K[T,W ], yik 7→ Tdi
kW ai

.

Then JD̃Mi
= ker(π̃Mi

) for i = 1, 2. Moreover, we consider the vector configuration

D̃ =


bi

j

di
k

ai

 ∣∣∣∣∣∣ i = 1, 2, j ∈ [αi], k ∈ [βi]

 ⊂ Zd1+d2+2.

Let K[Z] = K[zijk | i = 1, 2, j ∈ [αi], k ∈ [βi]] be the polynomial ring over K. The
ring homomorphism π̃ is defined by

π̃ : K[Z] → K[S, T,W ], zijk 7→ Sbi
jT di

kW ai

.

Then JD̃ = ker(π̃).
Let F1 and F2 be homogeneous generating sets for JDM1

and JDM2
, respectively.

Then we define F̃1 and F̃2 in a way analogous to what we did in Section 3.2. Let

f =

uf∏
l=1

xil
j1l
−

uf∏
l=1

xil
j2l
∈ F̃1,

and let k = (k1, . . . , kuf
) with kl ∈ [βil ] for 1 ≤ l ≤ uf . We consider the binomial

fk ∈ K[Z] defined by

fk =

uf∏
l=1

zil
j1l kl

−
uf∏
l=1

zil
j2l kl

.
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Since f belongs to JD̃M1
, the new homogeneous binomial fk belongs to JD̃. If F̃1 is

any set of binomials in JD̃M1
, then

Lift(F̃1) =

{
fk

∣∣∣∣∣ f ∈ F̃1, k ∈
uf∏
l=1

[βil ]

}
.

We define Lift(F̃2) in an analogous way. Furthermore, the quadratic binomial set

Quad(D̃M1 , D̃M2) is defined by

Quad(D̃M1 , D̃M2) =

{
zij1k2z

i
j2k1

− zij1k1z
i
j2k2

∣∣∣∣ i = 1, 2,
1 ≤ j1 < j2 ≤ αi,
1 ≤ k1 < k2 ≤ βi

}
.

We set Ñ = Lift(F̃1) ∪ Lift(F̃2) ∪ Quad(D̃M1 , D̃M2).

Theorem 3.3.1. Let M1 and M2 be matroids on E1 = [d1] and E2 = [d2], respec-
tively; and assume that ci ∈ Ei is not a coloop of Mi for i = 1, 2. Let S(M1,M2) be
a series connection of M1 and M2 with respect to the basepoint c = c1 = c2. Then,
by replacing variables,

N = Ñ ∩K[Ẑ]

is a generating set for JS(M1,M2). Here we set K[Ẑ] = K[zijk | i = 1, 2, j ∈ [αi], k ∈
Vi], where V1 = [γ2] and V2 = [n2] \ [γ2]. Moreover, if F1 and F2 are Gröbner bases
for JDM1

and JDM2
, then there exists a monomial order such that N is a Gröbner

basis for JS(M1,M2).

Proof. Let F1 and F2 be generating sets (resp. Gröbner bases) for JDM1
and JDM2

.

From Theorem 1.5.1, Theorem 3.2.2 and Corollary 3.2.3, Ñ is a generating set (resp.
a Gröbner basis) for JD̃. Now we consider two vector configurations

D̃′
=


bi

j

di
k

cijk

 ∣∣∣∣∣∣ i = 1, 2, j ∈ [αi], k ∈ [βi]

 ⊂ Zd1+d2+2,

D =


bi

j

di
k

ai

 ∣∣∣∣∣∣ i = 1, 2, j ∈ [αi], k ∈ Vi

 ⊂ Zd1+d2+2,

where c1jk = a1 and

c2jk =

{
a2 if k ∈ [γ2],

a1 otherwise.

Then JD̃′ = JD̃ because D̃′
can be obtained by an elementary row operation on D̃.

Let δ = (0, . . . , 0,−1, 0) ∈ Zd1+d2+2. Since the usual inner product δ · (bi
j,d

i
k, c

i
jk)

equals {
−1 if i = 2 and k ∈ [γ2],

0 otherwise,
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it follows that a subring K[Ẑ]/JD of K[Z]/JD̃′ is a combinatorial pure subring of

K[Z]/JD̃′ (see [20]). Thus JD = JD̃′ ∩ K[Ẑ]. In particular, N is a generating set
(resp. a Gröbner basis) for JD. Furthermore, by elementary row operations on
D, we can obtain the vector configuration arising from S(M1,M2) with respect to
the basepoint c. Therefore, by replacing variables, N is a generating set (resp. a
Gröbner basis) for JS(M1,M2).

Corollary 3.3.2. Classes MQG and MQ are closed under series and parallel con-
nections and 2-sums.

Proof. Let M1 and M2 be matroids with E1 ∩ E2 = {c}. Let S(M1,M2) (resp.
P (M1,M2)) denote a series (resp. parallel) connection of M1 and M2 with respect
to the basepoint c.

In the case of series and parallel connections, if c is a loop or a coloop of M1, then
MQG and MQ are closed under series and parallel connections. Suppose that neither
M1 nor M2 has c as a loop or a coloop. Then by Theorem 3.2.2 and Theorem 3.3.1,
MQG and MQ are closed under series connections. Also, MQG and MQ are closed
under parallel connections from Proposition 3.1.1, and P (M1,M2) = [S(M∗

1 ,M
∗
2 )]∗

for any matroids M1 and M2 [26, Proposition 7.1.14].
In the case of the 2-sum, since M1 ⊕2 M2 = S(M1,M2)/c, MQG and MQ are

closed under 2-sums.

Example 3.3.3. Let U2,4 be the uniform matroid on E = {1, 2, 3, 4} with rank 2.
Then JU2,4 has a quadratic Gröbner basis [32]. By Corollary 3.3.2, the toric ideal
JU2,4⊕2U2,4 has a quadratic Gröbner basis. Moreover, it is known that U2,4 ⊕2 U2,4 is
isomorphic to R6 (see [26]). Therefore it follows that JR6 has a quadratic Gröbner
basis.

Using the above results, we have

Theorem 3.3.4. Let M be a matroid. If M has no minor isomorphic to any of
M(K4), W3, P6 and Q6, then the toric ideal JM has a Gröbner basis consisting of
quadratic binomials.

Since uniform matroids belong to MQG [32] and MQG is closed under 1-sums and
taking minors by Proposition 3.1.1 [2, 38], Theorem 3.3.4 holds from the following
result:

Theorem 3.3.5 ([5, Corollary 3.1]). A matroid M is a minor of 1-sums and 2-sums
of uniform matroids if and only if M has no minor isomorphic to any of M(K4),
W3, P6 and Q6.

Let rk be the rank function of a matroid M and let λM(X) = rk(X) + rk(E −
X) − rk(M) for X ⊂ E. We call λM the connectivity function of M . For X ⊂ E, if
λM(X) < k, where k is a positive integer, then both X and (X,E −X) are called
k-separating. A k-separating pair (X,E − X) for which min{|X|, |E − X|} ≥ k is
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called a k-separation of M with sides X and E −X. For all n ≥ 2, we say that M
is n-connected if, for any k < n, it has no k-separation.

Any matroid that is not 3-connected can be constructed from 3-connected proper
minors of itself by a sequence of the operations of 1-sums and 2-sums. Therefore,
in order to prove Conjecture 1.7.10 and Conjecture 1.7.11, it is enough to prove the
following conjecture:

Conjecture 3.3.6. The class of all 3-connected matroids belongs to MQ and MQG.
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