
X-Ray Spectral Study of Supernova Remnants
Using Unsupervised Deep Learning

Hiroyoshi Iwasaki

Department of Physics

Graduate School of Science

Rikkyo University

3-34-1 Nishi Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

A dissertation submitted to the Graduate School of Science, Rikkyo University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

January, 2020





Abstract

Recent rapid development of deep learning algorithms, which can implicitly capture structures in

high-dimensional data, opens a new chapter in astronomical data analysis. We report here a new imple-

mentation of deep learning techniques for X-ray analyses.

We apply variational autoencoder (VAE) using a deep neural network for spatio-spectral analysis of

data obtained by Chandra X-ray Observatory from three type-Ia supernova remnants (SNRs); Tycho’s

SNR, Kepler’s SNR, and SN 1006. VAE, which is one of the best-known generative models, is capable of

extracting features from complex data. We established an unsupervised learning method combining VAE

and Gaussian mixture model (GMM), where the dimensions of the observed spectral data are reduced by

VAE, and clustering in the feature space is performed by GMM.

For X-ray data, Poisson statistics is appropriate because each bin in an X-ray spectrum represents a

number of photons. As Ichinohe & Yamada (2019) shows for an ideal case, Poisson statistics is important

for VAE training with such X-ray spectral dataset. We also newly implemented the data processes at the

input and output of VAE in order to apply Poisson reconstruction loss for the training, and applied the

model to observational X-ray spectral data of SNRs.

We found that some characteristic spatial structures can be automatically recognized by this method,

which uses only spectral properties. In Tycho’s SNR, this method automatically found the synchrotron

dominated filaments, the iron knot on the eastern rim, and the layered structure of the north-western

ejecta rim. In Kepler’s SNR, which is interacting with asymmetric dense circumstellar medium (CSM),

the regions where the shocked CSM emitting thermal X-ray spectra were automatically recognized by

our method. This method also unveiled that the synchrotron dominated forward shock and the layered

structure in the northern part of Kepler’s SNR. In SN 1006, our method also recognized the synchrotron

dominated regions in the north-eastern and south-western of the SNR, and ejecta dominated regions

inside the SNR.

We also show the relation between the VAE latent space and the original data space, using the decoder

to generate spectra from given latent parameters. For Kepler’s SNR, the VAE has extracted the latent

axes corresponding to the relations of Fe and intermediate-mass element (IME) line blends, continuum

emission, the N and O blends, Fe L blend peak energy reflecting the electron temperature or plasma

ionization state. For SN 1006, we also found that VAE has captured the feature of synchrotron emission

and line emissions of O, Ne, Mg, and IMEs in the latent space. VAE is capable of unveiling the meaning

of the latent axes, and help us to understand the dimensionality reduction result.

These results show that unsupervised machine learning can be useful for extracting characteristic spa-

tial structures from spectral information in observational data (without detailed spectral analysis), which

would reduce human-intensive preprocessing costs for understanding fine structures in diffuse astronom-

ical objects, e.g., SNRs or galaxy clusters. Our method is also applicable to temporally variable data,

i.e., light curves, because the training uses only spectral information. Furthermore, our method can also

be applied to other energy bands. Such data-driven analysis techniques can be used to select regions to

extract spectra for detailed analysis and help us make the best use of the large amount of spectral data

currently available and arriving in the coming decades.
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Chapter 1

Introduction

In the past decade, machine learning, especially deep learning using a deep neural network (DNN),

has occupied an important position in data science because of its rapid development and high versatility.

It is capable to capture features in big and high-dimensional data, and is applied in many areas. It has

the potential to assist in analysis of astronomical data and to extract important information from rich

astronomical data in a less biased way as reviewed in Section 2.3.

Astronomical observations produce complex multidimensional data that include spatial, temporal, and

spectral information. Especially X-ray data obtained from a single observation of a diffuse source, e.g.,

a supernova remnant (SNR), a star forming region, a galaxy, or a galaxy cluster, may contain all these

types of information. It tends to be difficult for human to capture features in such complex data.

In the near future, a dramatic improvement in the energy resolution of X-ray observations is expected;

e.g., XRISM will have an energy resolution of several electron volts (Tashiro et al., 2018), and Athena

will have a spectral resolution of 2.5 eV up to 7 keV at a spatial resolution of ∼5 arcsec with ∼4000 pix-

els (Barret et al., 2018). In their spectra, emission lines, which are blended due to the limited spectral

resolutions of present detectors (e.g.; charge coupled devices, CCDs), will be resolved each other. The

observation of a diffuse source, e.g., SNR, will produce high-dimensional big data containing a large

amount of highly-resolved images and spectra. These upcoming data will allow us to perform more de-

tailed plasma diagnoses and to reveal the plasma kinematics, thermodynamics, ionization, and elemental

compositions. Detailed analyses of such data are quite important to exploit information of physical pro-

cesses, but may require excessive human resources. Thus, automatic methods to discover features and

pre-analyse the data are required to exploit the full potential of upcoming instruments.

An SNR is a diffuse source that may have a different radiative process due to a different physical

state and process in each spatial structure. Spectroscopy of SNRs can mainly study two key issues;

nucleosynthesis of SN explosion, and cosmic-ray acceleration at shock waves. X-ray spectra of an SNR

contains thermal components emitted from thermal plasma and nonthermal components emitted from

accelerated electrons. Spatially-resolved spectral analyses of thermal emission from SNRs have revealed

the spatial variations of temperature, ionization, densities or elemental abundances due to asymmetric

nucleosynthesis in an SN (e.g.; Yamaguchi et al., 2017), and also SNR evolutions, for example, shock

heating of electrons (e.g.; Yamaguchi et al., 2014), or the interaction with ambient media (e.g.; Reynolds

et al., 2007). Meanwhile, the non-thermal spectra from SNRs have reveal acceleration of electrons (e.g.;
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Uchiyama et al., 2007) and protons (e.g.; Warren et al., 2005).

Plasma motions of young SNRs on the line of sight have been measured using the Doppler shifts of

X-ray emission lines (e.g.; Hayato et al., 2010; Sato & Hughes, 2017a,b). Further, comparison between

some observations operated in some years allow us to measure proper motions in some SNRs (e.g.; Vink,

2008; Katsuda et al., 2008, 2010, 2013). Combining the Doppler shifts and proper motions in an SNR, the

three dimensional plasma motion, which provides constraints to establish realistic SN explosion models,

can be reconstructed (e.g.; Williams et al., 2017; Millard et al., 2019).

Machine learning applications have been studied in some fields of astronomy, which have already

entered the big data era. Especially supervised classification tasks of supernovae (SNe) or galaxy shape

in optical observations have been studied well (e.g.; Charnock & Moss, 2017; Dieleman et al., 2015;

Schaefer et al., 2018). On the other hand, machine learning applications to capture characteristic features

from astronomical data, especially for spatially-resolved spectral analyses in diffuse sources, have not

been explored well. Such analyses in diffuse sources are important to reveal key topics of astrophysical

phenomena, although the observations of diffuse sources obtain complex multidimensional data and the

analyses tend to be difficult.

In this thesis, we propose a new automatic method using DNN to capture features in such observational

data for the spatially-resolved spectral analyses, and applied it to diffuse astronomical sources for the

first time. We selected an appropriate DNN model, a variational autoencoder (VAE; Kingma & Welling,

2013), which is one of well-known DNN generative models, to automatically exploit essential features

from observational data, because the DNN model is capable to capture nonlinear features and the features

in the data may be represented nonlinearly. We explore the method combining nonlinear dimensionality

reduction by a VAE and clustering by a Gaussian mixture model (GMM) in order to practically realize

unsupervised classification. This method allows us to capture spatial structures owing to classification of

spectra in individual spatial bins. We also newly developed the input and output of VAE to apply Poisson

reconstruction loss for VAE training in order to be adapted to observational X-ray spectral data.

Our demonstrations of the method applied to SNRs show that the method successfully extracted some

characteristic spatial structures in SNRs. The demonstrations show that our method can be useful for

extracting characteristic spatial structures from spectral information in observational data and can help

us for understanding the fine structures in diffuse objects. In addition, our method is not limited to SNRs

in X-ray and is expected to widely apply to other classes of astronomical sources and to other energy

bands.

This thesis is organized as follows. In Chapter 2, we briefly review machine learning methods and

the previous applications for astronomy. Chapter 3 introduces supernovae and their remnants, and X-ray

observations with the instruments on board Chandra. In Chapter 4, we describe our machine learning

method. Chapter 5, Chapter 6, and Chapter 7 present the individual results and discussions for Tycho’s

SNR, Kepler’s SNR, and SN 1006, respectively. Chapter 8 concludes this thesis.
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Chapter 2

Machine Learning and Their
Applications in Astronomy

2.1 Machine Learning and Deep Learning

Machine learning (for details, see e.g. Bishop, 2006) is method to train a computer program for

intelligent tasks through experiences. ‘Learning’ is a process based on data to make a machine learning

model enable to accurately behave with unknown data, and not to memorize all data, i.e., ‘generalization’.

In other words, machine learning aims at capturing universal empirical knowledge. Overfitting, where

machine learning does not generalize and fit too closely to a particular dataset, tends to occur for a

complex model with a small size dataset. Although generalization is not an easy problem for machine

learning, deep learning, which is a category of machine learning and is recently rapidly developed, has

highly performed generalization in many tasks.

Deep learning (for details, see e.g. Bishop, 2006; Goodfellow et al., 2016) is one of the most successful

machine learning algorithms, and is applied in many areas. Recent computational advances have made

it possible to train deep neural networks at a reasonable time and cost, and such techniques have become

very popular in many areas including physics and astronomy.

An artificial neural network (ANN), which consists of several layers of multiple formal neurons, mim-

ics the functioning of animal brains (e.g., LeCun et al., 2015) and can implicitly capture features em-

bedded in high-dimensional data. A schematic diagram of an ANN is shown in Figure 2.1.1. Each

neuron transforms its input x as f (
∑

Wx + b), where W and b are tunable weight parameters and bi-

ases, and f (x) is a nonlinear function called ‘activation function’. When each neuron in one layer is

connected to all neurons in the next layer, the layer is called a fully connected (FC) layer. By contrast, in

a convolutional layer, each neuron is connected to only a part of neurons, meanwhile the weight matrix

corresponds to the kernel of convolution. A network using convolutional layers is specifically called

a convolutional neural network (CNN). The processing layers learn representations of data with multi-

ple levels of abstraction. Multilayer ANN architectures, such as the multilayer perceptron, can reveal

complex, nonlinear relations.
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input 𝒙 output 𝒚

layers

node

weights 𝐖

Figure 2.1.1: Schematic diagram of an ANN.

In the case of a simple sequential model, ANN has a layered structure like

y = f (N)
(∑

W(N) f (N−1)
(
... f (2)

(∑
W(2) f (1)

(∑
W(1)x

))
...
))
, (2.1.1)

where N, x, and y are number of layers, input, and output vectors, respectively (e.g.; Bishop, 2006;

Goodfellow et al., 2016). Each component of f (n)(
∑

W(n)z(n)) represents the nth layer, where z(n) is the

output of the (n − 1)th activation function. For N > n ≥ 1, the layers are called intermediate layers, or

hidden layers, which learn representations of data. The last layer f (N)(
∑

W(N)z(N)) is the output layer,

which determines the output shape and the variable scale.

An ANN constructed with only one layer cannot be trained for non-linearly-separable problems, in

which two classes cannot be separated by one hyperplane. However, an ANN architecture constructed

with two or more layers is capable of approximating any functions. While multiple-layer ANNs are

difficult to train, the back propagation algorithm made them trainable at a reasonable time. A deep

multiple-layer ANN is also called a deep neural network (DNN). As the number of layers increase,

training tends to become more difficult because of some troubles, e.g., vanishing gradient. Therefore

various techniques have been developed.

Gradient descent algorithms are used for deep learning training. ‘Learning’ of an ANN is finding the

weights contained in the layers that optimise the cost function. In the most simple way, using the gradient

of the cost function E(W),

W(t+1) =W(t) − η∇E(W(t)) (2.1.2)

4
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where η is a learning rate determining the change ∆W(t) in a step (e.g.; Bishop, 2006). The learning

rate is usually a hyperparameter, i.e., a parameter predefined by a human. The cost function is generally

a complex non-convex function, which has not only the global minimum but also huge amount of local

minima. ANNs, however, can perform well on local minima having enough good cost function values,

even if they have not found the global minimum yet. It is one of mysteries of deep learning. There are also

other problems for training, e.g., saddle points and plateaux, which have 0 gradients, and oscillations in

narrow valleys. Thus, optimizer algorithms have been improved to avoid such the problems, e.g., Adam

(Kingma & Ba, 2014).

The gradient descent algorithms calculate a derivative of the cost function by the parameters, thus

the activation functions need to be differentiable. We, here, introduce some popular activation functions

and show them in Figure 2.1.2. Recent reviews and comparisons of activation functions are available in

Nwankpa et al. (2018); Eger et al. (2018). Sigmoid and tanh have shapes like a step function but smooth,

and take a value 0 < fsigmoid < 1 and −1 < tanh < 1, respectively, thus they are often used in binary

classification tasks. A sigmoid function for input u can be written as

f (u) =
1

1 + e−u
. (2.1.3)

Softmax is an extension of sigmoid for categorical classification tasks. It takes a value between 0 and 1,

and the sum over d is always 1, where d is a variable number of vector u. A softmax for the dth variable

of D-dimensional vector u can be written as

f (ud) =
eud∑D

d=1 eud
. (2.1.4)

They are usually used in output layers and not in hidden layers. Rectified linear unit (ReLU; Nair &

Hinton, 2010) function works better in hidden layers for smooth training. A ReLU function can be

written as

f (u) = max{0, u}. (2.1.5)

ReLU is not smooth at the threshold (usually 0), which has a bend, and so globally smooth functions

approximating ReLU have been developed, e.g., softplus (Dugas et al., 2001) written as

f (u) = log(1 + eu). (2.1.6)

2.1.1 Supervised and Unsupervised Learning

Machine learning algorithms are mainly classified into three classes; supervised learning, unsupervised

learning, and reinforcement learning. Supervised learning algorithms take a dataset containing data and

labels for training to predict the data label. By contrast, unsupervised learning algorithms use a dataset

that is not labelled, and find structures in the data. Reinforcement learning algorithms find the way of

agents to choose actions in an environment so as to maximize the rewards.

Supervised learning algorithms have two classes; classification, which classifies data into some classes,

and regression, which predicts continuous values. Some algorithms that simultaneously perform object

5
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2 0 2
u

1

0

1

2

3

f(u
)

sigmoid
tanh
ReLU
softplus

Figure 2.1.2: Activation finctions.

detection and classification of detected objects, have been developed e.g., Region-based CNN (R-CNN)

and the derivations (He et al., 2017), You Only Look Once (YOLO; Redmon et al., 2015; Redmon &

Farhadi, 2018), and Single Shot MultiBox Detector (SSD; Liu et al., 2015). Segmentation algorithms

allow us to perform pixel-by-pixel classification in images, e.g. U-net (Ronneberger et al., 2015).

Unsupervised learning algorithms include methods of dimensionality reduction, feature extraction,

manifold learning, and clustering. Unsupervised learning algorithms are useful to capture the features

lying in data. Unsupervised learning is applicable to problems in which what to output cannot be defined

before training. It is a merit of unsupervised learning that lower cost is spent for dataset preparation than

supervised learning because no labelling is required.

2.1.2 Generative and Discriminative Models

Machine learning methods can also be categorised differently; generative models and discriminative

models. Generative models directly optimize joint probability distributions P(x, y), where x, and y are

explanation variable (input), and target variable (output), respectively, which are the mechanisms to

generate the data.

Generative adversarial network (GAN; Goodfellow et al., 2014), variational autoencoder (VAE;

Kingma & Welling, 2013) and their derivations are well-known generative models of DNN. VAE is

6
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an architecture of autoencoders (AEs), which are neural network models connecting an encoder and a

decoder. In Section 4.1.1, we introduce VAE in detail.

GAN, which is capable to generate samples just like real data, is one of the most successful neural

network models especially in the field of image data. However, the training of GAN is practically difficult

and one needs to select carefully the architecture and the hyperparameters, which are predefined by a

human. GAN has an architecture combining a generator and a discriminator. During GAN training, the

generator tries to produce fake samples, meanwhile the discriminator tries to distinguish samples from

training dataset or from the generator.

By contrast, usual classification or regression methods like we have introduced above are discrimina-

tive models, which model conditional distributions P(y|x).

2.2 Machine Learning Algorithms

Many machine learning techniques have been developed. In this section, we briefly introduce some

representative methods.

2.2.1 Supervised Machine Learning Algorithms

Random Forest (RF; Breiman, 2001) is an ensemble machine learning algorithm, which makes an

ensemble of multiple simple models to obtain better prediction performance, using decision trees. RF

can measure the importance of each feature. RF is a nonparametric algorithm because the decision tree

is nonparametric. RF is applicable to classification and regression.

Support vector machine (SVM; Burges, 1998) divides data with hyperplanes, which maximize the

margins. Using the ‘kernel trick’, which projects dataset to a linearly-separable space with a kernel (e.g.,

radial basis function1), polynomial), SVM is capable to divide nonlinear features in dataset. SVMs are

applicable to classification, regression and clustering tasks.

2.2.2 Dimensionality Reduction

Principal component analysis (PCA) is one of the best-known classical dimensionality reduction meth-

ods. PCA attempts to find directions (namely principal components), which have large variance in

dataset, and transforms data axes to the new axes orthogonally. Therefore, the transformed axes have

linear relations to the original data axes. The principal components have a sequence such that the first

principal component corresponds to the largest variance in the dataset meanwhile the last principal com-

ponent has the lowest variance.

Manifold learning, e.g., t-distributed Stochastic Neighbour Embedding (t-SNE; van der Maaten &

Hinton, 2008) and isomap (Tenenbaum et al., 2000), is an approach to nonlinear dimensionality reduc-

1) radial basis function (RBF) kernel, i.e., Gaussian kernel

7
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Table 2.2.1: Machine learning methods

Method Property and Usage

Machine Learning Models

RF ensemble method with decision trees for classification/regression

SVM linear or nonlinear (kernel) classification/regression

PCA orthogonal transformation for dimensionality reduction

t-SNE nonlinear manifold learning dimensionality reduction

isomap nonlinear manifold learning dimensionality reduction

GMM each sample is assigned to all categories with different weights (soft clustering)

k-means each sample is assigned to one category (hard clustering)

ANN Models

DNN classification or regression on nonlinear features

CNN classification or regression on image data

RNN classification or regression on time-series data

R-CNN object detection model combining region proposal and classifier/regressor

YOLO fast object detection using one sequential network

SSD fast object detection using one sequential network

U-net segmentation model using only CNN

AE an ANN generative model combining encoder and decoder for dimensionality reduction

VAE an AE with multidimensional-Gaussian latent variables

GAN an ANN generative model using generator and discriminator

tion, assuming that a low-dimensional data are embedded in a higher-dimensional space. We describe

t-SNE in Section 4.1.4.

2.2.3 Unsupervised Clustering

There are two major types of clustering methods; (1) hard clustering methods, in which each data

point is assigned to only one category (e.g., k-means, SVM), and (2) soft clustering methods, which

assign each point to all the categories with different weights (e.g., mixture model).

k-means is one of the best-known clustering algorithms. Each data sample is assigned to the cluster

whose centre is the nearest to the sample, thus this method is a hard clustering. This method attempts to

minimize the square distance between each data sample and the assigned cluster centre, which is called

a distortion measure.

Gaussian mixture model (GMM) is a well-known soft clustering method, and we describe it in Sec-

tion 4.1.3 in detail.

Hierarchical clustering can categorise data points hierarchically, and we describe it in Section 4.1.5.

8
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2.3 Machine Learning Applications in Astronomy and Astrophysics

Recent and upcoming large scale surveys or instrumental improvements make astronomical observa-

tions big-data in the point of quantity and quality. This trend accelerates applications of machine learning

or data scientific methods to exploit the full potential of the rich data. Recently, rapid development of

deep learning accelerates to apply the algorithms.

In modern astronomy, the universe and the objects are observed with multimessengers, i.e. multiwave-

length electromagnetic waves, neutrinos, and gravitational waves. Observational data of each messenger

have quite different characteristics, and therefore have different problems of observations or analyses

from other messengers.

In optical or infrared, large scale survey projects produce huge amount of observational data, which

are beyond the capacity of analysis by human experts. Time domain observations require fast and ac-

curate detection of time variability, e.g., discriminating supernovae (SNe) from data containing non-

astronomical signals (e.g., noises, and artificial objects), whose numbers are sometimes some orders of

magnitude more than that of true SNe signals.

Classification methods of machine learning have been applied to such large amount of data, especially

wide-field-of-view surveys. In the image classification terms, CNNs, which are the most successful

methods in the deep learning and are state of the art, have classified observational image data of galaxy

structures (e.g.; Dieleman et al., 2015; Ribli et al., 2019) and gravitational lensing (e.g.; Schaefer et al.,

2018)

Some ANN and non-ANN classification algorithms have been applied to SN type classification, e.g.,

recurrent neural networks (RNN; Charnock & Moss, 2017), ensemble learning of DNN, RF, and AUC2)

boosting (Morii et al., 2016). Automatic SN type classifications enable real-time analysis and triggering

for follow-up observations for rare type SNe or type Ia SNe, which are available as standard candles of

the universe.

In addition, for optical survey images, segmentation algorithms have been applied to detect astronom-

ical objects (Mask R-CNN; Burke et al., 2019), and classify the images in pixel level (U-net; Hausen &

Robertson, 2019).

Regression methods were also applied to direct prediction of physical parameters, e.g, gravitational

lenses (Hezaveh et al., 2017), and stellar effective temperature from optical observational data by GAIA

using RF (Bai et al., 2019).

In radio interferometry, incomplete sampling of the spatial frequency space makes imaging from ob-

served visibilities an under-determined problem. Recently, sparse modelling algorithms made it possible

to reconstruct high resolution images from radio interferometry (Honma et al., 2014; Akiyama et al.,

2017), and supported the first imaging of the black hole shadow of M87 (Event Horizon Telescope Col-

laboration et al., 2019a) (Figure 2.3.1). In addition, radio observations obtain multidimensional data,

2) Area under the Receiver operating characteristic Curve (AUC)

9
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Figure 2.3.1: Fiducial images of M87 on all four observed days from each of the three imaging methods.

The top row shows the images by an ordinary method, CLEAN from DIFMAP, while the middle and

bottom rows are produced by sparse modelling methods, eht-imaging and SMILI, respectively. The

sparse modelling methods reconstruct finer images than the ordinary one. This figure is Figure 11 of

(Event Horizon Telescope Collaboration et al., 2019b).

which contain spatial, temporal, and velocity information.

In X-ray and γ-ray, multidimensional data containing spatial, temporal, and spectral information are

obtained in an observation. In the next decade, the energy resolution of X-ray observation will be im-

proved (several tens or hundreds of electron volts by CCD to several electron volts by microcalorimeter)

by XRISM (Tashiro et al., 2018) or Athena (Barret et al., 2018). Automatic spectral analysis methods are

studied for incoming such high resolution spectra, e.g., a DNN regression algorithm was applied to di-

rectly predict the physical parameters (electron temperatures, emission measures, and redshifts) of X-ray

plasma spectra (Ichinohe et al., 2018). Figure 2.3.2 shows the spectrum of Perseus cluster observed by

Hitomi and the predicted spectra by the DNN model.

In observations of γ ray, neutrino, and gravitational wave, astronomical signals are some orders of

magnitude less than background signals, thus effective event selection are required. Machine learning

classifications have been applied to event selection of such detectors. In high-energy γ-ray astronomy,

some boosted algorithms have been implemented, RF for MAGIC (Albert et al., 2008), and boosted

decision trees (BDT) for H.E.S.S. (Ohm et al., 2009; Becherini et al., 2011) and VERITAS (Krause et al.,

2017). CNNs are going to be applied for H.E.S.S. (Shilon et al., 2019), VERITAS (Feng et al., 2017), and

10
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Figure 2.3.2: The top panel shows the spectrum (black points) and the plasma model (red line) based

on the parameters predicted by the DNN. In the bottom panel, the model is the best-fitting one used the

DNN prediction as the initial parameters. This figure is taken from Ichinohe et al. (2018).

CTA (Nieto Castaño et al., 2017). The IceCube Collaboration is also preparing to use DNN for the event

type classification (Kronmueller & Theo, 2019).

The Sun is the nearest star from the earth, therefore a large amount of high-resolution observations

are obtained from radio to γ ray. CNNs have successfully classified solar images (e.g.; Armstrong &

Fletcher, 2019). Some machine learning methods and DNN also successfully predicted solar flares us-

ing physical parameters extracted from observational data based on the solar science knowledge (e.g.;

Nishizuka et al., 2017, 2018).

GANs or VAEs, which are well-known generative models of DNN, have also been applied to some

astronomical analyses. GAN has been applied for recovering features from optical observations that are

low signal to noise and low angular resolution (Schawinski et al., 2017). GANs have also been applied

for fast simulator generating images, e.g. cosmic web (Rodrı́guez et al., 2018), the cosmic microwave

background (Mishra et al., 2019). VAE has been applied for anomaly detection of X-ray plasma spectra

(Ichinohe & Yamada, 2019). Generative models, whose outputs are robust to noises, are also available

for denoising of observational data (e.g. Dı́az Baso et al., 2019).

The supervised classification tasks of astronomical objects or event selection in observations have been

studied well. The supervised methods accurately work on data, which are classifiable by the predefined

classes of the model, although they cannot work on data including unknown features, e.g., a classifier of

SN types cannot classify an event whose type has not been discovered. On the other hand, unsupervised

machine learning methods, which extract characteristic features from observational data, have not been

explored enough, especially for spatially resolved analysis in diffuse sources, e.g., SNRs, galaxies, and

galaxy clusters. Such analysis in diffuse sources tend to be difficult because of the complexity of high-

11
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dimensional data, although the analysis can reveal a lot of important physics, e.g., chemical evolution

of the Universe. Thus, this thesis propose a new method for the spatially-resolved spectral analysis in

diffuse sources.

X-ray observations of SNRs, which we focused on, produce complex multidimensional data that in-

clude spatial, temporal, and spectral information. Because of this complexity, conventional analysis can

be prone to human prejudice and oversight. SNRs have been observed by X-ray telescopes e.g. Chandra,

XMM-Newton, and Suzaku, many times, and the huge amount of rich data are archived and available. As

we mentioned above, microcalorimeter on e.g., XRISM or Athena will obtain new highly resolved spec-

troscopic data in the near future. Detailed analysis of such data may require excessive human resources.

Thus, automatic and less biased methods to discover features and pre-analyse the data are required to

exploit the full potential of upcoming instruments.

To take advantage of the rich data contained in SNR observations and to extract essential informa-

tion without human bias, some classical machine learning techniques have been explored. Warren et al.

(2005) and Warren (2006) demonstrated the separation of mostly featureless and line-dominated emis-

sion from Tycho’s SNR using a linear dimensionality reduction method, PCA. They extracted 12 new

axes from 12 broad spectral channels and found that the image of the first principal axis corresponds

to the contrast between Si- and Fe-rich emission and the hard continuum emission as shown in the top

right-hand panel of Figure 2.3.3. Sato & Hughes (2017a) also performed PCA of the narrow-band spec-

tra of Tycho’s SNR, separating the Si He α band into 18 bins, and found that the first three principal

components correspond to the line equivalent width, line energy centroid, and line energy width, respec-

tively. In Figure 2.3.4, the principal component corresponding to the line centroid is shown. Burkey et al.

(2013) demonstrated clustering of four-band line fluxes extracted from 5000 spatial regions of Kepler’s

SNR using a GMM and identified the shocked circumstellar-medium (CSM) region (Figure 2.3.5).

Most previous applications of machine learning techniques to analysis of SNR data have been limited

to linear methods. However, the value of each spectral bin depends nonlinearly on the underlying phys-

ical parameters; e.g., the bremsstrahlung continuum emission is exponentially affected by the plasma

temperature. In other words, the data space of X-ray spectra is not flat. Although PCA, which linearly

transforms the data into another orthogonal expression, might provide approximate results in some cases,

it is reasonable to choose a model capable of expressing nonlinear relations when the problem exhibits

such features. DNNs are likely to obtain more effective expressions from data spaces than linear methods

because of their ability to handle nonlinear relations. In this research, we examine the potential of DNNs

to extract features embedded in nonlinear relations.

12
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Figure 2.3.3: The top left-hand panel shows a three-colour image of Tycho’s SNR; red, 0.95–1.26 keV;

green, 1.63–2.26 keV; blue, 4.1–6.1 keV. The top right-hand panel shows the first principal component

that separates line-rich emission from continuum emission. The green contour indicates the contact

discontinuity location. The bottom left-hand panel shows the continuum image (4–6 keV). The bottom

right-hand panel shows the Fe K α image from which the continuum (4–6 keV) is subtracted. The

outer contour notes the forward-shock location, meanwhile the inner contour indicates the reverse-shock

location. This figure is Figure 1 of Warren et al. (2005).
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Figure 2.3.4: The left-hand panel shows a mean photon energy map in the Si He α band (1.6-2.1 keV).

The right-hand panel shows a principal component that separates redshift and blueshift of Si He α line.

This figure is Figure 4 of Sato & Hughes (2017a).
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Figure 2.3.5: The top panel shows a three-colour image of Kepler’s SNR; red, 0.3–0.72 keV; green,

0.72–1.7 keV; blue, 1.7–8 keV (Reynolds et al., 2007). The bottom panel shows the division of Kepler’s

SNR into clusters. This figure is Figure 1 of Burkey et al. (2013).
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Chapter 3

Supernova Remnants and the
Observations

Supernovae (SNe), which are explosions of massive stars or white dwarfs, have been believed as the

supplier of heavy elements. Unfortunately, we cannot directly observe spatial structures or distributions

of SNe, because SNe are just point sources from the earth. However, the supernova remnants (SNRs),

which are explosively ejected elements synthesised in the progenitors, expand in the interstellar medium

(ISM) for tens or hundreds of thousands years. The SNRs in our Galaxy, or the neighbour galaxies

(e.g., Large or Small Magellanic Clouds) are observed as diffuse sources, and allow us to investigate

the spatially-resolved elemental distributions, compositions and motions. Such studies reveal the SN

explosion mechanisms and the elemental synthesis in detail.

The synthesised elements are ionized by shock heating, thus the thermal plasma emit line emissions in

X-ray band. Using the line emissions, plasma diagnoses indicate such important information of SNe.

In addition, galactic SNRs have also been believed to supply cosmic rays. In their blast waves, charged

particles are accelerated to relativistic energies by diffusive shock acceleration. In X-ray band, acceler-

ated electrons emit synchrotron emission mainly around the blast waves by interaction with magnetic

fields. Therefore, the studies of shock waves and accelerated particles in SNRs allow us to reveal the

mechanisms of cosmic-ray acceleration.

3.1 Supernovae

SNe are divided into two major categories based on the explosion processes; thermonuclear explosion

of a white dwarf, and core collapse explosion of a massive star.

In an spectroscopic view, thermonuclear SNe correspond to type Ia SNe, which have no hydrogen line

but silicon absorption lines in their spectra. Type Ia SNe have much less variation of the peak brightness

than that of core collapse SNe. Thus the progenitors of type Ia SNe seem to be similar objects. Type Ia

SNe are used as ‘standard candles’ of the Universe to measure the distances, and supplied the evidence

of accelerating expansion of the Universe.
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On the other hand, core collapse SNe correspond to the rest of spectroscopic classes, i.e., type Ib,

Ic, and II. Core collapse SNe have rich variation in both spectra and lightcurves, reflecting variation of

explosion details and the environments around them.

We describe the thermonuclear SNe below because we analysed only them in this thesis.

3.1.1 Thermonuclear Supernovae

Thermonuclear explosion occurs in a C-O white dwarf, which contains carbon and oxygen synthesised

by helium burning in a progenitor star. White dwarfs are support their self gravities by degenerate

pressures of electrons. The limit of white dwarf mass, which the degenerate pressure can support, is

Chandrasekhar mass;

MCh ≃ 1.454M⊙, (3.1.1)

where M⊙ denotes the unit of mass equal to the solar mass (Chandrasekhar, 1931).

The thermonuclear explosion needs a mechanism, which a C-O white dwarf reaches the Chandrasekhar

mass, but the progenitor system has been under debates. The popular scenarios are single degenerate

(SD) scenario and double degenerate (DD) scenario. The SD scenario assumes a binary system of a

white dwarf and a star, and accretion of materials from the donor star grow the white dwarf. By contrast,

the DD scenario assumes a binary system of two white dwarfs, and a merge of the white dwarfs cause

an explosion. In addition, the core degenerate scenario assume a binary system of a white dwarf and a

massive evolved star like the SD scenario, but the explosion occurs after the white dwarf merges with the

hot core of companion.

In thermonuclear SNe, more Fe group elements (∼ 0.6 M⊙) are synthesised than in core collapse SNe.

The nucleosynthesis models of thermonuclear explosion are divided into three broad categories; det-

onation, deflagration, and delayed detonation (DDT) models. The DDT models are currently the most

popular ones.

Pure detonation models cause explosive nucleosynthesis due to compress and heat the material by a

supersonic shock wave. In these models, almost all of white dwarf elements burn iron group elements.

These models were ruled out by the optical spectroscopic observations of type Ia SNe, which contain

significant amount of intermediate-mass elements (IMEs).

In pure deflagration models (e.g.; Nomoto et al., 1984; Thielemann et al., 1986), the burning front

proceeds subsonic. At the burning front, convections caused by Rayleigh-Taylor instability maintain

the nuclear fusion due to mix un-burnt material into the hot burning zone. When the burning front

velocity becomes comparable to the material velocity, the burning front is quenched, and a narrow region

containing rich IMEs is formed at the quenching front. However, the model produces no high-velocity

IMEs, and hence the velocity range of IMEs is narrower than the optical spectra of type Ia SNe. In

addition, the ratio 54Fe to 56Fe is predicted too high and disagree with the observations of type Ia SNe.

In DDT model (e.g.; Khokhlov, 1991; Seitenzahl et al., 2013), propagation of burning front changes

from deflagration to detonation while the explosion. The explosion starts as deflagration. The burning

front propagating into outer and lower densities makes the sonic speed lower, and is finally quenched.

And then, the shock wave is accelerated to supersonic, and the detonation burn the rest of white dwarf.
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Figure 3.2.1: An schematic view of an SNR in the transition phase.

3.2 Supernova Remnants

SNRs have various morphologies each other, reflecting variation of the SN explosions and surrounding

environments. Each SNR has rich structure inside it, which may have different radiative process due to

different physical state each other.

Figure 3.2.1 shows a simple schematic view of an SNR in the transition phase. Global structure of a

young SNR is following. In an SNR, a forward shock (FS) expands outermost of the SNR, and sweeps

up ISM. At the FS, charged particles are accelerated, and make non-thermal emissions, e.g., synchrotron

emission. The swept-up ISM is located between the FS and ejecta, which is usually at the inner side of

FS. A boundary of ejecta and shocked ISM is called a contact discontinuity (CD), and is a outermost

surface of ejecta.

The ejecta is heated from outermost toward the centre of the SNR by reverse shock propagating inward.

The shocked ejecta is ionized and begins to emit thermal emissions, while unshocked ejecta, which a RS

has not reached yet, makes no emission. After the shock-heating, the temperature of ejecta become non-

equilibrium, i.e., temperatures of electron and all species of ion are different. In a young SNR, the RS

has not reach the centre, and shock-heating is on going. Such SNR shows an electron heating at the RS
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(e.g.; Yamaguchi et al., 2014), or a gradation of ionization state of ejecta, which reflects the elapsed time

since the ejecta is shock-heated (e.g.; Sato et al., 2018). In middle-aged or old SNRs, all species of ions

and electron become ionization equilibration if the ionization time scale reaches net >∼ 1012 cm−3s, where

ne and t are an electron density and elapsed time since the ejecta was shock-heated, respectively.

In addition, elemental abundance tends to be different in each position, reflecting nucleosynthesis in

an SN explosion. A spherical explosion is expected to form stratified structure (i.e., heavy iron group

elements are located innermost, and IMEs are at the outer side) that originated in difference of burning

regimes. Some observations suggest the stratified interior to the outer ejecta (e.g.; Hwang & Gotthelf,

1997). An asymmetric explosion may make asymmetric structures, e.g., a distorted distribution, and a

knot. Some type Ia SNRs show the asymmetric ejecta distributions, and are suggested that the origins

are caused by the explosions (e.g.; Yamaguchi et al., 2012; Uchida et al., 2013)

Each SNR is expected to maintain structures imposed during an explosion. Therefore, detailed studies

of SNRs can reveal the explosion mechanisms of SNe. A recent 3D simulation connecting SN and SNR

reveals that the imprint of explosion maintains in the SNR morphology for hundreds years (Ferrand et al.,

2019). Sato et al. (2019) found that clumpy morphology of Tycho’s SNR is originated from a explosion

through comparisons of Chandra observations and 3D simulations.

On the other hand, an interaction of an SNR and the environment surrounding it can cause the ex-

pansion deceleration, morphology deformation, and plasma evolution. Hydrodynamic instabilities affect

morphology of an SNR during the evolution. Some SNRs have complex structures due to interact ambi-

ent media, which have been formed by the progenitors (e.g.; Burkey et al., 2013).

3.3 X-Ray Radiative Processes

An X-ray spectrum from an SNR is sum of emissions from charged particles and also multiplied

absorptions. The thermal components, which are thermal bremsstrahlung and line emissions, are emitted

by a thermal plasma. On the other hand, the non-thermal components, which are synchrotron, inverse

Compton, and non-thermal bremsstrahlung, are emitted by accelerated charged particles, i.e., cosmic

rays, having non-thermal energy distributions. In this section, we briefly describe the general properties

of thermal radiation (for details, see e.g. Rybicki & Lightman, 2008; Kaastra et al., 2008; Longair,

2011).

3.3.1 Line Emission

When an ion is excited by an interaction of another particle, usually an electron, then it returns to the

ground state by emitting a photon of the appropriate energy. The emitted photons have discrete energies

and make line spectra because the energy levels of bounded electrons are quantized. Hence, emissions

caused by collisional excitations are called as line emissions or bound-bound emissions.

A line energy tells us a charge state and an atomic number of emitting ions. A line intensity reflects the

ion and electron densities, which determine the probability of collisions between the ions and electrons,
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although it also depends on the electron temperature reflecting the kinetic energy distribution. Therefore,

we can obtain the plasma ionisation state from the line intensity ratio of different charge state ions, and

also plasma motion from the redshift or blueshift of line energies.

For a hydrogen-like (H-like) ion that has only one bounded electron, the transition energy, Enm, be-

tween the principle quantum number n and m is

Enm ∼ Z2Ry

(
1
n2 −

1
m2

)
, (3.3.1)

where Z is the atomic number of ion, Ry is the Rydberg constant (Ry =
α2

2 mec2 ≃ 13.6 eV), α is the fine

structure constant α = e2

ℏc ≃
1

137 , c is the speed of light, me is the rest mass of electron, e is the unit of

electron charge, ℏ = h/2π and h is the Planck constant. The H-like transitions are called Lymann series.

Ly α, Ly β, and Ly γ corresponds to 2p→ 1s, 3p→ 1s, and 4p→ 1s, respectively, where s and p mean

orbital angular momenta l = 0, 1, respectively.

If an ion has two or more bounded electrons, the transition processes become more complicated. The

fine structure, which determined by the spins and orbital angular momenta of electrons, makes a lot of

fine energy levels and transition rules. For a helium-like (He-like) ion that has two bounded electrons,

there are three types of strong emission lines in thermal plasmas of astronomical objects: a resonance

line (1s2p 1P1 → (1s)2 1S0), inter combination lines (1s2p 3P2,1 → (1s)2 1S0), and a forbidden line

(1s2p 3S1 → (1s)2 1S0).

In X-ray observations except for lower energy band of grating highly-energy-resolved observations,

lines from fine structures of an element cannot be resolved and appear as a line blended them because

of the energy resolution of detector. The transitions of the principle quantum number n = 2 → 1, 3 →
1, 4→ 1 are called as K α, K β, and K γ, respectively. For He-like ions, K α, K β, and K γ are especially

expressed as He α, He β, and He γ, respectively.

3.3.2 Bremsstrahlung

In plasma, when an electron and an ion collide, the electron will mainly be deflected from its path since

me ≪ mion where me and mion are the mass of electron and ion, respectively. The accelerated electron

motion causes an emission of photons, which is called bremsstrahlung or free-free emission.

We consider the collisions of electrons and ions whose charge number is Z in a plasma with the electron

and ion densities ne and nion. The total power of bremsstrahlung emission from single-speed electrons

whose speed is represented with 3, per unit volume V , angular frequency ω is

dW(3, ω)
dωdVdt

=
24πe6

3
√

3m2
ec3

nenionZ2 1
3

gff(3, ω), (3.3.2)

where c, e, and t are the light speed, the unit of electron charge, and time, respectively, and gff is known

as a Gaunt factor.

The bremsstrahlung spectrum is determined by the electron velocity distribution of plasma. Brems-

strahlung from thermal plasma is called thermal bremsstrahlung. For thermal equilibrium plasma, the
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electron distribution takes Maxwell-Boltzmann distribution, which is given as

P(3) =
(

me

2πkBTe

)3/2

exp
(
− me3

2

2kBTe

)
, (3.3.3)

where Te and kB are the electron temperature and the Boltzmann constant, respectively.

We next estimate the emission integrated over the thermal distribution. A moving electron must have

an kinetic energy more than emitted photon energy hν, and thus, at least, the incident velocity must be

1
2

me3
2 ≥ hν, (3.3.4)

where ν is the emitted photon frequency. Therefore, the lower limit of velocity integration is set as

3min =

√
2hν
me
. (3.3.5)

This cut-off is called a photon discreteness effect.

We obtain the bremsstrahlung spectrum averaged over the electron velocities as

dW(Te, ω)
dωdVdt

=

∫ ∞
3min

dW(Te,ω)
dωdVdt dP∫ ∞
3min

dP
=

∫ ∞
3min

dW(Te,ω)
dωdVdt 3

2 exp(−me3
2/2kBTe)d3∫ ∞

3min
32 exp(−me3

2/2kBTe)d3
. (3.3.6)

The Gaunt factor depend on electron velocities, thus the integration can be replaced to the velocity-

averaged Gaunt factor g̃ff(ν). Using dω = 2πdν, the emissivity of thermal Bremsstrahlung can be derived

as

dW(Te, ν)
dνdVdt

=
25πe6

3mec3

√
2π

3kBme
nenionZ2T−1/2

e e−
hν

kBTe g̃ff(ν). (3.3.7)

The emissivity can be written in CGS units,

dW(Te, ν)
dνdVdt

= 6.8 × 10−38Z2nenionT−1/2
e e−

hν
kBTe g̃ff (3.3.8)

The thermal bremsstrahlung spectrum has characteristic shape ∝ T−1/2
e e−

hν
kBTe , which includes a expo-

nential cut off determined by the electron temperature. Since the shape of T−1/2
e , the emission from a

plasma whose electron temperature is between ∼ 0.1 keV and ∼ 1 keV contributes to soft X-ray bands

as a continuum component. The intensity is proportional to T−1/2
e that reflects the electron velocity and

nenion due to the two-body collision of electron and ion. As a result, we can obtain kBTe and nenion

in a plasma if we determine the shape and intensity of thermal bremsstrahlung spectrum in an X-ray

observation.

3.4 Chandra X-Ray Observatory

In this section, we summarize the instruments whose observation data are used in the subsequent

chapters. The information is based on “The Chandra Proposers’ Observatory Guide” (Chandra IPI team,

2018).
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The Chandra X-ray Observatory was launched on 23rd July 1999 as one of NASA’s four Great Obser-

vatories, and has been still operated observations. Chandra has performed the highest spatial resolution

(<0.′′5) in X-ray telescopes. As Figure 3.4.1 shows, Chandra combines an remarkable high-resolution X-

ray telescope, High Resolution Mirror Assembly (HRMA), and two types of imaging detectors, a charge

coupled device (CCD) array, Advanced CCD Imaging Spectrometer (ACIS) and a microchannel plate

array, High Resolution Camera (HRC). These detectors can perform high spatial resolution with wide

energy band of 0.1–10 keV, and ACIS can simultaneously have moderate spectral resolution. We can

observe in higher energy resolution by grating with High Energy Transmission Grating (HETG) or Low

Energy Transmission Grating (LETG).

Figure 3.4.1: An illustration of entire Chandra spacecraft. ( c⃝ NASA/CXC & J. Vaughan)

The HRMA, shown schematically in Figure 3.4.2, contains the nested Wolter Type-I mirrors, i.e.,

4 pairs of parabolic mirrors and hyperboloid mirrors.

3.4.1 ACIS

ACIS (Garmire et al., 2003), which is a CCD-array detector located in the HRMA focal plane, can si-

multaneously acquire the incident position, time, and energy of each X-ray photon. Thus, an ACIS obser-

vation obtains both a high-resolution image and moderate resolution spectra. As shown in Figure 3.4.3,

ACIS is comprised of two CCD arrays; a square array with 2×2 chips, ACIS-I, and a sequential array

with 1×6 chips, ACIS-S. ACIS-I is mainly used in an imaging observation. By contrast, ACIS-S is used

in both a imaging observation and a grating observation with LETG or HETG to obtain higher resolution

spectrum. S1 and S3 chips in ACIS-S are backside-illuminated (BI) CCDs, and the other ACIS-S chips

and all ACIS-I chips are frontside-illuminated (FI) CCDs.

Each CCD chip has 8.′3×8.′3 field of view (FoV), and 1024×1024 pixel format. Thus, ACIS-I and
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Figure 3.4.2: A schematic illustration of HRMA. This image is taken from Chandra IPI team (2018).

ACIS-S have FoV of approximately 16′×16′, and 8′×50′, respectively. There are approximately 11′′

gaps between CCD chips, however the gaps are filled some exposure because of the dithering. Unless

specially requested, the spacecraft dithered in a Lissajous pattern during an observation because of the

purpose described above and smoothing out pixel-to-pixel variation in the response.

3.4.2 Spatial Resolution

The HRMA point-spread function (PSF) is a function of radius and X-ray energy. As shown in the

left panel of Figure 3.4.4, the 50% encircle energy fraction of on-axis PSF is below 0.′′5 at the almost

energy bands although the encircled energy radius increases with the X-ray energy. For high energies,

the PSFs are broadened at small radii because focus of high energies does not coincide with HRMA

common focus. Each of four right panels in Figure 3.4.4 shows the off-axis encircled energy radius as

a function of off-axis angle on each ACIS-I chip. The off-axis encircled energy radius on each ACIS-

I chip is axially asymmetric with respect to the HRMA optical axis, because the HRMA aim point is

located near the inner corner of ACIS-I3 chip. In each chip, the encircled energy radius increases, i.e.,

the PSF broadens, as the off-axis angle increases. Nevertheless, the off-axis 90% encircled energy radii

in high-energy X ray (6.40 keV) are below 15′′.

The ACIS pixel size corresponds to 0.′′4920. The spatial resolution for on-axis is limited by the CCD
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Figure 3.4.3: A schematic drawing of the ACIS focal plane, taken from Chandra IPI team (2018).

pixel size. On the other hand, the HRMA PSF increases with off-axis angle and becomes dominating

factor for off-axis.

In the both analyses in Chapter 5 and Chapter 6, we defined the spatial bin sizes of 3.′′94×3.′′94. As

shown in the left panel in Figure 3.4.4, more than 90% photons are expected to remain in the on-axis

spatial bin in 6.4 keV or less energy bands. As shown in the four right panels in Figure 3.4.4, the 90%

encircled energy radii are approximately 2′′ and 3′′ in 1.49 keV and 6.40 keV, respectively, at the off-

axis angle of 4′ approximately corresponding to the apparent radius of Tycho’s SNR. Therefore, more

than 90% of photons are expected to maintain in each spatial bin over the entire Tycho’s SNR in the

low-energy band. By contrast, for Kepler’s SNR, the 90% encircled energy radii are approximately 2′′

in 6.40 keV at the off-axis angle of 2′ approximately corresponding to the apparent radius. Thus, the

photon leakage from or to the neighbour spatial bins are negligible over the entire Kepler’s SNR, even in

high-energy bands.

3.4.3 Effective Area

The HRMA unobscured geometric aperture is 1145 cm2. The support structures obstruct less than

10% of the HRMA aperture. The HRMA effective area is derived from the ray-trace simulation along
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Figure 3.4.4: The left panel shows the encircled energy fraction as a function of angular radius for an

on-axis point source and for different X-ray energies. The right panel shows the dependence of encircled

energy radii for circles enclosing 50% and 90% at 1.49 keV and 6.40 keV on off-axis angle on the four

ACIS-I chips. This image is taken from Chandra IPI team (2018).

with empirical corrections based on the ground calibration data.

The left panel of Figure 3.4.5 shows the on-axis HRMA effective area and the products of the effective

area and quantum efficiency (QE) of ACIS or HRC. The effective area of HRMA/ACIS are above 50 cm2

in the energy range of 1.0–9.0 keV. The difference of effective areas between HRMA/ACIS-S3 and

HRMA/ACIS-I3 is caused by the difference of QEs between BI and FI; the QE of BI is higher than FI

for low energy, while QE of FI is higher than BI for high energy.

The right panel of Figure 3.4.5 shows the off-axis vignetting effect on the HRMA effective area. The

effective area maintains more than 85% of on-axis area at off-axis angle 4′, which approximately cor-

responds to the angle from the aim point to edge in ACIS-S3 chip, or more than 60% at 8′, which

approximately corresponds to the angle from the aim point to chip edge of ACIS-I, for the X-ray energy

above 8 keV.

In the FI chips, the QEs vary with position and decrease by 5–15% furtherest from the read-out at

energies above ∼4 keV, because of CTI. By contrast, the QE variation with row number is much smaller

in the BI chips.

Optical blocking filter (OBF), which is a polyimide plate put between two thin aluminium layers

is placed between each ACIS array and HRMA in order to shut optical photons out. The out-gassed

molecular build on the cold ACIS OBFs, thus the ACIS effective area below 2 keV has continuously

decreased. The optical depth of the molecular contaminant of the ACIS OBFs is shown in Figure 3.4.6.
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Figure 3.4.5: The left panel shows the on-axis HRMA/ACIS effective areas as functions of X-ray en-

ergy. The HRMA effective area is calculated by the ray-trace simulation and scaled by the ground-based

calibration data. The effective areas are products of HRMA effective area and ACIS or HRC quantum

efficiencies. The structure near 2 keV is due to the iridium M-edge. The right panel shows the HRMA

off-axis effective area as a function of off-axis angle for selected energy. The effective area is aver-

aged over four azimuthal directions and is normalized to the on-axis area. These images are taken from

Chandra IPI team (2018).

3.4.4 Energy Resolution

The ACIS energy resolution varies roughly as the square root of the X-ray energy. As shown in

the left panel of Figure 3.4.7, the ACIS FI CCDs originally approached the theoretical limit for the

energy resolution at almost all energy band. After the launch, the CCD chips were encountered by low-

energy protons (∼100 keV) reflected through the X-ray telescope onto the focal plane during radiation

belt passages. As the result of energy deposits on the buried channels at the HRMA side of the FI

chips by low-energy protons, the energy resolution of FI chips has decrease and become a function

of the row number due to increased charge transfer inefficiency (CTI). By contrast, BI chips remain

nearly at pre-launch values, because the buried channels and gates face in the direction opposite to

HRMA and approximately 40 µm silicon protected them from low-energy protons. After the degradation,

the operation was changed to move ACIS to a sheltered position (i.e., no detector remains in the focal

position) during radiation belt passages thus no further degradation has been encountered. The CTI has

been managed to cool the focal plane temperature −120◦C. As shown in the middle and right panels of

Figure 3.4.7, much of the lost energy resolution of FI chips has been recovered due to a CTI correction

algorithm, which was developed by the ACIS instrumental team and is supplied in the CIAO tool.
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Figure 3.4.6: Optical depth of the contaminant of the ACIS OBFs measured at 0.66 keV from observa-

tions of the galaxy cluster A 1795, taken from Chandra IPI team (2018). Red squares and blue circles

denote observations with the target on ACIS-S and ACIS-I, respectively. The solid curve represents the

best-fit relation to the data.

Figure 3.4.7: The left panel shows the pre-launch energy resolution (FWHM) of all the ACIS FI and BI

chips as a function of energy. The middle and right panel show the energy resolution (FWHM) of all the

ACIS FI and BI chips as a function of row number (CHIPY), taken from Chandra IPI team (2018). The

middle panel shows Al K α (1.49 keV), while the four right panels show Mn K α (5.9 keV). The data

points represent I3 chip with or without CTI correction, while the lines represent S3 chip. The data were

taken from 2009 May through 2009 July, on I3 node 3, and S3 node 0, in which the aimpoints are.
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Chapter 4

New Method Using Deep Learning

4.1 Our Method Applied for X-Ray Data of SNRs

In this work, we aim to categorise individual spatial bins of an X-ray image using only the spectral

properties. We expect to automatically extract unknown features by a machine learning method. In this

case, supervised machine learning methods are not applicable. We developed a method that combines

two unsupervised learning methods, the variational autoencoder (VAE; Kingma & Welling, 2013) and

the Gaussian mixture model (GMM), for spatially resolved spectroscopy of the X-ray data obtained by

Chandra from supernova remnants (SNRs) (Iwasaki et al., 2019a,b).

Fine energy bins can retain rich information in spectra, while broader energy bins, e.g., bins corre-

sponding line blends of individual element (e.g.; Warren et al., 2005; Burkey et al., 2013), lose infor-

mation such as ionization states and Doppler shifts. In the near future, high-energy-resolution spectra

obtained by a microcalorimeter require finer energy binning to maintain the rich information. However,

clustering of the raw dataset, which has large number of energy bins, is difficult.

Although an energy spectrum has large number of energy bins, plasma models can generate a spec-

trum with smaller number of parameters. For example, APEC, which is an emission model for plasma

in collisional ionization equilibrium, has only parameters of electron temperature, emission measure,

abundances of individual elements, and redshift. In addition NEI, which is a model for non-equilibrium

ionization plasma, has the same parameters of APEC and also only one more parameter, ionization time

scale. Therefore, dimensionality reduction to extract essential parameters from data is a reasonable strat-

egy.

Energy bins in a spectrum emitted from thermal plasma have nonlinear relations to each other. There-

fore, it is also reasonable to select a dimensionality reduction method that is capable to capture nonlinear

features.

A deep neural network (DNNs) summarized in Chapter 2 is one of models that are able to represent

nonlinear features. VAE whose architecture is constructed with DNN is a viable technique for dimen-

sionality reduction. As a merit of using VAE, the decoder of VAE can artificially generate samples, and

thus we can interpret the latent parameters, which have lower dimension than original dataset, using the

decoder. Most of manifold learning algorithms (e.g., t-SNE, isomap) cannot generate samples, and do
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not allow interpletation in such a way.

Similar methods in which dimensionality reduction and unsupervised clustering are integrated have

already been applied in several astronomical analyses, e.g., classification of galaxy spectra (principal

component analysis (PCA) & GMM; Hurley et al., 2012), classification of supernova (autoencoder (AE),

isomap & k-means; Ishida et al., 2017) or separation of galactic and extragalactic objects (AE & support

vector machine (SVM); Khramtsov & Akhmetov, 2018). Karmakar et al. (2018) applied the method

using GMM with VAE for stellar cluster detection, and the method determined the stellar cluster regions

as accurately as other state-of-the-art results. They used monochrome image data of an infrared Galactic

plane survey. They reduced the dimension of flattened patches in a monochrome observational image

whose shape is a vector of 1 × l2 for an image patch of l × l by some VAEs constructed with only fully-

connected (FC) layers, and then classified the patches in the latent space into two classes (i.e., stellar

cluster region and background region) by GMM. Although they used the same machine learning models

as we used, the method is different from our method. They focused on the binary classification, i.e.,

stellar cluster or the others, while we are interested in the spectral variation in an astronomical object.

The data type is also quite different, where their method focused only on the local spatial information,

while our method uses spectral information in each spatial points.

In this thesis, we explore the method of combining nonlinear dimensionality reduction by a VAE and

clustering by a GMM for automatic investigation of the spatial structures of a diffuse object for the first

time. The brief description of our method is following. (1) We train VAE using training dataset, and

check the performance using validation dataset. (2) We obtain latent variables, whose dimensions are

reduced from the original data using VAE by inputting a post-training dataset. (3) We apply GMM to

the latent variables, and obtain a clustering map. After this method, we can perform spectral analyses

in ordinary way using regions appearing in the clustering map, and can obtain information of physical

processes.

For VAE training, we use a dataset randomly divided into training set and validation set, which are

pre-processed, e.g., normalization. In order to select the best VAE architecture, we train some VAE

models having different architectures from each other, i.e., number of latent axes, number of layers, and

number of nodes in each layer. In each epoch of training, VAE weights are updated using a cost function

for the training data, and then the cost function for the validation data is calculated in order to check

the overfitting. After the training, we select the best VAE architecture using the validation cost of each

trained VAE model. Finally, we input post-training data into the best VAE model, and obtain the latent

expression as a result of dimensionality reduction by VAE.

After the VAE processing, we apply GMM to the latent variables extracted from the post-training

dataset by the VAE. The number of categories is optimized by checking Bayesian information criterion

(BIC).

We describe the detail of each machine learning model in our method below.
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4.1.1 Variational Autoencoder

Although an X-ray spectrum of, e.g., an SNR, may have a large number of energy bins, they are not

completely independent of each other because of the finite instrumental energy resolution and under-

lying emission process. The number of essential parameters generating the spectrum might be small

as described above. Therefore, before classifying the spectrum, we reduced the dimensionality by com-

pressing the information in the raw input spectra. To capture nonlinear relationships between the essential

parameters, we employed an unsupervised DNN architecture, namely, a VAE.

An AE (Baldi & Hornik, 1989; Hinton, 1990; Hinton et al., 2011; Hinton & Salakhutdinov, 2006) is

a DNN architecture connecting an encoder and a decoder. The encoder is trained to encode the input

data as latent variables z by reducing the input dimensions. At the same time, the decoder is trained to

reproduce the original input from the latent variables z. The dimension of the latent space is smaller than

that of the original space. One can thus obtain a compressed latent expression of the original data if the

AE is successfully trained. The latent space is expected to capture nonlinear relationships in the input

data because of the capability of a DNN.

The VAE is a variant of the AE. In the VAE, a multidimensional Gaussian distribution is assumed

for the latent variables. Unlike a normal AE, which computes the latent variables directly, the encoder

of a VAE computes the means µ and variances σ. A set of latent variables z is sampled from a mul-

tidimensional Gaussian whose means µ and variances σ are calculated by the encoder. The decoder

decompresses the set of latent variables z. We will describe the theoretical view later.

VAE models have some advantages over normal AEs, e.g., more stable training and a better latent

manifold structure (Tolstikhin et al., 2017). Before the study, we compared normal AEs to the VAE and

found that training of the normal AE is sometimes unstable and that in many cases, some latent variables

do not represent any features. Therefore, we chose the VAE for this study.

Generative models including VAEs try to reproduce the generative process of the dataset, which con-

tains some latent parameters z, although the true process and parameters cannot be observed. The gener-

ative models like VAEs and GANs try to minimize discrepancy between the data and model distributions.

However the most standard divergences are intractable, especially when the data distribution is unknown

and the model is parametrized by DNNs. The previous research provides some tricks to adress the issue.

VAE models try to maximize the marginal log-likelihood ln pθ(x). In this case, the variational lower

bounds can be used as described below.

VAE realizes the process pθ(z)pθ(x|z) where values z are generated from some prior pθ(z) and then

data samples x are generated from some conditional distribution pθ(x|z). However, the marginal like-

lihood pθ(x) = pθ(z)pθ(x|z)/pθ(z|x) is intractable. In order to solve it, an approximate posterior

qϕ(z|x) is introduced as an approximation to the intractable true posterior pθ(z|x). In an AE architec-

ture, the encoder acts as a recognition model qϕ(z|x) to compute z from given data samples x, and then

the decoder pθ(x|z) generates x from the codes z. Through training, both recognition model (encoder)

parameters ϕ and generative model (decoder) parameter θ will be learned.

For VAE latent variables, the prior takes on the isotropic multidimensional Gaussian pθ(z) =
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N(z; 0, I), where I is an identity matrix. As an approximation of the intractable true posterior

pθ(z|x(i)), a multidimensional Gaussian form with a diagonal covariance is assumed:

qϕ(z|x(i)) = lnN(z;µ(i),σ(i)2I), (4.1.1)

where µ(i) and σ(i) are the mean and standard deviation of the approximate posterior for the ith data

sample (Kingma & Welling, 2013).

In the implementation of VAE, the encoder branches after the FC layers and connects to a layer of µ

and σ, which have the same number of nodes as the dimension of z. The latent variables z are sampled

as z = µ + σ ⊙ ϵ using the reparametrization trick (Kingma & Welling, 2013; Jimenez Rezende et al.,

2014). With ⊙ we signify an operator of element-wise product, which is called Hadamard product. Here

ϵ is a vector consisting of random numbers sampled from a Gaussian distribution N(0, I).

Kingma & Welling (2013) describes the marginal likelihood of the ith data point can be written as

ln pθ(x(i)) = DKL(qϕ(z|x(i))||pθ(z|x(i))) +L(θ, ϕ;x(i)). (4.1.2)

The first term is the KL divergence between the approximate and true posteriors. The KL divergence

always takes a non-negative value, thus ln pθ(x(i)) ≥ L(θ, ϕ;x(i)) and the second term L(θ, ϕ;x(i)) is

called the variational lower bound, or the evidence lower bound (ELBO), on the marginal likelihood of

the ith data point. As a result, the problem to maximize the log-likelihood ln pθ(x(i)) can be changed to

the problem to maximize the lower bound.

The lower bound can be written as (Kingma & Welling, 2013)

L(θ, ϕ;x(i)) = −DKL(qϕ(z|x(i))||pθ(z)) + Eqϕ(z|x(i))[ln pθ(x(i)|z)]. (4.1.3)

VAE models try to find the parameters θ and ϕ to optimize the variational lower bound. The optimization

problem results in that the decoder tries to accurately reconstruct the data samples with the penalty of

the second term. Meanwhile, the encoder tries to simultaneously obtain two conflicting issues; (1) it

tries to match the encoded distribution qϕ(z|x(i)) to the prior pθ(z) as measured by the KL divergence

of the first term, (2) it makes sure that the latent codes provided to the decoder are informative enough to

reconstruct the data samples as shown in the second term.

For VAE whose both the prior pθ(z) and the qϕ(z|x(i)) are Gaussian distribution, the KL divergence

in Eq. 4.1.3 can be calculated as

DKL(qϕ(z|x(i))||pθ(z)) = −1
2

J∑
j=1

(1 + ln(σ(i)
j )2 − (µ(i)

j )2 − (σ(i)
j )2), (4.1.4)

where µ(i)
j or σ(i)

j is the jth element of µ(i) or σ(i) (Kingma & Welling, 2013).

The second term of Eq. 4.1.3 is the expectation of log-likelihood ln pθ(x(i)|z) based on the latent code

calculated by qϕ(z|x(i)) for the ith data point. This is, in other word, the reconstruction loss of the decoder

based on the probability distribution of the latent code z predicted by the encoder. Depending on the type

of data, the reconstruction loss can be modelled using Gaussian, Poisson, or Bernoulli distributions for

real-valued data, positive- and discrete-valued data, or binary data, respectively; we describe this in detail

below.
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If we assume that the data are generated from a Gaussian random process, the data point x is sampled

from a Gaussian distribution whose mean takes the predicted variable y and standard deviation is σ. In

this case, the reconstruction loss can be written as

LGauss = lnN(x(i);y(i),σ(i)2I)

= ln
1

√
2π|σ(i)|

exp
(

(y(i) − x(i))2

2σ(i)2I

)

=

D∑
d=1

(y(i)
d − x(i)

d )2

2σ(i)2
d

+ const. (4.1.5)

where y(i)
d is the dth value of the decoder output y(i) corresponding to the ith input x(i) (Bishop, 2006). If

we assume that each data point is sampled with a Gaussian noise whose mean is 0 and standard deviation

is 1, the reconstruction loss is simplified by ignoring the standard deviation as

LMSE =
1
N

N∑
i=1

(y(i) − x(i))2 (4.1.6)

where N is the number of data samples (Bishop, 2006). This log likelihood is the mean square error

(MSE), which is used the least squared method and also many machine learning tasks.

If the data is positive and discrete values, which are sampled by Poisson random process, the recon-

struction loss is written as

LPoisson =

D∑
d=1

ln
e−y(i)

d y(i)
d

x(i)
d

x(i)
d !

=

D∑
d=1

[−y(i)
d + x(i)

d ln y(i)
d − ln(x(i)

d !)]

≃
D∑

d=1

(−y(i)
d + x(i)

d ln y(i)
d − x(i)

d ln x(i)
d + x(i)

d −
1
2

ln x(i)
d ) (4.1.7)

where y(i)
d is the dth value of the decoder output y(i) corresponding to the ith input x(i) (Cash, 1979;

Ichinohe & Yamada, 2019). Each bin in an X-ray spectrum represents the number of photons, which are

Poissonian variables. Each bin of X-ray spectra finely resolved in energy, space, or time contains a small

number of photons, and thus, Poisson log likelihood is appropriate in such a case. A Poisson distribution

asymptotes to a Gaussian distribution for sufficiently large values. Therefore, the Gaussian log likelihood

or MSE can be an alternative of the Poisson loss if the data consists only of large numbers.

For the binary-valued data sampled from a Bernoulli distribution, the reconstruction loss can be written

as

LBernoulli = ln
N∏

i=1

p(c1|x(i))y(i)
(1 − p(c1|x(i)))1−y(i)

=

N∑
i=1

y(i) ln p(c1|x(i)) + (1 − y(i)) ln(1 − p(c1|x(i))) (4.1.8)

where p(c1|x(i)) is the probability to predict the category c1 for an input x(i) (Bishop, 2006). This is a

popular loss function for classification tasks of machine learning, namely a cross entropy between a data

distribution and a model distribution.
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Figure 4.1.1: Diagram of the pre- and post-processing for the VAE. See the main text for the details of

the network.

4.1.2 VAE Architecture Using Poisson Reconstruction Loss

Each bin of an X-ray spectrum represents a number of photons, thus Poisson log likelihood is appro-

priate to the reconstruction loss in this case. Ichinohe & Yamada (2019) implemented the Poisson log

likelihood for the VAE reconstruction loss to reconstruct simulated X-ray spectra whose spectral bins

contain numbers of photons. However, in real observational data, the count in each spatial and spectral

bin depends not only on the photon flux from the SNR but on the exposure time, the effective area, and

spatial- and spectral-bin sizes. We want the VAE to learn only the information of the SNR emission.

Further, the variables should be scaled to ∼ 1 for efficient calculation with a DNN.

In order to apply the VAE using a Poisson reconstruction loss of Eq. 4.1.7 to the observational data, we

newly modified the input and output of VAE as shown in Figure 4.1.1. We prepared a dataset consisting

of count maps and exposure maps, which consist images of the effective area at each sky point. Each data

sample is converted into a photon flux spectrum by dividing the count spectrum by the exposures, and

then is fed to the input of the VAE. The output is re-converted into the count spectrum by multiplying

the output by the exposures. This manipulation makes the VAE accept and reconstruct photon flux

variables, which are independent of exposures, and simultaneously enables the Poisson log likelihood

to be calculated using the input and output as count variables. Furthermore, each input as photon flux
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is scaled by arbitrary values, e.g., the maximum of each sample, and then the output is rescaled by the

same value.

4.1.3 Gaussian Mixture Model

After the spectral information was compressed into a several-dimensional latent expression using the

VAE as explained in the previous section, we classified it using the GMM.

As described in Section 2.1, clustering algorithms are divided into two classes; hard and soft cluster-

ing. A soft clustering method is appropriate for this study for the following reasons. (1) In the latent

variable coded by the VAE, the characteristic distribution is not necessarily separate, and components

with apparently different trends overlap considerably, particularly around the value 0. It is generally dif-

ficult to draw clear boundaries when multiple components overlap. (2) The physical conditions change

continuously throughout the SNR.

The GMM is a well-known soft clustering method that has become popular for astrophysical data

analysis (e.g., Davoodi et al., 2006; Hurley et al., 2012; Burkey et al., 2013). It describes the data

distribution as multiple multidimensional Gaussians; each Gaussian represents a clustering category.

Every data point is represented by a weighted superposition of all the categories. The probability that

a data point belongs to a certain category, which is also referred to as the responsibility, is represented

by the ratio of the value of the Gaussian corresponding to the category to the sum of the values of all

the Gaussians for this data point. We used the GMM GaussianMixture in scikit-learn 0.19.0 (Pedregosa

et al., 2011), which is a Python library providing a machine learning framework.

4.1.4 t-SNE

There are some manifold learning algorithms, which can be used for dimensionality reduction without

neural networks. If the data dimension is not large and can be compressed into a few dimension space,

such techniques can be alternatives of VAEs.

t-distributed Stochastic Neighbour Embedding (t-SNE) (van der Maaten & Hinton, 2008) is a nonpara-

metric dimensionality reduction method to learn a manifold in the data space. It visualize similarity data

that retaining the local structure of the data while also revealing some important global structure, such

as clusters at multiple scales in high-dimensional data. It converts similarities between data points to

joint probabilities using Gaussian distribution and Student t-distribution as a heavy-tailed distribution in

the high-dimensional space and the low-dimensional map, respectively. It minimizes the KL divergence

between the joint probabilities pi j in the high-dimensional space and the joint probabilities qi j in the

low-dimensional space.

t-SNE has a cost function that is not convex depending on choice of several optimization parameters,

and hence may construct a solution differently for each run with different initialization.

The standard t-SNE is a nonparametric algorithm, thus the trained model cannot be reused for new

data points or other dataset. By contrast, parametric t-SNE is also presented (Van Der Maaten, 2009). In

their experiments, parametric t-SNE outperformed other parametric dimensionality reduction techniques,

PCA, neighbourhood components analysis (NCA; Goldberger et al., 2005), and AEs.
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4.1.5 Hierarchical Clustering

Hierarchical clustering, which build a hierarchy of clusters, is one category of hard clustering meth-

ods. Hierarchical clustering algorithms have two classes; agglomerative and divisive. In agglomerative

algorithms, each data point begins in the individual cluster, and the nearest pair of clusters are merged

into one until all data points are contained in one cluster. In divisive algorithms, one cluster initially

contains all data points, and continues to be splits into two clusters until each cluster contains only one

data point.

Some agglomerative algorithms linking clusters have been developed, e.g., single linkage, complete

linkage, group average, and Ward’s method.

The Ward’s method minimizes the variance of data points in each cluster (Ward Jr, 1963). In each

linkage step, the method tries to minimize the difference between the variance of merged cluster and sum

of variance of individual clusters before they are merged. When two clusters s and t are merged into a

new cluster u, the distance between the new cluster and the another cluster 3 is written as 1):

d(u, 3) = Var(u ∪ 3) − Var(3) − Var(u)

=

√
|3| + |s|

T
d(3, s)2 +

|3| + |t|
T

d(3, t)2 − |3|
T

d(s, t)2 (4.1.9)

where d is distance between two clusters, T = |3| + |s| + |t|, and | ∗ | is the cardinality, i.d., the number of

data points (Ward Jr, 1963). Euclidean distances are usually used for d(3, s), d(3, t), and d(s, t).

The Ward’s method is robust to outliers. The cluster tends to have a spherical shape because the

variance is based on an isotropic Gaussian.

4.2 Demonstration of the Method with MNIST

We tested out unsupervised machine learning method combining the VAE and GMM with a handwrit-

ten digits dataset in order to demonstrate that the method can accurately classify a dataset, before we

apply the method to astronomical data.

The MNIST database is the best-known dataset of handwritten digits in the machine learning filed. The

database has fixed-size monochrome images of handwritten digits from 0 to 9. Each sample contains a

28×28 image whose pixel value is 0–255, and a label (i.e., a correct answer of each image), which is

an integer from 0 to 9. The training set has 60000 samples, and the test set has 10000 samples. We

use the labels of the dataset only to measure the accuracy after the models are trained, because this is

an unsupervised learning method. In this demonstration, the dataset in Keras (Chollet et al., 2015) was

used.

Data preprocessing: The images were normalized with the maximum value 255 in order to limit the

1) The description of SciPy implementation is available in https://docs.scipy.org/doc/scipy/reference/
generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage.

36

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage


CHAPTER 4. NEW METHOD USING DEEP LEARNING

4.2. DEMONSTRATION OF THE METHOD WITH MNIST

values within a range of 0–1. Each image of 28×28 matrix was flattened to a 784 vector.

VAE: The VAE architecture was below: The encoder and decoder were constructed from two FC

layers with 256 nodes per layer and the ReLU activation function, respectively. The shape of input and

output layers are 784-d vectors. The output layer has a sigmoid activation function. We prepared models

with latent dimensions ranging from 1 to 30 and trained them for 200 epochs. We selected the latent

dimension by checking the corresponding loss value for the test data. There was little difference between

cases with the latent dimension more than 12, thus we used the latent dimension 13 for the clustering.

We used the deep learning framework Keras 2.0.7 (Chollet et al., 2015) with the TensorFlow 1.3.0

(Abadi et al., 2015) backend. The binary cross-entropy was used as the loss function. Nesterov-

accelerated adaptive moment estimation (Nadam; Dozat, 2016) (which, according to our tests, provides

the fastest convergence among the optimizers) was used for optimization. The training was performed

for 200 epochs with a batch size of 100.

GMM: We then classified the latent parameters µ for test data using GMM. The number of category

was fixed to the number of class contained in the dataset, ten (i.e., the number from 0 to 9). We used

the GaussianMixture in scikit-learn 0.19.0 (Pedregosa et al., 2011), which is a Python library providing

a machine learning framework.

The GMM category IDs, which have no a priori meaning, were sorted in the order of the data labels.

In Figure 4.2.1, the first four axes of the latent µ are shown, where the colour of each point corresponds

to the GMM category with the highest responsibility for each sample of the test data.

Results: We evaluate the clustering result with the accuracy, i.e., (the number of correct preci-

sions)/(the total number of predictions). The accuracy is 90.87% for all test data when the VAE model

with latent dimension 13 was used. The confusion matrix of GMM is shown in Figure 4.2.2.

The accuracies for the individual classes 0, 2, 4, and 6 were more than 95%, and for 1, and 9 more

than 90%, respectively. On the other hand, the accuracies for 5, 7, and 8 were lower than the others,

approximately 80%. The 19.6% of 5 was classified to 3; the 14.7%, 4.5% of 7 were classified to 2, and

9, respectively; the 3.4%, 8.7%, and 2.1% of 8 were classified to 2, 3, and 5, respectively.

By contrast, when we classified the MNIST dataset using GMM clustering without a dimensional

reduction by a VAE, the accuracies were 50% for the test data and training data. The comparison clearly

shows that dimensional reduction by VAE is effective for GMM clustering of high-dimensional data.

In this demonstration, our method classified handwritten digits with the accuracy of more than 90%.

Because of this result, our method is expected to be also applicable to astronomical data.
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Figure 4.2.1: Scatter plot showing the µ of VAE latent parameter obtained by inputting each digits image,

where two of the thirteen axes are chosen. Each point was colour-coded for each category classified by

GMM clustering. The centroid of each category is shown as an open black diamond.

Figure 4.2.2: Confusion matrix of GMM for each answer label vs predicted class. The colour scale

shows the number of samples corresponding category. The numbers of samples are also shown on the

corresponding bins as texts.
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Chapter 5

Demonstration with Tycho’s SNR

Most of the contents in this chapter are taken from Iwasaki et al. (2019a).

5.1 Introduction for Tycho’s SNR

X-ray spectra from supernova remnants (SNRs) are known to contain rich multidimensional informa-

tion. We chose Tycho’s SNR as a target for application of our machine learning method because this is

one of the best studied SNRs.

Supernovae (SNe) explosively eject elements synthesised in the progenitor materials (so-called ejecta),

forming blast waves. The resulting bright X-ray-emitting structures are called SNRs. As we review

in Chapter 3, X-ray observations of SNRs allow us to investigate both the chemical evolution of the

Universe and the mechanisms of cosmic-ray acceleration.

SNe have long been assumed to supply heavy elements synthesised during the explosion. The ejecta,

that is, the X-ray-emitting hot plasma in SNRs, reveals the nuclear burning regimes of elemental synthe-

sis.

Tycho’s SNR is the remnant of SN 1572, which is known to be a type Ia explosion from the light-echo

spectrum (Krause et al., 2008). In X-ray spectra of Tycho’s SNR, line emission from intermediate-mass

elements (IMEs; e.g., Si, S, Ar, and Ca) and Fe synthesised during the supernova explosion are clearly

seen. In addition, secondary Fe-peak elements (e.g., Cr, Mn, and Ni, which are synthesised together with

Fe) have been detected (e.g., Tamagawa et al., 2009). The global morphology of Tycho’s SNR features

radial gradation of the plasma ionization state and the electron or ion temperature, which are caused by

reverse shock (RS) heating. The gradation features appear as differences in the peak radii of the emission

lines and are seen especially clearly in the north-western (NW) projected ejecta limb.

X-ray imaging using ASCA showed that the Fe K emission clearly peaks at a smaller radius than the

Fe L and IME line emission and that the Fe-K-emitting plasma was hotter and less ionized (Hwang &

Gotthelf, 1997; Hwang et al., 1998). Warren et al. (2005) measured the averaged forward shock (FS) and

RS radius as 251 arcsec and 183 arcsec using the feature-less emissions and the Fe K α lines, respectively,

from a Chandra observation. Yamaguchi et al. (2014) showed electron heating at the RS on the NW limb
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using the Fe K α and K β lines. They also measured the RS radius as 158 arcsec using the Fe K β lines of

immediate postshock, low-ionization ejecta, which peak at a smaller radius than Fe K α emission from a

relatively highly ionized component.

Lu et al. (2015) used Chandra observations to show a systematic increase in the S-to-Si line flux ratio

with increasing radius resulting from RS propagation in the ejecta and reported the elapsed ionization

time since the ejecta was shock-heated. Sato & Hughes (2017a) also found a gradual increase in the

line centroids of Fe K α from the inner side of the SNR to the outer side beyond the radius of the peak

intensity and interpreted it as a difference in the elapsed ionization time.

By contrast, the eastern region exhibits an unusual morphological structure called the Fe knot, where

several clumps outrun the FS. Detailed analysis of Suzaku and Chandra data suggests that the Fe knot

did not originate in the deep, dense core of the progenitor white dwarf but was instead synthesised under

incomplete Si burning or the α-rich freeze-out regime (Yamaguchi et al., 2017).

In addition, galactic SNRs are widely believed to supply cosmic rays up to the ‘knee’ energy of the

cosmic-ray spectrum at 1015 eV, accelerating particles to relativistic energies in their blast waves by

diffusive shock acceleration. The accelerated electrons emit the non-thermal X-ray synchrotron emission

observed from the limbs of young SNRs (e.g., Koyama et al., 1995; Eriksen et al., 2011).

The X-ray synchrotron emission from electrons accelerated at the FS was observed from the limb of

Tycho’s SNR (Hwang et al., 2002). Cosmic-ray proton acceleration at the FS was also reported (Warren

et al., 2005). Eriksen et al. (2011) found non-thermal stripes, which are synchrotron-dominated filamen-

tary structures running perpendicular to the FS in the projected interior of the remnants, and interpreted

them as evidence for particle acceleration to the ‘knee’ energy in regions of enhanced magnetic turbu-

lence.

Tycho’s SNR, which is one of the brightest SNRs in the X-ray band and has various interior structures,

is one of the best benchmark objects for testing a new analysis method. High spatial–spectral-resolution

data from Tycho’s SNR were obtained by Chandra. In this research, we apply our method to the X-ray

data from Tycho’s SNR to investigate the morphological structures without human bias by automatic

classification of each spatial point based only on the physical features reflected in the spectrum.

5.2 Chandra ACIS-I Data Set

Tycho’s SNR was observed by the ACIS-I of Chandra for 145.6 ks, 142.1 ks (two obsIDs), 734.1 ks

(nine obsIDs), and 146.98 ks in 2003, 2007, 2009, and 2015, respectively, as summarised in Table 5.2.1.

In 2007 and 2009, there were one and five observations, respectively, with exposure times exceeding

80 ks. The observation centres are 00h25m19.s00, +64◦08′10.′′00 in 2003, 2007, 2009; and 00h25m19.s30,

+64◦07′55.′′60 in 2015, respectively. Their FoV is approximately 16′×16′ and covers the entire SNR.

Tycho’s SNR was also observed by ACIS-S with HETG for an effective exposure time of 442.80 ks

in 2017. Grating observations are quite different from non-grating ones, thus we excluded the grating

observation from the datasets used for variational autoencoder (VAE) trainings. Tycho’s SNR was also
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Figure 5.2.1: Spectrum of entire Tycho’s SNR. The vertical dotted lines are boundaries of the narrow

energy bands. The cross represents the centre of gravity of each energy band.

observed by a backside-illuminated CCD chip of ACIS-S for an effective exposure time of 48.9 ks in

2000. The backside-illuminated chip has a different instrumental response and NXB spectrum from

frontside-illuminated chips of ACIS-I.The exposure time of ASIC-S observation in 2000 is much shorter

than the total exposure time of ACIS-I observations, thus we decided to use only datasets observed by

the ACIS-I. We performed X-ray analysis using CIAO (version 4.9; Fruscione et al., 2006) and CalDB

(version 4.7.6) provided by the Chandra X-ray Center1).

We determined the spatial-bin size of 3.94 arcsec in order to maintain fine spatial information, i.e.,

more than 90% of photons are expected to remain in an spatial bin at an off-axis position as described in

Section 3.4.2. As a result, an image size becomes 146 × 143 spatial bins to omit regions outside of the

SNR.

Finer spectral binning is expected to preserve more information such as the line width, line-centroid

shift, and composition of weak lines. However, finer binning results in lower counts in each spectral

bin. We employed an objective method of spectral binning to achieve fine binning and adequate photon

statistics in each bin at the same time. As shown in Figure 5.2.1, the spectrum of the entire Tycho’s SNR

was created in the 0.5–7 keV band using only an observation set (ObsID is 10095) and was divided into

1) Available at http://cxc.har3ard.edu
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Table 5.2.1: Observations of Tycho’s SNR by Chandra

ObsID Exposure (ks) Date Grating Dataset

115 48.91 2000 Sep. 20 – No usage

3837 145.6 2003 Apr. 29 – training/validationa

7639 108.87 2007 Apr. 23 – training/validationa,b

8551 33.27 2007 Apr. 26 – training/validation data with 7639b

10093 118.35 2009 Apr. 13 – training/validationa, post-trainingc

10094 89.97 2009 Apr. 18 – training/validationa, post-trainingc

10095 173.37 2009 Apr. 23 – training/validationa, post-trainingc

10096 105.72 2009 Apr. 27 – training/validationa, post-trainingc

10097 107.43 2009 Apr. 11 – training/validationa, post-trainingc

10902 39.53 2009 Apr. 15 – post-trainingc

10903 23.92 2009 Apr. 17 – post-trainingc

10904 34.7 2009 Apr. 13 – post-trainingc

10906 41.12 2009 May 3 – post-trainingc

15998 146.98 2015 Apr. 28 – training/validationa

19291 39.98 2017 Oct. 30 HETG No usage

19292 19.83 2017 Oct. 26 HETG No usage

19293 49.99 2017 Oct. 17 HETG No usage

20799 22.17 2017 Nov. 17 HETG No usage

20813 47.76 2017 Oct. 21 HETG No usage

20819 44.50 2017 Oct. 29 HETG No usage

20820 30.50 2017 Oct. 27 HETG No usage

20821 25.63 2017 Oct. 19 HETG No usage

20822 13.91 2017 Oct. 23 HETG No usage

20832 50.42 2017 Nov. 01 HETG No usage

20833 34.63 2017 Nov. 03 HETG No usage

20834 35.89 2017 Nov. 04 HETG No usage

20835 27.59 2017 Nov. 06 HETG No usage

a individual training/validation data
b merged training/validation data observed in 2007
c merged post-training data
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37 narrower energy bins such that each energy bin excluding the last bin (6.12–7.00 keV) had a count

averaged over spatial bins inside the SNR of more than 100 counts (spatial-bin)−1 for the total exposure

time observed in 2009, including the background. The low-energy side (0.5–2.6 keV), with a high count

rate, is divided into rather narrow bands (bandwidth/band centroid energy < 8%). For example, the

Si He α emission line (1.69–2.01 keV) is divided into 11 bins. On the other hand, the high-energy part

of the spectrum (2.6–7.0 keV) is divided into four wider bands because the statistics are not as good as

at lower energies. In individual spatial bins, the flux values in the 37 narrow energy bands are combined,

and the resulting 37-dimensional vectors are used as the input dataset.

The flux image of each band was created with the coordinate ranges set to omit regions outside of the

SNR. We did not subtract the backgrounds from the images because most of Tycho’s SNR is sufficiently

an order of magnitude brighter than the background that we can safely ignore the contributions from the

non-X-ray background and cosmic X-ray background between 0.5 keV and 7.0 keV.

The averaged expansion velocity of Tycho’s SNR is approximately 0.3 arcsec yr−1 (Katsuda et al.,

2010), which is significant for the entire dataset. Thus, in our analysis we do not mix observations from

different years. Eight individual observations2) with exposure times exceeding 80 ks in 2003, 2007,

2009, and 2015 were used for training. In addition, we also used the shorter observation taken in 2007

by co-adding it with the longer one taken in the same year. Eighty per cent of the spatial bins in each

flux image were chosen randomly and used as training data, and the rest were used as validation data.

The actual size of the training and validation datasets were 150,781 and 36,808, respectively, excluding

the spatial bins with zero flux in all the narrow energy bands (i.e., a 37-dimensional zero vector). All

the observations from 2009 (a year which has the longest total exposure) were summed and used for the

post-training analysis.

5.3 Unsupervised Dimensionality Reduction and Clustering

5.3.1 VAE Dimensionality Reduction

Figure 5.3.1 shows a diagram of the VAE architecture. The encoder and decoder were constructed

from two fully-connected (FC) neural network layers with 256 nodes per layer and rectified linear unit

(ReLU; Nair & Hinton, 2010) activation. The output layer has same dimension of the input layer and

sigmoid activation function. We determined the latent dimension as follows. We prepared models with

latent dimensions ranging from 2 to 10 and trained them for 100 epochs. We selected the latent dimension

whose corresponding loss value for the validation data was the lowest.

We used the deep learning framework Keras 2.0.7 (Chollet et al., 2015) with the Tensorflow 1.3.0

(Abadi et al., 2015) backend. Nesterov-accelerated adaptive moment estimation (Nadam; Dozat, 2016)

(which, according to our tests, provides the fastest convergence of the optimisers) was used for optimi-

sation. The training was performed for 100 epochs with a batch size of 100.

2) ObsID 3837, 7839, 10093, 10094, 10095, 10096, 10097, 15998
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Figure 5.3.1: Diagram of the VAE architecture. See the main text for the details of the network.

Training typically takes 16–20 min on a workstation with an eight-core Intel Xeon E5 CPU. We also

tested the training of a model using GPU computations on an NVIDIA GeForce GTX 1080Ti graphics

card. Training on the GPU with a batch size of 4096 typically ran for 40 s and required approximately

300 MiB of GPU memory.

We extracted the latent expressions µ from the data of Tycho’s SNR observed in 2009 using the encoder

of the trained VAE. Each panel in Figure 5.3.2 shows the four-dimensional coordinates of the latent

parameters µ that are obtained by the VAE from a merged set of all the observations from 2009. The

images for each axis of µ have the same colour scale.
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Figure 5.3.2: Images showing the values of the VAE latent parameters µ as an image for each axis when

the test data (a 37-colour image observed in 2009) are input. The images, which are standardised to

improve the appearance, share a colour scale.

5.3.2 GMM Clustering

We applied Gaussian mixture model (GMM) soft clustering to the obtained latent expressions. The

optimal number was determined by checking the Bayesian information criterion (BIC) for three to nine

of the used clusters. There was little difference between cases with seven to nine clusters; thus, for

the analysis we used eight clusters. To visualise the features extracted by the VAE, we plot clusters in

different colours in the scatter plot shown in Figure 5.3.3.

The scatter plots in Figure 5.3.3 show the distributions of the latent variables, which are colour-coded

according to the category assigned by GMM clustering, projected onto all six (=4C2, where 4 is the

latent dimension) different two-dimensional planes passing through the origin. In the latent space, the

compressed expressions form a radial distribution consisting of several branches around 0. The main
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Figure 5.3.3: Scatter plot showing the µ of VAE latent parameter obtained by inputting each spatial bin

of the test data observed in 2009, where two of the four axes are chosen. Each point was colour-coded for

each category classified by GMM clustering. The centroid of each category is shown as an open black

diamond.

thick branch is classified as categories 1–4, whereas the three branches extending in different directions

are classified as categories 5, 6, and 7, respectively. The data points around 0 are classified as category 0.

Each panel of Figure 5.3.4 shows the responsibility of each GMM category. The middle panel of

Figure 5.3.5 shows the division of Tycho’s SNR into GMM categories. The colours of the spatial bins

correspond to the highest responsibility category, as obtained by the method when the merged data from

2009 were used. The spatial bins of each category have a spatially coherent distribution.

The right panel of Figure 5.3.5 shows the same image as the middle panel of Figure 5.3.5, but the

spatial bins whose assigned category has a responsibility of ≤ 90% are masked. Thus, the spatial bins
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Figure 5.3.4: GMM responsibility of each spatial bin of test dataset observed in 2009 for each cate-

gory. The responsibility is between 0 and 1; blue represents a responsibility of 0, and red represents a

responsibility of 1.

Figure 5.3.5: The left panel shows a three-colour image (red: Fe L blend band, 0.7–0.95 keV; green:

Si He α band, 1.75–1.95 keV; blue: Fe K α band, 6.2–6.9 keV). In the middle panel, for each spatial bin

of the test data, the GMM categories with the highest responsibility are assigned and colour-coded. The

right panel shows only spatial bins with a category of more than 90% responsibility, which are assigned

the colours representing the category. The other spatial bins, which have responsibilities below 90%,

appear black.

that remain coloured in the right panel of Figure 5.3.5 are robustly assigned to some category, and thus

are expected to have some spectral features distinct from those of the other categories.

For comparison, a traditional three-colour image is shown in the left panel of Figure 5.3.5. Some

regions that appear similar in the three-colour image are assigned to different categories. For example, the

blob on the eastern rim (region marked ‘c’ in Figure 5.3.5) and the annular layer to the north-west (inner

layer region marked ‘a’ in Figure 5.3.5) both appear reddish in the three-colour image (Figure 5.3.5, left
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Table 5.4.1: GMM categories.

Category No. Location Feature

0 outside of SNR very dark, background

1 inside of SNR dark region, between CD and FS

2–4 rim of ejecta bright ejecta

5 NW rim weak Fe emission

6 blobs in the Fe knot strong Fe line emission

7 rim, filaments power-law radiation dominant

panel), although they are assigned to different categories in the GMM image (categories 3 and 6; see the

middle panel of Figure 5.3.5).

We also note that the clusters corresponding to the layered structure in the NW part of the SNR (for

detailed analysis, see Section 5.5.1) are revealed by clustering for any number of Gaussians between

seven and nine. On the other hand, the regions dominated by featureless emission and the Fe knot

described in Section 5.5.2 are separated into two clusters only when eight or nine categories are assumed.

5.4 Detailed Results of Clustering

On the basis of the GMM classification, we extracted the representative spectra of each category by

combining all the spatial bins assigned to a certain category with responsibilities above 90%. The com-

bined spectra are shown in Figure 5.4.1. The background was extracted from an annular region surround-

ing the SNR and subtracted from the spectra.

Table 5.4.1 summarises the physical interpretation of each category. Category 0 is localised mainly

outside of Tycho’s SNR and also contains some dark regions inside the SNR. Categories 1–5, the main

regions of which coincide spatially with the ejecta, form a layered structure, and the assigned category

numbers, 1–5, change from the inner side of the SNR to the outer side. Category 1 represents faint regions

inside of the SNR, which mainly include the unshocked ejecta in projection and the swept-up interstellar

medium (ISM)/CSM between the FS and the contact discontinuity (CD). Most of categories 2–5 appears

as layered structure, which is most clearly seen in the northern part of the SNR (region marked ‘a’ in

Figure 5.3.5), especially category 5, which has a responsibility above 90% and is located only in the NW

region of the SNR. Two blobs of categories 4 and 5 close to the SNR centre (marked ‘b’ in Figure 5.3.5)

coincide with regions with a measured blue shift (Sato & Hughes, 2017a). Thus, categories 4 and 5 are

interpretable as ejecta limbs.

Category 6 is localised at the edge in the eastern part of the SNR (region ‘c’ in Figure 5.3.5), which

is associated with the reddish region in the left panel of Figure 5.3.5. This region is a substructure in

the Fe knot analysed by Yamaguchi et al. (2017) in detail. The spectrum of category 6 has strong Fe

line emission, although the IME emission is weaker in Figure 5.4.1. As shown in the bottom panel of
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Figure 5.4.1: Spectrum (background-subtracted) of the region inside the SNR for which each GMM
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Figure 5.4.2, category 6 covers a portion of the ejecta having the strongest Fe K α line in the SNR.

Category 7 corresponds spatially to the FS at the edge of the SNR, the filament and stripe structure

at ‘d’ inside the SNR on the western side, and the bright arc at ‘e’ in the SNR on the south-east in

Figure 5.3.5. These structures are associated with bluish regions in the left panel of Figure 5.3.5. In the

spectrum of category 7 in Figure 5.4.1, continuum emission is dominant, although weak contamination

by line emission (Si, S, and so on) appears.
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The medium- and high-energy parts of the spectra in Figure 5.4.1 have clear line emission features.

To investigate the spectral properties quantitatively, we fitted the spectra with a model of an absorbed

power law for the continuum emission plus Gaussians for the emission lines of He α, Ly α, He β, He γ,

and Ly β of Si, S, Ar, and Ca (excluding Ca Ly β) and Fe K α.

The weak lines such as Lyman lines and He γ of each element shared the fitting parameters of line

centroids, widths, and intensities with a strong line (such as He α or He β) of the corresponding element

following Hayato et al. (2010). We assumed a hydrogen column density of 7 × 1021 cm−2 (Cassam-

Chenaı̈ et al., 2007) and standard ISM abundances (Wilms et al., 2000). The results of the model fitting

are shown in Table 5.4.2 and Figure 5.4.2. In category 7, continuum emission is dominant; thus, the Fe

K α line cannot be detected.

In the top and middle panels of Figure 5.4.2, the centroid energy of Fe K α is higher, and the Ly α/He α,

He β/He α line flux ratios of Si and S are higher, except for category 6. These trends correspond spatially

to higher ionization and temperature in the outer side of the SNR. Especially in the NW region of the

SNR, in which categories 1–5 form a layered structure, the physical parameters of ionization and the

temperature appear to change the from inner to outer the SNR. We analyse the NW region in detail in

Section 5.5.2. On the other hand, category 6, which is located on the rim in the eastern region of the

SNR, has different characteristics. For category 6, the centroid energy of Fe K α is highest among all

the categories, but the Ly α/He α, He β/He α line flux ratios of Si and S are lower than the others. We

analyse the Fe knot region, including category 6, in detail in Section 5.5.1.

In the bottom panel of Figure 5.4.2, the line flux ratios of He α of S, Ar, or Ca to Si increase gradually

from the inner side toward the outer side of the SNR. On the other hand, the Fe K α/Si He α line flux

ratios show a different trend. These ratios decrease toward the outer side of the main SNR shell and are

lowest in the region of category 5, although the ratio for category 6, which is located the outer edge of

the SNR, is only an order of magnitude higher than the others. Category 6 clearly has different spectral

features from the other regions.

Although it is difficult to fully understand how each feature in the raw data (i.e., spectral structure

in this case) affects the latent expressions, we think the low-energy sides of the spectra also contribute

significantly to the clustering because the low-energy part is divided into finer bins than the high-energy

part is. For example, whereas the Fe K α blend consists of only 1 energy bin in our binning method, the

energy band of the Fe L blend between 0.75 and 1.31 keV is divided into 10 bins.

The L-shell blend of FeXVII, FeXVIII, and FeXIX (n = 3 → 2) structure at ∼0.83 keV is divided into

4 bins and appears strongly in the spectra of categories 1–4. In addition, the Mg He α line at ∼1.35 keV

appears strongly only in categories 1 and 2, and the O Ly α line structure at ∼0.65 keV appears strongly

in the spectra of categories 0, 1, and 7. We think that these structures contribute to distinguishing these

categories from others.
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Figure 5.5.1: Substructure of the Fe knot on the eastern rim of Tycho’s SNR. In the left-hand panel, for

each spatial bin of the test data, categories with the highest responsibility are assigned and colour-coded.

In the middle panel, only spatial bins with a category having a responsibility above 90% are selected

and assigned the colours representing the categories. The other spatial bins, which have responsibilities

below 90%, appear black. The right-hand panel shows a three-colour image (red, Fe L blend band,

0.7–0.95 keV; green, Si He α band, 1.75–1.95 keV; blue, continuum band, 4.6–5.1 keV). The dashed line

corresponds to the azimuthal-averaged radius of the FS (251′′; Warren et al., 2005).

5.5 Detailed Analyses of the Regions Suggested by Machine Learning

As shown in the previous section, the unsupervised machine learning method can discover spatial

structures. In this section, we choose two regions of the revealed structure and analyse them in detail.

5.5.1 Spectral Analysis of the Fe Knot

The Fe knot located along the eastern rim of Tycho’s SNR represents unusual morphological features

in which several iron-rich clumps outrun the FS. The Fe knot can be divided into substructures, and

Yamaguchi et al. (2017) analysed in detail these fine regions. The regions defined by Yamaguchi et al.

(2017) (see Figure 5.5.2) have the following counterparts in our analysis (Figure 5.5.1): ‘A’ and ‘E’,

category 6; ‘B’, category 4; ‘C’ and ‘D’, category 2; ‘X’ and ‘Y’, category 7.
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Figure 5.5.2: Eastern region of Tycho’s SNR observed by Chandra/ACIS; (a) 1.8–1.92 keV, (b) 2.4–

2.52 keV, (c) 3.07–3.18 keV, (d) 6.35–6.6 keV, (e) 0.8–1.25 keV, and (f) 4.2–6.0 keV. The contour is 1.8–

1.92 keV (Si K α). The yellow ellipse encloses the entire Fe knot. This figure is taken from Yamaguchi

et al. (2017).
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We extracted spectra from the substructure representative of each category with responsibilities above

90%. The results of fitting by the model described in the previous section are summarised in Table 5.5.1.

Figure 5.5.3 shows the spectra of the regions of categories 4 and 6 in the Fe knot, which correspond

to the regions marked ‘GMM4’ and ‘GMM6’ in Figure 5.5.1, respectively, with responsibilities above

90%. The spectrum of category 4 has enhanced IME line radiation, although one of the category 6

features has weaker IME lines and stronger Fe K α emission. The regions of the Fe knot corresponding

to categories 4 and 6 are characterised by the lowest and highest ratios of the Fe K α and Si He α line

fluxes, respectively. The Fe/Si flux ratio in category 6 is also quite high, as shown in the bottom panel of

Figure 5.4.2; thus, the region has a spectral feature unique to not only the entire SNR but also the Fe knot.

The machine learning extracted a characteristic structure in which the Fe emission is much stronger.

The He α line flux ratios of S, Ar, or Ca to Si in categories 1, 2, 4, and 6 are approximately constant

in the Fe knot. This implies a constant electron temperature in the knot, in agreement with Yamaguchi

et al. (2017).

The S He α/Si He α line flux ratios in categories 1 and 2 in the Fe knot are higher than those in the

entire SNR (Table 5.4.2). This reflects a higher ionization state in the Fe knot, which is located on the

SNR rim (i.e., at a large radius), than that typical of the shocked and unshocked ejecta in the inner part

of the SNR, where categories 1 and 2 are most common.

The Fe K α/Si He α line flux ratios in categories 1 and 2 in the Fe knot are higher than those in the

entire SNR (Table 5.4.2). However, this ratio for category 4 in the Fe knot is comparable to that in the

entire SNR. As shown in the left image of Figure 5.5.1, the clump emitting Fe coincides with the blob

emitting IME in the category 4 region.

5.5.2 Spectral Analysis of NW Ejecta

In the NW region of Tycho’s SNR, categories 1–5 and 7 are layered. We extracted a spectrum from

each GMM category with responsibilities above 90% in the NW of the SNR. In addition, we divided the

NW part of the SNR into annular regions along the layered features representing the categories, as shown

in Figure 5.5.4. The centre of the annuli was determined to be R.A. = 00h25m17.s754, +64◦08′06.′′549

so that those annuli align with the layered structure. The regions were labelled NW1 to NW10 from the

inner to the outer side. We extracted the spectra from these regions, adopting a background spectrum

extracted from a box region outside of the SNR. We performed model fitting in the 1.7–9 keV band

using the same models as in Section 5.4 to investigate the line emission of IMEs and Fe. The best

fitting parameters are shown in Figure 5.5.5, Figure 5.5.6, and Figure 5.5.7, and each point and each

bin of radius correspond to the centre and the range between the inner and outer edges of each region,

respectively.

The surface brightness peak of the Fe K α line forms the innermost layer, as compared to the He α

lines of Si, S, Ar, and Ca, in Figure 5.5.5. This trend was previously seen in ASCA observations (Hwang

& Gotthelf, 1997) and XMM-Newton observations (Decourchelle et al., 2001).

In Figure 5.5.6, the line flux ratios of Ly α/He α and He β/He α of Si and S increase from the inner

region NW5 to the outer one NW10 (156.7–227.3 arcsec) corresponding to the GMM categories 3, 4,
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Figure 5.5.4: Annular regions in the NW region of Tycho’s SNR.

and 5. These trends correspond to a radial gradient of temperature or ionization, which is higher on the

outer side of the SNR. A temperature gradient in the ejecta is suggested, as it is hottest near the RS and

cooler near the CD, because the Fe K α emission peak is located interior to those of Fe L and Si (Hwang

& Gotthelf, 1997; Decourchelle et al., 2001). Furthermore, Yamaguchi et al. (2014) showed electron

heating near the RS of Tycho’s SNR. If we attribute our results to a temperature gradient, our findings

imply an opposite trend to that inferred in these works. On the other hand, a variation in the Fe ionization

state near the RS (Yamaguchi et al., 2014) was reported. Moreover, a radial gradient of the ionization age

was suggested by the Si He α/S He α flux ratio (Lu et al., 2015) and Fe K α centroids (Sato & Hughes,

2017a). Thus, our results are consistent with these works if we interpret the radial dependence of the line

flux as arising from the ionization age gradient induced by RS propagation.

Then we fit the spectra with models in the 4.2–10 keV band to investigate the K α and K β lines of

Fe and the K α lines of secondary Fe-peak elements (Cr and Mn). The Gaussian widths of the Fe K β,

Cr K α, and Mn K α lines are linked to those of Fe K α.

The centroid energies of the Fe K α lines shown in Figure 5.5.7 are flat between NW1 and NW5

(90.0–167.0 arcsec) corresponding to GMM category 1, and begin to increase at NW5 around 162 arcsec

corresponding to GMM categories 2 and 3. By contrast, the line width of Fe K α (except in the outermost

region, NW10) and the centroid energies of Fe K β do not change significantly. The peak of the surface

brightness of Fe K α is in the NW6 region between 177.3 arcsec and 189.4 arcsec, and the peak of Fe K β

is in the inner region NW5 between 156.7 arcsec and 167.0 arcsec, which is consistent with the results
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and RS positions are determined by Yamaguchi et al. (2014, vertical dashed line) and Warren et al. (2005,

dotted line).

of Yamaguchi et al. (2014).

Warren et al. (2005) estimated the averaged RS radius to be 183 arcsec. The RS radius is located in

region NW7, which coincides with the turning point of the surface brightness of IME He α and Fe K α

in Figure 5.5.5. By contrast, Yamaguchi et al. (2014) estimated the RS radius as 158 arcsec in the NW

quadrant, which is interior to and more realistic than the former one. The RS radius is located near the

boundary of regions NW4 and NW5 corresponding to the inner edge of GMM category 3 and near the

centroid of GMM category 2. It coincides with the turning point of the centroid of Fe K α in Figure 5.5.7.

Thus, it seems that categories 3–5 are ejecta shocked by the RS, and most of categories 1 and 2 are located

inside the RS in projection.

The transitions of the flux ratios of line emission (Figure 5.5.6) or the line centroid energy (Fig-
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Figure 5.5.6: Radial dependence of the line ratio of Ly α/He α and He β/He α for Si and S in the NW

regions. The closed circles correspond to the spectra of GMM categories with GMM responsibilities

above 90% in the NW of the SNR. The open squares and dotted lines correspond to the spectra extracted

from the annuli in Figure 5.5.4. The errors are at 90% C.L. The FS and RS positions are determined by

Yamaguchi et al. (2014, vertical dashed line) and Warren et al. (2005, dotted line).

ure 5.5.7) described above appear at the RS position. Thus, the coincidences suggest that the features

reflect the plasma state of the ejecta caused by RS heating.

We also note the detection of Fe K β in regions NW3–NW8 excluding NW7, Cr K α in regions NW6

and NW8, and Mn K α in region NW8 with 3σ or more.

5.6 Discussions

We implemented an unsupervised machine learning method combining the VAE and GMM, where the

dimensions of the observed data are reduced by the VAE, and clustering in feature space is done by the
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Figure 5.5.7: Radial dependence of the centroid energies of Fe K α lines in the NW regions. The closed

circles correspond to the spectra of GMM categories with GMM responsibilities above 90% in the NW

of the SNR. The open squares and dotted lines correspond to the spectra extracted from the annuli in

Figure 5.5.4. The errors are at 90% C.L. The FS and RS positions are determined by Yamaguchi et al.

(2014, vertical dashed line) and Warren et al. (2005, dotted line).

GMM, and applied the method to Tycho’s SNR, one of the best-known SNRs.

Our unsupervised machine learning method automatically revealed spatial structures which have been

discussed in the literature (see, e.g., Yamaguchi et al., 2017). This demonstration shows that the method

is a powerful tool for data analyses that makes it possible to exploit the rich information contained in data

obtained by X-ray observations of SNRs. It may be possible to discover SNR physics by post-training

analyses using the results of machine learning.

It is also worth noting that the method discovered the spatial structures automatically, although no

spatial information was used in the model. This means that the method can extract physical feature

based only on the spectral information.

As demonstrated in Sections 5.3, 5.4, and 5.5, the VAE extracts features using the relative intensities of

lines as well as the properties of the continuum spectrum. These characteristics of thermal X-ray spectra

reflect the plasma conditions (e.g., temperature, ionization, elemental abundances, and electron or ion

densities). When the data distribution in feature space is categorized by the GMM, the entire region is

divided into a small number of clusters. As shown by our analysis, clustering can reveal both sharp,

knot-like features and continuous changes in physical parameters. Sharp structures are classified as a

single category. For example, the Fe-rich blob in the Fe knot on the eastern rim of the SNR, shown in

Section 5.5.1, is assigned to category 6. Meanwhile, the synchrotron dominated FS or inner filaments,

which have featureless spectrum, is assigned to category 7. By contrast, if physical parameters change

gradually, clustering may result in a layered spatial structure like that seen in the NW regions of the SNR

(see Section 5.5.2 for details).

The reason that each individual spectrum is classified in a certain category is not yet clear from the

network outputs but needs to be investigated and interpreted by human experts, as we mentioned in

Section 5.4. It would be useful if the network itself provided the reason, e.g., by highlighting the spectral

features that cause the spectrum to be assigned to a particular category. Unveiling the reasoning process
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of the network is a significant problem (see, e.g., Smilkov et al., 2017, for recent reviews).

Developing such methods is important for making the best use of the currently available data and

for addressing the growing quality and quantity of future observational data. Model fitting of spectra

is generally time-intensive; thus, the difficulty of spectral analysis is expected to increase steeply with

successful implementation of an X-ray microcalorimeter (such as Athena; Barret et al., 2018). The

suggested unsupervised method can reveal characteristic features directly from raw observational data

without spectral model fitting. It can be an efficient tool to define regions for spectral extraction.

Our method implemented in this work is not limited to SNRs and can be applied to other classes of

sources such as galaxy clusters. The method is equally applicable to temporally and spatially variable

data, because the training uses only spectral information. Furthermore, our method can also be applied

to other energy bands; e.g., it is expected to have good applicability to radio observational data, which

contain spatial, temporal, and velocity information (i.e., they have the same dimensions as X-ray data:

spatial, temporal, and spectral information).

The deep learning architecture can be improved. In this method, it is a problem that the VAE used to

reduce the dimensions of the data tends to form a single peak distribution around 0 in feature space; thus,

the boundaries of the extracted data distribution are not clear. Using the architecture of the Wasserstein

autoencoder (WAE; Tolstikhin et al., 2017) or Gaussian Mixture VAE (GMMVAE; Dilokthanakul et al.,

2016) may improve the structure of the latent manifold. A model using convolutional layers, e.g., a

convolutional VAE, can be applied to use the spatial information in a dataset.
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Chapter 6

Demonstration with Kepler’s SNR

6.1 Introduction for Kepler’s SNR

Kepler’s SNR (G4.5+6.8), which is the remnant of SN 1604, is one of the most well-studied supernova

remnants (SNRs) in the Galaxy. Kepler’s SNR is generally believed as a remnant of type Ia supernova

(SN), even without light echo spectrum. This is mainly because X-ray observations revealed strong

emission of silicon, sulphur, and iron but less oxygen from the shocked ejecta (e.g.; Reynolds et al.,

2007). Its location is 590(d/5 kpc) pc away from the Galactic plane, where d is the distance from the

earth.

Kepler’s SNR has an almost circular shape with some asymmetric features. The most well-known

asymmetric features are the two protrusions located in the east and west side of the SNR, often referred to

as ‘Ears’ (Cassam-Chenaı̈ et al., 2004; Tsebrenko & Soker, 2013). Tsebrenko & Soker (2013) proposed

that the ‘ears’ could have been formed by pre-explosion jets in the core-degenerate scenario. Sun & Chen

(2019) showed that the thermal plasma in ‘ears’ mainly consists of Si- and S-rich ejecta, supporting the

pre-SN jets scenario for the origin of the ‘ears’. By contrast, the interpretation by Burkey et al. (2013)

was that they represents an equatorial plane of the pre-SN mass loss of the donor star.

Kepler’s SNR is interacting with dense (a few particles per cm3), asymmetric, and nitrogen-rich am-

bient medium. Douvion et al. (2001) found infrared emission from warm dust and indicated that it was

emitted from the dust in the shocked circumstellar medium (CSM). Blair et al. (2007) estimated the

total shocked CSM mass to be ∼ 1 M⊙. Williams et al. (2012) showed the CSM dust consists of two

components; lower-temperature dust behind fast shocks penetrating into ambient medium, and higher-

temperature dust behind slower shocks penetrating into dense material coincides with the optical dense

knot. Katsuda et al. (2015) found a nitrogen-rich shocked CSM component from the X-ray spectrum

of the entire SNR, and the southern part has higher N abundance. The prominent X-ray emission from

oxygen, neon, and magnesium with nearly solar O/Fe abundance ratios has a spatial association with the

infrared emission from warm CSM dust (e.g.; Reynolds et al., 2007; Burkey et al., 2013). Sun & Chen

(2019) revealed that the X-ray emitting plasma divided into two; hot and low-net plasma correspond-

ing to the newly shock-heated CSM, and cold and high-net plasma corresponding mainly to the ejecta

material. The hot plasma is spatially associated with the Spitzer 24 µm image tracing the warm CSM
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dusts.

The dense CSM environment requires the single-degenerate (SD) scenario. However, no surviving

companion star (red giant, asymptotic giant branch (AGB), or post AGB donor star) has been discovered

in the central region of the SNR (e.g.; Kerzendorf et al., 2014; Sato & Hughes, 2017b; Ruiz-Lapuente

et al., 2018). X-ray observations and hydrodynamic simulations (e.g. Burkey et al., 2013) suggested that

the companion is most likely an AGB star with the initial mass of ∼4 M⊙ (Sun & Chen, 2019), which is

an evolved star with a slow and massive wind. In infrared observations by Spitzer, Williams et al. (2012)

found strong silicate dust suggesting the wind from an O-rich AGB star.

Vink (2008) measured the expansion of Kepler’s SNR, and determined the shock velocity of

4200 km s−1 in the eastern part of the SNR for the distance to the SNR of 4 kpc. Katsuda et al. (2008)

shows that the northern half of the SNR expands more slowly than the southern part, suggesting an

uneven ejecta distribution between the northern and southern shells. Although the density environments

are different, some ejecta knots are expanding nearly freely (Sato & Hughes, 2017b; Millard et al.,

2019). Sato & Hughes (2017b) measured the kinematic centre at αJ2000=17h30m41.s189±3.′′6 and

δJ2000=-21◦29′24.′′63±3.′′5 based on the expansion velocities of knots. Kasuga et al. (2018) measured the

Fe-ejecta velocities in the line-of-sight, and shows their asymmetric motions.

The distance to Kepler’s SNR is still uncertain with ranging from ∼ 4.0 kpc to > 7 kpc. Recent works

often use the distance of 5 kpc or 5.1 kpc (e.g. Sato & Hughes, 2017b; Sun & Chen, 2019), which was

measured using HI absorption (Reynoso & Goss, 1999) and recently optical proper motion of Balmer

shocks (Sankrit et al., 2016). Millard et al. (2019) estimated the distance to be ∼ 4.8 to 8.2 kpc based on

radial velocity measurement using X-ray grating observations by Chandra.

6.2 Chandra ACIS-S Data Set

Kepler’s SNR was observed by the ACIS-S of Chandra for 48.82 ks, 46.17 ks, 741.04 ks (six ob-

sIDs), and 139.11 ks (two obsIDs) in 2000, 2004, 2006, and 2014, respectively, as summarised in Ta-

ble 6.2.1. In 2007 and 2009, there were five and one observations, respectively, with exposure times

exceeding 80 ks. The observation centres are 17h30m41.s00, -21◦29′17.′′02 in 2000, 2004; 17h30m42.s00,

-21◦29′00.′′00 for two obsIDs in 2006 (6714 and 6716); 17h30m41.s24, -21◦29′31.′′45 for the others in

2006; and 17h30m41.s20, -21◦29′31.′′40 in 2014, respectively.

Kepler’s SNR was observed by ACIS-S and was centred on the ACIS-S3 chip, which is a backside-

illuminated CCD chip. The field of view (FoV) of the ACIS-S3 chip is approximately 8′×8′ and covers

the entire SNR. Kepler’s SNR was also observed by ACIS-S with HETG for an effective exposure time

of 147.59 ks in 2016. Grating observations are quite different from non-grating ones, thus we decided to

exclude the grating observation from the datasets used for variational autoencoder (VAE) trainings.

We performed X-ray analysis using CIAO (version 4.11; Fruscione et al., 2006) and CalDB (version

4.8.3) provided by the Chandra X-ray Center1).

1) Available at http://cxc.har3ard.edu
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Figure 6.2.1: Spectrum of entire Kepler’s SNR. The vertical dotted lines are boundaries of the narrow

energy bands. The cross represents the centre of gravity of each energy band.

As shown in Figure 6.2.1, the spectrum of the entire Kepler’s SNR was created in the 0.4–7.2 keV

band (using only the data of ObsID 6715, which has the longest exposure) and was divided into 26

narrower energy bins such that each clearly resolved emission line is divided into an independent energy

bin. The low-energy side (0.72–1.45 keV), with a high count rate, is divided into rather narrow bands

(band-width/band-centroid-energy < 10%). The medium-energy band (1.45–4.0 keV) has a lower count

rate than the lower energy side, but is also divided into rather narrow bands because intermediate-mass

element (IME) emission line blends are clearly resolved. Each strong line blend of Si He α or S He α

was divided into three energy bins, the peak and both wings. Their line blend tails also contain other

transition lines (e.g., Ly α) whose intensities are quite weaker than He α. The lower- and higher-energy

part of the spectrum (0.4–0.72 and 4.0–7.2 keV) is divided into two and three wider bands respectively,

because the statistics are not as good as at the low- or medium-energy sides and the emission line blends

have broader widths. The continuum dominated band (4.0–6.0 keV) was divided into two bins. The

flux values in the 26 narrow energy bands corresponding to a single spatial bin are combined, and the

resulting 26-dimensional vectors are used as the input dataset.

The flux image of each band was created with the coordinate ranges set to omit regions outside of

the SNR. We prepared two spatial bin sizes, 3.94 arcsec, and 1.97 arcsec, resulting in image sizes of

67



CHAPTER 6. DEMONSTRATION WITH KEPLER’S SNR

6.2. CHANDRA ACIS-S DATA SET

Table 6.2.1: Observations of Kepler’s SNR by Chandra

ObsID Exposure (ks) Date Grating

116 48.82 2000 Jun. 30 –

4650 46.17 2004 Oct. 26 –

6714 157.82 2006 Apr. 27 –

6715 159.13 2006 Aug. 03 –

6716 158.02 2006 May 05 –

6717 106.81 2006 Jul. 13 –

6718 107.80 2006 Jul. 21 –

7366 51.46 2006 Jul. 16 –

16004 102.72 2014 May 13 –

16614 36.39 2014 May 16 –

17901a 147.59 2016 Jul. 20 HETG

a It is excluded from the dataset because it is a grating

observation.

59 × 71, and 118 × 138 spatial bins, respectively. We did not subtract the backgrounds from the images

because most of Kepler’s SNR is sufficiently an order of magnitude brighter than the background that we

can safely ignore the contributions from the non-X-ray background and cosmic X-ray background in the

corresponding energy range.

The flux images whose spatial bin size is 3.94 arcsec of all individual observations and the merged

images of them were used for training. In addition, we also used the merged images whose spatial bin

size is 1.97 arcsec to increase the training data size. We removed the spatial bins whose 0.4 and 7.2 keV

photon fluxes were less than a given threshold in order to exclude the samples outside of the SNR. We

defined the threshold such that Fthresh = |Fbkg| + 5σ(Fbkg), where |F | is the mean of flux, σ(F ) is the

standard deviation of flux, and Fbkg is the photon fluxes in the background region. The threshold of

photon flux were 2.24 × 10−7, and 1.34 × 10−6 photons s−1 cm−2 for the spatial bin size 3.94 arcsec, and

1.97 arcsec, respectively.

Twenty percent of the spatial bins in each flux image were chosen randomly and used as validation

data, and the rest were used as training data. We exclude the spatial bins with zero flux in all the narrow

energy bands (i.e., a 26-dimensional zero vector) from both the training and validation datasets. All the

observations with the spatial bin size of 3.94 arcsec were summed and used for the post-training analysis.

We call it the merged data.
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6.3 Results of Unsupervised Machine Learning

6.3.1 The VAE Architecture

We examined some VAE models having different number of dimensions in the latent variables or

hidden layers to find the better models. We prepared VAE models, which have 4 or 8 dimensional

latent variables z and each hidden layer containing 128 or 256 nodes, and trained them with Poisson log

likelihood reconstruction loss (Eq. 4.1.7) through 100 epochs. For these training, each data sample was

normalized by the maximum value of each sample in order to focus only on the spectral shape.

In all the cases of model with 8 dimensional latent variables, 4 in 8 latent axes of z seem to have

means, although the 4 rest axes of z seem to be random values and are not committed to informative

dimensionality reductions as shown in Figure 6.3.1. Histograms of the latent variables in Figure 6.3.1

show that the meaningless four axes of µ are almost consistent with 0 although the meaningful four

axes of µ have extended distributions. We conclude that 4 axes of latent variables are sufficient for the

present dataset, and decided to use the model with 4 dimension latent variables. For the models with 4

dimensional z, we decided to use the model with 128 nodes in each hidden layer, which had the better

loss, while the loss values are almost same if we changed the number of nodes in each hidden layer.

For comparison, we trained the models also with the dataset scaled by the entire maximum value,

which maintain the flux information in each spatial bin. The five in eight latent axes of z seem to have

means, although the rest three axes of z seem to be random values as shown in Figure 6.3.2. An axis

(assigned as z1), which newly appeared, seems to represent the flux intensity information. In Figure 6.3.2

the histograms of latent variables show that the source and background bins are clearly separated in z1

corresponding to brightness information although they cannot be separated in the other axes of z. In

each axis of µ in Figure 6.3.2, the distribution of background bins had a sharp peak centring on 0 with a

smaller variance than source bins. However the distributions log(σ2) of background bins, which peaked

in larger values than source bins, made the distribution z extended wider than µ for background bins. It

means the spectra of background bins tend to have larger random noise than those of source bins since

the lower photon count makes the Poissonian fluctuation larger in each spectral bin. By contrast, the

histograms in Figure 6.3.1 show that the source and background bins are not separated so clearly but the

peaks of distribution µ and z are shifted. Each distribution of log(σ2) for the background bins had a

peak in larger value than source bins. In this point, the results using data normalized sample by sample

had a same trend as the results using data scaled by the entire maximum.

The comparison shows that the flux information could be veiled by the spatial-bin-by-bin normaliza-

tion, but the information of photon counts still appeared because it affected the quality of spectral shape

and also had been used in the Poisson reconstruction loss function through training.

69



CHAPTER 6. DEMONSTRATION WITH KEPLER’S SNR

6.3. RESULTS OF UNSUPERVISED MACHINE LEARNING

2.50.0 2.5
z0

0

200

400
axis=0

total
source
bkg

2.50.0 2.5
z1

axis=1

2.50.0 2.5
z2

axis=2

2.50.0 2.5
z3

axis=3

2.50.0 2.5
z4

axis=4

2.50.0 2.5
z5

axis=5

2.50.0 2.5
z6

axis=6

2.50.0 2.5
z7

axis=7

2.50.0 2.5
0

0

200

400

# 
of

 sp
at

ia
l b

in
s

2.50.0 2.5
1

2.50.0 2.5
2

2.50.0 2.5
3

2.50.0 2.5
4

2.50.0 2.5
5

2.50.0 2.5
6

2.50.0 2.5
7

5 0
log( 2

0)
0

100

200

300

5 0
log( 2

1)
5 0

log( 2
2)

5 0
log( 2

3)
5 0

log( 2
4)

5 0
log( 2

5)
5 0

log( 2
6)

5 0
log( 2

7)

Figure 6.3.1: The 8-d latent parameters of the VAE having 256-d neurons in each FC layer after

100 epochs training. The upper and lower panels show images and histograms of the latent parame-

ters z, µ, and log(σ2) respectively for each axis when the merged data are input. Each data sample was

normalized by the maximum value of each sample to focus only on the spectral shape.
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Figure 6.3.2: The 8-d latent parameters of the VAE having 256-d neurons in each FC layer after

100 epochs training. The upper and lower panels show images and histograms of the latent parame-

ters z, µ, and log(σ2) respectively for each axis when the merged data are input. The dataset was scaled

by the entire maximum value to keep information of intensities.
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Figure 6.3.3: Images showing the values of the VAE latent parameters z, µ, and log(σ2) in the top,

middle, and bottom row as an image for each axis when the merged data (a 26-colour image) are input

into a model having 4-d latent variables and 128-d neurons in each FC layer after 100 epochs training.

Each data sample was normalized a maximum value of each sample when it was input to the VAE. The

images in each row share a colour scale.

6.3.2 The Results with the Best VAE Model

As the result of the examination we showed above, we decided to use the VAE architecture with the

4 dimensional latent variables and 2 fully-connected (FC) layers containing 128 nodes. We show the

latent variables of z, µ, and log(σ2) for each axis when the merged data normalized spatial bin by bin

are input in Figure 6.3.3. We also show the latent variables as scatter plots (for only µ) in Figure 6.3.4

and histograms in Figure 6.3.5 dividing source bins having larger fluxes than threshold and the rest, i.e.

background bins. In the scatter plots of Figure 6.3.4, the latent parameters µ are projected onto all six

(=4C2, where 4 is the latent dimension) different two-dimensional planes passing through the origin. The

source and background bins seem to be approximately separatable in the space µ0 vs µ1. In Figure 6.3.5,

the distributions of z and µ for the source and background bins have different peaks. For each axis of

log(σ2), the background bins whose peak is larger than that for the source bins, made the corresponding

axis of z extended more widely.

We modelled the latent variable distribution for the source bins using Gaussian as shown in Fig-

ure 6.3.6. Although the distributions were distorted, we decided to use the parameters of Gaussian

as the approximate centre and standard deviation of each data distribution. The positions corresponding

72



CHAPTER 6. DEMONSTRATION WITH KEPLER’S SNR

6.3. RESULTS OF UNSUPERVISED MACHINE LEARNING

Figure 6.3.4: Scatter plot showing the µ of VAE latent parameter obtained by inputting each spatial bin

of merged data, where two of the four axes are chosen. The blue and magenta points represent the spatial

bins in the source and background region, respectively.

to 1σ, 2σ, and 3σ of the best fitting Gaussian were shown as vertical dotted lines in Figure 6.3.6. The

axes 0, 2, and 3 of µ and z had approximately symmetric distributions although the axis 1 had a long tail

over the 3σ position on the positive side. The trends can be seen in the scatter plots of µ in Figure 6.3.4,

especially the tail of positive µ1 side protruded from the main cluster.

6.3.3 Reconstruction of Spectra

We showed some spectra from samples of the merged data reconstructed by the VAE in Figure 6.3.7.

The black squares and solid line are the original input spectra, on the other hand the red closed circle
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Figure 6.3.5: Histogram showing each axis of z, µ, and log(σ2) of VAE latent parameter obtained

by inputting each spatial bin of merged data. The black solid, blue dashed, and magenta dotted lines

represent spatial bins in the entire dataset, the source region, and the background region, respectively.

and dashed line are the reconstructed spectra. The box regions marked with ‘A’ to ‘D’ were shown on

each image in Figure 6.3.8. The region ‘A’ corresponds to the synchrotron dominated spectrum from

the forward shock (FS) in the SE of the SNR. The region ‘B’ has a spectrum with strong iron emission

line blends. The ‘C’ and ‘D’ correspond to regions with strong infrared emissions from shocked CSM.

The region ‘E’ is chosen outside of the SNR as a background spectrum for comparison. The generated

spectrum for background is smooth because the fluctuations caused by low statistics are removed by the

VAE.

6.3.4 Spectra Generated by the Decoder

We studied which features are represented by each axis of z to generate spectra by the decoder. A

decoder is capable of generating spectra using the latent parameters beyond real dataset, thus it can

emphasize the features committed by each latent parameter. It can be an advantage of generative model.

In Figure 6.3.9, Figure 6.3.10, and Figure 6.3.11 we showed the spectra generated by the decoder for

given latent parameter sets.

In Figure 6.3.9 the generated spectra were shown with z1 changing from -2.5 to 4.0, while z0 was fixed

at the best fitting Gaussian mean, -1.5, and z2 and z3 were changed between ±2.5 for each column and
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Figure 6.3.6: Histogram showing each axis of z, µ, and log(σ2) of VAE latent parameter obtained by

inputting each spatial bin of merged data in the source region. The curve in each panel is Gaussian fitted

on each histogram, the best fitting parameters of Gaussian mean m and standard deviation σ are shown

in each legend. The vertical lines correspond to the 1σ, 2σ, and 3σ positions of each Gaussian.

row, respectively. These spectra for any z2 and z3 shows that the continuum dominates the spectra with

large z1, while the lines clearly appeared with small z1. Therefore, z1 seems to represent the relation

of continuum and line intensity. The high z2 value made the value high for the lowest energy bin (0.4–

0.6 keV) including N Ly α line blend, the O Ly α line blend bin (0.6–0.72 keV), and the S K α line blend

(2.4–2.5 keV). When the z3 value becomes low, the IME lines became strong, meanwhile the peak of

Fe L blend shifted to low energy side between 0.72–0.92 keV. Thus z3 seems to represent the IME line

intensities and ionization state of Fe.

Figure 6.3.10 shows the spectra generated when the inputs for z0 were -1.5, -0.5, and -2.5 correspond-

ing to the Gaussian mean and the shift of ±2σ. The z1 was fixed at the Gaussian mean, -0.5, while z2 and

z3 were changed between ±2.5 for each column and row, respectively. In this case, the z0 changed only

among negative values because of the z0 distribution for the SNR dataset. When z0 is large, the generated

spectrum became hard. The trends for z2 and z3 are same as the case changing z1 with z0 fixed.

Figure 6.3.11 shows the spectra generated when z0 changed between ±2.5 for each row, which was

beyond the range obtained by inputting of merged data. The z1 was changed between -2.5–4.0 in each

panel, while z2 was fixed at the Gaussian mean, 0.2, and z3 changed between ±2.5 for each column.
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Figure 6.3.7: Sample plot comparing original and reconstructed spectra by the trained VAE as black

square and red circle markers, respectively. The spectra marked with ‘A’ to ‘D’ correspond to spatial

bins in the source region shown as white box regions in Figure 6.3.8, while the spectrum ‘E’ is the

background region.

The small z0 values made the spectral shape curved upward. The middle of spectrum was pushed up by

the soft continuum, stronger IME line blends, and line blends of Fe L, Ne, and Mg within 0.9–1.4 keV.

On the other hand, the high z0 values made the spectra curved downward. The strong Fe L blend of

0.7–0.9 keV pushed up the low-energy side meanwhile hard continuum and Fe K α blend of 6–7 keV

pushed up the high-energy side, although the weaker IME lines of 1.6–4 keV suppressed the middle of

spectrum. Therefore, possible z0 represents the information of global spectral shape, which reflects the

relation of Fe and IME line emissions, and also continuum. In addition, when z0 is low and also z1 is

sufficiently high, the generated spectrum is highly dominated by continuum component.

6.3.5 Combined Spectra for Each Latent Axis

We show as contours the regions corresponding to more than +1σ or less than -1σ on each axis of z

in Figure 6.3.12. The contours corresponding to +3σ for µ1 and z1 are also shown in Figure 6.3.13.

We extracted spectra from the regions corresponding to more than +1σ or less than -1σ for each axis

of z. In addition, for z1, a spectrum was also extracted from regions corresponding to more than +3σ.

The background-subtracted spectra for each axis were shown in each panel of Figure 6.3.14. The annulus

surrounding the SNR was determined as the background region. Point-like sources were removed from

the annulus, as shown in Figure 6.3.13.

The spectrum from regions of z1 ≥ 1σ had strong continuum and furthermore the spectrum from

more than regions of z1 ≥ 3σ was almost continuum dominated, whereas the spectrum from regions of

z1 ≤ −1σ had strong emission lines. It supports the interpretation of z1 mentioned in Section 6.3.4.
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Figure 6.3.8: In the upper four panels, images showing the z of VAE latent parameters for each axis

when the merged data are input. The images of the z share a colour scale. In the bottom left panel,

the three-colour image showing the flux images of Fe L band, 0.72–0.95 keV (red), Si K α band, 1.65–

2.06 keV (green), and Fe K α band, 6.0–7.0 keV (blue). In the bottom right panel, the three-colour

image showing the flux images of O band, 0.4–0.72 keV (red), Si K α band, 1.65–2.06 keV (green), and

continuum band, 4.2–6.0 keV (blue). The Spitzer MIPS 24 µm observation in 2004 is shown on each

panel as magenta contours tracing warm dust of shocked CSM.
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Figure 6.3.9: Generated spectra by the decoder after 100 epochs training. The variation of z1 shows in

each panel, when z0 is fixed -1.5.

The spectrum from regions of z0 ≤ −1σ had stronger O and Mg line features and a softer continuum

than the spectrum from regions of z0 ≥ 1σ, which had strong Fe L emission lines. The spectrum from

regions of z2 ≥ 1σ also had stronger O and Mg line features than the spectrum from regions of z2 ≤ −1σ,

which had strong Fe L emission lines. It is consistent with the results in Section 6.3.4. The regions of

z0 ≤ −1σ are spatially located on the edges and also in the central small parts of the SNR. The regions of

z2 ≥ 1σ are spatially located at the west and the centre of the SNR and overlapped with infrared contours.

By contrast, the regions of z0 ≥ 1σ are located at inner parts of the SNR. The regions of z2 ≤ 1σ were

mainly at the northern rim and southern parts of the SNR. It seems that z0 and z2 represent thermal

plasma features, e.g., discriminating the shocked CSM and ejecta, and supports the interpretations in

Section 6.3.4.
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Figure 6.3.10: Generated spectra by the decoder after 100 epochs training. The variation of z0 shows in

each panel, when z1 is fixed -0.5.

The spectrum from regions of z3 ≤ −1σ had strong IME lines and Fe L peaks in lower energy than

that from regions of z3 ≥ 1σ. It supports the interpretation of z3 mentioned in Section 6.3.4. The regions

of z3 ≤ 1σ were mainly at the inner side of the rim, while the regions of z3 ≥ 1σ were at north-western

(NW) inner rim and central parts.

6.3.6 Results of GMM

We applied Gaussian mixture model (GMM) clustering to the latent expressions obtained by inputting

the source bins of the merged data. The optimal number of clusters was determined to be 12 by checking

the Bayesian information criterion (BIC) by changing the number of clusters from 3 to 20.
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Figure 6.3.11: Generated spectra by the decoder after 100 epochs training. The variation of z1 shows in

each panel, when z2 is fixed 0.2.

The scatter plots in Figure 6.3.15 show the distributions of the latent variables µ same as the source

bins in Figure 6.3.4, which are colour-coded according to the category assigned by GMM clustering.

Each panel of Figure 6.3.16 shows the responsibility of each GMM category. We show the division

of Kepler’s SNR into GMM categories in the top left-hand panel of Figure 6.3.17. The top right-hand

panel of Figure 6.3.17 shows the same image as the left-hand of it, but the spatial bins whose assigned

category has a responsibility of ≤ 80 per cent are masked. Hence, the spatial bins that remain coloured

in the top right-hand panel of Figure 6.3.17 are robustly assigned to the category. It also means that those

bins are expected to have some spectral features distinct from those of the other categories. We describes

the individual spectral features later (summarized in Table 6.3.1).

The middle left-hand panel of Figure 6.3.17 shows the H α emission observed by WFC3 on HST
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Figure 6.3.12: Images of z for each axis obtained by inputting of merged data. In the upper or lower

eight panels, the contours correspond to the +1σ and -1σ level for each latent axis, respectively. The

Background region is masked in each panel.

Figure 6.3.13: The left-hand panel is the three-colour image, which is same as the bottom right panel

of Figure 6.3.8. The right-hand panel show z1 obtained by inputting of merged data, and masked the

background region. The contours correspond to the +3σ level. In each panel, the green line annulus

shows the region for background subtraction.

in 2013. The middle right-hand panel of Figure 6.3.17 shows the 24 µm infrared image observed by

MIPS on Spitzer in 2004 tracing warm dust. On each panel of Figure 6.3.17, the warm dust emission is

overlapped as contours. The warm dust emission traces the dense CSM heated by shocks (Blair et al.,

2007; Williams et al., 2012).

For comparison, traditional three-coloured images are shown in the bottom row of Figure 6.3.17. In

the left-hand panel, Fe L blend band, 0.72–0.95 keV is shown as red; Si K α blend, 1.65–2.06 keV as

green; and Fe K α blend, 6.0–7.0 keV as blue. In the right-hand panel, O and Fe L band, 0.4–0.7 keV
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Figure 6.3.14: The black and red spectra were extracted from regions more than +1σ and less than -1σ,

respectively, in each VAE z axis. The green spectrum was extracted from regions more than +3σ for

VAE z1 axis.

is shown as red; Si K α blend, 1.65–2.06 keV as green (same as the left-hand panel); and continuum

dominated band, 4.2–6.0 keV as blue.

We calculated the mean of VAE z values over spatial bins whose responsibilities were ≥ 80 per cent

for each GMM category, and also input it to the decoder for generating a spectrum. Meanwhile, a

spectrum was also generated by inputting each GMM cluster centroid to z of the decoder. As shown in

Figure 6.3.18, these two spectra were almost same for each category. We describe the interpletation of

each category later.

We show the combined spectrum extracted from the regions whose responsibilities were ≥ 80 per cent

for each GMM category in Figure 6.3.19. The background was extracted from the annular region defined

as Figure 6.3.13 and subtracted from the spectra.

We interpreted the feature of each category and summarized in Table 6.3.1.

As shown in Figure 6.3.17, the bins assigned to category 0 are spatially located in the outer edge of

northern part of the SNR, especially outside of the category 4 or 6. The spectrum has lower counts than

the other categories because the region is smaller and has a lower flux.
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Figure 6.3.15: Scatter plot showing the µ of VAE latent parameter obtained by inputting each spatial bin

of the merged data, where two of the four axes are chosen. Each point was colour-coded for each category

classified by GMM clustering. The centroid of each category is shown as an open black diamond.

The bins assigned to category 1 is mainly located the inner side of the front shock of the eastern and

south-eastern (SE) part of the SNR. The category 1 is also located in the outer edges of the western and

NW part of the SNR.

As shown in Figure 6.3.16, the category 2 extends inside the SNR with lower responsibility than some

other categories excluding the NW part of the SNR.

The category 3 is spatially located inside of the SNR. As shown in Figure 6.3.17, this category is

inside of the categories 7, 8, and 9 in the south-western (SW) part of the SNR. Meanwhile the bins are

surrounded by the regions of category 8 in the northern part of the SNR. The category has relatively high

continuum emissions.
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Figure 6.3.16: GMM responsibility for each spatial bin of merged dataset for each category. The respon-

sibility is between 0 and 1; blue and red represent a responsibilities of 0 and 1, respectively.

Table 6.3.1: GMM categories.

Category No. Location Feature

0 outer edges of SNR faint emission

1 inner side of FS dark region, weak Fe lines

2 inner side of SNR weak emission

3 rim of SNR strong continuum

4 northern rim strong Si lines

5 northern rim; clumps inside SNR strong Fe L lines

6 outer edges; blobs inside of SNR strong continuum and weaker emission lines

7 FS synchrotron dominant

8 rim of SNR strong Fe K α and weaker continuum

9 outer side of ejecta rim weaker Fe lines

10 SW part inside SNR Shocked ejecta

11 NW rim and central clumps shocked dense CSM
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Figure 6.3.17: The top left-hand panel shows the GMM category with the highest responsibility for each

spatial bin of the merged data. The top right-hand panel shows only spatial bins with a category of

more than 80 per cent responsibility, which are assigned the colours representing the category. The other

spatial bins, which have responsibilities less than 80 per cent, appear black. The middle left-hand panel

shows the H α image observed by WFC3 on HST in 2013. The middle right-hand panel shows the warm

dust emissions, 24 µm infrared observed by MIPS on Spitzer in 2004. The bottom panels are same as the

bottom panels in Figure 6.3.8. The bottom panels are same as the three-colour images in Figure 6.3.8.

On each panel, the Spitzer MIPS 24 µm observation in 2004 is shown as contours tracing warm dust of

shocked CSM.
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Figure 6.3.18: Spectra generated by the decoder from given z values, which are the latent vector z̄ aver-

aged over the spatial bins having the responsibility more than 80 per cent and the category centroid for

each GMM category. The vertical axes have arbitrary unit because the bins were divided the maximum

of each spectrum for the VAE training.
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Figure 6.3.19: Spectrum (background-subtracted) of the region inside the SNR for which each GMM

category has a responsibility more than 80 per cent.
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In the northern rim of the SNR, the categories 4, 11, 5, 8, and 3 appear as a layered structure from the

outer side of the SNR to the inner side as shown in Figure 6.3.17.

The category 4 is spatially located in the outer edge of the northern rim. The bins of the northern part

are outside of the brightest Fe L layer.

The category 5 is spatially located inside the categories 4 and 11 in the northern layered structure and

also the SW and SE bright spots. As shown in Figure 6.3.19, the spectrum has strong Fe emission lines.

The category 6 coincides with the outer edges of the SNR, which have strong continuum emissions

e.g., a part of the western ‘ear’ as shown in Figure 6.3.17. This category also coincides with the blobs

with strong continuum emission inside the SNR. The bins of category 6 tends to be adjacent to the

category 7.

The bins assigned to the category 7 are spatially located in the edge of the SNR, mainly in the eastern

half. The eastern half of category 7 approximately corresponds to the regions more than +3σ for VAE

z1 axis in Figure 6.3.13. In our case, we also found a consistent result that the spectrum of category 7 is

dominated by synchrotron emission as shown in Figure 6.3.19.

The category 8 is spatially adjacent inner side of the category 5 in the northern layered structure, and

also inside of the category 9 in the southern rim of the SNR. The bins of the northern part spatially

coincide with the layer with strong Fe K α emissions inside of the brightest Fe L layer represented by the

category 5. Furthermore, the continuum emission is weaker than the bins surrounding the category 8.

The category 9 is adjacent to the outer side of the categories 3 and 8 on the outer rim of the SNR,

while some bins are at the inner side of the category 8 in the northern part of the SNR. Further, a clump

of category 9 is in the western ‘ear’. These region have strong Si K lines but weaker Fe emission.

As shown in Figure 6.3.16 the category 10 is located almost only in the eastern and the SE regions

inside the SNR. The category 10 spatially coincides with the region, which has the weak dust emission

or the weak X-ray continuum as shown in Figure 6.3.17. These regions seem to be less associated to

dense CSM. Therefore the spectra mainly arise from the shocked ejecta.

The regions of category 11 spatially coincide with the dust emission as shown in Figure 6.3.17. Thus

the category 11 seems to be classified as the spectra sufficiently containing the emission from shocked

CSM. The category 11 also corresponds to the part of category R (red) in Burkey et al. (2013), which

contains the bulk of the CSM.

6.4 Discussions

In this work, we used the Poisson log likelihood for the reconstruction loss to train the VAEs. As

shown in Figure 6.3.7, the VAE has successfully generated the input spectra for both the high count

cases and the low count case. In the low count spectrum, the VAE removed the fluctuations caused by

low statistics and generate a smooth spectrum. It shows that the Poisson loss can efficiently lead the VAE

training with count data.

We implemented the preprocessing method to normalize each sample by the maximum value of each
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sample and compared the training results with or without this spatial-bin-by-bin normalization. We found

that the the distribution of the data samples in the latent space is based on only spectral shape. For SNR

spectra, this preprocessing is effective because the shape, such as line intensity ratios, ratios of lines and

the continuum, the indices and cut-off energies of continuum, is important. On the other hand, in other

cases, e.g., a galaxy cluster, the X-ray emissivities corresponding to the plasma densities are essential.

The data preprocessing needs to be selected according to the class of source and the focusing physical

features.

We demonstrated the interpretation of the features represented by the latent axes using the spectra

generated from the latent parameters by the decoder. We found that the z0 determined the global spectral

shape with Fe L, Fe K α, and IME line blends.

The z1 represented the ratio of the emission lines and the continuum component, and the featureless

spectra as the data sample distribution made a long tail.

We found that the z2 makes N Ly α and O Ly α blends stronger, while the axis makes S K α blend

weaker in the southern half of the the SNR. It is consistent with the previous result (Katsuda et al.,

2015). Thus, we concluded that the z2 represent the line ratio of shocked CSM and shocked ejecta.

The z3 determined the intensities of IME lines and the peak energy of Fe L blend, which may be

originated by the electron temperature or ionization state.

As summarized in Section 6.3.6, we obtain the result of unsupervised classification by the method

combining the VAE and the GMM. Our method revealed synchrotron dominated FS, the layered structure

in the northern rim, and the region interacting dense CSM.
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Chapter 7

Demonstration with SN 1006

7.1 Introduction for SN 1006

SN 1006 is one of historical supernova remnants (SNRs), and is known to be a type Ia explosion.

The distance to SN 1006 is ∼2.2 kpc (Winkler et al., 2003), and the apparent diameter is approximately

30 arcmin. Therefore, the observation can reveal spatial structures in detail.

The absorbing column density towards SN 1006 is low (NH = 6.8 × 1020 cm−2; Dubner et al., 2002)

among the Galactic SNRs because of the high latitude of 14.◦6. Thus, the emission lines from low-atomic-

number elements e.g., oxygen, are clearly observed in the soft X-ray band.

The surroundings of SN 1006 is homogeneous and relatively low density (averaged atomic density

∼ 0.3 cm−3; Dubner et al., 2002). Thus, the evolutionary state of the SNR may still be the earliest of

the young Galactic SNRs (like Tycho’s SNR and Kepler’s SNR), although a thousand years has been

passed since the explosion. In the SNR, most of oxygen atoms have not been completely ionized and are

emitting strong X-ray lines.

In SN 1006, the shock heating by reverse shock (RS) is on going, and the RS has just recently been

reached the outer part of Fe rich ejecta in the SNR interior (e.g.; Yamaguchi et al., 2008; Uchida et al.,

2013; Li et al., 2016). Yamaguchi et al. (2008) detected Fe K α line emission for the first time in the

SNR, and found that the Fe ionization state is much lower than the other thermal component from Suzaku

observations. This suggests that Fe is located inner side of the SNR and has been heated by the RS more

recently than the other elements.

Uchida et al. (2013) found that the ejecta distribution of O-burning and incomplete Si-burning elements

(i.e., Si, S, and Ar) is asymmetric, while the distribution of C-burning elements, i.e., O, Ne, and Mg, is

relatively uniform in the SNR interior, and hence suggested an asymmetric SN explosion. XMM-Newton

observations also confirmed the asymmetry, which the elemental abundances of heavy elements e.g., Si,

and Fe higher in the SE of the SNR than the north-western (NW) (Li et al., 2016, 2015).

Li et al. (2016, 2015) also found the ejecta of ‘dark belt’ in the SE of the SNR interior has lower

ionization state than the surrounding regions.

SN 1006 has a bi-poler global structure, i.e., the two prominent shells located in the north-eastern (NE)

and south-western (SW) quarter of the SNR. Koyama et al. (1995) found that the X-ray spectrum of the
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Figure 7.2.1: Spectrum of entire SN 1006. The vertical dotted lines are boundaries of the narrow energy

bands. The cross represents the centre of gravity of each energy band.

two bright limbs is synchrotron dominated featureless one. This result provided the first clear evidence

for diffusive shock acceleration of charged particles, that is the evidence for cosmic-ray acceleration in

SNR shocks. Using radio polarization observations, Reynoso et al. (2013) found that the magnetic field

surrounding the SNR is aligned with a direction from NE to SW, and the two polar limbs are highly

polarized.

7.2 Chandra ACIS Data Set

SN 1006 was observed by the ACIS of Chandra for 68.09 ks, 88.98 ks, 217.56 ks (eleven obsIDs),

68.87 ks, and 669.85 ks (ten obsIDs) in 2000, 2001, 2003, 2008, and 2012, respectively, as summarised

in Table 7.2.1.

SN 1006 has approximately 30′ diameter, which is larger than the FoV of ACIS (approximately

16′×16′ for ACIS-I, 8′×50′ for ACIS-S). In 2003 and 2012, the entire SNR was covered by approxi-

mately ten FoVs of ACIS-I. The rims of SNR were also observed by ACIS-S in 2000 and 2008 for the

NE rim, and in 2001 and 2012 for the NW rim.
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The frontside-illuminated chips of ACIS-I have covered the entire SNR, although the backside-

illuminated chips of ACIS-S have observed only some parts of NE and NW rims. The backside-

illuminated chip has a different instrumental response and non-X-ray background (NXB) spectrum

from frontside-illuminated chips of ACIS-I, thus we decided to use only the datasets observed by the

frontside-illuminated chips.

We performed X-ray analysis using CIAO (version 4.11; Fruscione et al., 2006) and CalDB (version

4.8.3) provided by the Chandra X-ray Center1).

Table 7.2.1: Observations of SN 1006 by Chandra

ObsID Exposure (ks) Date Instruments Positions

732 68.09 2000 Jul 10 ACIS-S1–4, I2,3 NE

1959 88.98 2001 Apr. 26 ACIS-S1–4, I2,3 NW

3838 20.13 2003 Apr. 08 ACIS-I0–3, S3 NE

4385 19.79 2003 Apr. 08 ACIS-I0–3, S3 SE

4386 19.79 2003 Apr. 08 ACIS-I0–3, S3 S

4387 19.79 2003 Apr. 09 ACIS-I0–3, S3 SW

4388 19.79 2003 Apr. 09 ACIS-I0–3, (S3) W

4389 19.79 2003 Apr. 09 ACIS-I0–3, (S3) NW

4390 19.8 2003 Apr. 09 ACIS-I0–3, (S3) N

4391 19.91 2003 Apr. 10 ACIS-I0–3, (S3) N

4392 19.59 2003 Apr. 10 ACIS-I0–3, S3 N inner

4393 19.59 2003 Apr. 11 ACIS-I0–3, S3 Central

4394 19.59 2003 Apr. 11 ACIS-I0–3, S3 Central S

9107 68.87 2008 Jun. 24 ACIS-S1–4, I2,3 NE

13737 87.09 2012 Apr. 20 ACIS-S1–4 NW

13738 73.47 2012 Apr. 23 ACIS-I0–3 W

14424 25.39 2012 Apr. 27 ACIS-I0–3 W

13739 100.07 2012 May 04 ACIS-I0–3 SW

13740 50.41 2012 Jun. 10 ACIS-I0–3 Central-W

13741 98.48 2012 Apr. 25 ACIS-I0–3 SE

13742 79.04 2012 Jun. 15 ACIS-I0–3 S

14423 25.02 2012 Apr. 25 ACIS-I0–3 Central

13743 92.56 2012 Apr. 28 ACIS-I0–3 N

14435 38.32 2012 Jun. 08 ACIS-I0–3 Central-E

As shown in Figure 7.2.1, the spectrum of the entire SN 1006 was created in the 0.4–7.2 keV band and

was divided into 16 narrower energy bins such that each clearly resolved emission line is divided into an

independent energy bin.

1) Available at http://cxc.har3ard.edu
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Because SN 1006 is darker and larger than Tycho’s SNR or Kepler’s SNR, we decided to divide both

the energy and space into wider bins than what are done in the previous chapters. In the low-energy side

(0.4–2.6 keV) with a relatively high count rate, we divided the energy band so that each band corresponds

to each emission line structure clearly appearing in the spectrum. By contrast, the spectrum in the high-

energy side has no clear emission line features. The energy band above 7.2 keV is dominated by NXB,

thus we did not use the band.

The flux values in the 16 narrow energy bands corresponding to a single spatial bin are combined, and

the resulting 16-dimensional vectors are used as the input dataset.

The flux image of each band was created with the coordinate ranges set to omit regions outside of the

SNR. We prepared three spatial bin sizes, 31.5 arcsec, 15.7 arcsec, and 7.87 arcsec, resulting in image

sizes of 67 × 66, and 131 × 131 spatial bins, 261 × 261 spatial bins, respectively.

We did not subtract the backgrounds from the images following the case of Tycho’s SNR and Kepler’s

SNR.

The flux images whose spatial bin size is 15.7 arcsec of all individual observations and the merged

images of them were used for training. In addition, we also used the merged images whose spatial bin

size is 7.87 arcsec and the images of each individual obsID whose spatial bin size is 31.5 arcsec to

increase the training data size. We removed the spatial bins whose 0.4 keV and 7.2 keV photon fluxes

were less than a given threshold in order to exclude the samples outside of the SNR. The threshold of

photon flux were 6.7×10−6, 2.0×10−6, and 6.0×10−7 photons s−1 cm−2 for the spatial bin size 31.5 arcsec,

15.7 arcsec, and 7.87 arcsec, respectively.

Twenty per cent of the spatial bins in each flux image were chosen randomly and used as validation

data, and the rest were used as training data. The actual size of the training and validation datasets were

236304 and 59077, respectively, excluding the spatial bins with zero flux in all the narrow energy bands

(i.e., a 16-dimensional zero vector). All the observations with the spatial bin size of 15.7 arcsec were

summed and used for the post-training analysis.

7.3 Dimensionality Reduction by VAE

7.3.1 The VAE Architecture

We applied variational autoencoder (VAE) to dimensionality reduction of the SN 1006 dataset. At

first, we examined some VAE models having different number of fully-connected (FC) layers of encoder

or decoder (2 or 3), or different number of dimensions in the latent variables (4 or 8 dimensions) or in

the hidden layers (64, 128 or 256 nodes per layer). We trained each models through 100 epochs, using

Poisson log likelihood for the reconstruction losses as described in Section 4.1.2. For these training, each

data sample was normalized by the maximum value of each sample in order to focus only on the spectral

shape as described in Section 4.1.2.

For the models whose encoders and decoders have 2 FC layers containing 256 nodes in each layer,

three latent axes of z seem to have means, although the rest axes of z seem to be random values and
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Figure 7.3.1: Images showing the values of the VAE latent parameters z, µ, and log(σ2) in the top,

middle, and bottom row as an image for each axis when the merged data (a 16-colour image) are input

into a model having 8-d latent variables and 256-d neurons in each FC layer after 100 epochs training.

Each data sample was normalized a maximum value of each spatial bin when it was input to the VAE.

The images in each row share a colour scale.

are not committed to informative dimensionality reductions. In Figure 7.3.1, we show an example of the

latent parameters of z, µ, and log(σ2) for each axis when the spatial-bin-by-bin normalized merged data

are input. The axes 1, 6 and 7 correspond to meaningful images of latent variables, while each spatial

bin for the other axes of z seems to be random values.

For the other models, only two latent axes of z, which are similar to the axes 6 and 7 in Figure 7.3.1,

are meaningful, although the rest of the axes of z seem to be meaningless. Hence, we want to examine

what the extra axis represents.

For the models with 3 meaningful latent axes, the model with 8 dimensional z have better loss function.

We analyse the results obtained by this architecture.

7.3.2 The Latent Variables

In Figure 7.3.2, we show the latent parameters of z, µ, and log(σ2), which are same parameters as

shown in Figure 7.3.1.The distributions of the source and background bins for axes 6 and 7 of z and

µ have different peaks. The background bins have not been used for training. For the axis 1, µ1 has a

narrow distribution like the axes 6 and 7, meanwhile the peak of log(σ2
1) are larger than these of axes 6

and 7. Thus z1 has broader distribution than µ1.

We modelled the latent variable distribution of axes 1, 6 and 7 for the source bins using Gaussian

as shown in Figure 7.3.3. Although the distributions were distorted, we decided to use the parameters

of Gaussian as the approximate centre and standard deviation of each data distribution. The positions

corresponding to 1σ, 2σ, and 3σ of the best fitting Gaussian are shown as the vertical dotted lines in each

panel of Figure 7.3.3. The axes 1 and 6 of µ and z had approximately symmetric distributions although

the axis 7 had a long tail beyond -3σ level on the negative side. The negative tail corresponds to the NE

and SW rims of the SNR as shown in the panels of axis 7 of Figure 7.3.1. The rims have synchrotron
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Figure 7.3.2: Histogram showing each axis of z, µ, and log(σ2) of VAE latent parameter obtained

by inputting each spatial bin of merged data. The black solid, blue dashed, and magenta dotted lines

represent spatial bins in the entire dataset, the source region, and the background region, respectively.

dominated spectra (e.g.; Li et al., 2018), and thus the featureless spectra seems to be expressed as a tail

in the latent parameter distribution. This result is same as the case of Tycho’s SNR and Kepler’s SNR

(see Chapter 5 and Chapter 6).

Furthermore, a filament-like structure inside the southern part of the SNR was extracted in the latent

axis 6 as positive values and also in the axis 1 as negative values. Li et al. (2015) showed that the

structure, which they named the ‘dark belt’, has high Ne abundance and lower net than the surrounding

regions.

7.3.3 Reconstruction of Spectra

We showed some spectra from samples of the merged data reconstructed by the VAE in Figure 7.3.4.

The black squares and solid lines are the original input spectra, and the red closed circle and dashed

lines are the reconstructed spectra. The box regions marked with ‘A’ to ‘F’ are shown on each image in

Figure 7.3.5. The region ‘A’ and ‘F’ correspond to the synchrotron-dominated emission from the forward

shock (FS) in the SW and NE of the SNR, respectively. The region from ‘B’ to ‘E’ have spectra with

emission lines from thermal plasma.
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Figure 7.3.3: Histograms showing the meaningful axes of zi, µi, and log(σ2
i ), where i = 1, 6, 7, of the

latent parameters obtained by inputting each spatial bin of merged data in the source region. The curve

in each panel is Gaussian fitted on each histogram, the best fitting parameters of Gaussian mean m and

standard deviation σ are shown in each legend. The vertical lines correspond to the 1σ, 2σ, and 3σ

positions of each Gaussian.

7.3.4 Spectra Generated by the Decoder

We studied which features are represented by each axis of z for the decoder to generate spectra.

Figure 7.3.6 shows the spectra generated with z1 and z6 changing between ±2.4 corresponding to ±3σ

for each column and row, respectively, while z7 changes between -2.8 and 2.0 corresponding to −5σ and

+3σ because the distribution of this axis has a long tail beyond −3σ as described above (Figure 7.3.3).

The other axes of z, which seem to be meaningless, are fixed to 0.

The continuum dominated spectra are generated for z6 ≤ 0 and z7 < 0. When z6 becomes larger, the

spectrum becomes harder. Thus, the negative pair of z6 and z7 represents a featureless spectrum, and

simultaneously z6 determines the spectral hardness. For z7 > 0 the intermediate-mass element (IME)

line features, i.e. Si and S, appear in the spectra. Therefore, z7 determines the ratio of continuum and

line components.

When z1 decreases, the values of O Ly α and Fe L blend band (0.63–0.76 keV), and Mg K α blend

band (1.26–1.45 keV) decrease, while the value of 1.45–1.65 keV bin corresponding to the continuum
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Figure 7.3.4: Sample plot comparing original and reconstructed spectra by the trained VAE as black

square and red circle markers, respectively. The spectra marked with ‘A’ to ‘F’ correspond to spatial bins

in the source region shown as white box regions in Figure 7.3.5.

Figure 7.3.5: Images showing the z of VAE latent parameters for axes 1, 6, and 7 when the merged data

observed by the FI chips are input. The images of the z share a colour scale.

band between Mg K α and Si K α, which may contains weak Mg or Al lines, increases. Thus, z1 seems

to determine the line emissions from O, Ne, and Mg and continuum in the low energy side.

7.3.5 Averaged Spectra for Each Latent Axis

In order to check the relation between each latent axis and the original observational data, we show the

averaged spectra over the spatial bins, which have more than +1σ, +2σ, or less than -1σ, -2σ, for each

axis 1, 6, and 7 of the latent variable z in Figure 7.3.7. In addition, for z7, the averaged spectrum over

the spatial bins corresponding to z7 < −3σ is also shown. Figure 7.3.8 shows the ratios of the spectra

in Figure 7.3.7 to the spectrum averaged over the source region normalized by the values of energy bin

dominated by the continuum component (4.2–6.0 keV).
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Figure 7.3.6: Generated spectra by the decoder after 100 epochs training. The variation of z7 is shown in

each panel, when meaningless axes are fixed 0.

For z1 < −1σ, the spectral values from O Ly α to Ne He α bands, 0.63–1.0 keV, are lower than the

mean of source region, meanwhile those of z1 ≥ −1σ are higher than the mean of source region. In

addition, the continuum dominated band between 1.45–1.65 keV has lower value for z1 < −1σ than the

mean of source region. These support the interpretation of z1 in the previous section.

Each spectrum of z6 ≥ 1σ has a clear Si K α line feature with a weak continuum component. Each

spectrum of z7 ≥ 1σ has a strong Si K α line feature with weaker continuum. On the other hand, each

spectrum of z6 < −1σ is stronger and softer featureless one than those of z6 ≥ 1σ. Each spectrum of

z7 < −1σ is stronger but harder featureless one than those of z7 ≥ 1σ.

These support the interpretation that the negative sides of z6 and z7 determine the continuum compo-

nent, while their positive sides determine the behaviour of IME line bands as we described in the previous

section.

99



CHAPTER 7. DEMONSTRATION WITH SN 1006

7.3. DIMENSIONALITY REDUCTION BY VAE

10 7

10 6

10 5

10 4

 c
m

2  s
1  k

eV
1

N Ly O Ly Ne He Mg He Si He S He Ar Ca

z1 1.68
z1 0.84
z1<-0.84
z1<-1.68

10 7

10 6

10 5

10 4

 c
m

2  s
1  k

eV
1

z6 1.6
z6 0.8
z6<-0.8
z6<-1.6

0.5 1 2 3 4 5 6 7
Energey (keV)

10 7

10 6

10 5

10 4

 c
m

2  s
1  k

eV
1

z7 1.45
z7 0.82
z7<-0.43
z7<-1.06
z7<-1.69

Figure 7.3.7: Spectrum averaged over the spatial bins, which have more than +1σ, +2σ, or less than

-1σ, -2σ, (-3σ only for z7), respectively, for each latent axes 1, 6, and 7 of z.
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Figure 7.3.8: Same spectra in Figure 7.3.7 but the value of each energy bin is normalized by the average

of the source region. The horizontal dotted lines correspond to the ratio of 1.0.
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Figure 7.3.9: Scatter plot showing the µ of VAE latent parameter obtained by inputting each spatial bin of

the merged data, where two of the three axes are chosen. Each point was colour-coded for each category

classified by GMM clustering. The centroid of each category is shown as an open black diamond.

7.3.6 Results of GMM

We applied Gaussian mixture model (GMM) clustering to the latent expressions obtained by inputting

the source bins of the merged data. We only used the three meaningful latent axes (1, 6, and 7) for clus-

tering. The optimal number of clusters was determined to be 12 by checking the Bayesian information

criterion (BIC) by changing the number of clusters from 2 to 30.

The scatter plots in Figure 7.3.9 show the distributions of the latent variables µ, which are colour-coded

according to the category assigned by GMM clustering.
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Figure 7.3.10: GMM responsibility for each spatial bin of merged dataset for each category. The respon-

sibility is between 0 and 1; blue and red represent a responsibilities of 0 and 1, respectively.

Each panel of Figure 7.3.10 shows the responsibility of each GMM category. We show the division

of SN 1006 into GMM categories in the left-hand panel of Figure 7.3.11. The middle panel of Fig-

ure 7.3.11 shows the same image as the left-hand of it, but the spatial bins whose assigned category has

a responsibility of ≤ 80 per cent are masked. Hence, the spatial bins that remain coloured in the middle

panel of Figure 7.3.11 are robustly assigned to the category. It also means that those bins are expected

to have some spectral features distinct from those of the other categories. For comparison, traditional

three-coloured images are shown in the right-hand panel of Figure 7.3.11.

In Figure 7.3.12, we show the VAE latent values corresponding to the centroid vector of each GMM

category. We can discuss the spectral features of each category using the latent values, where we have

interpreted the features represented by the latent axes in Section 7.3.4.

We also show spectra generated by inputting each GMM cluster centroid to z of the decoder in Fig-

ure 7.3.13. Figure 7.3.14 shows the ratios of the spectra in Figure 7.3.13 to the spectrum generated by

inputting a zero vector to the decoder, where each spectrum is normalized by the values of energy bin

dominated by continuum component (4.2–6.0 keV).

We interpreted the feature of each category and summarized in Table 7.3.1. As shown in Figure 7.3.10,

the SNR is divided to two parts; the rim of NE and SW, and the central part of the SNR. The categories 0,
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Figure 7.3.11: The left-hand panel shows the GMM category with the highest responsibility for each

spatial bin of the merged data. The middle panel shows only spatial bins with a category of more than

80 per cent responsibility, which are assigned the colours representing the category. The other spatial

bins, which have responsibilities less than 80 per cent, appear black. The right-hand panel shows a

three-colour image of N and O band, 0.4–0.6 keV (red), Ne band, 0.8–1.0 keV (green), and Mg band,

1.27–1.45 keV (blue).

Table 7.3.1: GMM categories.

Category No. Location Feature

0 NE and SW edges of SNR synchrotron dominant

1 Northern rim O, Ne, Mg, and IME lines

2 Northern part inside the FS hard continuum and weaker lines

3 Southern part inside the FS soft continuum and strong lines

4 inside FS, Point sources synchrotron dominant

5 inside FS synchrotron dominant

6 dark belt, central part hard continuum and line emissions

7 blobs hard continuum and line emissions

8 inside FS soft synchrotron dominant

9 NE hard continuum and weak lines

10 Southern inner rim strong O, Ne, Mg, Si, and S lines

11 Southern rim strong O, Ne, Mg, Si, and S lines

4, 5, and 8 correspond to the NE and SW rims, while the categories 1, 6, 7, 9, 10, and 11 correspond to

the central part. The categories 2 and 3 are the middle of the two classes.

In Figure 7.3.12, the cluster centroids of categories 0, 4, and 8 have larger negative values of z7 than

that of −1σ, which represents continuum dominated spectra as described in Section 7.3.4, and thus the

generated spectra of the categories are featureless ones in Figure 7.3.13. The centroid of category 5

has a small negative value of z7, and the minimum value of z1 (< −1σ), which represents the strong

continuum component in the low energy band (Section 7.3.4), and thus the category is also expected to

have a soft continuum dominated spectrum. The centroid of category 0 has the minimum value of z7

(approximately −3σ) in Figure 7.3.12, and the category spatially corresponds to the outer edges of the
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Figure 7.3.12: VAE latent values corresponding to the GMM centroids. The colour in each marker

correspond to the assigned GMM category. The horizontal solid, dashed, dash-dotted, and dotted lines

correspond the mean, ±1σ, ±2σ, and ±3σ positions shown in Figure 7.3.3

NE and SW rims, especially in the polar cap geometries in Figure 7.3.10. It suggests that the category 0

is purely synchrotron dominated region at the FS. The centroid of category 8 has the minimum value

of z6 (< −1σ) in Figure 7.3.12, where the negative side of the latent axis represents a soft spectrum

(Section 7.3.4). Therefore, the category 8 is expected to have the softest featureless spectrum. The

categories 4 and 5 whose regions are located inside the category 8 in the NE and SW rims, also have

large negative values of z6, and are expected to have soft spectra. By contrast, the centroid of category 0

has smaller negative value of z6 than ones of the categories 4, 5, and 8, and thus the result suggests that

the spectrum of category 0 is harder than ones of the inner regions.
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The categories 2 and 3 are located in northern half and southern half, respectively, of the inner side

of the NE and SW rims (Figure 7.3.10). In Figure 7.3.12, the centroid of category 2 has a value more

than the mean of z7, while that of category 3 is positive but less than the mean of z7. In addition, the

centroid of category 2 has a positive value of z6, while category 3 has a negative one. As a result, in

Figure 7.3.13 and Figure 7.3.14, the generated spectrum of category 3 is a softer one containing stronger

emission lines than that of category 3. It suggests that the southern half of the rims has softer spectrum

containing stronger line emissions than the northern half.

The centroids of categories 1, 3, 6, 9, 10, and 11 have values of more than the mean of z7 in Fig-

ure 7.3.12, and thus the spectra are expected to have clear line emissions. The centroid of category 1,

which is mainly located in the outer edge of the northern part of the SNR (Figure 7.3.10), has the max-

imum value of z7 (> 1σ). The centroid of category 1 has a negative value of z1, and approximately the

mean value of z6 (Figure 7.3.12). As a result, in Figure 7.3.13, the generated spectrum of category 1 is

slightly hard but has also a strong continuum component in the low energy band.

The category 6 is located in the central part of the SNR and the dark belt with lower responsibility

than some other categories (Figure 7.3.10). The category 7 is also located in the central part of the SNR,

but most of the spatial bins have lower responsibility of the category than ones of some other categories.

Both centroids of categories 6 and 7 have similar positive values of z6 in Figure 7.3.12, and thus their

spectra are expected to be hard as shown in Figure 7.3.14. The centroid of category 7 has larger value

of z1 than most of other category, and a small negative value of z7. Therefore, the category 7 have weak

line emission from especially O, Ne, Mg as shown in Figure 7.3.14.

The category 9 is mainly located in the northern part of the SNR, which is darker than surrounding

regions, and one is also located in the part of dark belt (Figure 7.3.11). The centroid of category 9 has the

maximum value of z6 (> 1σ), a positive value of z7, and negative value of z1 (Figure 7.3.12). It expects

that the category 9 has a hard spectrum containing line emissions, and the lines emitted from O, Ne, Mg

may be weak as shown in Figure 7.3.14.

The category 10 is located in the southern inner part of the SNR, especially inside of the dark belt,

while the category 11 is located the southern part of the SNR, excluding the dark belt (Figure 7.3.10). The

centroids of categories 10 and 11 have positive values of z7, negative values of z6, and similar positive

values of z1 (Figure 7.3.12). z1 of the category 11 centroid is the maximum value among ones of the all

categories. It suggests that the categories have soft spectra containing line emissions from IMEs, and also

O, Ne, and Mg. z6 of the category 11 centroid is lower than that of category 10, which is approximately

the mean of z6, and thus the category 11 is expected to have a softer spectrum than that of the category 10.

The generated spectra in Figure 7.3.14 also show the features described above.
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Figure 7.3.13: Spectra generated by the decoder from given z values, which are the latent vector z̄ of the

category centroid for each GMM category. The dashed black line is spectrum generated by inputting a

latent vector averaged over the source region to the decoder. The vertical axes have arbitrary unit because

the bins were divided the maximum of each spectrum for the VAE training.
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Figure 7.3.14: Same spectra in Figure 7.3.13 but the value of each energy bin is normalized by the

spectrum generated by inputting a latent vector averaged over the source region to the decoder. The
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7.4 Application of t-SNE

7.4.1 Dimensionality Reduction by t-SNE

If the data can be reduced to a few dimensions (e.g., 2 dimensions), and also the data sample size and

dimension are not so large, there are alternative methods for the dimensionality reduction, e.g. t-SNE

(van der Maaten & Hinton, 2008). The t-SNE algorithm can transform data into a small dimensional

(usually 2-dimensional) space, although the trained model cannot be reused for new data points or other

dataset because it is a nonparametric algorithm.

We examined t-SNE to reduce the dimensions of the SN 1006 dataset for comparison with VAE. For

the dataset having 10908 samples, i.e., the number of spatial bins in the source region, and 16 feature

dimensions, i.e., the number of energy bins, t-SNE spend only 5.6 min to transform the data into 2-

dimensional space on a desktop computer with a quad-core Intel Core i5 CPU. We used TSNE in scikit-

learn 0.19.0 (Pedregosa et al., 2011).

We embedded the merged data, i.e., a 10908 × 16 matrix, into a 2-dimensional map as shown in

Figure 7.4.1. The values of each axis are shown in each panel of Figure 7.4.2.

The axes 0 and 1 are similar to the VAE latent axes 6 and 7 (see also Figure 7.3.1), although the t-SNE

axes are opposite in sign to the VAE ones, where the sign is not an intrinsic feature. For the axis 0, the

inner part of the NE and SE rims have positive values, while the northern part of the SNR have negative

values. Furthermore, the filament-like structure inside the southern part of the SNR have negative values,

while the bins of the inner side have large positive values. For the axis 1, the NE and SE rims of the SNR

have large positive values, while the SE and NW rims have large negative values.

7.4.2 Hierarchical Clustering

We applied the hierarchical clustering using Ward’s linkage criterion with Euclidean metric to the data

points in the 2-dimensional space embedded by t-SNE. This clustering method makes a hierarchical tree

of clusters where the pairwise distances of data points are measured. We used ‘ward’ in SciPy 0.19.1 for

the linkage.

We show some clustering results cutting the tree at the level for cluster distances changing from 4000

to 500 in Figure 7.4.3. For this clustering, we need not determine the number of clusters but the cutting

level.

At first, the data is divided into two large clusters, corresponding to the NE and SW rims (ID 0) and

inner part of the SNR (ID 1), respectively, for the distance level of 4000. In the 2-dimensional map

embedded by t-SNE, the rim cluster (ID 0) coincides the ring like distribution in the positive side of

axis 1, while the inner-part cluster (ID 1) coincides the distribution in the negative side of axis 0.

For the distance level of 2500, the inner-part cluster (ID 1) was divided into two more clusters; (new

ID 1) the southern part of the SNR, and (new ID 2) the northern part and the filament like structure inside
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Figure 7.4.1: Scatter plot showing the 2-dimensional map embedded from the merged data observed by

ACIS-FI chips (a 16-colour image). Each data sample was normalized a maximum value of each sample

when it was input to the t-SNE.

of the southern SNR.

For the threshold of 1600, the previous cluster 0 was divided into 2 clusters; (new ID 0) outer side of

the rim, and (new ID 1) inner side of the rim. Meanwhile, the previous cluster 2 was also divided into 2

clusters; (new ID 3) the northern rim and the part of filament, and (new ID 4) the inner side of the SNR.

For the threshold of 1000, the previous cluster 2 divided into 2 clusters, however we could not find

the difference between them from only the spatial distribution. Lastly, for the threshold of 500, the data

points are divided into 18 clusters.

From the hierarchical relations of clusters, we can understand that the SE and NW rims are sufficiently

different from the inner side of the SNR. In the SE and NW rims, layered structures, which may actually
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Figure 7.4.2: Images showing the values for each axis of the 2-dimensional space embedded from the

merged data observed by ACIS-FI chips (a 16-colour image).

be continuous changes of spectra have appeared. Furthermore, the outer edge of SW rim extends to the

NW, and the NW part is assigned to an independent category for the threshold of 500. On the other hand,

the inner side of the SNR is roughly divided into four part; the southern rim, the NE part, the ‘dark belt’,

and outer side of the northern rim.

7.5 Discussions

7.5.1 Dimensionality Reduction by VAE

We interpreted the features represented by each latent axis using the spectra generated by the decoder.

We found that the pair of axes z6 and z7 represented the continuum component and the IME lines. The

axis z7 determines the ratio of the continuum component and the line emissions. Meanwhile, the axis z6

determines the spectral hardness. Furthermore, the axis z1 represents the soft band features, i.e., the ratio

of the continuum component and the emission lines of O, Ne, and Mg.

Both the synchrotron emission and the lines in the low-energy band are important topics, on which

several previous works have been focused in SN 1006 (e.g.; Koyama et al., 1995; Uchida et al., 2013).

We conclude that the VAE successfully extracted such important physical features from the spectral data.

The ‘dark belt’, which is darker than the surrounding regions, also appeared in the latent variables,

although the only spectral shapes were used for the training. It shows that the ‘dark belt’ is not only

dark but also has different spectral shape from the surrounding regions. It is consistent with the previous

result (Li et al., 2015).

Unveiling the reasoning process of the DNN is a significant problem. However, we can discuss the

meaning of the latent variables using the decoder. We conclude that this is a merit of a generative model,

and thus VAEs can be recommended to use such tasks.
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Figure 7.4.3: Each row showing hierarchical clustering result for each threshold of clustering distances.

In the left-hand column, the Ward clustering dendrograms show the relations of every spatial bins and

cluster distances. The middle column shows 2-dimensional maps embedded from the merged data by

t-SNE. Each point was colour-coded for each category classified by Ward clustering. In the right-hand

column, images show the Ward clustering category for each spatial bin of the merged data.

112



CHAPTER 7. DEMONSTRATION WITH SN 1006

7.5. DISCUSSIONS

In the distribution of latent space parameters, the samples that have featureless spectra made a tail

distribution in the latent axis 7. This result is same as the cases of Tycho’s SNR and Kepler’s SNR.

The VAE models, which we trained, have only 2 or 3 meaningful latent axes. This is less than the

Kepler’s SNR case. In this case, the number of spectral bins is 16, which is less than the case of Kepler’s

SNR (26 bins) or Tycho’s SNR (37 bins). Thus, the information included in the dataset may be less than

the other cases. The finer spectral binning, which maintains more information, may allow the VAE to

extract more features.

In the current case, we divided the O, Ne, and Mg lines into independent spectral bins. It allowed the

VAE to capture the line features on the latent space.

7.5.2 Dimensionality Reduction by t-SNE

Nonparametric algorithms tend to consume a lot of memory. However, in this case, the sample size is

not large, and thus t-SNE has been trained within a reasonable time.

This method has successfully embedded the dataset into 2 dimensional space. We found that the result

of t-SNE was similar to the results of VAEs, and thus the t-SNE performed the dimensionality reduction

as well as the VAE in this case. Therefore, t-SNE can be an alternative dimensionality reduction method

as a VAE in such a case.

However, t-SNE is not capable of generating the data samples like the decoder of VAE. Therefore,

t-SNE cannot directly show the meaning of the embedded space axes. It is a weak point of t-SNE.

7.5.3 Hierarchical Clustering

The hierarchical clustering can find the relations of clusters appearing in the dendrogram. Further,

a short pairwise distance of clusters makes the cluster IDs close to each other, while a longer pairwise

distance makes the difference of IDs wider for the hierarchical clustering. Thus the images showing

the division into categories are visible and easy to understand the relations of clusters, i.e., the similarly

coloured bins have similar spectra.

On the other hand, the clustering cannot show the responsibilities of categories for each data points

because of hard clustering. Therefore, this method is unavailable to determine the region to extract a

spectrum for spectral analyses so that the region includes only the spatial bins robustly assigned to the

category. It is a weak point of hard clustering.
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Conclusions

We newly implemented an unsupervised machine learning method combining the variational autoen-

coder (VAE) and Gaussian mixture model (GMM), where the dimensions of the observed data are re-

duced by the VAE, and clustering in feature space is done by the GMM, and applied the method to

Tycho’s SNR, Kepler’s SNR, and SN 1006, ones of the best-known SNRs. It is the first application of

this method to diffuse astronomical objects.

As described in Section 2.3, most previous applications of machine learning techniques to X-ray anal-

ysis of SNR data have been limited to linear methods, e.g., principal component analysis (PCA) or

GMM. However, the value of each spectral bin depends nonlinearly on the underlying physical parame-

ters. Therefore, DNNs, which are capable of handling nonlinear relations, are appropriate for SNR X-ray

spectra. In our method using VAE, the ability to extract nonlinear relations from data space is improved.

For X-ray data, Poisson statistics is appropriate because each bin in an X-ray spectrum represents a

number of photons. As Ichinohe & Yamada (2019) shows for an ideal case, Poisson statistics is important

for VAE training with such X-ray spectral dataset. We also newly implemented the data processes at the

input and output of VAE in order to apply Poisson reconstruction loss for the training as described in

Section 4.1.2, and applied the model to observational X-ray spectral data.

As demonstrated with Tycho’s SNR in Chapter 5, the VAE extracts features using the relative intensities

of lines as well as the properties of the continuum spectrum. We found that our method successfully

reveals the characteristic spatial structures, e.g., the Fe knot in the south-east of the SNR, the layered

structure in the north-western ejecta rim, and the synchrotron dominated filaments.

In Chapter 6, the VAE extracts features using only spectral shape of Kepler’s SNR. We found that our

method revealed the characteristic spatial structures, such as the synchrotron dominated forward shock,

the layered structure in the northern rim, and the region interacting dense circumstellar medium (CSM).

We also applied our method to SN 1006 in Chapter 7. We found that the VAE have successfully

captured some important physical features; the intensity and hardness of synchrotron emission, the line

ratio of Si K α and S K α, and the emission lines of O, Ne, Mg. Furthermore, the ‘dark belt’, which

is darker than the surrounding regions, was also represented in the latent variables using only spectral

shape information.

We also show the relation between the VAE latent space and the original data space, using the decoder

to generate spectra from given latent parameters. As shown in Chapter 6, we found that the VAE has
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extracted the latent axes corresponding to the relations of Fe and intermediate-mass element (IME) line

blends, continuum emission, the N and O blends, and the Fe L blend peak energy reflecting the electron

temperature or plasma ionization state. It shows that VAE successfully captured the features of plasma

spectra. We emphasize that VAE is capable of unveiling what the latent axes represent, and help us to

understand the dimensionality reduction result, although parameters in a deep learning model are hardly

interpreted and thus deep learning is often called a ‘black box’. The interpretability of latent variables

is a merit of our method using the generative model, VAE. Other dimensionality reduction methods of

manifold learning, e.g., t-SNE and isomap, cannot generate data, thus are not capable to directly interpret

the embedded spaces.

We also applied the method combining t-SNE and hierarchical clustering to SN 1006. We found that

t-SNE converted the spectral data into lower dimensional space than that of dataset as well as VAEs.

However, as described above, t-SNE cannot directly show the meaning of the embedded space axes,

because it cannot generate the data samples like a decoder of VAE.

Our unsupervised machine learning method automatically revealed spatial structures which have been

discussed in the literature (see, e.g., Yamaguchi et al., 2017). This demonstration shows that the method

is a powerful tool for data analyses that makes it possible to automatically exploit the rich information

contained in data obtained by X-ray observations of SNRs. It may be possible to discover SNR physics

(e.g., plasma evolution, interaction with ambient media, or cosmic-ray acceleration), and supernova ex-

plosion mechanism (e.g., nucleosynthesis, asymmetric explosion, or progenitor type), by post-training

analyses using the results of machine learning.

We conclude that our unsupervised method is an efficient tool to define regions for spectral extraction,

and can be important for making the best use of the currently available data and future observational

data obtained by upcoming instruments. Model fitting of spectra generally spends many hours; thus,

the difficulty of spectral analysis is expected to increase steeply by upcoming an X-ray microcalorimeter

(such as Athena; Barret et al., 2018). As demonstrated in Chapter 5, Chapter 6, and Chapter 7, our method

spends much less time than spatially resolved spectral model fitting. For example, the VAE training on

GPUs ran less than 1 min with the large data set of Tycho’s SNR. Thus, our method is expected to reveal

characteristic features directly from raw observational data for such high-resolution spectroscopy without

spectral model fitting, and help us to understand the astronomical plasma phenomena in more detail.

In order to focus only an information of spectral shape, we applied the spatial-bin-by-bin normalization

for the VAE training on Kepler’s SNR, and SN 1006. We found that this method is effective for analyses

of SNRs, in which spectral shapes are important. The data preprocessing is important, and thus it is better

to carefully select information to maintain in data set for the type of source and the focusing physical

feature.

It is also worth noting that the method discovered the spatial structures automatically, although no

spatial information was used in the model as described in Section 5.6. This means that the method can

extract physical feature based only on the spectral information.

Thus, the method is equally applicable to temporally and spatially variable data, because the training

uses only spectral information. In addition, our method implemented in this work is not limited to

SNRs in X-ray and can be applied to other classes of sources and to other energy bands. Our method
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is expected to apply to a lot of astronomical objects observed in several energy bands. Furthermore, in

the multimessenger astronomy, our method is capable of applying to datasets combined observations of

multiwavelength or/and some other messenger.
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Ruiz-Lapuente P., Damiani F., Bedin L., González Hernández J. I., Galbany L., Pritchard J., Canal R.,

Méndez J., 2018, ApJ, 862, 124

Rybicki G. B., Lightman A. P., 2008, Radiative processes in astrophysics. John Wiley & Sons

Sankrit R., Raymond J. C., Blair W. P., Long K. S., Williams B. J., Borkowski K. J., Patnaude D. J.,

Reynolds S. P., 2016, ApJ, 817, 36

Sato T., Hughes J. P., 2017a, ApJ, 840, 112

Sato T., Hughes J. P., 2017b, ApJ, 845, 167

Sato T., Katsuda S., Morii M., Bamba A., Hughes J. P., Maeda Y., Ishida M., Fraschetti F., 2018, ApJ,

853, 46

Sato T., Hughes J. P., Williams B. J., Morii M., 2019, ApJ, 879, 64

Schaefer C., Geiger M., Kuntzer T., Kneib J. P., 2018, A&A, 611, A2

Schawinski K., Zhang C., Zhang H., Fowler L., Santhanam G. K., 2017, MNRAS, 467, L110

Seitenzahl I. R., et al., 2013, MNRAS, 429, 1156

Shilon I., et al., 2019, Astroparticle Physics, 105, 44

Smilkov D., Thorat N., Kim B., Viégas F., Wattenberg M., 2017, arXiv e-prints, p. arXiv:1706.03825

Sun L., Chen Y., 2019, ApJ, 872, 45

Tamagawa T., et al., 2009, PASJ, 61, S167

Tashiro M., et al., 2018, in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. p.

1069922, doi:10.1117/12.2309455

Tenenbaum J. B., De Silva V., Langford J. C., 2000, science, 290, 2319

Thielemann F. K., Nomoto K., Yokoi K., 1986, A&A, 158, 17

124

http://arxiv.org/abs/1709.05889
http://dx.doi.org/10.3847/1538-4357/835/2/156
https://ui.adsabs.harvard.edu/abs/2017ApJ...835..156N
http://dx.doi.org/10.3847/1538-4357/aab9a7
https://ui.adsabs.harvard.edu/abs/2018ApJ...858..113N
http://dx.doi.org/10.1086/162639
https://ui.adsabs.harvard.edu/abs/1984ApJ...286..644N
http://dx.doi.org/10.1016/j.astropartphys.2009.04.001
https://ui.adsabs.harvard.edu/abs/2009APh....31..383O
https://ui.adsabs.harvard.edu/abs/2018arXiv180402767R
https://ui.adsabs.harvard.edu/abs/2015arXiv150602640R
http://dx.doi.org/10.1086/522830
https://ui.adsabs.harvard.edu/abs/2007ApJ...668L.135R
http://dx.doi.org/10.1086/300990
https://ui.adsabs.harvard.edu/abs/1999AJ....118..926R
https://ui.adsabs.harvard.edu/abs/2019arXiv190208161R
http://dx.doi.org/10.1186/s40668-018-0026-4
https://ui.adsabs.harvard.edu/abs/2018ComAC...5....4R
https://ui.adsabs.harvard.edu/abs/2015arXiv150504597R
http://dx.doi.org/10.3847/1538-4357/aac9c4
https://ui.adsabs.harvard.edu/abs/2018ApJ...862..124R
http://dx.doi.org/10.3847/0004-637X/817/1/36
https://ui.adsabs.harvard.edu/abs/2016ApJ...817...36S
http://dx.doi.org/10.3847/1538-4357/aa6f60
http://adsabs.harvard.edu/abs/2017ApJ...840..112S
http://dx.doi.org/10.3847/1538-4357/aa8305
https://ui.adsabs.harvard.edu/abs/2017ApJ...845..167S
http://dx.doi.org/10.3847/1538-4357/aaa021
https://ui.adsabs.harvard.edu/abs/2018ApJ...853...46S
http://dx.doi.org/10.3847/1538-4357/ab24db
https://ui.adsabs.harvard.edu/abs/2019ApJ...879...64S
http://dx.doi.org/10.1051/0004-6361/201731201
https://ui.adsabs.harvard.edu/abs/2018A&A...611A...2S
http://dx.doi.org/10.1093/mnrasl/slx008
https://ui.adsabs.harvard.edu/abs/2017MNRAS.467L.110S
http://dx.doi.org/10.1093/mnras/sts402
https://ui.adsabs.harvard.edu/abs/2013MNRAS.429.1156S
http://dx.doi.org/10.1016/j.astropartphys.2018.10.003
https://ui.adsabs.harvard.edu/abs/2019APh...105...44S
https://ui.adsabs.harvard.edu/#abs/2017arXiv170603825S
http://dx.doi.org/10.3847/1538-4357/aafb73
https://ui.adsabs.harvard.edu/abs/2019ApJ...872...45S
http://dx.doi.org/10.1093/pasj/61.sp1.S167
https://ui.adsabs.harvard.edu/abs/2009PASJ...61S.167T
http://dx.doi.org/10.1117/12.2309455
https://ui.adsabs.harvard.edu/abs/1986A&A...158...17T


Bibliography

Tolstikhin I., Bousquet O., Gelly S., Schoelkopf B., 2017, preprint, (arXiv:1711.01558)

Tsebrenko D., Soker N., 2013, MNRAS, 435, 320

Uchida H., Yamaguchi H., Koyama K., 2013, ApJ, 771, 56

Uchiyama Y., Aharonian F. A., Tanaka T., Takahashi T., Maeda Y., 2007, Nature, 449, 576

Van Der Maaten L., 2009, in Artificial Intelligence and Statistics. pp 384–391

Vink J., 2008, ApJ, 689, 231

Ward Jr J. H., 1963, Journal of the American statistical association, 58, 236

Warren J. S., 2006, PhD thesis, Rutgers The State University of New Jersey - New Brunswick

Warren J. S., et al., 2005, ApJ, 634, 376

Williams B. J., Borkowski K. J., Reynolds S. P., Ghavamian P., Blair W. P., Long K. S., Sankrit R., 2012,

ApJ, 755, 3

Williams B. J., et al., 2017, ApJ, 842, 28

Wilms J., Allen A., McCray R., 2000, ApJ, 542, 914

Winkler P. F., Gupta G., Long K. S., 2003, ApJ, 585, 324

Yamaguchi H., et al., 2008, PASJ, 60, S141

Yamaguchi H., Tanaka M., Maeda K., Slane P. O., Foster A., Smith R. K., Katsuda S., Yoshii R., 2012,

ApJ, 749, 137

Yamaguchi H., et al., 2014, ApJ, 780, 136

Yamaguchi H., Hughes J. P., Badenes C., Bravo E., Seitenzahl I. R., Martı́nez-Rodrı́guez H., Park S.,

Petre R., 2017, ApJ, 834, 124

van der Maaten L., Hinton G., 2008, Journal of machine learning research, 9, 2579

125

http://arxiv.org/abs/1711.01558
http://dx.doi.org/10.1093/mnras/stt1301
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435..320T
http://dx.doi.org/10.1088/0004-637X/771/1/56
https://ui.adsabs.harvard.edu/abs/2013ApJ...771...56U
http://dx.doi.org/10.1038/nature06210
http://adsabs.harvard.edu/abs/2007Natur.449..576U
http://dx.doi.org/10.1086/592375
https://ui.adsabs.harvard.edu/abs/2008ApJ...689..231V
http://dx.doi.org/10.1086/496941
http://adsabs.harvard.edu/abs/2005ApJ...634..376W
http://dx.doi.org/10.1088/0004-637X/755/1/3
https://ui.adsabs.harvard.edu/abs/2012ApJ...755....3W
http://dx.doi.org/10.3847/1538-4357/aa7384
https://ui.adsabs.harvard.edu/abs/2017ApJ...842...28W
http://dx.doi.org/10.1086/317016
http://adsabs.harvard.edu/abs/2000ApJ...542..914W
http://dx.doi.org/10.1086/345985
https://ui.adsabs.harvard.edu/abs/2003ApJ...585..324W
http://dx.doi.org/10.1093/pasj/60.sp1.S141
https://ui.adsabs.harvard.edu/abs/2008PASJ...60S.141Y
http://dx.doi.org/10.1088/0004-637X/749/2/137
https://ui.adsabs.harvard.edu/abs/2012ApJ...749..137Y
http://dx.doi.org/10.1088/0004-637X/780/2/136
http://adsabs.harvard.edu/abs/2014ApJ...780..136Y
http://dx.doi.org/10.3847/1538-4357/834/2/124
http://adsabs.harvard.edu/abs/2017ApJ...834..124Y

	Introduction
	Machine Learning and Their Applications in Astronomy
	Machine Learning and Deep Learning
	Supervised and Unsupervised Learning
	Generative and Discriminative Models

	Machine Learning Algorithms
	Supervised Machine Learning Algorithms
	Dimensionality Reduction
	Unsupervised Clustering

	Machine Learning Applications in Astronomy and Astrophysics

	Supernova Remnants and the Observations
	Supernovae
	Thermonuclear Supernovae

	Supernova Remnants
	X-Ray Radiative Processes
	Line Emission
	Bremsstrahlung

	Chandra X-Ray Observatory
	ACIS
	Spatial Resolution
	Effective Area
	Energy Resolution


	New Method Using Deep Learning
	Our Method Applied for X-Ray Data of SNRs
	Variational Autoencoder
	VAE Architecture Using Poisson Reconstruction Loss
	Gaussian Mixture Model
	t-SNE
	Hierarchical Clustering

	Demonstration of the Method with MNIST

	Demonstration with Tycho's SNR
	Introduction for Tycho's SNR
	Chandra ACIS-I Data Set
	Unsupervised Dimensionality Reduction and Clustering
	VAE Dimensionality Reduction
	GMM Clustering

	Detailed Results of Clustering
	Detailed Analyses of the Regions Suggested by Machine Learning
	Spectral Analysis of the Fe Knot
	Spectral Analysis of NW Ejecta

	Discussions

	Demonstration with Kepler's SNR
	Introduction for Kepler's SNR
	Chandra ACIS-S Data Set
	Results of Unsupervised Machine Learning
	The VAE Architecture
	The Results with the Best VAE Model
	Reconstruction of Spectra
	Spectra Generated by the Decoder
	Combined Spectra for Each Latent Axis
	Results of GMM

	Discussions

	Demonstration with SN 1006
	Introduction for SN 1006
	Chandra ACIS Data Set
	Dimensionality Reduction by VAE
	The VAE Architecture
	The Latent Variables
	Reconstruction of Spectra
	Spectra Generated by the Decoder
	Averaged Spectra for Each Latent Axis
	Results of GMM

	Application of t-SNE
	Dimensionality Reduction by t-SNE
	Hierarchical Clustering

	Discussions
	Dimensionality Reduction by VAE
	Dimensionality Reduction by t-SNE
	Hierarchical Clustering


	Conclusions
	Acknowledgements
	Bibliography

