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Abstract. Poly-Bernoulli numbers with one parameter are introduced by using a
generalization of multi-polylogarithm functions. These numbers interpolate poly-Bernoulli
numbers and polycosecant numbers. We prove a functional equation of the ordinary gen-
erating function of them, and in the negative index case, we give an explicit representation
of the exponential generating function and a symmetric formula. We also consider an ana-
logue of the Arakawa-Kaneko zeta function related to poly-Bernoulli numbers and multiple
T-values with one parameter.

1. Introduction

Bernoulli numbers B, (n > 0) are rational numbers defined by the following generat-
ing function:

Two kinds of poly-Bernoulli numbers, which are generalizations of B,,, are defined as fol-
lows:

Lix(I—e™) o go!" Lix(I—e™) o go!"
a1 S LG e S =) B
n=0 n=0
where k = (ky, ..., k) € Z" is a multi-index and Lik(z) is the multi-polylogarithm func-
tion defined by
. bl
Lik(z) := Z &< QIllz11.
O<my<---<m, mymy My

miEZ
These numbers for »r = 1 were first introduced by Kaneko [7] and Arakawa-Kaneko [1]
(see e.g. [5][6] for general r > 1). Since Lij(z) = —log(l — z), we have C,Sl) = B, and
B" = (=1)"B, forn > 0.
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As a level two analogue of C,(,k) , Kaneko-Pallewatta-Tsumura (the earlier version of
[9], also see [16]) introduced polycosecant numbers D,(,k) as follows:

A(ktanh §) O 1"

D )
sinh ¢ Z " nl

where
my

) A =2 Y o QL.

O<my<--<m, ey My

m;i=i (mod 2)
1<i<r

When k = (1), the numbers D,(ll) = D,, are called cosecant numbers (cf. [14]).

For an index k = (ky{, ..., k) € Z" (r > 1), r is called the depth of k. An index k =
(ky, ..., k) is said to be admissible if k1, ..., k.1 > land k, > 2. If k = (k{, ..., k) is
admissible, then Lik (z) and A(K; z) are convergent at z = 1. The values ¢ (k) := Lik(1) and
T (k) := A(k; 1) are called multiple zeta values (MZVs) and multiple 7-values (MTVs),
respectively. MTVs were recently introduced by Kaneko-Tsumura [11] and have some
interesting similarities to MZVs (cf. [11] [12] [18]). We remark that the concept of MTVs
was essentially first given by Sasaki (see [17, Definition 4]).

For a parameter ¢ < 1 and an admissible index k = (ky, ..., k), Chapoton [2] intro-
duced MTVs with one parameter by iterated integrals. Let

dt dt cdt
wo(1) == FE w1 (1) == 1-7 1—e

and I(eq,..., L) =// e, (11) -+ - ey (k) s
O<ty <<t <l

where each ¢; = 0 or 1. For an admissible index k = (k, ..., k), MTVs with one
parameter are defined as

Ze(k) = I(1, {0}~ . 1 {0y,

When ¢ = 0 it coincides with an integral representation of MZVs, i.e., Zp(k) = ¢(k).
When ¢ = —1, we have Z_;(k) = T (k) because w;(¢) becomes 2dt/(1 — t2). Therefore
Z (k) can be considered as an interpolation of ¢ (k) and 7 (k).

An admissible index k can be written in the form

k={,....,1,01+1,1,....,1,bo+1,...,1,...,1,b, + 1)
—— —— ——
a;—1 ar—1 am—1
for some a;, b; € Z~o (1 <i < m). Then the dual index k' of k is defined as
K'=,....,an+1,1,....Lan1+1,....1,....1,a; + 1).
— — ———— N—— ——
b—1 bp—1—1 b—1

Chapoton proved a duality formula Z (k) = Z, (k"), which is a natural generalization of
the classical duality formulas for MZVs and MTVs. In [2], some numerical observations of
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the graded dimensions of the Q-vector spaces spanned by MTVs with one parameter were
also reported.

For an admissible index k and —1 < ¢ < 1, it is easily checked that Z.(k) has the
following series representation:

Z (I =¢™).o (1 =¢™)

Z.(k) = - - —.
ml,‘..,m,zl ml (ml +m2) 2...(m1 +...+mr) r

REMARK 1.1. Yamamoto [20] indicated that a duality formula proved in [4] is
equivalent to that for the following generalized polylogarithms:

r . . .
~ o~ Wi —+ (_l)u,,zmlfm,,l
Li(k; z) == » [[— o (zl < 1),
m.

O=mo<my<---<m, i=1 i

where k = ((k1, j11), ... (ke 1)) € (Zsg x {0, 1)) with (kr, 1) # (1, 1). For an
admissible index k = (ky, ..., k), the function Z.(K) can be expressed as Li(k; ¢) with
wi =1 (1 <i <vr)in Yamamoto’s notation.

For a parameter ¢ € R\ {1} and an index k = (kq, ..., k) € Z" (not necessarily
admissible), we define multi-polylogarithm functions with one parameter as

Z (1 = ™). (1 = mrygmit+mr
my=1 mlfl (my +mo)*k2 - (my + - +mp)kr
Remark that Lig(k; z) = Lik(z) and Li_; (k; z) = A(k; z). When k is an admissible index,
—1 < ¢ < 1 and z = 1, the infinite series (2) converges and it coincides with Chapoton’s
Z:(k).

Throughout the paper, we assume that ¢ is a fixed real number not equal to 1. For

such ¢ and k € Z", we introduce poly-Bernoulli numbers B,gk;c) with one parameter by the

following generating function:
1 c e —1 > "
- i . — (ki)
) (et—l e’—c)Llc (k’ e’—c>_nX_(:)B" n!’

One can see that B,(,k;o) = c,ﬁ") and B,gk;_l) = Df,k), hence the number B,E'“”’ interpolates
Cc® and DX. When k = (0), we have Li.(0;z) = z/(1 — z) — cz/(1 — ¢z) and the
left-hand side of (3) becomes 1. Hence we have

(2) Li.(k;2) := e ZR[[z]].

@) poo = |1 @=0.
0 m=1,
for any ¢ € R\ {1}. In general, as we will see in the next section, the numbers B,(,k;c) can

be expressed as a polynomial in (1 + ¢)/(1 — ¢).

This paper is organized as follows. In Section 2 we give recurrence relations of poly-
Bernoulli numbers B,(lk;c) with one parameter. In Section 3 we treat the ordinary generating
function of B,Sk;c). It is known that an ordinary generating function of the classical Bernoulli
numbers satisfies a simple functional equation. We give a generalization of this result
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and prove that this functional equation determines B,(,k;c) inductively. In Section 4 we
focus on B,i'“‘” for negative indices and give an explicit representation of a generating
function of them. Moreover, in the case k = —k (k € Zx(), we give a kind of duality
formula. In the last Section 5 we give short remarks on an analogue of the Arakawa-
Kaneko zeta function. This function can be analytically continued to an entire function,
and its values at non-positive integers are expressed by poly-Bernoulli numbers with one
parameter. Moreover, its values at positive integers are expressed in terms of multiple 7 -
values with one parameter.

2. Recurrence relations
For an index k = (k{, ..., k) € Z" and an integeri > 1, wesetk @i := (ky, ...,
i—1
U _ .
kr—1,k- + 1,1,...,1). For any integer j, we also denote the index (ki,..., k., j) by
k, j if there is no risk of confusion. For example, Li. (k, 1; z) means Li. ((3, 2, 1); z) for
=(3,2).

In this section we give some fundamental properties of B,E'“). Let us start with the

following proposition.

PROPOSITION 2.1.  For any indexk € 7" and ¢ # 0, we have B(k /e = (=1)rt-1
B (n > 0).

Proof. By definition, the equation Lij,.(k; z) = (—=1)"Li.(k; z/c) holds for ¢ # 0.
Hence we have

_ Iyt r_
ZB(k 1/c)t _ (1—2)e Lie (k; e })
(e = e = 1 r—

_ —(1 =c)e L
© (e = D)(ce' — ( DL <k’ )
e

r—1 _
_ Gyt ) Lic (k; - 1)
T (el — 1)(6*’ e ! —c¢
r— n 5C tn
= (=D IZ(—l) B9 —

n=0
and this completes the proof. (|

For any index k € Z" (r > 1), we have

d . 1.
—Li.(k® 1; z) = -Lic(k; 2),
dz Z

c

11—z 1—cz

iLic(k, 1;2) = ( )Lic(k; 2)
dz
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by straightforward calculation. Thus we have

d el —1 (1 —c)et el —1
dt lc( ® e‘—c) (e —1)(e" —o¢) IC( e’—c)
(=) o, (e 8

—11 S ; = 1 ; .

dr ¢ el — ¢ ¢ el —¢

By using these equations, we get the following recurrence relations for poly-Bernoulli num-
bers with one parameter.

&)

PROPOSITION 2.2. Foranindexk € Z" (r > 1), the following equalities hold:

®

. 1 < /n+1 . .
(kc) _ kDLi0) q o 1N
(6) B! __1—c§<i+1)3"—i 1=c(=D") (n=>0).
(i1)
) B0 = l—ic > (Z‘) BYEO(1+c(=1)) (n=0).

i=1

Proof. (i) By the first equation of (5), we have

el —1 ad (k-c)tn
Lic (keal; et_c) =Y B -

n=1

el —1

Here we used the fact Li. ( k @ 1; .
el —c¢
On the other hand, by definition, we have

. e —1 (e = 1)(e' —¢) o= vt
Lic (k& 1; = > " BKOLO
lc< D B > n

t—¢ (1 —c)e! n!
n=0

> has no constant term as an element of Q[[#]].

Therefore we have

00 K )tn 1 o0 «e! )tn

e _ [ -t _ ¢
Ean_la_l_c(e 1+ c(e 1))203,1 h
n= n=

By comparing the coefficients of both sides, we have

» 1 ~ /n : -
(k;c) (kd1;c)
B,”) = :Z (,-)(1 +e(=DHB,5 .
i=1
By shiftingnton + 1 andi toi 4 1, we get (6).

Z cZ

11—z 1—cz

1 el —1
. e —1 = o= Ny [y ¢ -1
Llc<k,0, e’—c):<1_€’—1 _1_Cef—1 Li. | k; pr—

el—c

(ii) By definition, it holds that Li. (k, 0; z) = ( ) Li. (k; z) and
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1 f_
= (@ —14ce' — 1)L (K & .
1—c¢ el —¢

Therefore we have
(k,0 )tn ! (k )tn
,0;¢ _ t —t ¢
E B, = (e 14 c(e 1)) E B, i

n! 1—c
n=0 n=0

By comparing the coefficients of both sides, we obtain (7). (]

REMARK 2.3. By applying c = —1 in Proposition 2.2, we have

n

K n—+1 (k1)
o =3 (1)),
i=0

i:even

n
k,0 LAWN(S)
D1(1 ) = Z (l')Dn—i
=
tl odd
for any index k € 7. These formulas were given by Pallewatta [16] (see Prop. 3.7 and its
proof).

PROPOSITION 2.4. Let kK € Z" be an index and n > 0 an integer. There exists a
polynomial fx , (X) € Q[X] not depending on ¢ such that

. 1+c¢
k;
Br(l )= fk,n <1 —C) .
Moreover, the polynomial fi , (X) is even if n # r (mod 2) and odd if n = r (mod 2).

Proof. By (4), the statement is true for k = (0). Hence we only have to prove that
if the statement is true for K = (kq, ..., k;) then it is also true for (k1, ...,k = 1) and
(kla'-'akrao)'

Assume that the statement is true for k = (kq, ..., k) € Z". By (6), we have

L n—+ 1 ko1: n—+ 1 kp1: 1 +c

B(ksC) — B( @ ;€) B( @ ;) ,

" Z i+1) +Z i+1)7 1-c
0<i<n 0<i<n

i:even i:odd

or equivalently,

) 1 ) 1 n+1 . n+1 .o 1+c
k®l;c) _ (k;c) (kd1;0) (k®1;0)
By _n+1B" n+1 Z <i+1>B"_i + Z ( >Bn—i

- - i+1 1—c
I<i<zn 1<i<n
i:even i: odd
By replacing k@ 1 with Kk, the first equation proves the statement is true for (kq, ..., k- —1).

From the second equation and initial values
k&L _ I (r=1),
o =

we can prove that the statement is also true for (ki, ..., k, + 1) by induction on 7. Finally,
by using (7), we can prove the statement is true for (ky, ..., k, 0). O
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As an example, we see the case k = (1). By using (4) and (6), we have

(L;e) _
By =1,

B(l;c)=_l(1+c>

! 2\1l—-c¢)’

(1;0) 1 1+C 2 1

o — (=) _Z

2 2(1—c> 3’

(i) 3/1+c¢ 3 3/1+c¢
By = 4(1—c> +4<1—c)’

: 3 /1+c\* 1+c\> 7
(;0)
B == -2 + .
4 2<l—c) <1—c> 15

REMARK 2.5. 1. The constant term of fix ,(X) is the polycosecant number
D,(,k) (n = 0) because of B,(,k;_l) = D,(,k).
2. Foranindexk = (—ky, ..., —k,) withk; > 0(0 <i <r), the polynomial fi ,(X)

is an element of Z[ X 1.

3. The ordinary generating function

We consider the ordinary generating function of Bernoulli numbers, i.e.,

o
B = Bu"' €QIlr].
n=0
The radius of convergence of this series is zero, so we consider these types of generating
functions as a formal power series in 7.
It is known that the series B(¢) satisfies a simple functional equation and the sequence
{Bn}n>0 of Bernoulli numbers is characterized by this functional equation.

THEOREM 3.1 (e.g., Zagier [21], Chen [3, Cor. 4.6]). B(¢) is the unique solution in
QII£1] of the equation

4 2
) p 15 —p)=1".
—t
We define the ordinary generating function of poly-Bernoulli numbers with one pa-
rameter as

o]
ﬁ(k,c)(t) — B(k,c)tn+l
. E n .
n=0

It is clear that 89 (1) = B(r), and by (4), we have B¢ (1) = r. We can generalize Theo-
rem 3.1 to a result on a generating function of poly-Bernoulli numbers with one parameter.
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THEOREM 3.2. (i) For anindexk € 7" and an integeri > 1, we have
©) (1 =o' plIe) = pkero <1 t) — (1+ ) p*®EO) (1) 4 p*OO) (1 n z) .

(i) All B& (1) (k € Z") are characterized by functional equations (9) and the initial
condition B (1) = 1.

REMARK 3.3. (i) Applying ¢ = 0, k = (0) and i = 1 in (9), we obtain the
functional equation (8).

(i) Applyingc = —1, k= (0) andi = 1 in (9), we obtain a functional equation

(10 3( ! )—5( ! ):2;2,
1—1t 141t

where §(t) is the ordinary generating function of cosecant numbers:

o
8(t) =Y Dut"*!.
n=0
This functional equation was given by Chen [3, Theorem 4.4].

To prove Theorem 3.2, we need the following lemma.

LEMMA 3.4. For sequences (pn)n>0 and (gn)n>0 (each p, and q, € R), let

o0 o0
P(t):=Y pat"™. and Q@)= qu"".

n=0 n=0
These series satisfy
t t
an () ClQ(l—A1t>+ +ch(1_krt>
if and only if
o o
(12) Pnn _ (c1e™ + - 4 ¢t Z n
n! n!
n=0 n=0
Proof. Since
00 i+1
t t
Q (1 —At) N ;qi (1 —At)
o0 o0 n
_ . n+lq—i—1
=La 3 (7)oors
i=0 n=i
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the right-hand side of (11) is equal to

o n n ) _

>3 (2)aters e

n=0i=0 !
Because the condition (12) is equivalent to

n
n _: s
i=0

for any n > 0, we obtain the desired result. (I

Proof of Theorem 3.2. By the same argument of the proof of Proposition 2.2 (i), we
have

ad " 1 > "
(k;c) _ t —t (ki;c
ZBn—iE_:(e_(l“l‘C)‘Fce )Z;)Bn u)a
n=i n=

for any i > 1. By applying

0 O<n<i

Pn =1 pkio) .

B, "7 (n=1i)

and g, = B*®"9 in Lemma 3.4, we get the proof of (i). _
By the functional equation (9), the function /3“‘;“) (t) is determined from ﬂa‘@’?c)(t).
In Lemma 3.4, under the condition (cq,...,c;) # (0,...,0), the equation (12) means
that a sequence {py},>1 is determined from {g,},>1 and vice versa. Since the functional
equation (9) is the form of (11), the function g (k®i:c) (1) is also determined from B*:) (r).
Any index can be obtained from the initial index (0) by repeating procedures k — k& i or
kdir— k(i =1,2,...). Therefore the statement (ii) follows. U

4. The case of non-positive indices

In this section we investigate poly-Bernoulli numbers of non-positive indices, that is,
B¥ fork = (—ky, ..., —k,) withky, ...,k > 0.

In the case ¢ = 0 and r = 1, it is known that the numbers C,(,_k) have the following
simple generating function:

o0 00 ( k)xn yk 1
(13) Z_(:);C N e
(for general r > 1, see [6, Prop. 5]). For an integer r > 1, let
xn ykl ykr
o ((=kpyerrr=kp);e0) 2 271 2T

n,k1 ,...,kr >0
We can prove the following theorem which is a generalization of (13).
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THEOREM 4.1. We have
(14)
NC(x5 y17 ""yr)

(=)t (e = 1)~ lli[ c
N ef—c LU\ e Y — cem Yt—ex—i—l e Yi—ceVi—cet )’
[ <r

where Yi :=Y ) _ym (1 <i
Proof. We have

ef —1 kl yr
> Lic( (k... —k) st
k]. k!
kiy....kr>0
= 2 X mﬁ”~~(m1+~~+mr>kr<1—cm1)
My, ..., m,zlk.,...,k,zo
e — 1 miy+--+my
(1 ="
a-em(5=1)
ki
Y1 o
k! k!
my+-tm,
— Z M _,_e(m1+"-+mr)yr(1 — MYy (1= ™) <ex — 1)
miy,...,mp>1 et —¢
e* —1\™ ¥ —1
= > <Y1 ) (1= <eY ) (1 —¢c™)
eX —c¢ eX —c¢
mi,..., mp>1
Y 1 Y e =1
_ d ( ¢ ix—c _ ce i‘—c )
- y; e¥—1 Y, 1
i=1 l—e zx—c 1 ¢ c c

.
1 c
— X 1 r — .
(e ) U <ex—Yi —ceVi—eX+1 Vi —cemYi —ce* +c>

By multiplying (1 — c)e* /((e® — 1)(e® — ¢)) to both sides, we get (14).

When r = 1, Theorem 4.1 deduces

Ne(x, y) = ZZB( kC)),C,v zv

(15) n=0 k=0

_ (I =o)e 1 ¢
T ooex—¢c \e-V—ce Y —ef+1 eV —ce Y —cef+c)

In particular, the function Ny(x, y) = gives the generating function (13) of

1 —eX+e* Y
ch.
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In the remainder of this section we discuss the numbers B( —kie) (k € Z=p) having
depth 1. When ¢ = —1, a simple symmetric formula
(16) p{2 D = pl2 ) (k> 0)

is known ([9, Theorem 4]). Since Dén_ﬁ)l = 0 for all n, k > 0, we can state a symmetric
formula in the form of

a7) D{* Y =D (n,k = 0, n +k: even).

The following theorem states that this formula also holds for poly-Bernoulli numbers with
one parameter.

THEOREM 4.2. The following equation holds:
B( k=Lie) — B( n—lLic) (n, k>0, n+k: even).

Proof. First we remember N.(x, y) is a double series defined by (15). Let g.(x, y) :=
a5 Ne(x, ) and G(x, y) := ge(x, y) + ge(—x, —). Because

X" yk
G(x,y) =2 gkt
( y) néo ! n! k!

n+k: even

we only have to prove that G(x, y) = G(y, x). By (15), we have

. y) (1—rc)e* —(—e* "V +ce™) c(—e*™Y +ce™)
. x, =
Jelds ¥ eX —c \(e¥ 7V —ceY—eX+ 12  (e¥Y —ce Y —ce* +¢)?
e —ce™Y
18 =(1-— * =+
(18) (I =c)e <(ex—y —ceV —e*+1)2  (e¥Y —ce Y —ceX + c)2>
(1 —c)e*ty —c(1 —¢)e* ™Y

T —c—e feN? ' (eF —c—cett +ce)?’
Let the first part of the last line of (18) be 7 (x, y) and the second part J (x, y). It is easily
showed that I (x, y) = I(y, x) and J(x, y) = J(—y, —x). Then we have

Gx,y) =1(x,y)+Jx,y)+1(=x,—y) +J(=x,—y)
=1y, x)+J(=y,—x)+I1(=y,—x)+ J(y,x)
= 9c(y, X) + ge(=y, —x)
=G(y,x)
and this completes the proof. (]

REMARK 4.3. In the case ¢ = 0, the function go(x,y) satisfies a simple relation
go(x, y) = go(y, x). From this equation, we obtain the relation

cHFD =Y (k> 0)
(see e.g., [8, Section 2]).
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5. Arakawa-Kaneko zeta functions with one prameter

In this section we consider an analogue of the Arakawa-Kaneko zeta function. We first
see a sufficient condition for convergence of the function Li. (k; z).

PROPOSITION 5.1.  Foran indexk € 7, the function Li. (K; z) is absolutely conver-
(lel = D),

gent if |z] <
1/lel (le] > 1).

Proof. When |c|] < 1, we have |1 — ¢"| < 1 4 |¢|™ < 2 for any positive integer m.
Therefore
2 |z|mttmy

Liedksal<s Y —¢ p p
Mo mrzlml(ml+m2)2.(m1+.+mr)r
and this series converges if |z| < 1.
When |c| > 1, we have |1 — ¢"| < 2|c|™ for any positive integer m. Therefore
2rlczlm1+---+mr

Lick; )l < )

k
my,..,my>1 my (my +mo)k2 - (my 4 - +mp)k
and this series converges if |z] < 1/|c]. (Il

Assume that —1 < ¢ < 1. Foran index k € Z" and s € C with R(s) > 1 —r, we
define a generalization of the Arakawa-Kaneko zeta function as

. L (Ao ) et —1
(19) Ec(kss) i= r'G) /0 z @D -0 C)Llc (k, —) dz.

et —c
By
et —1
0= <1 (z €0, 00))
et —c
and
et —
Li. <k; —) =0()asz — +0,
et —c¢
the integral (19) is convergent for R(s) > 1 —r. When ¢ = 0, the function &y(k; s)
coincides with the original Arakawa-Kaneko zeta function £(k; s) ([1]). When ¢ = —1,

the function £_1(k; s) coincides with a level two analogue of the Arakawa-Kaneko zeta
function, denoted by ¥ (k; s) in [11].
By the well-known method using contour integrals, the function &.(k; s) can be con-
tinued to an entire function, and its values at non-positive integers are given by
£ —m) = (—1)"B¥) (m=0,1,2,..)

(cf. [10]).
For two indices kK = (ki,..., k) € Z;O and j = (j1,...,Jr) € Zrzo’ we use the

notation
r .
ki i — 1
b (k; j) :=1"[( o )

i=1 Ji
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Then we obtain the following theorem and the results for ¢ = 0 and ¢ = —1 are known [10,
Theorem 2.5] [19, Theorem 4.3]. This theorem can be proved in parallel with the proof in
[13] [15] and we omit its proof.

THEOREM 5.2. Fork € Z;O and m € Z~y, it holds that

gkim) =Y b (ke D) Ze(ke D +J),
J

where the sum runs over all j = (ji, ..., ju) € ZLywith j1 +---+ ju =m — land n is
the depth of (k ® 1)7. Here k + j means the componentwise sum of k and j.
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