Poly-Bernoulli Numbers with One Parameter and Their Generating Functions

by
Ken Kamano

(Received November 26, 2022)
(Revised January 27, 2023)

Abstract

Poly-Bernoulli numbers with one parameter are introduced by using a generalization of multi-polylogarithm functions. These numbers interpolate poly-Bernoulli numbers and polycosecant numbers. We prove a functional equation of the ordinary generating function of them, and in the negative index case, we give an explicit representation of the exponential generating function and a symmetric formula. We also consider an analogue of the Arakawa-Kaneko zeta function related to poly-Bernoulli numbers and multiple T-values with one parameter.

1. Introduction

Bernoulli numbers $B_{n}(n \geq 0)$ are rational numbers defined by the following generating function:

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

Two kinds of poly-Bernoulli numbers, which are generalizations of B_{n}, are defined as follows:

$$
\frac{\mathrm{Li}_{\mathbf{k}}\left(1-e^{-t}\right)}{e^{t}-1}=\sum_{n=0}^{\infty} C_{n}^{(\mathbf{k})} \frac{t^{n}}{n!} \text { and } \frac{\mathrm{Li}_{\mathbf{k}}\left(1-e^{-t}\right)}{1-e^{-t}}=\sum_{n=0}^{\infty} B_{n}^{(\mathbf{k}} \frac{t^{n}}{n!}
$$

where $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}^{r}$ is a multi-index and $\mathrm{Li}_{\mathbf{k}}(z)$ is the multi-polylogarithm function defined by

$$
\operatorname{Li}_{\mathbf{k}}(z):=\sum_{\substack{0<m_{1}<\cdots<m_{r} \\ m_{i} \in \mathbb{Z}}} \frac{z^{m_{r}}}{m_{1}^{k_{1}} m_{2}^{k_{2}} \cdots m_{r}^{k_{r}}} \in \mathbb{Q}[[z]]
$$

These numbers for $r=1$ were first introduced by Kaneko [7] and Arakawa-Kaneko [1] (see e.g. [5][6] for general $r \geq 1$). Since $\mathrm{Li}_{1}(z)=-\log (1-z)$, we have $C_{n}^{(1)}=B_{n}$ and $B_{n}^{(1)}=(-1)^{n} B_{n}$ for $n \geq 0$.

As a level two analogue of $C_{n}^{(\mathbf{k})}$, Kaneko-Pallewatta-Tsumura (the earlier version of [9], also see [16]) introduced polycosecant numbers $D_{n}^{(\mathbf{k})}$ as follows:

$$
\frac{\mathrm{A}\left(\mathbf{k} ; \tanh \frac{t}{2}\right)}{\sinh t}=\sum_{n=0}^{\infty} D_{n}^{(\mathbf{k})} \frac{t^{n}}{n!}
$$

where

$$
\begin{equation*}
\mathrm{A}(\mathbf{k} ; z):=2^{r} \sum_{\substack{\left.0<m_{1}<\ldots<m_{r} \\ m_{i} \equiv i=i \bmod 2\right) \\ 1 \leq i \leq r}} \frac{z^{m_{r}}}{m_{1}^{k_{1}} \cdots m_{r}^{k_{r}}} \in \mathbb{Q}[[z]] . \tag{1}
\end{equation*}
$$

When $\mathbf{k}=(1)$, the numbers $D_{n}^{(1)}=D_{n}$ are called cosecant numbers (cf. [14]).
For an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}^{r}(r \geq 1), r$ is called the depth of \boldsymbol{k}. An index $\mathbf{k}=$ $\left(k_{1}, \ldots, k_{r}\right)$ is said to be admissible if $k_{1}, \ldots, k_{r-1} \geq 1$ and $k_{r} \geq 2$. If $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ is admissible, then $\operatorname{Li}_{\mathbf{k}}(z)$ and $\mathrm{A}(\mathbf{k} ; z)$ are convergent at $z=1$. The values $\zeta(\mathbf{k}):=\mathrm{Li}_{\mathbf{k}}(1)$ and $T(\mathbf{k}):=\mathrm{A}(\mathbf{k} ; 1)$ are called multiple zeta values (MZVs) and multiple T-values (MTVs), respectively. MTVs were recently introduced by Kaneko-Tsumura [11] and have some interesting similarities to MZVs (cf. [11] [12] [18]). We remark that the concept of MTVs was essentially first given by Sasaki (see [17, Definition 4]).

For a parameter $c<1$ and an admissible index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$, Chapoton [2] introduced MTVs with one parameter by iterated integrals. Let

$$
\begin{gathered}
\omega_{0}(t):=\frac{d t}{t}, \quad \omega_{1}(t):=\frac{d t}{1-t}-\frac{c d t}{1-c t} \\
\text { and } \quad I\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right):=\int \cdots \int_{0<t_{1}<\cdots<t_{k}<1} \omega_{\varepsilon_{1}}\left(t_{1}\right) \cdots \omega_{\varepsilon_{k}}\left(t_{k}\right),
\end{gathered}
$$

where each $\varepsilon_{i}=0$ or 1 . For an admissible index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$, MTVs with one parameter are defined as

$$
Z_{c}(\mathbf{k}):=I\left(1,\{0\}^{k_{1}-1}, \ldots, 1,\{0\}^{k_{r}-1}\right)
$$

When $c=0$ it coincides with an integral representation of MZVs, i.e., $Z_{0}(\mathbf{k})=\zeta(\mathbf{k})$. When $c=-1$, we have $Z_{-1}(\mathbf{k})=T(\mathbf{k})$ because $\omega_{1}(t)$ becomes $2 d t /\left(1-t^{2}\right)$. Therefore $Z_{c}(\mathbf{k})$ can be considered as an interpolation of $\zeta(\mathbf{k})$ and $T(\mathbf{k})$.

An admissible index \mathbf{k} can be written in the form

$$
\mathbf{k}=(\underbrace{1, \ldots, 1}_{a_{1}-1}, b_{1}+1, \underbrace{1, \ldots, 1}_{a_{2}-1}, b_{2}+1, \ldots, \underbrace{1, \ldots, 1}_{a_{m}-1}, b_{m}+1)
$$

for some $a_{i}, b_{i} \in \mathbb{Z}_{>0}(1 \leq i \leq m)$. Then the dual index \mathbf{k}^{\dagger} of \mathbf{k} is defined as

$$
\mathbf{k}^{\dagger}=(\underbrace{1, \ldots, 1}_{b_{m}-1}, a_{m}+1, \underbrace{1, \ldots, 1}_{b_{m-1}-1}, a_{m-1}+1, \ldots, \underbrace{1, \ldots, 1}_{b_{1}-1}, a_{1}+1) .
$$

Chapoton proved a duality formula $Z_{c}(\mathbf{k})=Z_{c}\left(\mathbf{k}^{\dagger}\right)$, which is a natural generalization of the classical duality formulas for MZVs and MTVs. In [2], some numerical observations of
the graded dimensions of the \mathbb{Q}-vector spaces spanned by MTVs with one parameter were also reported.

For an admissible index \mathbf{k} and $-1 \leq c<1$, it is easily checked that $Z_{c}(\mathbf{k})$ has the following series representation:

$$
Z_{c}(\mathbf{k})=\sum_{m_{1}, \ldots, m_{r} \geq 1} \frac{\left(1-c^{m_{1}}\right) \cdots\left(1-c^{m_{r}}\right)}{m_{1}^{k_{1}}\left(m_{1}+m_{2}\right)^{k_{2} \cdots\left(m_{1}+\cdots+m_{r}\right)^{k_{r}}} ~ . ~}
$$

REMARK 1.1. Yamamoto [20] indicated that a duality formula proved in [4] is equivalent to that for the following generalized polylogarithms:

$$
\tilde{\mathrm{Li}}(\tilde{\mathbf{k}} ; z):=\sum_{0=m_{0}<m_{1}<\cdots<m_{r}} \prod_{i=1}^{r} \frac{\mu_{i}+(-1)^{\mu_{i}} z^{m_{i}-m_{i-1}}}{m_{i}^{k_{i}}}(|z|<1),
$$

where $\tilde{\mathbf{k}}=\left(\left(k_{1}, \mu_{1}\right), \ldots,\left(k_{r}, \mu_{r}\right)\right) \in\left(\mathbb{Z}_{>0} \times\{0,1\}\right)^{r}$ with $\left(k_{r}, \mu_{r}\right) \neq(1,1)$. For an admissible index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$, the function $Z_{c}(\mathbf{k})$ can be expressed as $\tilde{\mathrm{Li}}(\tilde{\mathbf{k}} ; c)$ with $\mu_{i}=1(1 \leq i \leq r)$ in Yamamoto's notation.

For a parameter $c \in \mathbb{R} \backslash\{1\}$ and an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}^{r}$ (not necessarily admissible), we define multi-polylogarithm functions with one parameter as

$$
\begin{equation*}
\mathrm{Li}_{c}(\mathbf{k} ; z):=\sum_{m_{1}, \ldots, m_{r} \geq 1} \frac{\left(1-c^{m_{1}}\right) \cdots\left(1-c^{m_{r}}\right) z^{m_{1}+\cdots+m_{r}}}{m_{1}^{k_{1}}\left(m_{1}+m_{2}\right)^{k_{2}} \cdots\left(m_{1}+\cdots+m_{r}\right)^{k_{r}}} \in z^{r} \mathbb{R}[[z]] . \tag{2}
\end{equation*}
$$

Remark that $\mathrm{Li}_{0}(\mathbf{k} ; z)=\mathrm{Li}_{\mathbf{k}}(z)$ and $\mathrm{Li}_{-1}(\mathbf{k} ; z)=\mathrm{A}(\mathbf{k} ; z)$. When \mathbf{k} is an admissible index, $-1 \leq c<1$ and $z=1$, the infinite series (2) converges and it coincides with Chapoton's $Z_{c}(\mathbf{k})$.

Throughout the paper, we assume that c is a fixed real number not equal to 1 . For such c and $\mathbf{k} \in \mathbb{Z}^{r}$, we introduce poly-Bernoulli numbers $B_{n}^{(\mathbf{k} ; c)}$ with one parameter by the following generating function:

$$
\begin{equation*}
\left(\frac{1}{e^{t}-1}-\frac{c}{e^{t}-c}\right) \operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{t}-1}{e^{t}-c}\right)=\sum_{n=0}^{\infty} B_{n}^{(\mathbf{k} ; c)} \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

One can see that $B_{n}^{(\mathbf{k} ; 0)}=C_{n}^{(\mathbf{k})}$ and $B_{n}^{(\mathbf{k} ;-1)}=D_{n}^{(\mathbf{k})}$, hence the number $B_{n}^{(\mathbf{k} ; c)}$ interpolates $C_{n}^{(\mathbf{k})}$ and $D_{n}^{(\mathbf{k})}$. When $\mathbf{k}=(0)$, we have $\mathrm{Li}_{c}(0 ; z)=z /(1-z)-c z /(1-c z)$ and the left-hand side of (3) becomes 1 . Hence we have

$$
B_{n}^{(0 ; c)}= \begin{cases}1 & (n=0) \tag{4}\\ 0 & (n \geq 1)\end{cases}
$$

for any $c \in \mathbb{R} \backslash\{1\}$. In general, as we will see in the next section, the numbers $B_{n}^{(\mathbf{k} ; c)}$ can be expressed as a polynomial in $(1+c) /(1-c)$.

This paper is organized as follows. In Section 2 we give recurrence relations of polyBernoulli numbers $B_{n}^{(\mathbf{k} ; c)}$ with one parameter. In Section 3 we treat the ordinary generating function of $B_{n}^{(\mathbf{k} ; c)}$. It is known that an ordinary generating function of the classical Bernoulli numbers satisfies a simple functional equation. We give a generalization of this result
and prove that this functional equation determines $B_{n}^{(\mathbf{k} ; c)}$ inductively. In Section 4 we focus on $B_{n}^{(\mathbf{k} ; c)}$ for negative indices and give an explicit representation of a generating function of them. Moreover, in the case $\mathbf{k}=-k\left(k \in \mathbb{Z}_{\geq 0}\right)$, we give a kind of duality formula. In the last Section 5 we give short remarks on an analogue of the ArakawaKaneko zeta function. This function can be analytically continued to an entire function, and its values at non-positive integers are expressed by poly-Bernoulli numbers with one parameter. Moreover, its values at positive integers are expressed in terms of multiple T values with one parameter.

2. Recurrence relations

For an index $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}^{r}$ and an integer $i \geq 1$, we set $\mathbf{k} \oplus i:=\left(k_{1}, \ldots\right.$, $k_{r-1}, k_{r}+1, \overbrace{1, \ldots, 1}^{i-1})$. For any integer j, we also denote the index $\left(k_{1}, \ldots, k_{r}, j\right)$ by \mathbf{k}, j if there is no risk of confusion. For example, $\operatorname{Li}_{c}(\mathbf{k}, 1 ; z)$ means $\mathrm{Li}_{c}((3,2,1) ; z)$ for $\mathbf{k}=(3,2)$.

In this section we give some fundamental properties of $B_{n}^{(\mathbf{k} ; c)}$. Let us start with the following proposition.

Proposition 2.1. For any index $\mathbf{k} \in \mathbb{Z}^{r}$ and $c \neq 0$, we have $B_{n}^{(\mathbf{k} ; 1 / c)}=(-1)^{r+n-1}$ $B_{n}^{(\mathbf{k}, c)}(n \geq 0)$.

Proof. By definition, the equation $\operatorname{Li}_{1 / c}(\mathbf{k} ; z)=(-1)^{r} \mathrm{Li}_{c}(\mathbf{k} ; z / c)$ holds for $c \neq 0$. Hence we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} B_{n}^{(\mathbf{k} ; 1 / c)} \frac{t^{n}}{n!} & =\frac{\left(1-\frac{1}{c}\right) e^{t}}{\left(e^{t}-1\right)\left(e^{t}-\frac{1}{c}\right)} \operatorname{Li}_{1 / c}\left(\mathbf{k} ; \frac{e^{t}-1}{e^{t}-\frac{1}{c}}\right) \\
& =\frac{-(1-c) e^{t}}{\left(e^{t}-1\right)\left(c e^{t}-1\right)}(-1)^{r} \operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{t}-1}{c e^{t}-1}\right) \\
& =\frac{(-1)^{r-1}(1-c) e^{-t}}{\left(e^{-t}-1\right)\left(e^{-t}-c\right)} \operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{-t}-1}{e^{-t}-c}\right) \\
& =(-1)^{r-1} \sum_{n=0}^{\infty}(-1)^{n} B_{n}^{(\mathbf{k} ; c)} \frac{t^{n}}{n!}
\end{aligned}
$$

and this completes the proof.
For any index $\mathbf{k} \in \mathbb{Z}^{r}(r \geq 1)$, we have

$$
\left\{\begin{array}{l}
\frac{d}{d z} \mathrm{Li}_{c}(\mathbf{k} \oplus 1 ; z)=\frac{1}{z} \mathrm{Li}_{c}(\mathbf{k} ; z), \\
\frac{d}{d z} \mathrm{Li}_{c}(\mathbf{k}, 1 ; z)=\left(\frac{1}{1-z}-\frac{c}{1-c z}\right) \operatorname{Li}_{c}(\mathbf{k} ; z)
\end{array}\right.
$$

by straightforward calculation. Thus we have

$$
\left\{\begin{array}{l}
\frac{d}{d t} \operatorname{Li}_{c}\left(\mathbf{k} \oplus 1 ; \frac{e^{t}-1}{e^{t}-c}\right)=\frac{(1-c) e^{t}}{\left(e^{t}-1\right)\left(e^{t}-c\right)} \operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{t}-1}{e^{t}-c}\right) \tag{5}\\
\frac{d}{d t} \operatorname{Li}_{c}\left(\mathbf{k}, 1 ; \frac{e^{t}-1}{e^{t}-c}\right)=\operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{t}-1}{e^{t}-c}\right)
\end{array}\right.
$$

By using these equations, we get the following recurrence relations for poly-Bernoulli numbers with one parameter.

Proposition 2.2. For an index $\mathbf{k} \in \mathbb{Z}^{r}(r \geq 1)$, the following equalities hold:
(i)

$$
\begin{equation*}
B_{n}^{(\mathbf{k} ; c)}=\frac{1}{1-c} \sum_{i=0}^{n}\binom{n+1}{i+1} B_{n-i}^{(\mathbf{k} \oplus 1 ; c)}\left(1-c(-1)^{i}\right) \quad(n \geq 0) . \tag{6}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
B_{n}^{(\mathbf{k}, 0 ; c)}=\frac{1}{1-c} \sum_{i=1}^{n}\binom{n}{i} B_{n-i}^{(\mathbf{k} ; c)}\left(1+c(-1)^{i}\right) \quad(n \geq 0) . \tag{7}
\end{equation*}
$$

Proof. (i) By the first equation of (5), we have

$$
\operatorname{Li}_{c}\left(\mathbf{k} \oplus 1 ; \frac{e^{t}-1}{e^{t}-c}\right)=\sum_{n=1}^{\infty} B_{n-1}^{(\mathbf{k} ; c)} \frac{t^{n}}{n!}
$$

Here we used the fact $\operatorname{Li}_{c}\left(\mathbf{k} \oplus 1 ; \frac{e^{t}-1}{e^{t}-c}\right)$ has no constant term as an element of $\mathbb{Q}[[t]]$.
On the other hand, by definition, we have

$$
\operatorname{Li}_{c}\left(\mathbf{k} \oplus 1 ; \frac{e^{t}-1}{e^{t}-c}\right)=\frac{\left(e^{t}-1\right)\left(e^{t}-c\right)}{(1-c) e^{t}} \sum_{n=0}^{\infty} B_{n}^{(\mathbf{k} \oplus 1 ; c)} \frac{t^{n}}{n!}
$$

Therefore we have

$$
\sum_{n=1}^{\infty} B_{n-1}^{(\mathbf{k} ; c)} \frac{t^{n}}{n!}=\frac{1}{1-c}\left(e^{t}-1+c\left(e^{-t}-1\right)\right) \sum_{n=0}^{\infty} B_{n}^{(\mathbf{k} \oplus 1 ; c)} \frac{t^{n}}{n!}
$$

By comparing the coefficients of both sides, we have

$$
B_{n-1}^{(\mathbf{k} ; c)}=\frac{1}{1-c} \sum_{i=1}^{n}\binom{n}{i}\left(1+c(-1)^{i}\right) B_{n-i}^{(\mathbf{k} \oplus 1 ; c)} .
$$

By shifting n to $n+1$ and i to $i+1$, we get (6).
(ii) By definition, it holds that $\operatorname{Li}_{c}(\mathbf{k}, 0 ; z)=\left(\frac{z}{1-z}-\frac{c z}{1-c z}\right) \operatorname{Li}_{c}(\mathbf{k} ; z)$ and

$$
\operatorname{Li}_{c}\left(\mathbf{k}, 0 ; \frac{e^{t}-1}{e^{t}-c}\right)=\left(\frac{\frac{e^{t}-1}{e^{t}-c}}{1-\frac{e^{t}-1}{e^{t}-c}}-\frac{c \frac{e^{t}-1}{e^{t}-c}}{1-c \frac{e^{t}-1}{e^{t}-c}}\right) \operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{t}-1}{e^{t}-c}\right)
$$

$$
=\frac{1}{1-c}\left(e^{t}-1+c\left(e^{-t}-1\right)\right) \operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{t}-1}{e^{t}-c}\right) .
$$

Therefore we have

$$
\sum_{n=0}^{\infty} B_{n}^{(\mathbf{k}, 0 ; c)} \frac{t^{n}}{n!}=\frac{1}{1-c}\left(e^{t}-1+c\left(e^{-t}-1\right)\right) \sum_{n=0}^{\infty} B_{n}^{(\mathbf{k} ; c)} \frac{t^{n}}{n!}
$$

By comparing the coefficients of both sides, we obtain (7).
Remark 2.3. By applying $c=-1$ in Proposition 2.2, we have

$$
\begin{aligned}
D_{n}^{(\mathbf{k})} & =\sum_{\substack{i=0 \\
i=\text { even }}}^{n}\binom{n+1}{i+1} D_{n-i}^{(\mathbf{k} \oplus 1)}, \\
D_{n}^{(\mathbf{k}, 0)} & =\sum_{\substack{i=1 \\
i: \text { odd }}}^{n}\binom{n}{i} D_{n-i}^{(\mathbf{k})}
\end{aligned}
$$

for any index $\mathbf{k} \in \mathbb{Z}^{r}$. These formulas were given by Pallewatta [16] (see Prop. 3.7 and its proof).

Proposition 2.4. Let $\mathbf{k} \in \mathbb{Z}^{r}$ be an index and $n \geq 0$ an integer. There exists a polynomial $f_{\mathbf{k}, n}(X) \in \mathbb{Q}[X]$ not depending on c such that

$$
B_{n}^{(\mathbf{k} ; c)}=f_{\mathbf{k}, n}\left(\frac{1+c}{1-c}\right) .
$$

Moreover, the polynomial $f_{\mathbf{k}, n}(X)$ is even if $n \not \equiv r(\bmod 2)$ and odd if $n \equiv r(\bmod 2)$.
Proof. By (4), the statement is true for $\mathbf{k}=(0)$. Hence we only have to prove that if the statement is true for $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ then it is also true for $\left(k_{1}, \ldots, k_{r} \pm 1\right)$ and $\left(k_{1}, \ldots, k_{r}, 0\right)$.

Assume that the statement is true for $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}^{r}$. By (6), we have

$$
B_{n}^{(\mathbf{k} ; c)}=\sum_{\substack{0 \leq i \leq n \\ i: \text { even }}}\binom{n+1}{i+1} B_{n-i}^{(\mathbf{k} \oplus 1 ; c)}+\sum_{\substack{0 \leq i \leq n \\ i: \text { odd }}}\binom{n+1}{i+1} B_{n-i}^{(\mathbf{k} \oplus 1 ; c)} \frac{1+c}{1-c},
$$

or equivalently,

$$
B_{n}^{(\mathbf{k} \oplus 1 ; c)}=\frac{1}{n+1} B_{n}^{(\mathbf{k} ; c)}-\frac{1}{n+1}\left(\sum_{\substack{1 \leq i \leq n \\ i: \text { even }}}\binom{n+1}{i+1} B_{n-i}^{(\mathbf{k} \oplus 1 ; c)}+\sum_{\substack{1 \leq i \leq n \\ i: \text { odd }}}\binom{n+1}{i+1} B_{n-i}^{(\mathbf{k} \oplus 1 ; c)} \frac{1+c}{1-c}\right)
$$

By replacing $\mathbf{k} \oplus 1$ with \mathbf{k}, the first equation proves the statement is true for $\left(k_{1}, \ldots, k_{r}-1\right)$. From the second equation and initial values

$$
B_{0}^{(\mathbf{k} \oplus 1, c)}= \begin{cases}1 & (r=1) \\ 0 & (r \geq 2)\end{cases}
$$

we can prove that the statement is also true for $\left(k_{1}, \ldots, k_{r}+1\right)$ by induction on n. Finally, by using (7), we can prove the statement is true for $\left(k_{1}, \ldots, k_{r}, 0\right)$.

As an example, we see the case $\mathbf{k}=$ (1). By using (4) and (6), we have

$$
\begin{aligned}
& B_{0}^{(1 ; c)}=1, \\
& B_{1}^{(1 ; c)}=-\frac{1}{2}\left(\frac{1+c}{1-c}\right), \\
& B_{2}^{(1 ; c)}=\frac{1}{2}\left(\frac{1+c}{1-c}\right)^{2}-\frac{1}{3}, \\
& B_{3}^{(1 ; c)}=-\frac{3}{4}\left(\frac{1+c}{1-c}\right)^{3}+\frac{3}{4}\left(\frac{1+c}{1-c}\right), \\
& B_{4}^{(1 ; c)}=\frac{3}{2}\left(\frac{1+c}{1-c}\right)^{4}-2\left(\frac{1+c}{1-c}\right)^{2}+\frac{7}{15} .
\end{aligned}
$$

Remark 2.5. 1. The constant term of $f_{\mathbf{k}, n}(X)$ is the polycosecant number $D_{n}^{(\mathbf{k})}(n \geq 0)$ because of $B_{n}^{(\mathbf{k} ;-1)}=D_{n}^{(\mathbf{k})}$.
2. For an index $\mathbf{k}=\left(-k_{1}, \ldots,-k_{r}\right)$ with $k_{i} \geq 0(0 \leq i \leq r)$, the polynomial $f_{\mathbf{k}, n}(X)$ is an element of $\mathbb{Z}[X]$.

3. The ordinary generating function

We consider the ordinary generating function of Bernoulli numbers, i.e.,

$$
\beta(t):=\sum_{n=0}^{\infty} B_{n} t^{n+1} \in \mathbb{Q}[[t]] .
$$

The radius of convergence of this series is zero, so we consider these types of generating functions as a formal power series in t.

It is known that the series $\beta(t)$ satisfies a simple functional equation and the sequence $\left\{B_{n}\right\}_{n \geq 0}$ of Bernoulli numbers is characterized by this functional equation.

Theorem 3.1 (e.g., Zagier [21], Chen [3, Cor. 4.6]). $\quad \beta(t)$ is the unique solution in $\mathbb{Q}[[t]]$ of the equation

$$
\begin{equation*}
\beta\left(\frac{t}{1-t}\right)-\beta(t)=t^{2} \tag{8}
\end{equation*}
$$

We define the ordinary generating function of poly-Bernoulli numbers with one parameter as

$$
\beta^{(\mathbf{k} ; c)}(t):=\sum_{n=0}^{\infty} B_{n}^{(\mathbf{k} ; c)} t^{n+1} .
$$

It is clear that $\beta^{(1 ; 0)}(t)=\beta(t)$, and by (4), we have $\beta^{(0 ; c)}(t)=t$. We can generalize Theorem 3.1 to a result on a generating function of poly-Bernoulli numbers with one parameter.

Theorem 3.2. (i) For an index $\mathbf{k} \in \mathbb{Z}^{r}$ and an integer $i \geq 1$, we have
(9) $\quad(1-c) t^{i} \beta^{(\mathbf{k} ; c)}(t)=\beta^{(\mathbf{k} \oplus i ; c)}\left(\frac{t}{1-t}\right)-(1+c) \beta^{(\mathbf{k} \oplus i ; c)}(t)+c \beta^{(\mathbf{k} \oplus i ; c)}\left(\frac{t}{1+t}\right)$.
(ii) All $\beta^{(\mathbf{k} ; c)}(t)\left(\mathbf{k} \in \mathbb{Z}^{r}\right)$ are characterized by functional equations (9) and the initial condition $\beta^{(0 ; c)}(t)=t$.
REMARK 3.3. (i) Applying $c=0, \mathbf{k}=(0)$ and $i=1$ in (9), we obtain the functional equation (8).
(ii) Applying $c=-1, \mathbf{k}=(0)$ and $i=1$ in (9), we obtain a functional equation

$$
\begin{equation*}
\delta\left(\frac{t}{1-t}\right)-\delta\left(\frac{t}{1+t}\right)=2 t^{2} \tag{10}
\end{equation*}
$$

where $\delta(t)$ is the ordinary generating function of cosecant numbers:

$$
\delta(t):=\sum_{n=0}^{\infty} D_{n} t^{n+1}
$$

This functional equation was given by Chen [3, Theorem 4.4].
To prove Theorem 3.2, we need the following lemma.
LEMMA 3.4. For sequences $\left(p_{n}\right)_{n \geq 0}$ and $\left(q_{n}\right)_{n \geq 0}$ (each p_{n} and $q_{n} \in \mathbb{R}$), let

$$
P(t):=\sum_{n=0}^{\infty} p_{n} t^{n+1}, \quad \text { and } \quad Q(t):=\sum_{n=0}^{\infty} q_{n} t^{n+1} .
$$

These series satisfy

$$
\begin{equation*}
P(t)=c_{1} Q\left(\frac{t}{1-\lambda_{1} t}\right)+\cdots+c_{r} Q\left(\frac{t}{1-\lambda_{r} t}\right) \tag{11}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{p_{n}}{n!} t^{n}=\left(c_{1} e^{\lambda_{1} t}+\cdots+c_{r} e^{\lambda_{r} t}\right) \sum_{n=0}^{\infty} \frac{q_{n}}{n!} t^{n} \tag{12}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
Q\left(\frac{t}{1-\lambda t}\right) & =\sum_{i=0}^{\infty} q_{i}\left(\frac{t}{1-\lambda t}\right)^{i+1} \\
& =\sum_{i=0}^{\infty} q_{i} \sum_{n=i}^{\infty}\binom{n}{i}(\lambda t)^{n+1} \lambda^{-i-1} \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n}\binom{n}{i} q_{i} \lambda^{n-i} t^{n+1},
\end{aligned}
$$

the right-hand side of (11) is equal to

$$
\sum_{n=0}^{\infty} \sum_{i=0}^{n}\binom{n}{i} q_{i}\left(c_{1} \lambda_{1}^{n-i}+\cdots+c_{r} \lambda_{r}^{n-i}\right) t^{n+1}
$$

Because the condition (12) is equivalent to

$$
p_{n}=\sum_{i=0}^{n}\binom{n}{i} q_{i}\left(c_{1} \lambda_{1}^{n-i}+\cdots+c_{r} \lambda_{r}^{n-i}\right)
$$

for any $n \geq 0$, we obtain the desired result.
Proof of Theorem 3.2. By the same argument of the proof of Proposition 2.2 (i), we have

$$
\sum_{n=i}^{\infty} B_{n-i}^{(\mathbf{k} ; c)} \frac{t^{n}}{n!}=\frac{1}{1-c}\left(e^{t}-(1+c)+c e^{-t}\right) \sum_{n=0}^{\infty} B_{n}^{(\mathbf{k} \oplus i ; c)} \frac{t^{n}}{n!}
$$

for any $i \geq 1$. By applying

$$
p_{n}= \begin{cases}0 & (0 \leq n<i) \\ B_{n-i}^{(\mathbf{k} ; c)} & (n \geq i)\end{cases}
$$

and $q_{n}=B_{n}^{(\mathbf{k} \oplus i ; c)}$ in Lemma 3.4, we get the proof of (i).
By the functional equation (9), the function $\beta^{(\mathbf{k} ; c)}(t)$ is determined from $\beta^{(\mathbf{k} \oplus i ; c)}(t)$. In Lemma 3.4, under the condition $\left(c_{1}, \ldots, c_{r}\right) \neq(0, \ldots, 0)$, the equation (12) means that a sequence $\left\{p_{n}\right\}_{n \geq 1}$ is determined from $\left\{q_{n}\right\}_{n \geq 1}$ and vice versa. Since the functional equation (9) is the form of (11), the function $\beta^{(\mathbf{k} \oplus i ; c)}(t)$ is also determined from $\beta^{(\mathbf{k} ; c)}(t)$. Any index can be obtained from the initial index (0) by repeating procedures $\mathbf{k} \mapsto \mathbf{k} \oplus i$ or $\mathbf{k} \oplus i \mapsto \mathbf{k}(i=1,2, \ldots)$. Therefore the statement (ii) follows.

4. The case of non-positive indices

In this section we investigate poly-Bernoulli numbers of non-positive indices, that is, $B_{n}^{(\mathbf{k} ; c)}$ for $\mathbf{k}=\left(-k_{1}, \ldots,-k_{r}\right)$ with $k_{1}, \ldots, k_{r} \geq 0$.

In the case $c=0$ and $r=1$, it is known that the numbers $C_{n}^{(-k)}$ have the following simple generating function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_{n}^{(-k)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}=\frac{1}{1-e^{x}+e^{x-y}} \tag{13}
\end{equation*}
$$

(for general $r \geq 1$, see [6, Prop. 5]). For an integer $r \geq 1$, let

$$
N_{c}\left(x, y_{1}, \ldots, y_{r}\right):=\sum_{n, k_{1}, \ldots, k_{r} \geq 0} B_{n}^{\left(\left(-k_{1}, \ldots,-k_{r}\right) ; c\right)} \frac{x^{n}}{n!} \frac{y_{1}^{k_{1}}}{k_{1}!} \cdots \frac{y_{r}^{k_{r}}}{k_{r}!}
$$

We can prove the following theorem which is a generalization of (13).

Theorem 4.1. We have
(14)

$$
\begin{aligned}
& N_{c}\left(x, y_{1}, \ldots, y_{r}\right) \\
& =\frac{(1-c) e^{x}\left(e^{x}-1\right)^{r-1}}{e^{x}-c} \prod_{i=1}^{r}\left(\frac{1}{e^{x-Y_{i}}-c e^{-Y_{i}}-e^{x}+1}-\frac{c}{e^{x-Y_{i}}-c e^{-Y_{i}}-c e^{x}+c}\right),
\end{aligned}
$$

where $Y_{i}:=\sum_{m=i}^{r} y_{m}(1 \leq i \leq r)$.
Proof. We have

$$
\begin{aligned}
& \sum_{k_{1}, \ldots, k_{r} \geq 0} \operatorname{Li}_{c}\left(\left(-k_{1}, \ldots,-k_{r}\right) ; \frac{e^{x}-1}{e^{x}-c}\right) \frac{y_{1}^{k_{1}}}{k_{1}!} \cdots \frac{y_{r}^{k_{r}}}{k_{r}!} \\
= & \sum_{m_{1}, \ldots, m_{r} \geq 1} \sum_{k_{1}, \ldots, k_{r} \geq 0} m_{1}^{k_{1}} \cdots\left(m_{1}+\cdots+m_{r}\right)^{k_{r}}\left(1-c^{m_{1}}\right) \\
& \cdots\left(1-c^{m_{r}}\right)\left(\frac{e^{x}-1}{e^{x}-c}\right)^{m_{1}+\cdots+m_{r}} \\
& \frac{y_{1}^{k_{1}}}{k_{1}!} \cdots \frac{y_{r}^{k_{r}}}{k_{r}!} \\
= & \sum_{m_{1}, \ldots, m_{r} \geq 1} e^{m_{1} y_{1}} \cdots e^{\left(m_{1}+\cdots+m_{r}\right) y_{r}}\left(1-c^{m_{1}}\right) \cdots\left(1-c^{m_{r}}\right)\left(\frac{e^{x}-1}{e^{x}-c}\right)^{m_{1}+\cdots+m_{r}} \\
= & \sum_{m_{1}, \ldots, m_{r} \geq 1}\left(e^{Y_{1}} \frac{e^{x}-1}{e^{x}-c}\right)^{m_{1}}\left(1-c^{m_{1}}\right) \cdots\left(e^{Y_{r}} \frac{e^{x}-1}{e^{x}-c}\right)^{m_{r}}\left(1-c^{m_{r}}\right) \\
= & \prod_{i=1}^{r}\left(\frac{e^{Y_{i}} \frac{e^{x}-1}{e^{x}-c}}{1-e^{Y_{i}} \frac{e^{x}-1}{e^{x}-c}}-\frac{c e^{Y_{i}} \frac{e^{x}-1}{e^{x}-c}}{1-c e^{Y_{i}} \frac{e^{x}-1}{e^{x}-c}}\right) \\
= & \left(e^{x}-1\right)^{r} \prod_{i=1}^{r}\left(\frac{1}{e^{x-Y_{i}}-c e^{-Y_{i}}-e^{x}+1}-\frac{e^{x-Y_{i}}-c e^{-Y_{i}}-c e^{x}+c}{e^{x}}\right) .
\end{aligned}
$$

By multiplying $(1-c) e^{x} /\left(\left(e^{x}-1\right)\left(e^{x}-c\right)\right)$ to both sides, we get (14).

When $r=1$, Theorem 4.1 deduces

$$
\begin{align*}
N_{c}(x, y) & =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} B_{n}^{(-k ; c)} \frac{x^{n}}{n!} \frac{y^{k}}{k!} \tag{15}\\
& =\frac{(1-c) e^{x}}{e^{x}-c}\left(\frac{1}{e^{x-y}-c e^{-y}-e^{x}+1}-\frac{c}{e^{x-y}-c e^{-y}-c e^{x}+c}\right) .
\end{align*}
$$

In particular, the function $N_{0}(x, y)=\frac{1}{1-e^{x}+e^{x-y}}$ gives the generating function (13) of $C_{n}^{(-k)}$.

In the remainder of this section we discuss the numbers $B_{n}^{(-k ; c)}\left(k \in \mathbb{Z}_{\geq 0}\right)$ having depth 1 . When $c=-1$, a simple symmetric formula

$$
\begin{equation*}
D_{2 n}^{(-2 k-1)}=D_{2 k}^{(-2 n-1)}(n, k \geq 0) \tag{16}
\end{equation*}
$$

is known ([9, Theorem 4]). Since $D_{2 n+1}^{(-k)}=0$ for all $n, k \geq 0$, we can state a symmetric formula in the form of

$$
\begin{equation*}
D_{n}^{(-k-1)}=D_{k}^{(-n-1)}(n, k \geq 0, n+k: \text { even }) \tag{17}
\end{equation*}
$$

The following theorem states that this formula also holds for poly-Bernoulli numbers with one parameter.

THEOREM 4.2. The following equation holds:

$$
B_{n}^{(-k-1 ; c)}=B_{k}^{(-n-1 ; c)}(n, k \geq 0, n+k: \text { even }) .
$$

Proof. First we remember $N_{c}(x, y)$ is a double series defined by (15). Let $g_{c}(x, y):=$ $\frac{\partial}{\partial y} N_{c}(x, y)$ and $G(x, y):=g_{c}(x, y)+g_{c}(-x,-y)$. Because

$$
G(x, y)=2 \sum_{\substack{n, k \geq 0 \\ n+k: \text { even }}} B_{n}^{(-k-1, c)} \frac{x^{n}}{n!} \frac{y^{k}}{k!},
$$

we only have to prove that $G(x, y)=G(y, x)$. By (15), we have

$$
\begin{align*}
g_{c}(x, y) & =\frac{(1-c) e^{x}}{e^{x}-c}\left(\frac{-\left(-e^{x-y}+c e^{-y}\right)}{\left(e^{x-y}-c e^{-y}-e^{x}+1\right)^{2}}+\frac{c\left(-e^{x-y}+c e^{-y}\right)}{\left(e^{x-y}-c e^{-y}-c e^{x}+c\right)^{2}}\right) \\
& =(1-c) e^{x}\left(\frac{e^{-y}}{\left(e^{x-y}-c e^{-y}-e^{x}+1\right)^{2}}+\frac{-c e^{-y}}{\left(e^{x-y}-c e^{-y}-c e^{x}+c\right)^{2}}\right) \tag{18}\\
& =\frac{(1-c) e^{x+y}}{\left(e^{x}-c-e^{x+y}+e^{y}\right)^{2}}+\frac{-c(1-c) e^{x+y}}{\left(e^{x}-c-c e^{x+y}+c e^{y}\right)^{2}} .
\end{align*}
$$

Let the first part of the last line of (18) be $I(x, y)$ and the second part $J(x, y)$. It is easily showed that $I(x, y)=I(y, x)$ and $J(x, y)=J(-y,-x)$. Then we have

$$
\begin{aligned}
G(x, y) & =I(x, y)+J(x, y)+I(-x,-y)+J(-x,-y) \\
& =I(y, x)+J(-y,-x)+I(-y,-x)+J(y, x) \\
& =g_{c}(y, x)+g_{c}(-y,-x) \\
& =G(y, x)
\end{aligned}
$$

and this completes the proof.
REMARK 4.3. In the case $c=0$, the function $g_{0}(x, y)$ satisfies a simple relation $g_{0}(x, y)=g_{0}(y, x)$. From this equation, we obtain the relation

$$
C_{n}^{(-k-1)}=C_{k}^{(-n-1)} \quad(n, k \geq 0)
$$

(see e.g., [8, Section 2]).

5. Arakawa-Kaneko zeta functions with one prameter

In this section we consider an analogue of the Arakawa-Kaneko zeta function. We first see a sufficient condition for convergence of the function $\mathrm{Li}_{c}(\mathbf{k} ; z)$.

Proposition 5.1. For an index $\mathbf{k} \in \mathbb{Z}^{r}$, the function $\mathrm{Li}_{c}(\mathbf{k} ; z)$ is absolutely convergent if $|z|< \begin{cases}1 & (|c| \leq 1), \\ 1 /|c| & (|c|>1) .\end{cases}$

Proof. When $|c| \leq 1$, we have $\left|1-c^{m}\right| \leq 1+|c|^{m} \leq 2$ for any positive integer m. Therefore

$$
\left|\operatorname{Li}_{c}(\mathbf{k} ; z)\right| \leq \sum_{m_{1}, \ldots, m_{r} \geq 1} \frac{2^{r}|z|^{m_{1}+\cdots+m_{r}}}{m_{1}^{k_{1}}\left(m_{1}+m_{2}\right)^{k_{2}} \cdots\left(m_{1}+\cdots+m_{r}\right)^{k_{r}}}
$$

and this series converges if $|z|<1$.
When $|c|>1$, we have $\left|1-c^{m}\right| \leq 2|c|^{m}$ for any positive integer m. Therefore

$$
\left|\mathrm{Li}_{c}(\mathbf{k} ; z)\right| \leq \sum_{m_{1}, \ldots, m_{r} \geq 1} \frac{2^{r}|c z|^{m_{1}+\cdots+m_{r}}}{m_{1}^{k_{1}}\left(m_{1}+m_{2}\right)^{k_{2} \cdots\left(m_{1}+\cdots+m_{r}\right)^{k_{r}}}}
$$

and this series converges if $|z|<1 /|c|$.
Assume that $-1 \leq c<1$. For an index $\mathbf{k} \in \mathbb{Z}^{r}$ and $s \in \mathbb{C}$ with $\Re(s)>1-r$, we define a generalization of the Arakawa-Kaneko zeta function as

$$
\begin{equation*}
\xi_{c}(\mathbf{k} ; s):=\frac{1}{\Gamma(s)} \int_{0}^{\infty} z^{s-1} \frac{(1-c) e^{z}}{\left(e^{z}-1\right)\left(e^{z}-c\right)} \operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{z}-1}{e^{z}-c}\right) d z \tag{19}
\end{equation*}
$$

By

$$
0 \leq \frac{e^{z}-1}{e^{z}-c}<1 \quad(z \in[0, \infty))
$$

and

$$
\operatorname{Li}_{c}\left(\mathbf{k} ; \frac{e^{z}-1}{e^{z}-c}\right)=O\left(z^{r}\right) \text { as } z \rightarrow+0
$$

the integral (19) is convergent for $\Re(s)>1-r$. When $c=0$, the function $\xi_{0}(\mathbf{k} ; s)$ coincides with the original Arakawa-Kaneko zeta function $\xi(\mathbf{k} ; s)$ ([1]). When $c=-1$, the function $\xi_{-1}(\mathbf{k} ; s)$ coincides with a level two analogue of the Arakawa-Kaneko zeta function, denoted by $\psi(\mathbf{k} ; s)$ in [11].

By the well-known method using contour integrals, the function $\xi_{c}(\mathbf{k} ; s)$ can be continued to an entire function, and its values at non-positive integers are given by

$$
\xi_{c}(\mathbf{k} ;-m)=(-1)^{m} B_{m}^{(\mathbf{k} ; c)} \quad(m=0,1,2, \ldots)
$$

(cf. [10]).
For two indices $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{Z}_{>0}^{r}$ and $\mathbf{j}=\left(j_{1}, \ldots, j_{r}\right) \in \mathbb{Z}_{\geq 0}^{r}$, we use the notation

$$
b(\mathbf{k} ; \mathbf{j}):=\prod_{i=1}^{r}\binom{k_{i}+j_{i}-1}{j_{i}} .
$$

Then we obtain the following theorem and the results for $c=0$ and $c=-1$ are known [10, Theorem 2.5] [19, Theorem 4.3]. This theorem can be proved in parallel with the proof in [13] [15] and we omit its proof.

THEOREM 5.2. For $\mathbf{k} \in \mathbb{Z}_{>0}^{r}$ and $m \in \mathbb{Z}_{>0}$, it holds that

$$
\xi_{c}(\mathbf{k} ; m)=\sum_{\mathbf{j}} b\left((\mathbf{k} \oplus 1)^{\dagger} ; \mathbf{j}\right) Z_{c}\left((\mathbf{k} \oplus 1)^{\dagger}+\mathbf{j}\right)
$$

where the sum runs over all $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ with $j_{1}+\cdots+j_{n}=m-1$ and n is the depth of $(\mathbf{k} \oplus 1)^{\dagger}$. Here $\mathbf{k}+\mathbf{j}$ means the componentwise sum of \mathbf{k} and \mathbf{j}.

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number 20K03523.

References

[1] T. Arakawa and M. Kaneko: Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 189-209.
[2] F. Chapoton: Multiple T-values with one parameter, Tsukuba J. Math. 46 (2022), 153-163.
[3] K.-W. Chen: A summation on Bernoulli numbers, J. Number Theory 111 (2005), 372-391.
[4] M. Hirose, K. Iwaki, N. Sato, K. Tasaka: Duality/sum formulas for iterated integrals and their application to multiple zeta values, J. Number Theory 195 (2019), 72-83.
[5] K. Imatomi: Multiple zeta values and multi-poly-Bernoulli numbers, Doctoral thesis, Kyushu University (2014).
[6] K. Imatomi, M. Kaneko and E. Takeda: Multi-poly-Bernoulli numbers and finite multiple zeta values, J. Integer Seq. 17 (2014), Article 14.4.5.
[7] M. Kaneko: Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), 199-206.
[8] M. Kaneko: Poly-Bernoulli numbers and related zeta functions, Algebraic and Analytic Aspects of Zeta Functions and L-functions, MSJ Mem. 21 (2010), 73-85.
[9] M. Kaneko, M. Pallewatta and H. Tsumura: On polycosecant numbers, J. Integer Sequences 23 (2020), Article 20.6 .4 (the earlier version is arXiv:1907.13441).
[10] M. Kaneko and H. Tsumura: Multi-poly-bernoulli numbers and related zeta functions, Nagoya Math. J. 232 (2018), 19-54.
[11] M. Kaneko and H. Tsumura: Zeta functions connecting multiple zeta values and poly-Bernoulli numbers, Advanced Studies in Pure Math. 84 (2020), 181-204.
[12] M. Kaneko and H. Tsumura: On multiple zeta values of level two, Tsukuba J. Math. 44 (2020), 213-234.
[13] N. Kawasaki and Y. Ohno, Combinatorial proofs of identities for special values of Arakawa-Kaneko multiple zeta functions, Kyushu J. Math. 72 (2018), 215-222.
[14] V. Kowalenko: Applications of the cosecant and related numbers, Acta Appl. Math. 114 (2011), 15-134.
[15] Y. Ohno and H. Wayama: Interpolation between Arakawa-Kaneko and Kaneko-Tsumura multiple zeta functions, Comment. Math. Univ. St. Pauli 68 (2020), 83-91.
[16] M. Pallewatta: On polycosecant numbers and level two generalization of Arakawa-Kaneko zeta functions, Doctoral thesis, Kyushu University (2020).
[17] Y. Sasaki: On generalized poly-Bernoulli numbers and related L-functions, J. Number Theory 132 (2012), 156-170.
[18] Ce Xu: Duality of weighted sum formulas of alternating multiple T-values, Bull. Korean Math. Soc. 58 (2021), 1261-1278.
[19] Ce Xu and J. Zhao: Variants of multiple zeta values with even and odd summation indices, Math. Z. 300 (2022), 3109-3142.
[20] S. Yamamoto: Duality of one-variable multiple polylogarithms and their q-analogues, arXiv:2010.05505.
[21] D. Zagier: A modified Bernoulli number, Nieuw Arch. Wisk. (4) 16 (1998), 63-72.

K. KAmAnO
Department of Robotics, Osaka Institute of Technology,
1-45 Chaya-machi, Kita-ku, Osaka 530-8585, Japan
e-mail: ken.kamano@oit.ac.jp

