Poly-Bernoulli Numbers with One Parameter and Their Generating Functions

by

Ken KAMANO

(Received November 26, 2022) (Revised January 27, 2023)

Abstract. Poly-Bernoulli numbers with one parameter are introduced by using a generalization of multi-polylogarithm functions. These numbers interpolate poly-Bernoulli numbers and polycosecant numbers. We prove a functional equation of the ordinary generating function of them, and in the negative index case, we give an explicit representation of the exponential generating function and a symmetric formula. We also consider an analogue of the Arakawa-Kaneko zeta function related to poly-Bernoulli numbers and multiple T-values with one parameter.

1. Introduction

Bernoulli numbers B_n ($n \ge 0$) are rational numbers defined by the following generating function:

$$\frac{t}{e^t-1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!} \, .$$

Two kinds of poly-Bernoulli numbers, which are generalizations of B_n , are defined as follows:

$$\frac{\text{Li}_{\mathbf{k}}(1-e^{-t})}{e^{t}-1} = \sum_{n=0}^{\infty} C_{n}^{(\mathbf{k})} \frac{t^{n}}{n!} \text{ and } \frac{\text{Li}_{\mathbf{k}}(1-e^{-t})}{1-e^{-t}} = \sum_{n=0}^{\infty} B_{n}^{(\mathbf{k})} \frac{t^{n}}{n!},$$

where $\mathbf{k} = (k_1, \dots, k_r) \in \mathbb{Z}^r$ is a multi-index and $\text{Li}_{\mathbf{k}}(z)$ is the multi-polylogarithm function defined by

$$\operatorname{Li}_{\mathbf{k}}(z) := \sum_{\substack{0 < m_1 < \dots < m_r \\ m_i \in \mathbb{Z}}} \frac{z^{m_r}}{m_1^{k_1} m_2^{k_2} \cdots m_r^{k_r}} \in \mathbb{Q}[[z]].$$

These numbers for r = 1 were first introduced by Kaneko [7] and Arakawa-Kaneko [1] (see e.g. [5][6] for general $r \ge 1$). Since $\text{Li}_1(z) = -\log(1-z)$, we have $C_n^{(1)} = B_n$ and $B_n^{(1)} = (-1)^n B_n$ for $n \ge 0$.

As a level two analogue of $C_n^{(k)}$, Kaneko-Pallewatta-Tsumura (the earlier version of [9], also see [16]) introduced polycosecant numbers $D_n^{(k)}$ as follows:

$$\frac{\mathrm{A}(\mathbf{k};\tanh\frac{t}{2})}{\sinh t} = \sum_{n=0}^{\infty} D_n^{(\mathbf{k})} \frac{t^n}{n!},$$

where

(1)
$$A(\mathbf{k}; z) := 2^r \sum_{\substack{0 < m_1 < \dots < m_r \\ m_i \equiv i \pmod{2}}} \frac{z^{m_r}}{m_1^{k_1} \cdots m_r^{k_r}} \in \mathbb{Q}[[z]].$$

When $\mathbf{k} = (1)$, the numbers $D_n^{(1)} = D_n$ are called cosecant numbers (cf. [14]).

For an index $\mathbf{k} = (k_1, \ldots, k_r) \in \mathbb{Z}^r$ $(r \ge 1)$, *r* is called the depth of \mathbf{k} . An index $\mathbf{k} = (k_1, \ldots, k_r)$ is said to be admissible if $k_1, \ldots, k_{r-1} \ge 1$ and $k_r \ge 2$. If $\mathbf{k} = (k_1, \ldots, k_r)$ is admissible, then $\text{Li}_{\mathbf{k}}(z)$ and $A(\mathbf{k}; z)$ are convergent at z = 1. The values $\zeta(\mathbf{k}) := \text{Li}_{\mathbf{k}}(1)$ and $T(\mathbf{k}) := A(\mathbf{k}; 1)$ are called multiple zeta values (MZVs) and multiple *T*-values (MTVs), respectively. MTVs were recently introduced by Kaneko-Tsumura [11] and have some interesting similarities to MZVs (cf. [11] [12] [18]). We remark that the concept of MTVs was essentially first given by Sasaki (see [17, Definition 4]).

For a parameter c < 1 and an admissible index $\mathbf{k} = (k_1, \dots, k_r)$, Chapoton [2] introduced MTVs with one parameter by iterated integrals. Let

$$\omega_0(t) := \frac{dt}{t}, \quad \omega_1(t) := \frac{dt}{1-t} - \frac{cdt}{1-ct}$$

and $I(\varepsilon_1, \dots, \varepsilon_k) := \int \cdots \int_{0 < t_1 < \dots < t_k < 1} \omega_{\varepsilon_1}(t_1) \cdots \omega_{\varepsilon_k}(t_k),$

where each $\varepsilon_i = 0$ or 1. For an admissible index $\mathbf{k} = (k_1, \dots, k_r)$, MTVs with one parameter are defined as

$$Z_c(\mathbf{k}) := I(1, \{0\}^{k_1-1}, \dots, 1, \{0\}^{k_r-1}).$$

When c = 0 it coincides with an integral representation of MZVs, i.e., $Z_0(\mathbf{k}) = \zeta(\mathbf{k})$. When c = -1, we have $Z_{-1}(\mathbf{k}) = T(\mathbf{k})$ because $\omega_1(t)$ becomes $2dt/(1-t^2)$. Therefore $Z_c(\mathbf{k})$ can be considered as an interpolation of $\zeta(\mathbf{k})$ and $T(\mathbf{k})$.

An admissible index **k** can be written in the form

$$\mathbf{k} = (\underbrace{1, \dots, 1}_{a_1-1}, b_1 + 1, \underbrace{1, \dots, 1}_{a_2-1}, b_2 + 1, \dots, \underbrace{1, \dots, 1}_{a_m-1}, b_m + 1)$$

for some $a_i, b_i \in \mathbb{Z}_{>0}$ $(1 \le i \le m)$. Then the dual index \mathbf{k}^{\dagger} of \mathbf{k} is defined as

$$\mathbf{k}^{\dagger} = (\underbrace{1, \dots, 1}_{b_m - 1}, a_m + 1, \underbrace{1, \dots, 1}_{b_{m-1} - 1}, a_{m-1} + 1, \dots, \underbrace{1, \dots, 1}_{b_1 - 1}, a_1 + 1)$$

Chapoton proved a duality formula $Z_c(\mathbf{k}) = Z_c(\mathbf{k}^{\dagger})$, which is a natural generalization of the classical duality formulas for MZVs and MTVs. In [2], some numerical observations of

the graded dimensions of the \mathbb{Q} -vector spaces spanned by MTVs with one parameter were also reported.

For an admissible index **k** and $-1 \le c < 1$, it is easily checked that $Z_c(\mathbf{k})$ has the following series representation:

$$Z_{c}(\mathbf{k}) = \sum_{m_{1},\dots,m_{r} \ge 1} \frac{(1 - c^{m_{1}}) \cdots (1 - c^{m_{r}})}{m_{1}^{k_{1}} (m_{1} + m_{2})^{k_{2}} \cdots (m_{1} + \dots + m_{r})^{k_{r}}}$$

REMARK 1.1. Yamamoto [20] indicated that a duality formula proved in [4] is equivalent to that for the following generalized polylogarithms:

$$\tilde{\text{Li}}(\tilde{\mathbf{k}}; z) := \sum_{0=m_0 < m_1 < \dots < m_r} \prod_{i=1}^r \frac{\mu_i + (-1)^{\mu_i} z^{m_i - m_{i-1}}}{m_i^{k_i}} \ (|z| < 1) \,,$$

where $\tilde{\mathbf{k}} = ((k_1, \mu_1), \dots, (k_r, \mu_r)) \in (\mathbb{Z}_{>0} \times \{0, 1\})^r$ with $(k_r, \mu_r) \neq (1, 1)$. For an admissible index $\mathbf{k} = (k_1, \dots, k_r)$, the function $Z_c(\mathbf{k})$ can be expressed as $\tilde{\mathrm{Li}}(\tilde{\mathbf{k}}; c)$ with $\mu_i = 1$ $(1 \leq i \leq r)$ in Yamamoto's notation.

For a parameter $c \in \mathbb{R} \setminus \{1\}$ and an index $\mathbf{k} = (k_1, \ldots, k_r) \in \mathbb{Z}^r$ (not necessarily admissible), we define multi-polylogarithm functions with one parameter as

(2)
$$\operatorname{Li}_{c}(\mathbf{k}; z) := \sum_{m_{1}, \dots, m_{r} \ge 1} \frac{(1 - c^{m_{1}}) \cdots (1 - c^{m_{r}}) z^{m_{1} + \dots + m_{r}}}{m_{1}^{k_{1}} (m_{1} + m_{2})^{k_{2}} \cdots (m_{1} + \dots + m_{r})^{k_{r}}} \in z^{r} \mathbb{R}[[z]].$$

Remark that $\text{Li}_0(\mathbf{k}; z) = \text{Li}_{\mathbf{k}}(z)$ and $\text{Li}_{-1}(\mathbf{k}; z) = A(\mathbf{k}; z)$. When **k** is an admissible index, $-1 \le c < 1$ and z = 1, the infinite series (2) converges and it coincides with Chapoton's $Z_c(\mathbf{k})$.

Throughout the paper, we assume that *c* is a fixed real number not equal to 1. For such *c* and $\mathbf{k} \in \mathbb{Z}^r$, we introduce poly-Bernoulli numbers $B_n^{(\mathbf{k};c)}$ with one parameter by the following generating function:

(3)
$$\left(\frac{1}{e^t - 1} - \frac{c}{e^t - c}\right) \operatorname{Li}_c\left(\mathbf{k}; \frac{e^t - 1}{e^t - c}\right) = \sum_{n=0}^{\infty} B_n^{(\mathbf{k};c)} \frac{t^n}{n!}$$

One can see that $B_n^{(\mathbf{k};0)} = C_n^{(\mathbf{k})}$ and $B_n^{(\mathbf{k};-1)} = D_n^{(\mathbf{k})}$, hence the number $B_n^{(\mathbf{k};c)}$ interpolates $C_n^{(\mathbf{k})}$ and $D_n^{(\mathbf{k})}$. When $\mathbf{k} = (0)$, we have $\text{Li}_c(0; z) = z/(1-z) - cz/(1-cz)$ and the left-hand side of (3) becomes 1. Hence we have

(4)
$$B_n^{(0;c)} = \begin{cases} 1 & (n=0), \\ 0 & (n \ge 1), \end{cases}$$

for any $c \in \mathbb{R} \setminus \{1\}$. In general, as we will see in the next section, the numbers $B_n^{(\mathbf{k};c)}$ can be expressed as a polynomial in (1 + c)/(1 - c).

This paper is organized as follows. In Section 2 we give recurrence relations of poly-Bernoulli numbers $B_n^{(\mathbf{k};c)}$ with one parameter. In Section 3 we treat the ordinary generating function of $B_n^{(\mathbf{k};c)}$. It is known that an ordinary generating function of the classical Bernoulli numbers satisfies a simple functional equation. We give a generalization of this result

and prove that this functional equation determines $B_n^{(\mathbf{k};c)}$ inductively. In Section 4 we focus on $B_n^{(\mathbf{k};c)}$ for negative indices and give an explicit representation of a generating function of them. Moreover, in the case $\mathbf{k} = -k$ ($k \in \mathbb{Z}_{\geq 0}$), we give a kind of duality formula. In the last Section 5 we give short remarks on an analogue of the Arakawa-Kaneko zeta function. This function can be analytically continued to an entire function, and its values at non-positive integers are expressed by poly-Bernoulli numbers with one parameter. Moreover, its values at positive integers are expressed in terms of multiple *T*-values with one parameter.

2. Recurrence relations

For an index $\mathbf{k} = (k_1, \dots, k_r) \in \mathbb{Z}^r$ and an integer $i \ge 1$, we set $\mathbf{k} \oplus i := (k_1, \dots, k_r)$

 $k_{r-1}, k_r + 1, \overbrace{1, \dots, 1}^{n}$). For any integer *j*, we also denote the index (k_1, \dots, k_r, j) by **k**, *j* if there is no risk of confusion. For example, Li_c (**k**, 1; *z*) means Li_c ((3, 2, 1); *z*) for **k** = (3, 2).

In this section we give some fundamental properties of $B_n^{(\mathbf{k};c)}$. Let us start with the following proposition.

PROPOSITION 2.1. For any index $\mathbf{k} \in \mathbb{Z}^r$ and $c \neq 0$, we have $B_n^{(\mathbf{k};1/c)} = (-1)^{r+n-1}$ $B_n^{(\mathbf{k},c)}$ $(n \geq 0)$.

Proof. By definition, the equation $\text{Li}_{1/c}(\mathbf{k}; z) = (-1)^r \text{Li}_c(\mathbf{k}; z/c)$ holds for $c \neq 0$. Hence we have

$$\sum_{n=0}^{\infty} B_n^{(\mathbf{k};1/c)} \frac{t^n}{n!} = \frac{(1-\frac{1}{c})e^t}{(e^t-1)(e^t-\frac{1}{c})} \operatorname{Li}_{1/c} \left(\mathbf{k}; \frac{e^t-1}{e^t-\frac{1}{c}}\right)$$
$$= \frac{-(1-c)e^t}{(e^t-1)(ce^t-1)} (-1)^r \operatorname{Li}_c \left(\mathbf{k}; \frac{e^t-1}{ce^t-1}\right)$$
$$= \frac{(-1)^{r-1}(1-c)e^{-t}}{(e^{-t}-1)(e^{-t}-c)} \operatorname{Li}_c \left(\mathbf{k}; \frac{e^{-t}-1}{e^{-t}-c}\right)$$
$$= (-1)^{r-1} \sum_{n=0}^{\infty} (-1)^n B_n^{(\mathbf{k};c)} \frac{t^n}{n!}$$
and this completes the proof.

For any index $\mathbf{k} \in \mathbb{Z}^r$ $(r \ge 1)$, we have

$$\begin{cases} \frac{d}{dz} \operatorname{Li}_{c}(\mathbf{k} \oplus 1; z) = \frac{1}{z} \operatorname{Li}_{c}(\mathbf{k}; z), \\ \frac{d}{dz} \operatorname{Li}_{c}(\mathbf{k}, 1; z) = \left(\frac{1}{1-z} - \frac{c}{1-cz}\right) \operatorname{Li}_{c}(\mathbf{k}; z) \end{cases}$$

by straightforward calculation. Thus we have

(5)
$$\begin{cases} \frac{d}{dt} \operatorname{Li}_{c} \left(\mathbf{k} \oplus 1; \frac{e^{t} - 1}{e^{t} - c} \right) = \frac{(1 - c)e^{t}}{(e^{t} - 1)(e^{t} - c)} \operatorname{Li}_{c} \left(\mathbf{k}; \frac{e^{t} - 1}{e^{t} - c} \right), \\ \frac{d}{dt} \operatorname{Li}_{c} \left(\mathbf{k}, 1; \frac{e^{t} - 1}{e^{t} - c} \right) = \operatorname{Li}_{c} \left(\mathbf{k}; \frac{e^{t} - 1}{e^{t} - c} \right). \end{cases}$$

By using these equations, we get the following recurrence relations for poly-Bernoulli numbers with one parameter.

PROPOSITION 2.2. For an index $\mathbf{k} \in \mathbb{Z}^r$ $(r \ge 1)$, the following equalities hold: (i)

(6)
$$B_n^{(\mathbf{k};c)} = \frac{1}{1-c} \sum_{i=0}^n \binom{n+1}{i+1} B_{n-i}^{(\mathbf{k}\oplus 1;c)} (1-c(-1)^i) \quad (n \ge 0) \,.$$

(ii)

(7)
$$B_n^{(\mathbf{k},0;c)} = \frac{1}{1-c} \sum_{i=1}^n \binom{n}{i} B_{n-i}^{(\mathbf{k};c)} (1+c(-1)^i) \quad (n \ge 0) \,.$$

Proof. (i) By the first equation of (5), we have

$$\operatorname{Li}_{c}\left(\mathbf{k}\oplus 1; \frac{e^{t}-1}{e^{t}-c}\right) = \sum_{n=1}^{\infty} B_{n-1}^{(\mathbf{k};c)} \frac{t^{n}}{n!}$$

Here we used the fact $\operatorname{Li}_c\left(\mathbf{k}\oplus 1; \frac{e^t-1}{e^t-c}\right)$ has no constant term as an element of $\mathbb{Q}[[t]]$. On the other hand, by definition, we have

$$\operatorname{Li}_{c}\left(\mathbf{k}\oplus 1; \frac{e^{t}-1}{e^{t}-c}\right) = \frac{(e^{t}-1)(e^{t}-c)}{(1-c)e^{t}} \sum_{n=0}^{\infty} B_{n}^{(\mathbf{k}\oplus 1;c)} \frac{t^{n}}{n!}.$$

Therefore we have

$$\sum_{n=1}^{\infty} B_{n-1}^{(\mathbf{k};c)} \frac{t^n}{n!} = \frac{1}{1-c} (e^t - 1 + c(e^{-t} - 1)) \sum_{n=0}^{\infty} B_n^{(\mathbf{k}\oplus 1;c)} \frac{t^n}{n!}.$$

By comparing the coefficients of both sides, we have

$$B_{n-1}^{(\mathbf{k};c)} = \frac{1}{1-c} \sum_{i=1}^{n} {n \choose i} (1+c(-1)^{i}) B_{n-i}^{(\mathbf{k}\oplus 1;c)}.$$

By shifting n to n + 1 and i to i + 1, we get (6).

(ii) By definition, it holds that $\operatorname{Li}_{c}(\mathbf{k}, 0; z) = \left(\frac{z}{1-z} - \frac{cz}{1-cz}\right)\operatorname{Li}_{c}(\mathbf{k}; z)$ and $\operatorname{Li}_{c}\left(\mathbf{k}, 0; \frac{e^{t}-1}{e^{t}-c}\right) = \left(\frac{\frac{e^{t}-1}{e^{t}-c}}{1-\frac{e^{t}-1}{e^{t}-c}} - \frac{c\frac{e^{t}-1}{e^{t}-c}}{1-c\frac{e^{t}-1}{e^{t}-c}}\right)\operatorname{Li}_{c}\left(\mathbf{k}; \frac{e^{t}-1}{e^{t}-c}\right)$

$$= \frac{1}{1-c} (e^{t} - 1 + c(e^{-t} - 1)) \operatorname{Li}_{c} \left(\mathbf{k}; \frac{e^{t} - 1}{e^{t} - c} \right) \,.$$

Therefore we have

$$\sum_{n=0}^{\infty} B_n^{(\mathbf{k},0;c)} \frac{t^n}{n!} = \frac{1}{1-c} (e^t - 1 + c(e^{-t} - 1)) \sum_{n=0}^{\infty} B_n^{(\mathbf{k};c)} \frac{t^n}{n!}$$

By comparing the coefficients of both sides, we obtain (7).

REMARK 2.3. By applying c = -1 in Proposition 2.2, we have

$$D_n^{(\mathbf{k})} = \sum_{\substack{i=0\\i: even}}^n \binom{n+1}{i+1} D_{n-i}^{(\mathbf{k}\oplus 1)}$$
$$D_n^{(\mathbf{k},0)} = \sum_{\substack{i=1\\i: odd}}^n \binom{n}{i} D_{n-i}^{(\mathbf{k})}$$

for any index $\mathbf{k} \in \mathbb{Z}^r$. These formulas were given by Pallewatta [16] (see Prop. 3.7 and its proof).

PROPOSITION 2.4. Let $\mathbf{k} \in \mathbb{Z}^r$ be an index and $n \ge 0$ an integer. There exists a polynomial $f_{\mathbf{k},n}(X) \in \mathbb{Q}[X]$ not depending on c such that

$$B_n^{(\mathbf{k};c)} = f_{\mathbf{k},n} \left(\frac{1+c}{1-c}\right)$$

Moreover, the polynomial $f_{\mathbf{k},n}(X)$ *is even if* $n \neq r \pmod{2}$ *and odd if* $n \equiv r \pmod{2}$ *.*

Proof. By (4), the statement is true for $\mathbf{k} = (0)$. Hence we only have to prove that if the statement is true for $\mathbf{k} = (k_1, \ldots, k_r)$ then it is also true for $(k_1, \ldots, k_r \pm 1)$ and $(k_1, \ldots, k_r, 0)$.

Assume that the statement is true for $\mathbf{k} = (k_1, \dots, k_r) \in \mathbb{Z}^r$. By (6), we have

$$B_{n}^{(\mathbf{k};c)} = \sum_{\substack{0 \le i \le n \\ i: \text{ even}}} \binom{n+1}{i+1} B_{n-i}^{(\mathbf{k}\oplus1;c)} + \sum_{\substack{0 \le i \le n \\ i: \text{ odd}}} \binom{n+1}{i+1} B_{n-i}^{(\mathbf{k}\oplus1;c)} \frac{1+c}{1-c}$$

or equivalently,

$$B_{n}^{(\mathbf{k}\oplus 1;c)} = \frac{1}{n+1} B_{n}^{(\mathbf{k};c)} - \frac{1}{n+1} \left(\sum_{\substack{1 \le i \le n \\ i: \text{ even}}} \binom{n+1}{i+1} B_{n-i}^{(\mathbf{k}\oplus 1;c)} + \sum_{\substack{1 \le i \le n \\ i: \text{ odd}}} \binom{n+1}{i+1} B_{n-i}^{(\mathbf{k}\oplus 1;c)} \frac{1+c}{1-c} \right).$$

By replacing $\mathbf{k} \oplus 1$ with \mathbf{k} , the first equation proves the statement is true for $(k_1, \ldots, k_r - 1)$. From the second equation and initial values

$$B_0^{(\mathbf{k}\oplus 1,c)} = \begin{cases} 1 & (r=1), \\ 0 & (r\ge 2), \end{cases}$$

we can prove that the statement is also true for $(k_1, \ldots, k_r + 1)$ by induction on *n*. Finally, by using (7), we can prove the statement is true for $(k_1, \ldots, k_r, 0)$.

As an example, we see the case $\mathbf{k} = (1)$. By using (4) and (6), we have

$$\begin{split} B_0^{(1;c)} &= 1, \\ B_1^{(1;c)} &= -\frac{1}{2} \left(\frac{1+c}{1-c} \right), \\ B_2^{(1;c)} &= \frac{1}{2} \left(\frac{1+c}{1-c} \right)^2 - \frac{1}{3}, \\ B_3^{(1;c)} &= -\frac{3}{4} \left(\frac{1+c}{1-c} \right)^3 + \frac{3}{4} \left(\frac{1+c}{1-c} \right), \\ B_4^{(1;c)} &= \frac{3}{2} \left(\frac{1+c}{1-c} \right)^4 - 2 \left(\frac{1+c}{1-c} \right)^2 + \frac{7}{15} \end{split}$$

- REMARK 2.5. 1. The constant term of $f_{\mathbf{k},n}(X)$ is the polycosecant number $D_n^{(\mathbf{k})}$ $(n \ge 0)$ because of $B_n^{(\mathbf{k};-1)} = D_n^{(\mathbf{k})}$.
- 2. For an index $\mathbf{k} = (-k_1, \dots, -k_r)$ with $k_i \ge 0$ ($0 \le i \le r$), the polynomial $f_{\mathbf{k},n}(X)$ is an element of $\mathbb{Z}[X]$.

3. The ordinary generating function

We consider the ordinary generating function of Bernoulli numbers, i.e.,

$$\beta(t) := \sum_{n=0}^{\infty} B_n t^{n+1} \in \mathbb{Q}[[t]].$$

The radius of convergence of this series is zero, so we consider these types of generating functions as a formal power series in t.

It is known that the series $\beta(t)$ satisfies a simple functional equation and the sequence $\{B_n\}_{n>0}$ of Bernoulli numbers is characterized by this functional equation.

THEOREM 3.1 (e.g., Zagier [21], Chen [3, Cor. 4.6]). $\beta(t)$ is the unique solution in $\mathbb{Q}[[t]]$ of the equation

(8)
$$\beta\left(\frac{t}{1-t}\right) - \beta(t) = t^2.$$

We define the ordinary generating function of poly-Bernoulli numbers with one parameter as

$$\beta^{(\mathbf{k};c)}(t) := \sum_{n=0}^{\infty} B_n^{(\mathbf{k};c)} t^{n+1}.$$

It is clear that $\beta^{(1;0)}(t) = \beta(t)$, and by (4), we have $\beta^{(0;c)}(t) = t$. We can generalize Theorem 3.1 to a result on a generating function of poly-Bernoulli numbers with one parameter.

THEOREM 3.2. (i) For an index $\mathbf{k} \in \mathbb{Z}^r$ and an integer $i \ge 1$, we have

(9)
$$(1-c)t^{i}\beta^{(\mathbf{k};c)}(t) = \beta^{(\mathbf{k}\oplus i;c)}\left(\frac{t}{1-t}\right) - (1+c)\beta^{(\mathbf{k}\oplus i;c)}(t) + c\beta^{(\mathbf{k}\oplus i;c)}\left(\frac{t}{1+t}\right).$$

(ii) All $\beta^{(\mathbf{k};c)}(t)$ ($\mathbf{k} \in \mathbb{Z}^r$) are characterized by functional equations (9) and the initial condition $\beta^{(0;c)}(t) = t$.

REMARK 3.3. (i) Applying c = 0, $\mathbf{k} = (0)$ and i = 1 in (9), we obtain the functional equation (8).

,

(ii) Applying c = -1, $\mathbf{k} = (0)$ and i = 1 in (9), we obtain a functional equation

(10)
$$\delta\left(\frac{t}{1-t}\right) - \delta\left(\frac{t}{1+t}\right) = 2t^2$$

where $\delta(t)$ is the ordinary generating function of cosecant numbers:

$$\delta(t) := \sum_{n=0}^{\infty} D_n t^{n+1} \,.$$

This functional equation was given by Chen [3, Theorem 4.4].

To prove Theorem 3.2, we need the following lemma.

LEMMA 3.4. For sequences $(p_n)_{n\geq 0}$ and $(q_n)_{n\geq 0}$ (each p_n and $q_n \in \mathbb{R}$), let

$$P(t) := \sum_{n=0}^{\infty} p_n t^{n+1}, \quad and \quad Q(t) := \sum_{n=0}^{\infty} q_n t^{n+1}.$$

These series satisfy

(11)
$$P(t) = c_1 Q\left(\frac{t}{1-\lambda_1 t}\right) + \dots + c_r Q\left(\frac{t}{1-\lambda_r t}\right)$$

if and only if

(12)
$$\sum_{n=0}^{\infty} \frac{p_n}{n!} t^n = (c_1 e^{\lambda_1 t} + \dots + c_r e^{\lambda_r t}) \sum_{n=0}^{\infty} \frac{q_n}{n!} t^n.$$

Proof. Since

$$Q\left(\frac{t}{1-\lambda t}\right) = \sum_{i=0}^{\infty} q_i \left(\frac{t}{1-\lambda t}\right)^{i+1}$$
$$= \sum_{i=0}^{\infty} q_i \sum_{n=i}^{\infty} \binom{n}{i} (\lambda t)^{n+1} \lambda^{-i-1}$$
$$= \sum_{n=0}^{\infty} \sum_{i=0}^{n} \binom{n}{i} q_i \lambda^{n-i} t^{n+1},$$

the right-hand side of (11) is equal to

$$\sum_{n=0}^{\infty}\sum_{i=0}^{n}\binom{n}{i}q_{i}(c_{1}\lambda_{1}^{n-i}+\cdots+c_{r}\lambda_{r}^{n-i})t^{n+1}.$$

Because the condition (12) is equivalent to

$$p_n = \sum_{i=0}^n \binom{n}{i} q_i (c_1 \lambda_1^{n-i} + \dots + c_r \lambda_r^{n-i})$$

for any $n \ge 0$, we obtain the desired result.

Proof of Theorem 3.2. By the same argument of the proof of Proposition 2.2 (i), we have

$$\sum_{n=i}^{\infty} B_{n-i}^{(\mathbf{k};c)} \frac{t^n}{n!} = \frac{1}{1-c} (e^t - (1+c) + ce^{-t}) \sum_{n=0}^{\infty} B_n^{(\mathbf{k}\oplus i;c)} \frac{t^n}{n!}$$

for any $i \ge 1$. By applying

$$p_n = \begin{cases} 0 & (0 \le n < i) \\ B_{n-i}^{(\mathbf{k};c)} & (n \ge i) \end{cases}$$

and $q_n = B_n^{(\mathbf{k} \oplus i; c)}$ in Lemma 3.4, we get the proof of (i).

By the functional equation (9), the function $\beta^{(\mathbf{k};c)}(t)$ is determined from $\beta^{(\mathbf{k}\oplus i;c)}(t)$. In Lemma 3.4, under the condition $(c_1, \ldots, c_r) \neq (0, \ldots, 0)$, the equation (12) means that a sequence $\{p_n\}_{n\geq 1}$ is determined from $\{q_n\}_{n\geq 1}$ and vice versa. Since the functional equation (9) is the form of (11), the function $\beta^{(\mathbf{k}\oplus i;c)}(t)$ is also determined from $\beta^{(\mathbf{k};c)}(t)$. Any index can be obtained from the initial index (0) by repeating procedures $\mathbf{k} \mapsto \mathbf{k} \oplus i$ or $\mathbf{k} \oplus i \mapsto \mathbf{k}$ ($i = 1, 2, \ldots$). Therefore the statement (ii) follows.

4. The case of non-positive indices

In this section we investigate poly-Bernoulli numbers of non-positive indices, that is, $B_n^{(\mathbf{k};c)}$ for $\mathbf{k} = (-k_1, \ldots, -k_r)$ with $k_1, \ldots, k_r \ge 0$.

In the case c = 0 and r = 1, it is known that the numbers $C_n^{(-k)}$ have the following simple generating function:

(13)
$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} C_n^{(-k)} \frac{x^n}{n!} \frac{y^k}{k!} = \frac{1}{1 - e^x + e^{x-y}}$$

(for general $r \ge 1$, see [6, Prop. 5]). For an integer $r \ge 1$, let

$$N_c(x, y_1, \dots, y_r) := \sum_{n, k_1, \dots, k_r \ge 0} B_n^{((-k_1, \dots, -k_r); c)} \frac{x^n}{n!} \frac{y_1^{k_1}}{k_1!} \cdots \frac{y_r^{k_r}}{k_r!}.$$

Ŀ.

1.

We can prove the following theorem which is a generalization of (13).

45

 \Box

THEOREM 4.1. *We have* (14)

$$N_{c}(x, y_{1}, \dots, y_{r}) = \frac{(1-c)e^{x}(e^{x}-1)^{r-1}}{e^{x}-c} \prod_{i=1}^{r} \left(\frac{1}{e^{x-Y_{i}}-ce^{-Y_{i}}-e^{x}+1} - \frac{c}{e^{x-Y_{i}}-ce^{-Y_{i}}-ce^{x}+c} \right),$$

where $Y_i := \sum_{m=i}^{r} y_m \ (1 \le i \le r).$

Proof. We have

$$\begin{split} &\sum_{k_1,\dots,k_r \ge 0} \operatorname{Li}_c \left((-k_1,\dots,-k_r); \frac{e^x - 1}{e^x - c} \right) \frac{y_1^{k_1}}{k_1!} \cdots \frac{y_r^{k_r}}{k_r!} \\ &= \sum_{m_1,\dots,m_r \ge 1} \sum_{k_1,\dots,k_r \ge 0} m_1^{k_1} \cdots (m_1 + \dots + m_r)^{k_r} (1 - c^{m_1}) \\ &\cdots (1 - c^{m_r}) \left(\frac{e^x - 1}{e^x - c} \right)^{m_1 + \dots + m_r} \\ &\frac{y_1^{k_1}}{k_1!} \cdots \frac{y_r^{k_r}}{k_r!} \\ &= \sum_{m_1,\dots,m_r \ge 1} e^{m_1 y_1} \cdots e^{(m_1 + \dots + m_r) y_r} (1 - c^{m_1}) \cdots (1 - c^{m_r}) \left(\frac{e^x - 1}{e^x - c} \right)^{m_1 + \dots + m_r} \\ &= \sum_{m_1,\dots,m_r \ge 1} \left(e^{Y_1} \frac{e^x - 1}{e^x - c} \right)^{m_1} (1 - c^{m_1}) \cdots \left(e^{Y_r} \frac{e^x - 1}{e^x - c} \right)^{m_r} (1 - c^{m_r}) \\ &= \prod_{i=1}^r \left(\frac{e^{Y_i} \frac{e^x - 1}{e^x - c}}{1 - e^{Y_i} \frac{e^x - 1}{e^x - c}} - \frac{ce^{Y_i} \frac{e^x - 1}{e^x - c}}{1 - ce^{Y_i} \frac{e^x - 1}{e^x - c}} \right) \\ &= (e^x - 1)^r \prod_{i=1}^r \left(\frac{1}{e^{x - Y_i} - ce^{-Y_i} - e^x + 1} - \frac{c}{e^{x - Y_i} - ce^{-Y_i} - ce^x + c} \right). \end{split}$$

By multiplying $(1 - c)e^x/((e^x - 1)(e^x - c))$ to both sides, we get (14).

When r = 1, Theorem 4.1 deduces

(15)
$$N_{c}(x, y) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} B_{n}^{(-k;c)} \frac{x^{n}}{n!} \frac{y^{k}}{k!}$$
$$= \frac{(1-c)e^{x}}{e^{x}-c} \left(\frac{1}{e^{x-y}-ce^{-y}-e^{x}+1} - \frac{c}{e^{x-y}-ce^{-y}-ce^{x}+c} \right)$$

•

In particular, the function $N_0(x, y) = \frac{1}{1 - e^x + e^{x-y}}$ gives the generating function (13) of $C_n^{(-k)}$.

In the remainder of this section we discuss the numbers $B_n^{(-k;c)}$ $(k \in \mathbb{Z}_{\geq 0})$ having depth 1. When c = -1, a simple symmetric formula

(16)
$$D_{2n}^{(-2k-1)} = D_{2k}^{(-2n-1)} \quad (n, k \ge 0)$$

is known ([9, Theorem 4]). Since $D_{2n+1}^{(-k)} = 0$ for all $n, k \ge 0$, we can state a symmetric formula in the form of

(17)
$$D_n^{(-k-1)} = D_k^{(-n-1)}$$
 $(n, k \ge 0, n+k: \text{ even})$

The following theorem states that this formula also holds for poly-Bernoulli numbers with one parameter.

THEOREM 4.2. The following equation holds:

$$B_n^{(-k-1;c)} = B_k^{(-n-1;c)} \quad (n,k \ge 0, \ n+k: \ even) \,.$$

Proof. First we remember $N_c(x, y)$ is a double series defined by (15). Let $g_c(x, y) := \frac{\partial}{\partial y} N_c(x, y)$ and $G(x, y) := g_c(x, y) + g_c(-x, -y)$. Because

$$G(x, y) = 2 \sum_{\substack{n,k \ge 0 \\ n+k: \text{ even}}} B_n^{(-k-1,c)} \frac{x^n}{n!} \frac{y^k}{k!},$$

we only have to prove that G(x, y) = G(y, x). By (15), we have

$$g_{c}(x, y) = \frac{(1-c)e^{x}}{e^{x}-c} \left(\frac{-(-e^{x-y}+ce^{-y})}{(e^{x-y}-ce^{-y}-e^{x}+1)^{2}} + \frac{c(-e^{x-y}+ce^{-y})}{(e^{x-y}-ce^{-y}-ce^{x}+c)^{2}} \right)$$

$$(18) = (1-c)e^{x} \left(\frac{e^{-y}}{(e^{x-y}-ce^{-y}-e^{x}+1)^{2}} + \frac{-ce^{-y}}{(e^{x-y}-ce^{-y}-ce^{x}+c)^{2}} \right)$$

$$= \frac{(1-c)e^{x+y}}{(e^{x}-c-e^{x+y}+e^{y})^{2}} + \frac{-c(1-c)e^{x+y}}{(e^{x}-c-ce^{x+y}+ce^{y})^{2}}.$$

Let the first part of the last line of (18) be I(x, y) and the second part J(x, y). It is easily showed that I(x, y) = I(y, x) and J(x, y) = J(-y, -x). Then we have

$$G(x, y) = I(x, y) + J(x, y) + I(-x, -y) + J(-x, -y)$$

= $I(y, x) + J(-y, -x) + I(-y, -x) + J(y, x)$
= $g_c(y, x) + g_c(-y, -x)$
= $G(y, x)$

and this completes the proof.

REMARK 4.3. In the case c = 0, the function $g_0(x, y)$ satisfies a simple relation $g_0(x, y) = g_0(y, x)$. From this equation, we obtain the relation

$$C_n^{(-k-1)} = C_k^{(-n-1)} \quad (n,k \ge 0)$$

(see e.g., [8, Section 2]).

 \Box

5. Arakawa-Kaneko zeta functions with one prameter

In this section we consider an analogue of the Arakawa-Kaneko zeta function. We first see a sufficient condition for convergence of the function $\text{Li}_c(\mathbf{k}; z)$.

PROPOSITION 5.1. For an index $\mathbf{k} \in \mathbb{Z}^r$, the function $\operatorname{Li}_c(\mathbf{k}; z)$ is absolutely convergent if $|z| < \begin{cases} 1 & (|c| \le 1), \\ 1/|c| & (|c| > 1). \end{cases}$

Proof. When $|c| \le 1$, we have $|1 - c^m| \le 1 + |c|^m \le 2$ for any positive integer m. Therefore

$$|\mathrm{Li}_{c}(\mathbf{k};z)| \leq \sum_{m_{1},\dots,m_{r}\geq 1} \frac{2^{r}|z|^{m_{1}+\dots+m_{r}}}{m_{1}^{k_{1}}(m_{1}+m_{2})^{k_{2}}\cdots(m_{1}+\dots+m_{r})^{k_{r}}}$$

and this series converges if |z| < 1.

When
$$|c| > 1$$
, we have $|1 - c^m| \le 2|c|^m$ for any positive integer *m*. Therefore

$$|\operatorname{Li}_{c}(\mathbf{k}; z)| \leq \sum_{\substack{m_{1}, \dots, m_{r} \geq 1}} \frac{2^{r} |cz|^{m_{1}+\dots+m_{r}}}{m_{1}^{k_{1}} (m_{1}+m_{2})^{k_{2}} \cdots (m_{1}+\dots+m_{r})^{k_{r}}}$$

 \Box

and this series converges if |z| < 1/|c|.

Assume that $-1 \le c < 1$. For an index $\mathbf{k} \in \mathbb{Z}^r$ and $s \in \mathbb{C}$ with $\Re(s) > 1 - r$, we define a generalization of the Arakawa-Kaneko zeta function as

(19)
$$\xi_c(\mathbf{k};s) := \frac{1}{\Gamma(s)} \int_0^\infty z^{s-1} \frac{(1-c)e^z}{(e^z-1)(e^z-c)} \operatorname{Li}_c\left(\mathbf{k}; \frac{e^z-1}{e^z-c}\right) dz.$$

By

$$0 \le \frac{e^z - 1}{e^z - c} < 1 \ (z \in [0, \infty))$$

and

$$\operatorname{Li}_{c}\left(\mathbf{k};\frac{e^{z}-1}{e^{z}-c}\right)=O(z^{r}) \text{ as } z \to +0,$$

the integral (19) is convergent for $\Re(s) > 1 - r$. When c = 0, the function $\xi_0(\mathbf{k}; s)$ coincides with the original Arakawa-Kaneko zeta function $\xi(\mathbf{k}; s)$ ([1]). When c = -1, the function $\xi_{-1}(\mathbf{k}; s)$ coincides with a level two analogue of the Arakawa-Kaneko zeta function, denoted by $\psi(\mathbf{k}; s)$ in [11].

By the well-known method using contour integrals, the function $\xi_c(\mathbf{k}; s)$ can be continued to an entire function, and its values at non-positive integers are given by

$$\xi_c(\mathbf{k}; -m) = (-1)^m B_m^{(\mathbf{k};c)} \quad (m = 0, 1, 2, \ldots)$$

(cf. [10]).

For two indices $\mathbf{k} = (k_1, \dots, k_r) \in \mathbb{Z}_{>0}^r$ and $\mathbf{j} = (j_1, \dots, j_r) \in \mathbb{Z}_{\geq 0}^r$, we use the notation

$$b(\mathbf{k};\mathbf{j}) := \prod_{i=1}^r \binom{k_i + j_i - 1}{j_i}.$$

Then we obtain the following theorem and the results for c = 0 and c = -1 are known [10, Theorem 2.5] [19, Theorem 4.3]. This theorem can be proved in parallel with the proof in [13] [15] and we omit its proof.

THEOREM 5.2. For $\mathbf{k} \in \mathbb{Z}_{>0}^r$ and $m \in \mathbb{Z}_{>0}$, it holds that

$$\xi_c(\mathbf{k};m) = \sum_{\mathbf{j}} b\left((\mathbf{k} \oplus 1)^{\dagger}; \mathbf{j} \right) Z_c((\mathbf{k} \oplus 1)^{\dagger} + \mathbf{j}),$$

where the sum runs over all $\mathbf{j} = (j_1, \dots, j_n) \in \mathbb{Z}_{\geq 0}^n$ with $j_1 + \dots + j_n = m - 1$ and n is the depth of $(\mathbf{k} \oplus 1)^{\dagger}$. Here $\mathbf{k} + \mathbf{j}$ means the componentwise sum of \mathbf{k} and \mathbf{j} .

Acknowledgment. This work was supported by JSPS KAKENHI Grant Number 20K03523.

References

- T. Arakawa and M. Kaneko: Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 189–209.
- [2] F. Chapoton: Multiple T-values with one parameter, Tsukuba J. Math. 46 (2022), 153–163.
- [3] K.-W. Chen: A summation on Bernoulli numbers, J. Number Theory 111 (2005), 372–391.
- [4] M. Hirose, K. Iwaki, N. Sato, K. Tasaka: Duality/sum formulas for iterated integrals and their application to multiple zeta values, J. Number Theory 195 (2019), 72–83.
- [5] K. Imatomi: Multiple zeta values and multi-poly-Bernoulli numbers, Doctoral thesis, Kyushu University (2014).
- [6] K. Imatomi, M. Kaneko and E. Takeda: Multi-poly-Bernoulli numbers and finite multiple zeta values, J. Integer Seq. 17 (2014), Article 14.4.5.
- [7] M. Kaneko: Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997), 199–206.
- [8] M. Kaneko: Poly-Bernoulli numbers and related zeta functions, Algebraic and Analytic Aspects of Zeta Functions and L-functions, MSJ Mem. 21 (2010), 73–85.
- [9] M. Kaneko, M. Pallewatta and H. Tsumura: On polycosecant numbers, J. Integer Sequences 23 (2020), Article 20.6.4 (the earlier version is arXiv:1907.13441).
- [10] M. Kaneko and H. Tsumura: Multi-poly-bernoulli numbers and related zeta functions, Nagoya Math. J. 232 (2018), 19–54.
- [11] M. Kaneko and H. Tsumura: Zeta functions connecting multiple zeta values and poly-Bernoulli numbers, Advanced Studies in Pure Math. 84 (2020), 181–204.
- [12] M. Kaneko and H. Tsumura: On multiple zeta values of level two, Tsukuba J. Math. 44 (2020), 213–234.
- [13] N. Kawasaki and Y. Ohno, Combinatorial proofs of identities for special values of Arakawa-Kaneko multiple zeta functions, Kyushu J. Math. 72 (2018), 215–222.
- [14] V. Kowalenko: Applications of the cosecant and related numbers, Acta Appl. Math. 114 (2011), 15–134.
- [15] Y. Ohno and H. Wayama: Interpolation between Arakawa-Kaneko and Kaneko-Tsumura multiple zeta functions, Comment. Math. Univ. St. Pauli 68 (2020), 83–91.
- [16] M. Pallewatta: On polycosecant numbers and level two generalization of Arakawa-Kaneko zeta functions, Doctoral thesis, Kyushu University (2020).
- [17] Y. Sasaki: On generalized poly-Bernoulli numbers and related *L*-functions, J. Number Theory 132 (2012), 156–170.
- [18] Ce Xu: Duality of weighted sum formulas of alternating multiple *T*-values, Bull. Korean Math. Soc. 58 (2021), 1261–1278.

- [19] Ce Xu and J. Zhao: Variants of multiple zeta values with even and odd summation indices, Math. Z. 300 (2022), 3109–3142.
- [20] S. Yamamoto: Duality of one-variable multiple polylogarithms and their q-analogues, arXiv:2010.05505.
- [21] D. Zagier: A modified Bernoulli number, Nieuw Arch. Wisk. (4) **16** (1998), 63–72.

K. KAMANO Department of Robotics, Osaka Institute of Technology, 1–45 Chaya-machi, Kita-ku, Osaka 530–8585, Japan e-mail: ken.kamano@oit.ac.jp