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Abstract. Poly-Bernoulli numbers with one parameter are introduced by using a
generalization of multi-polylogarithm functions. These numbers interpolate poly-Bernoulli
numbers and polycosecant numbers. We prove a functional equation of the ordinary gen-
erating function of them, and in the negative index case, we give an explicit representation
of the exponential generating function and a symmetric formula. We also consider an ana-
logue of the Arakawa-Kaneko zeta function related to poly-Bernoulli numbers and multiple
T -values with one parameter.

1. Introduction

Bernoulli numbers Bn (n ≥ 0) are rational numbers defined by the following generat-
ing function:

t

et − 1
=

∞∑
n=0

Bn
tn

n! .

Two kinds of poly-Bernoulli numbers, which are generalizations of Bn, are defined as fol-
lows:

Lik(1 − e−t )
et − 1

=
∞∑
n=0

C(k)n
tn

n! and
Lik(1 − e−t )

1 − e−t
=

∞∑
n=0

B(k)n
tn

n! ,

where k = (k1, . . . , kr) ∈ Zr is a multi-index and Lik(z) is the multi-polylogarithm func-
tion defined by

Lik(z) :=
∑

0<m1<···<mr
mi∈Z

zmr

m
k1
1 m

k2
2 · · ·mkrr

∈ Q[[z]] .

These numbers for r = 1 were first introduced by Kaneko [7] and Arakawa-Kaneko [1]
(see e.g. [5][6] for general r ≥ 1). Since Li1(z) = − log(1 − z), we have C(1)n = Bn and
B
(1)
n = (−1)nBn for n ≥ 0.
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38 K. KAMANO

As a level two analogue of C(k)n , Kaneko-Pallewatta-Tsumura (the earlier version of
[9], also see [16]) introduced polycosecant numbers D(k)n as follows:

A(k; tanh t
2 )

sinh t
=

∞∑
n=0

D(k)n
tn

n! ,

where

(1) A(k; z) := 2r
∑

0<m1<···<mr
mi≡i (mod 2)

1≤i≤r

zmr

m
k1
1 · · ·mkrr

∈ Q[[z]] .

When k = (1), the numbers D(1)n = Dn are called cosecant numbers (cf. [14]).
For an index k = (k1, . . . , kr) ∈ Zr (r ≥ 1), r is called the depth of k. An index k =

(k1, . . . , kr) is said to be admissible if k1, . . . , kr−1 ≥ 1 and kr ≥ 2. If k = (k1, . . . , kr) is
admissible, then Lik(z) and A(k; z) are convergent at z = 1. The values ζ(k) := Lik(1) and
T (k) := A(k; 1) are called multiple zeta values (MZVs) and multiple T -values (MTVs),
respectively. MTVs were recently introduced by Kaneko-Tsumura [11] and have some
interesting similarities to MZVs (cf. [11] [12] [18]). We remark that the concept of MTVs
was essentially first given by Sasaki (see [17, Definition 4]).

For a parameter c < 1 and an admissible index k = (k1, . . . , kr), Chapoton [2] intro-
duced MTVs with one parameter by iterated integrals. Let

ω0(t) := dt

t
, ω1(t) := dt

1 − t
− cdt

1 − ct

and I (ε1, . . . , εk) :=
∫

· · ·
∫

0<t1<···<tk<1
ωε1(t1) · · ·ωεk (tk) ,

where each εi = 0 or 1. For an admissible index k = (k1, . . . , kr), MTVs with one
parameter are defined as

Zc(k) := I (1, {0}k1−1, . . . , 1, {0}kr−1).

When c = 0 it coincides with an integral representation of MZVs, i.e., Z0(k) = ζ(k).
When c = −1, we have Z−1(k) = T (k) because ω1(t) becomes 2 dt/(1 − t2). Therefore
Zc(k) can be considered as an interpolation of ζ(k) and T (k).

An admissible index k can be written in the form

k = (1, . . . , 1︸ ︷︷ ︸
a1−1

, b1 + 1, 1, . . . , 1︸ ︷︷ ︸
a2−1

, b2 + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
am−1

, bm + 1)

for some ai, bi ∈ Z>0 (1 ≤ i ≤ m). Then the dual index k† of k is defined as

k† = (1, . . . , 1︸ ︷︷ ︸
bm−1

, am + 1, 1, . . . , 1︸ ︷︷ ︸
bm−1−1

, am−1 + 1, . . . , 1, . . . , 1︸ ︷︷ ︸
b1−1

, a1 + 1) .

Chapoton proved a duality formula Zc(k) = Zc(k†), which is a natural generalization of
the classical duality formulas for MZVs and MTVs. In [2], some numerical observations of
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the graded dimensions of the Q-vector spaces spanned by MTVs with one parameter were
also reported.

For an admissible index k and −1 ≤ c < 1, it is easily checked that Zc(k) has the
following series representation:

Zc(k) =
∑

m1,...,mr≥1

(1 − cm1) · · · (1 − cmr )

m
k1
1 (m1 +m2)k2 · · · (m1 + · · · +mr)kr

.

REMARK 1.1. Yamamoto [20] indicated that a duality formula proved in [4] is
equivalent to that for the following generalized polylogarithms:

L̃i(k̃; z) :=
∑

0=m0<m1<···<mr

r∏
i=1

µi + (−1)µi zmi−mi−1

m
ki
i

(|z| < 1) ,

where k̃ = ((k1, µ1), . . . , (kr , µr)) ∈ (Z>0 × {0, 1})r with (kr , µr) 6= (1, 1). For an
admissible index k = (k1, . . . , kr), the function Zc(k) can be expressed as L̃i(k̃; c) with
µi = 1 (1 ≤ i ≤ r) in Yamamoto’s notation.

For a parameter c ∈ R \ {1} and an index k = (k1, . . . , kr) ∈ Zr (not necessarily
admissible), we define multi-polylogarithm functions with one parameter as

Lic(k; z) :=
∑

m1,...,mr≥1

(1 − cm1) · · · (1 − cmr )zm1+···+mr

m
k1
1 (m1 +m2)k2 · · · (m1 + · · · +mr)kr

∈ zrR[[z]] .(2)

Remark that Li0(k; z) = Lik(z) and Li−1(k; z) = A(k; z). When k is an admissible index,
−1 ≤ c < 1 and z = 1, the infinite series (2) converges and it coincides with Chapoton’s
Zc(k).

Throughout the paper, we assume that c is a fixed real number not equal to 1. For
such c and k ∈ Zr , we introduce poly-Bernoulli numbers B(k;c)

n with one parameter by the
following generating function:(

1

et − 1
− c

et − c

)
Lic

(
k; e

t − 1

et − c

)
=

∞∑
n=0

B(k;c)
n

tn

n! .(3)

One can see that B(k;0)
n = C

(k)
n and B(k;−1)

n = D
(k)
n , hence the number B(k;c)

n interpolates
C
(k)
n and D(k)n . When k = (0), we have Lic(0; z) = z/(1 − z) − cz/(1 − cz) and the

left-hand side of (3) becomes 1. Hence we have

(4) B(0;c)
n =

{
1 (n = 0) ,

0 (n ≥ 1) ,

for any c ∈ R \ {1}. In general, as we will see in the next section, the numbers B(k;c)
n can

be expressed as a polynomial in (1 + c)/(1 − c).
This paper is organized as follows. In Section 2 we give recurrence relations of poly-

Bernoulli numbers B(k;c)
n with one parameter. In Section 3 we treat the ordinary generating

function ofB(k;c)
n . It is known that an ordinary generating function of the classical Bernoulli

numbers satisfies a simple functional equation. We give a generalization of this result
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and prove that this functional equation determines B(k;c)
n inductively. In Section 4 we

focus on B(k;c)
n for negative indices and give an explicit representation of a generating

function of them. Moreover, in the case k = −k (k ∈ Z≥0), we give a kind of duality
formula. In the last Section 5 we give short remarks on an analogue of the Arakawa-
Kaneko zeta function. This function can be analytically continued to an entire function,
and its values at non-positive integers are expressed by poly-Bernoulli numbers with one
parameter. Moreover, its values at positive integers are expressed in terms of multiple T -
values with one parameter.

2. Recurrence relations

For an index k = (k1, . . . , kr) ∈ Zr and an integer i ≥ 1, we set k ⊕ i := (k1, . . . ,

kr−1, kr + 1,

i−1︷ ︸︸ ︷
1, . . . , 1). For any integer j , we also denote the index (k1, . . . , kr , j) by

k, j if there is no risk of confusion. For example, Lic (k, 1; z) means Lic ((3, 2, 1); z) for
k = (3, 2).

In this section we give some fundamental properties of B(k;c)
n . Let us start with the

following proposition.

PROPOSITION 2.1. For any index k ∈ Zr and c 6= 0, we have B(k;1/c)
n = (−1)r+n−1

B
(k,c)
n (n ≥ 0).

Proof. By definition, the equation Li1/c(k; z) = (−1)rLic(k; z/c) holds for c 6= 0.
Hence we have

∞∑
n=0

B
(k;1/c)
n

tn

n! = (1 − 1
c
)et

(et − 1)(et − 1
c
)
Li1/c

(
k; e

t − 1

et − 1
c

)

= −(1 − c)et

(et − 1)(cet − 1)
(−1)rLic

(
k; e

t − 1

cet − 1

)
= (−1)r−1(1 − c)e−t

(e−t − 1)(e−t − c)
Lic

(
k; e

−t − 1

e−t − c

)
= (−1)r−1

∞∑
n=0

(−1)nB(k;c)
n

tn

n!
and this completes the proof. □

For any index k ∈ Zr (r ≥ 1), we have
d

dz
Lic(k ⊕ 1; z) = 1

z
Lic(k; z),

d

dz
Lic(k, 1; z) =

(
1

1 − z
− c

1 − cz

)
Lic(k; z)



Poly-Bernoulli Numbers with One Parameter and Their Generating Functions 41

by straightforward calculation. Thus we have
d

dt
Lic

(
k ⊕ 1; e

t − 1

et − c

)
= (1 − c)et

(et − 1)(et − c)
Lic

(
k; e

t − 1

et − c

)
,

d

dt
Lic

(
k, 1; e

t − 1

et − c

)
= Lic

(
k; e

t − 1

et − c

)
.

(5)

By using these equations, we get the following recurrence relations for poly-Bernoulli num-
bers with one parameter.

PROPOSITION 2.2. For an index k ∈ Zr (r ≥ 1), the following equalities hold:

(i)

B(k;c)
n = 1

1 − c

n∑
i=0

(
n+ 1

i + 1

)
B
(k⊕1;c)
n−i (1 − c(−1)i) (n ≥ 0) .(6)

(ii)

B(k,0;c)
n = 1

1 − c

n∑
i=1

(
n

i

)
B
(k;c)
n−i (1 + c(−1)i) (n ≥ 0) .(7)

Proof. (i) By the first equation of (5), we have

Lic

(
k ⊕ 1; e

t − 1

et − c

)
=

∞∑
n=1

B
(k;c)
n−1

tn

n! .

Here we used the fact Lic

(
k ⊕ 1; e

t − 1

et − c

)
has no constant term as an element of Q[[t]].

On the other hand, by definition, we have

Lic

(
k ⊕ 1; e

t − 1

et − c

)
= (et − 1)(et − c)

(1 − c)et

∞∑
n=0

B(k⊕1;c)
n

tn

n! .

Therefore we have
∞∑
n=1

B
(k;c)
n−1

tn

n! = 1

1 − c
(et − 1 + c(e−t − 1))

∞∑
n=0

B(k⊕1;c)
n

tn

n! .

By comparing the coefficients of both sides, we have

B
(k;c)
n−1 = 1

1 − c

n∑
i=1

(
n

i

)
(1 + c(−1)i)B(k⊕1;c)

n−i .

By shifting n to n+ 1 and i to i + 1, we get (6).

(ii) By definition, it holds that Lic (k, 0; z) =
(

z

1 − z
− cz

1 − cz

)
Lic (k; z) and

Lic

(
k, 0; e

t − 1

et − c

)
=
(

et−1
et−c

1 − et−1
et−c

− c e
t−1
et−c

1 − c e
t−1
et−c

)
Lic

(
k; e

t − 1

et − c

)
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= 1

1 − c
(et − 1 + c(e−t − 1))Lic

(
k; e

t − 1

et − c

)
.

Therefore we have
∞∑
n=0

B(k,0;c)
n

tn

n! = 1

1 − c
(et − 1 + c(e−t − 1))

∞∑
n=0

B(k;c)
n

tn

n! .

By comparing the coefficients of both sides, we obtain (7). □
REMARK 2.3. By applying c = −1 in Proposition 2.2, we have

D(k)n =
n∑
i=0
i: even

(
n+ 1

i + 1

)
D
(k⊕1)
n−i ,

D(k,0)n =
n∑
i=1
i: odd

(
n

i

)
D
(k)
n−i

for any index k ∈ Zr . These formulas were given by Pallewatta [16] (see Prop. 3.7 and its
proof).

PROPOSITION 2.4. Let k ∈ Zr be an index and n ≥ 0 an integer. There exists a
polynomial fk,n (X) ∈ Q[X] not depending on c such that

B(k;c)
n = fk,n

(
1 + c

1 − c

)
.

Moreover, the polynomial fk,n (X) is even if n 6≡ r (mod 2) and odd if n ≡ r (mod 2).

Proof. By (4), the statement is true for k = (0). Hence we only have to prove that
if the statement is true for k = (k1, . . . , kr) then it is also true for (k1, . . . , kr ± 1) and
(k1, . . . , kr , 0).

Assume that the statement is true for k = (k1, . . . , kr) ∈ Zr . By (6), we have

B(k;c)
n =

∑
0≤i≤n
i: even

(
n+ 1

i + 1

)
B
(k⊕1;c)
n−i +

∑
0≤i≤n
i: odd

(
n+ 1

i + 1

)
B
(k⊕1;c)
n−i

1 + c

1 − c
,

or equivalently,

B(k⊕1;c)
n = 1

n+ 1
B(k;c)
n − 1

n+ 1

 ∑
1≤i≤n
i: even

(
n+1

i+1

)
B
(k⊕1;c)
n−i +

∑
1≤i≤n
i: odd

(
n+1

i+1

)
B
(k⊕1;c)
n−i

1+c
1−c

 .

By replacing k⊕1 with k, the first equation proves the statement is true for (k1, . . . , kr−1).
From the second equation and initial values

B
(k⊕1,c)
0 =

{
1 (r = 1) ,

0 (r ≥ 2) ,

we can prove that the statement is also true for (k1, . . . , kr + 1) by induction on n. Finally,
by using (7), we can prove the statement is true for (k1, . . . , kr , 0). □
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As an example, we see the case k = (1). By using (4) and (6), we have

B
(1;c)
0 = 1,

B
(1;c)
1 = −1

2

(
1 + c

1 − c

)
,

B
(1;c)
2 = 1

2

(
1 + c

1 − c

)2

− 1

3
,

B
(1;c)
3 = −3

4

(
1 + c

1 − c

)3

+ 3

4

(
1 + c

1 − c

)
,

B
(1;c)
4 = 3

2

(
1 + c

1 − c

)4

− 2

(
1 + c

1 − c

)2

+ 7

15
.

REMARK 2.5. 1. The constant term of fk,n(X) is the polycosecant number

D
(k)
n (n ≥ 0) because of B(k;−1)

n = D
(k)
n .

2. For an index k = (−k1, . . . ,−kr) with ki ≥ 0 (0 ≤ i ≤ r), the polynomial fk,n(X)

is an element of Z[X].

3. The ordinary generating function

We consider the ordinary generating function of Bernoulli numbers, i.e.,

β(t) :=
∞∑
n=0

Bnt
n+1 ∈ Q[[t]] .

The radius of convergence of this series is zero, so we consider these types of generating
functions as a formal power series in t .

It is known that the series β(t) satisfies a simple functional equation and the sequence
{Bn}n≥0 of Bernoulli numbers is characterized by this functional equation.

THEOREM 3.1 (e.g., Zagier [21], Chen [3, Cor. 4.6]). β(t) is the unique solution in
Q[[t]] of the equation

β

(
t

1 − t

)
− β(t) = t2 .(8)

We define the ordinary generating function of poly-Bernoulli numbers with one pa-
rameter as

β(k;c)(t) :=
∞∑
n=0

B(k;c)
n tn+1 .

It is clear that β(1;0)(t) = β(t), and by (4), we have β(0;c)(t) = t . We can generalize Theo-
rem 3.1 to a result on a generating function of poly-Bernoulli numbers with one parameter.
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THEOREM 3.2. (i) For an index k ∈ Zr and an integer i ≥ 1, we have

(1 − c)t iβ(k;c)(t) = β(k⊕i;c)
(

t

1 − t

)
− (1 + c)β(k⊕i;c) (t)+ cβ(k⊕i;c)

(
t

1 + t

)
.(9)

(ii) All β(k;c)(t) (k ∈ Zr) are characterized by functional equations (9) and the initial
condition β(0;c) (t) = t .

REMARK 3.3. (i) Applying c = 0, k = (0) and i = 1 in (9), we obtain the
functional equation (8).

(ii) Applying c = −1, k = (0) and i = 1 in (9), we obtain a functional equation

(10) δ

(
t

1 − t

)
− δ

(
t

1 + t

)
= 2t2 ,

where δ(t) is the ordinary generating function of cosecant numbers:

δ(t) :=
∞∑
n=0

Dnt
n+1 .

This functional equation was given by Chen [3, Theorem 4.4].

To prove Theorem 3.2, we need the following lemma.

LEMMA 3.4. For sequences (pn)n≥0 and (qn)n≥0 (each pn and qn ∈ R), let

P(t) :=
∞∑
n=0

pnt
n+1, and Q(t) :=

∞∑
n=0

qnt
n+1 .

These series satisfy

P(t) = c1Q

(
t

1 − λ1t

)
+ · · · + crQ

(
t

1 − λr t

)
(11)

if and only if
∞∑
n=0

pn

n! t
n = (c1e

λ1t + · · · + cre
λr t )

∞∑
n=0

qn

n! t
n .(12)

Proof. Since

Q

(
t

1 − λt

)
=

∞∑
i=0

qi

(
t

1 − λt

)i+1

=
∞∑
i=0

qi

∞∑
n=i

(
n

i

)
(λt)n+1λ−i−1

=
∞∑
n=0

n∑
i=0

(
n

i

)
qiλ

n−i tn+1 ,
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the right-hand side of (11) is equal to
∞∑
n=0

n∑
i=0

(
n

i

)
qi(c1λ

n−i
1 + · · · + crλ

n−i
r )tn+1 .

Because the condition (12) is equivalent to

pn =
n∑
i=0

(
n

i

)
qi(c1λ

n−i
1 + · · · + crλ

n−i
r )

for any n ≥ 0, we obtain the desired result. □
Proof of Theorem 3.2. By the same argument of the proof of Proposition 2.2 (i), we

have

∞∑
n=i

B
(k;c)
n−i

tn

n! = 1

1 − c
(et − (1 + c)+ ce−t )

∞∑
n=0

B(k⊕i;c)
n

tn

n!
for any i ≥ 1. By applying

pn =
{

0 (0 ≤ n < i)

B
(k;c)
n−i (n ≥ i)

and qn = B
(k⊕i;c)
n in Lemma 3.4, we get the proof of (i).

By the functional equation (9), the function β(k;c)(t) is determined from β(k⊕i;c)(t).
In Lemma 3.4, under the condition (c1, . . . , cr) 6= (0, . . . , 0), the equation (12) means
that a sequence {pn}n≥1 is determined from {qn}n≥1 and vice versa. Since the functional
equation (9) is the form of (11), the function β(k⊕i;c)(t) is also determined from β(k;c)(t).
Any index can be obtained from the initial index (0) by repeating procedures k 7→ k ⊕ i or
k ⊕ i 7→ k (i = 1, 2, . . .). Therefore the statement (ii) follows. □

4. The case of non-positive indices

In this section we investigate poly-Bernoulli numbers of non-positive indices, that is,
B
(k;c)
n for k = (−k1, . . . ,−kr) with k1, . . . , kr ≥ 0.

In the case c = 0 and r = 1, it is known that the numbers C(−k)n have the following
simple generating function:

∞∑
n=0

∞∑
k=0

C(−k)n

xn

n!
yk

k! = 1

1 − ex + ex−y
(13)

(for general r ≥ 1, see [6, Prop. 5]). For an integer r ≥ 1, let

Nc(x, y1, . . . , yr) :=
∑

n,k1,...,kr≥0

B((−k1,...,−kr );c)
n

xn

n!
y
k1
1

k1! · · · y
kr
r

kr ! .

We can prove the following theorem which is a generalization of (13).
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THEOREM 4.1. We have

Nc(x, y1, . . . , yr)

= (1 − c)ex(ex − 1)r−1

ex − c

r∏
i=1

(
1

ex−Yi − ce−Yi − ex + 1
− c

ex−Yi − ce−Yi − cex + c

)
,

(14)

where Yi := ∑r
m=i ym (1 ≤ i ≤ r).

Proof. We have∑
k1,...,kr≥0

Lic

(
(−k1, . . . ,−kr); e

x − 1

ex − c

)
y
k1
1

k1! · · · y
kr
r

kr !
=

∑
m1,...,mr≥1

∑
k1,...,kr≥0

m
k1
1 · · · (m1 + · · · +mr)

kr (1 − cm1)

· · · (1 − cmr )

(
ex − 1

ex − c

)m1+···+mr

y
k1
1

k1! · · · y
kr
r

kr !
=

∑
m1,...,mr≥1

em1y1 · · · e(m1+···+mr )yr (1 − cm1) · · · (1 − cmr )

(
ex − 1

ex − c

)m1+···+mr

=
∑

m1,...,mr≥1

(
eY1
ex − 1

ex − c

)m1

(1 − cm1) · · ·
(
eYr
ex − 1

ex − c

)mr
(1 − cmr )

=
r∏
i=1

(
eYi e

x−1
ex−c

1 − eYi e
x−1
ex−c

− ceYi e
x−1
ex−c

1 − ceYi e
x−1
ex−c

)

= (ex − 1)r
r∏
i=1

(
1

ex−Yi − ce−Yi − ex + 1
− c

ex−Yi − ce−Yi − cex + c

)
.

By multiplying (1 − c)ex/((ex − 1)(ex − c)) to both sides, we get (14).
□

When r = 1, Theorem 4.1 deduces

Nc(x, y) =
∞∑
n=0

∞∑
k=0

B(−k;c)n

xn

n!
yk

k!

= (1 − c)ex

ex − c

(
1

ex−y − ce−y − ex + 1
− c

ex−y − ce−y − cex + c

)
.

(15)

In particular, the function N0(x, y) = 1

1 − ex + ex−y
gives the generating function (13) of

C
(−k)
n .
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In the remainder of this section we discuss the numbers B(−k;c)n (k ∈ Z≥0) having
depth 1. When c = −1, a simple symmetric formula

D
(−2k−1)
2n = D

(−2n−1)
2k (n, k ≥ 0)(16)

is known ([9, Theorem 4]). Since D(−k)2n+1 = 0 for all n, k ≥ 0, we can state a symmetric
formula in the form of

D(−k−1)
n = D

(−n−1)
k (n, k ≥ 0, n+ k: even) .(17)

The following theorem states that this formula also holds for poly-Bernoulli numbers with
one parameter.

THEOREM 4.2. The following equation holds:

B(−k−1;c)
n = B

(−n−1;c)
k (n, k ≥ 0, n+ k: even) .

Proof. First we rememberNc(x, y) is a double series defined by (15). Let gc(x, y) :=
∂
∂y
Nc(x, y) and G(x, y) := gc(x, y)+ gc(−x,−y). Because

G(x, y) = 2
∑
n,k≥0

n+k: even

B(−k−1,c)
n

xn

n!
yk

k! ,

we only have to prove that G(x, y) = G(y, x). By (15), we have

gc(x, y) = (1 − c)ex

ex − c

( −(−ex−y + ce−y)
(ex−y − ce−y − ex + 1)2

+ c(−ex−y + ce−y)
(ex−y − ce−y − cex + c)2

)
= (1 − c)ex

(
e−y

(ex−y − ce−y − ex + 1)2
+ −ce−y
(ex−y − ce−y − cex + c)2

)
= (1 − c)ex+y

(ex − c − ex+y + ey)2
+ −c(1 − c)ex+y

(ex − c − cex+y + cey)2
.

(18)

Let the first part of the last line of (18) be I (x, y) and the second part J (x, y). It is easily
showed that I (x, y) = I (y, x) and J (x, y) = J (−y,−x). Then we have

G(x, y) = I (x, y)+ J (x, y)+ I (−x,−y)+ J (−x,−y)
= I (y, x)+ J (−y,−x)+ I (−y,−x)+ J (y, x)

= gc(y, x)+ gc(−y,−x)
= G(y, x)

and this completes the proof. □
REMARK 4.3. In the case c = 0, the function g0(x, y) satisfies a simple relation

g0(x, y) = g0(y, x). From this equation, we obtain the relation

C(−k−1)
n = C

(−n−1)
k (n, k ≥ 0)

(see e.g., [8, Section 2]).
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5. Arakawa-Kaneko zeta functions with one prameter

In this section we consider an analogue of the Arakawa-Kaneko zeta function. We first
see a sufficient condition for convergence of the function Lic(k; z).

PROPOSITION 5.1. For an index k ∈ Zr , the function Lic(k; z) is absolutely conver-

gent if |z| <
{

1 (|c| ≤ 1),

1/|c| (|c| > 1).

Proof. When |c| ≤ 1, we have |1 − cm| ≤ 1 + |c|m ≤ 2 for any positive integer m.
Therefore

|Lic(k; z)| ≤
∑

m1,...,mr≥1

2r |z|m1+···+mr

m
k1
1 (m1 +m2)k2 · · · (m1 + · · · +mr)kr

and this series converges if |z| < 1.
When |c| > 1, we have |1 − cm| ≤ 2|c|m for any positive integer m. Therefore

|Lic(k; z)| ≤
∑

m1,...,mr≥1

2r |cz|m1+···+mr

m
k1
1 (m1 +m2)k2 · · · (m1 + · · · +mr)kr

and this series converges if |z| < 1/|c|. □
Assume that −1 ≤ c < 1. For an index k ∈ Zr and s ∈ C with <(s) > 1 − r , we

define a generalization of the Arakawa-Kaneko zeta function as

(19) ξc(k; s) := 1

0(s)

∫ ∞

0
zs−1 (1 − c)ez

(ez − 1)(ez − c)
Lic

(
k; e

z − 1

ez − c

)
dz .

By

0 ≤ ez − 1

ez − c
< 1 (z ∈ [0,∞))

and

Lic

(
k; e

z − 1

ez − c

)
= O(zr) as z → +0 ,

the integral (19) is convergent for <(s) > 1 − r . When c = 0, the function ξ0(k; s)
coincides with the original Arakawa-Kaneko zeta function ξ(k; s) ([1]). When c = −1,
the function ξ−1(k; s) coincides with a level two analogue of the Arakawa-Kaneko zeta
function, denoted by ψ(k; s) in [11].

By the well-known method using contour integrals, the function ξc(k; s) can be con-
tinued to an entire function, and its values at non-positive integers are given by

ξc(k;−m) = (−1)mB(k;c)
m (m = 0, 1, 2, . . .)

(cf. [10]).
For two indices k = (k1, . . . , kr) ∈ Zr>0 and j = (j1, . . . , jr) ∈ Zr≥0, we use the

notation

b (k; j) :=
r∏
i=1

(
ki + ji − 1

ji

)
.
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Then we obtain the following theorem and the results for c = 0 and c = −1 are known [10,
Theorem 2.5] [19, Theorem 4.3]. This theorem can be proved in parallel with the proof in
[13] [15] and we omit its proof.

THEOREM 5.2. For k ∈ Zr>0 and m ∈ Z>0, it holds that

ξc(k;m) =
∑

j

b
(
(k ⊕ 1)†; j

)
Zc((k ⊕ 1)† + j) ,

where the sum runs over all j = (j1, . . . , jn) ∈ Zn≥0 with j1 + · · · + jn = m − 1 and n is

the depth of (k ⊕ 1)†. Here k + j means the componentwise sum of k and j.
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