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Abstract. We advance previous studies on decomposed Richelot isogenies (Katsura–
Takashima (ANTS 2020) and Katsura (J. Algebra)) which are useful for analysing super-
special Richelot isogeny graphs in cryptography. We first give a characterization of de-
composed Richelot isogenies outgoing from Jacobian varieties of hyperelliptic curves of
any genus. We then define generalized Howe curves, and present two theorems on their
relationships with decomposed Richelot isogenies. We also give new examples including a
non-hyperelliptic (resp. hyperelliptic) generalized Howe curve of genus 5 (resp. of genus
4).

1. Introduction

1.1. Background
Richelot isogenies of Jacobian varieties of nonsingular projective curves are general-

izations of 2-isogenies of elliptic curves (see Definition 2 for the detail), and such isogenies
of Jacobians of superspecial genus-1 and 2 curves are frequently used in post-quantum
cryptography, which remains secure even when large scale quantum computers are de-
ployed for cryptanalysis. Consequently, intensive study ([3–5, 10, 30] etc.) has been
devoted to security evaluation of the isogeny-based cryptography in recent years. Here,
cryptographic operations are given by random walks on graphs consisting of isogenies of
Jacobian varieties of superspecial curves.

Costello and Smith [5] used “decomposed” subgraphs of the superspecial isogeny
graphs for their cryptanalysis successfully, in which decomposed principally polarized
abelian varieties are cleverly used for efficiency improvements of the cryptanalysis. Rich-
elot isogenies with such decomposed ones as codomain are called decomposed Richelot
isogenies. Recent works have clarified the detailed information on such decomposed iso-
genies and the associated isogeny graph structures (Katsura–Takashima [18], Florit–Smith
[8, 9], and Jordan–Zaytman [15]), which can be useful for more accurate analysis of the
Costello–Smith attack. (See [7, 29] also.)

For a (hyperelliptic) curve C of genus 2, Katsura and Takashima [18] showed that
the equivalence of existence of a decomposed Richelot isogeny from its Jacobian variety
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and existence of an order-2 (long) element in the reduced automorphism group. A similar
equivalence for hyperelliptic curves of genus 3 was also shown by Katsura [17]. These
results give a basis for our present work.

Howe [12] investigated the nonsingular projective model of the fiber product of two
elliptic curves (which satisfy some conditions) w.r.t. the two hyperelliptic structures. Such
curves were called Howe curves in subsequent works [20, 21]. For a genus-3 curve C,
Katsura [17] established another interesting equivalence that C is a Howe curve if and
only if it has a completely decomposed Richelot isogeny, whose target is a product of three
elliptic curves. It indicates an initimate relationship between Howe curves and decomposed
Richelot isogenies. We will further study the relationship for generalized Howe curves of
any genus (which we will define in Section 4).

1.2. Our contributions
We generalize the works [17, 18] in higher genus cases, and give a unified approach for

investigating close connections among the three notions of decomposed Richelot isogenies,
non-inversion automorphisms of order 2, and generalized Howe curves.

1. We first give a decomposition criterion (Theorem 1) by using non-inversion auto-
morphisms of order 2 for hyperelliptic curves of any genus, which are important
in almost all cryptographic applications. As is already mentioned above, it is use-
ful for analysing Richelot isogeny graphs in higher genus cases, where there exist
works for the genus-2 case by Katsura–Takashima [18] and Florit–Smith [8, 9],
and for the genus-3 case by Howe–Leprévost–Poonen [13] and Katsura [17].

2. We then define a generalized Howe curve by the nonsingular projective model
of the fiber product of two hyperelliptic curves (which satisfy some condition)
w.r.t. the two hyperelliptic structures. We show a criterion of when a generalized
Howe curve of genus g ≥ 4 is hyperelliptic (Theorem 2). It is simply described by
using branch points of the underlying two hyperelliptic curves. As a collorary, we
show that any hyperelliptic curve with an automorphism of order 2 (which is not
the inverse) is realized as a generalized Howe curve (Remark 1).

3. Thirdly, we give a strong decomposition theorem for generalized Howe curves
of any genus (Theorem 3). Our present result is a generalization of two preced-
ing facts: one is a complete decomposition theorem of genus-3 Howe curves [17,
Theorem 6.2], and the other is Theorem 1 since hyperelliptic curves with a non-
inversion order-2 automorphism are given by generalized Howe curves as indicated
above.

4. We show several examples in Section 5. In particular, we give a generalized Howe
curve of genus 5 which is non-hyperelliptic in Example 4 and that of genus 4 which
is hyperelliptic in Example 5, both of which are newly obtained from our theorems.

While we believe that our theorems, in particular, Theorem 2, represent a meaningful
advance in this research area, our understanding on the relationship between decomposed
Richelot isogenies and generalized Howe curves is still slightly limited. See comments
after Remark 1 in Section 4.
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1.3. Related works

Isogeny-based cryptography As we already pointed out in Section 1.1, a detailed study
of decomposed isogenies leads to a better understanding of security of superspecial isogeny
based cryptography via the Costello–Smith attack. In fact, very recently, Santos–Costello–
Frengley [29] proposed to use a novel search algorithm whether a genus-2 curve has an
(N,N)-decomposed isogenous neighbor for 2 ≤ N ≤ 11 for improving the Costello–
Smith attack. The main ingredient of their attack is given by explicit parametrizations of
moduli spaces of genus-2 curves whose Jacobians have an (N,N)-decomposed isogeny,
which are described by Kumar [22]. The useful, explicit descriptions depend on the special
situation of genus 2. In general, it seems to be difficult to give such explicit equations of
the moduli spaces for higher genera (and to efficiently compute on them). Therefore, we
think that our results are a first step for employing “decomposed neighbors” for efficiently
solving the higher genus isogeny problem.

As a remarkable recent progress related to decomposed Richelot isogenies, Castryck–
Decru [2] proposed a clever use of genus-2 Richelot isogenies to attack the “elliptic curve”
based SIDH key exchange protocol [6]. One of their key observations is that decomposition
events of Richelot isogenies can be used to check right guesses among several possibilities
for solving SIDH-type isogeny problems. Their attack was extended and improved by
several authors soon [23, 28]. And, in particular, Robert [28] employed 8-dimensional
abelian varieties and their isogenies for establishing a polynomial-time attack against SIDH
protocols with arbitrary starting elliptic curves. We note that the attacks can be applied to
only special cases of isogeny problems with auxiliary points as in the SIDH case, but not
be applicable to the general elliptic curve isogeny problems (without auxiliary points).

Enumeration of superspecial Howe curves In a subsequent work to ours, Moriya–
Kudo [25] explicitly wrote down our constructions, and established efficient algorithms
for computing decomposed Richelot isogenies and generalized Howe curves in the genus-
3 case. In a series of papers, Kudo and Harashita have investigated the existence and
counting of superspecial curves with coauthors (see [19] for a survey of their works). Then,
Moriya–Kudo also applied their explicit algorithms to search and enumerate superspecial
generalized Howe curves. We can find their Magma codes for the computations at [24].

Our paper is organized as follows: Section 2 gives mathematical preliminary results which
are also shown in [1, 17]. Section 3 presents a criterion for decomposed Richelot isogenies
in the hyperelliptic curve case (Theorem 1). Section 4 first defines generalized Howe curves
and then gives two theorems (Theorems 2 and 3) on decomposed Richelot isogenies in the
generalized Howe curve case. Section 5 shows several examples.

Notation and conventions For an abelian variety A and divisors D, D′ on A, we use
the following (standard) notation: idA and ιA denote the identity of A and the inversion
of A, respectively. Â = Pic0(A) denotes the dual (Picard variety) of A. D ≈ D′ denotes
algebraic equivalence. For a vector space V and a group G which acts on V , we denote by
VG the invariant subspace of V .
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2. Preliminaries

We will review necessary mathematical preliminaries that are developed in [1, 17].
Let k be an algebraically closed field of characteristic p > 2. In this section, we pre-

pare some notation and some known lemmas to examine the structure of Richelot isogenies.
For an abelian variety A and a divisor D on A, we have a homomorphism

8D : A −→ Pic0(A) = Â

x 7→ T ∗
x D −D

(cf. Mumford [26]). Here, Tx is the translation by x ∈ A. We know that 8D is an isogeny
if D is ample.

Let C be a nonsingular projective curve of genus g defined over k. We denote by
J (C) the Jacobian variety of C, and by 2 the principal polarization on J (C) given by C.
We have a natural immersion (up to translation)

αC : C ↪→ J (C) = Pic0(C) .

By the abuse of terminology, we sometimes denote αC(C) byC. The morphism αC induces
a homomorphism

α∗
C : Ĵ (C) = Pic0(J (C)) −→ Pic0(C) = J (C) .

First, we give two lemmas which make clear relations of some homomorphisms.

LEMMA 1. α∗
C = −8−1

2 .

For the proof, see Birkenhake–Lange [1, Proposition 11.3.5].
Let f : C −→ C′ be a morphism of degree 2 from C to a nonsingular projective curve

C′ of genus g ′. We denote by J (C′) the Jacobian variety of C′, and by 2′ the principal
polarization on J (C′) given by C′. For an invertible sheaf OC(

∑
miPi) ∈ J (C) (Pi ∈ C,

mi ∈ Z), the homomorphism Nf : J (C) −→ J (C′) is defined by

Nf (OC(
∑

miPi)) = OC′(
∑

mif (Pi)) .

By suitable choices of αC and αC′ , we may assume

Nf ◦ αC = αC′ ◦ f ,
that is, we have a commutative diagram

C
αC
↪→ J (C)

f ↓ ↓ Nf
C′ αC′

↪→ J (C′) .
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LEMMA 2. 82 ◦ f ∗ = N̂f ◦82′ .

For the proof, see Birkenhake–Lange [1, equation 11.4(2)] or Katsura [17, Lemma
2.2].

Using Lemmas 1 and 2, we have the following lemma which is essential to show the
existence of a decomposed Richelot isogeny.

LEMMA 3. (f ∗)∗(2) ≈ 22′.
For the proof, see Birkenhake–Lange [1, Lemma 12.3.1] or Katsura [17, Lemma 2.3].

DEFINITION 1. Let Ai be abelian varieties with principal polarizations 2i (i =
1, 2, . . . , n), respectively. The product (A1,21) × (A2,22) × · · · × (An,2n) means the
principally polarized abelian variety A1 × A2 × · · · × An with principal polarization

21 ×A2 ×A3 ×· · ·×An+A1 ×22 ×A3 ×· · ·×An+· · ·+A1 ×A2 ×· · ·×An−1 ×2n .
LEMMA 4. Let A, A1 and A2 be abelian varieties, and let f : A1 × A2 −→ A be

an isogeny. Let σ be an automorphism of A such that σ ◦ f = f ◦ (idA1 × ιA2) and 2 be
a polarization of A such that σ ∗2 ≈ 2. Then,

(A1 × A2, f
∗2) ∼= (A1, f |∗A1

2)× (A2, f |∗A2
2) .

For the proof, see Katsura [17, Lemma 3.3].

DEFINITION 2 (Richelot isogenies in genus g). Let C be a nonsingular projective
curve of genus g , and J (C) be the Jacobian variety of C. We denote by 2 the canonical
principal polarization of J (C). Let A be a g-dimensional abelian variety with principal
polarization D, and f : J (C) −→ A be an isogeny. The isogeny f is called a Richelot
isogeny if 22 ≈ f ∗(D). A Richelot isogeny f is said to be decomposed if there exist
two principally polarized abelian varieties (A1,21) and (A2,22) such that (A,D) ∼=
(A1,21) × (A2,22). Moreover, the isogeny f is said to be completely decomposed if A
with principal polarization D is decomposed into g principally polarized elliptic curves.

3. Hyperelliptic curves

Let ι be the hyperelliptic inversion of a hyperelliptic curve C of genus g (g ≥ 2) and σ
be an automorphism of order 2 of C which is not the inversion. We set τ = σ ◦ ι. We have
a morphism ψ : C −→ P1 ∼= C/〈ι〉. Since the morphism ψ is given by H0(C,�1

C) and σ
acts on it, the automorphism σ induces an automorphism of P1. In case σ has a fixed point
in the branch points of ψ , σ has precisely two fixed points in the branch points. Moreover,
by a suitable choice of the coordinate x of A1 ⊂ P1 we may assume that the two fixed
points are given by x = 0 and ∞, and that

σ : x 7→ −x; y 7→ y .

Then the branch points are given by

0, 1,−1,
√
a1,−√

a1,
√
a2,−√

a2, . . . ,
√
ag−1,−√

ag−1,∞ .
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Here, ai’s are mutually different and they are neither 0 nor 1. The normal form of the curve
C is given by

y2 = x(x2 − 1)(x2 − a1)(x
2 − a2) · · · (x2 − ag−1) .

Therefore, on the curve C the action of σ is given by

x 7→ −x, y 7→ ±√−1y ,

which is of order 4, a contradiction. Therefore, σ has no fixed points on the branch points.
Now, let the branch points be given by

1,−1,
√
a1,−√

a1,
√
a2,−√

a2, . . . ,
√
ag ,−√

ag .

Here, ai’s are mutually different and they are neither 0 nor 1. The normal form of the curve
C is given by

y2 = (x2 − 1)(x2 − a1)(x
2 − a2) · · · (x2 − ag ) .(3.1)

Elements x2 and y are invariant under σ . We set u = x2 and v = y. Then, the defining
equation of the curve C/〈σ 〉 is given by

v2 = (u− 1)(u− a1)(u− a2) · · · (u− ag ) .

We set Cσ = C/〈σ 〉. We have the quotient morphism f1 : C −→ Cσ . Elements xy and x2

are invariant under τ . We set u = x2 and v = xy. Then, the defining equation of the curve
C/〈τ 〉 is given by

v2 = u(u− 1)(u− a1)(u− a2) · · · (u− ag ) .

We set Cτ = C/〈τ 〉. We have the quotient morphism f2 : C −→ Cτ . We denote by
g(C) (resp. g(Cσ ), resp. g(Cτ )) the genus of C (resp. Cσ , resp. Cτ ). It is easy to see that
g = g(C) = g(Cσ )+ g(Cτ ). We have a morphism

f = (f1, f2) : C −→ Cσ × Cτ .

Then, we have a homomorphism

(3.2) Nf = (Nf1 , Nf2) : J (C) −→ J (Cσ )× J (Cτ ) .

The automorphisms σ and τ induce the automorphisms of J (C), and we have natural
isomorphisms:

H0(J (C),�1
J (C))

∼= H0(C,�1
C)

∼= H0(C,�1
C)

〈σ ∗〉 ⊕ H0(C,�1
C)

〈τ∗〉
∼= H0(Cσ ,�

1
Cσ
)⊕ H0(Cτ ,�

1
Cτ
) ∼= H0(J (Cσ ),�

1
J (Cσ )

)⊕ H0(J (Cτ ),�
1
J (Cτ )

) .

Therefore, Nf is an isogeny. Note that

Nf1 ◦ f ∗
1 = [2]J (Cσ ), Nf2 ◦ f ∗

2 = [2]J (Cτ ) .
By our construction, we have

Nf1 ◦ f ∗
2 = 0, Nf2 ◦ f ∗

1 = 0 .

Therefore, we have
Nf ◦ f ∗ = [2]J (Cσ )×J (Cτ ) .



Decomposed Richelot Isogenies of Jacobian Varieties of Hyperelliptic Curves and Generalized Howe Curves 9

Dualizing the situation (3.2), we have

f ∗ : J (Cσ )× J (Cτ ) −→ J (C) .

THEOREM 1. Let C be a hyperelliptic curve with an automorphism σ of order 2,
which is not the inversion. We set τ = σ ◦ ι as above. Then, the isogeny Nf : J (C) −→
J (Cσ )× J (Cτ ) is a decomposed Richelot isogeny.

Proof. Since σ induces an isomorphism from J (C) to J (C) and we may assume that
this isomorphism is an automorphism of J (C), we have a commutative diagram

J (Cσ )× J (Cτ )
idJ (Cσ )×ιJ (Cτ )−→ J (Cσ )× J (Cτ )

f ∗ ↓ ↓ f ∗

J (C)
σ−→ J (C)

Nf ↓ ↓ Nf
J (Cσ )× J (Cτ )

idJ (Cσ )×ιJ (Cτ )−→ J (Cσ )× J (Cτ ) .

Since σ ∗(2) = 2, using Lemma 4, we have

f ∗(2) ≈ f ∗
1 (2)× J (Cτ )+ J (Cσ )× f ∗

2 (2) .

Therefore, by Lemma 3, we see

f ∗(2) ≈ 2(Cσ × J (Cτ ))+ 2(J (Cσ )× Cτ ) .

Dualizing this situation, we have

N∗
f ((Cσ × J (Cτ ))+ (J (Cσ )× Cτ )) ≈ 22 .

This means that Nf is a decomposed Richelot isogeny outgoing from J (C). ut

4. Generalized Howe curves

Let C1, C2 be the nonsingular projective models of two hyperelliptic curves defined
respectively by

C1 : y2
1 = (x − a1)(x − a2) · · · (x − ar)(x − ar+1) · · · (x − a2g1+2) ,

C2 : y2
2 = (x − a1)(x − a2) · · · (x − ar)(x − br+1) · · · (x − b2g2+2) .

Here, ai 6= aj , bi 6= bj for i 6= j , and ai 6= bj for any i, j . We assume 0 < g1 ≤ g2. The
genera of these curves are given by

g(C1) = g1, g(C2) = g2 .

Let ψ1 : C1 −→ P1 and ψ2 : C2 −→ P1 be the hyperelliptic structures. We have r
common branch points of ψ1 and ψ2 (0 ≤ r ≤ 2g1 + 2). We consider the fiber product
C1 ×P1 C2:

C1 ×P1 C2
π2−→ C2

π1 ↓ ↓ ψ2

C1
ψ1−→ P1 .

We assume that there exists no isomorphism ϕ : C1 −→ C2 such that ψ2 ◦ ϕ = ψ1.
Then, the curve C1 ×P1 C2 is irreducible. We denote by C the nonsingular projective model
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of C1 ×P1 C2, and we denote by h : C −→ C1 ×P1 C2 the resolution of singularities.
We call C a generalized Howe curve. If g1 = g2 = 1, C is called a Howe curve, which
was originally defined in genus 4 by Howe [12] (see also Kudo–Harashita–Senda [21],
Oort [27] and van der Geer–van der Vlugt [11]). The naming comes from Kudo-Harashita-
Senda, loc. cit. In the case of genus 3, a Howe curve is nothing but a Ciani curve. We set
fi = πi ◦ h for i = 1, 2. Then, the degree of fi is 2. We have the following proposition.

PROPOSITION 1. The genus g(C) of C is equal to 2(g1 + g2)+ 1 − r .

Proof. Let P ∈ P1 be a common branch point of ψ1 and ψ2. We can choose a
coordinate x on A1 ⊂ P1 such that P is locally defined by x = 0. Then, the equation of C1
(resp. C2) around P is given by

y2
1 = u1x (resp. y2

2 = u2x) .

Here, u1 and u2 are units at P . We denote by P̃ the point of the fiber product C1 ×P1 C2

over P . Then, around P̃ the fiber product C1 ×P1 C2 is defined by

y2
1 = u1x, y

2
2 = u2x .

Therefore, by eliminating x, the equation around P̃ is given by the equation u2y
2
1 = u1y

2
2 .

This means that P̃ is a singular point with two branches. Therefore, on C, P̃ splits into two
nonsingular points and P is not a branch point of f1.

By the meaning of fiber product, the ramification points of ψ1 whose images by ψ1
are not branch points of ψ2 are not branch points of f1, and the points on C1 which are
not ramification points of ψ1 and whose images by ψ1 are branch points of ψ2 are branch
points of f1. Therefore, on the curve C, f1 has 2(2g2 + 2 − r) ramification points of index
2. Applying the Hurwitz formula to the morphism f1 : C −→ C1, we have

2(g(C)− 1) = 2 · 2(g(C1)− 1)+ 2(2g2 + 2 − r) .

Therefore, we have g(C) = 2(g1 + g2)+ 1 − r . ut
We denote by ιC1 (resp. ιC2 ) the hyperelliptic involution of C1 (resp. C2). Then, these

involutions lift to automorphisms of C as follows:

σ = ιC1 : y1 7→ −y1, y2 7→ y2, x 7→ x ,

τ = ιC2 : y1 7→ y1, y2 7→ −y2, x 7→ x .

Both σ and τ are of order 2 and we have σ ◦ τ = τ ◦ σ . Clearly, we have C/〈σ 〉 ∼= C2
and C/〈τ 〉 ∼= C1. We set y3 = y1y2/(x − a1)(x − a2) · · · (x − ar). Then, we have a curve
C3 = C/〈σ ◦ τ 〉, which is given by the equation

y2
3 = (x − ar+1) · · · (x − a2g1+2)(x − br+1) · · · (x − b2g2+2) .

Since the degree of the polynomial of right hand side is 2(g1 + g2)+ 4 − 2r , the genus of
the curve C3 is given by

(4.1) g(C3) = g1 + g2 + 1 − r ,

and we have

(4.2) g(C) = g(C1)+ g(C2)+ g(C3) .
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We have natural projections fi : C −→ Ci (i = 1, 2, 3). We denote by (J (Ci),2i) the
Jacobian varieties of Ci (i = 1, 2, 3).

THEOREM 2. Under the notation above, assume g(C) ≥ 4. Then, the generalized
Howe curve C is hyperelliptic if and only if r = g1 + g2 + 1, i.e., the curve C3 is rational.

Proof. First, we note r ≤ g1 + g2 + 1. Because if r > g1 + g2 + 1, by r ≤ 2g1 + 2
and g1 ≤ g2 we have g1 = g2 and r = 2g1 + 2 and all the branch points on P1 of C1
and C2 coincide. Therefore, C1 is isomorphic to C2, and there exists an automorphism
ϕ : C1 −→ C2 such that ψ1 = ψ2 ◦ ϕ. Therefore, the fiber product C1 ×P1 C2 is reducible
by the universality of fiber product, and we already excluded this case.

If r = g1 + g2 + 1, then we have g(C3) = 0 and we have a morphism C −→ C3 of
degree 2. Therefore, C is hyperelliptic. If r < g1 + g2 + 1, then we have g(C3) > 0. Since
we have g(C) ≥ 4, by (4.2) there exists Ci such that g(Ci) ≥ 2 and we have a morphism
fi : C −→ Ci . Since fi is separable, we have an injective homomorphism

(4.3) H0(Ci,�
1
Ci
) −→ H0(C,�1

C) .

Suppose C is hyperelliptic. Note that Ci is a hyperelliptic curve. Since the hyperelliptic
structure of C (resp. Ci) is given by H0(C,�1

C) (resp. H0(Ci,�
1
Ci
)) we have the following

commutative diagram by (4.3):

(4.4)
C

fi−→ Ci
↓ ↓
P1 −→ P1 .

We have a field extension k(C)/k(x). This is a Galois extension and the Galois group is
isomorphic to Z/2Z×Z/2Z. Therefore, we have 3 intermediate fields of the field extension
k(C)/k(x), and the 3 intermediate fields are given by k(Ci) (i = 1, 2, 3) whose genera are
greater than or equal to 1. However, by the diagram (4.4) we have one more intermediate
field k(P1), a contradiction. ut

From Theorem 2, the Howe curves of genus 4 which are constructed with g1 = 1,
g2 = 1 and r = 1 are non-hyperelliptic, which is known to Kudo–Harashita–Howe [20,
Lemma 2.1].

THEOREM 3. Let C be a generalized Howe curve defined as above. Then, C has a
decomposed Richelot isogeny given by a natural isogeny

Nf : J (C) −→ J (C1)× J (C2)× J (C3) .

Proof. We have a homomorphism

Nf = (Nf1 , Nf2 , Nf3) : J (C) −→ J (C1)× J (C2)× J (C3) .

Since we have natural isomorphisms:

H0(J (C),�1
J (C))

∼= H0(C,�1
C)

∼= H0(C,�1
C)

〈σ ∗〉 ⊕ H0(C,�1
C)

〈τ∗〉 ⊕ H0(C,�1
C)

〈τ∗◦σ ∗〉

∼= H0(Cσ ,�
1
Cσ
)⊕ H0(Cτ ,�

1
Cτ
)⊕ H0(Cσ◦τ ,�1

Cσ◦τ )
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∼= H0(J (C1),�
1
J (C1)

)⊕ H0(J (C2),�
1
J (C2)

)⊕ H0(J (C3),�
1
J (C3)

) ,

we see that Nf is an isogeny. Then by a similar method to the one in Theorem 1, we have

22 ≈ Nf
∗(21 × J (C2)× J (C3)+ J (C1)×22 × J (C3)+ J (C1)× J (C2)×23)

and Nf is a decomposed Richelot isogeny. ut
REMARK 1. Under the notation in Section 3, we set C1 = Cσ and C2 = Cτ . Let

ψi : Ci −→ P1 (i = 1, 2) be the hyperelliptic structures. Then, by the universality of fiber
product we have C ∼= C1 ×P1 C2. In this case, we have σ ◦ τ = ι, and C3 = C/〈ι〉 ∼= P1.
This means that the hyperelliptic curve C is a generalized Howe curve which satisfies the
condition r = g1 + g2 + 1 in Theorem 2, and that Theorem 1 is a special case of Theorem
3.

If the genus of the Howe curve C is 3, then the converse of Theorem 3 holds (cf. [17,
Theorem 6.3]), that is, if there exists a completely decomposed Richelot isogeny outgoing
from the Jacobian variety J (C), then the curve C is a Howe curve. However, if the genus
of the curve C is large, it seems to be difficult to formulate the converse. Assume the
target of the Richelot isogeny is decomposed into 3 principally polarized abelian varieties
as in Theorem 3. First, if the dimension of a principally polarized abelian variety is large,
then it is not necessarily a Jacobian variety. If the components of the decomposition are all
Jacobian varieties, the automorphism of order 2 of the target does not necessarily determine
a good automorphism of C if the curve is not hyperelliptic. Note that for an automorphism
σ of order 2 of the non-hyperelliptic curve C of genus 3 the quotient curve C/〈σ 〉 is always
an elliptic curve (cf. Katsura [17, Corollary 5.2]). Such facts work well in the case of genus
3. But we cannot expect similar results in higher genus.

5. Examples

In this section, we assume the characteristic p 6= 2 and give some concrete examples.

EXAMPLE 1. We consider the nonsingular complete model C of a curve defined by
the equation

x4 + y4 + x2y2 + 1 = 0 .

The genus of this curve is 3 and C has automorphisms σ , τ of order 2 given by

σ : x 7→ −x, y 7→ y

τ : x 7→ x, y 7→ −y .
We set u = 4

√
3y/

√
2 and v = x2 + (y2/2) (resp. u = 4

√
3x/

√
2 and v = y2 + (x2/2)).

Then, u, v are invariant under the action of the group 〈σ 〉 (resp. the group 〈τ 〉) and the
quotient curve Eσ = C/〈σ 〉 (resp. Eτ = C/〈τ 〉) is an elliptic curve defined by the equation

v2 + u4 + 1 = 0 .

Since the group G = 〈σ, τ 〉 ∼= Z/2Z × Z/2Z acts on C and we have C/G ∼= P1, we
see that the original curve C is a non-hyperelliptic Howe curve given by the fiber product



Decomposed Richelot Isogenies of Jacobian Varieties of Hyperelliptic Curves and Generalized Howe Curves 13

Eσ ×P1Eτ . Since u = y/x and v = 1/x2 are invariant under the action of the group 〈σ ◦τ 〉,
we have the third elliptic curve Eσ◦τ = C/〈σ ◦ τ 〉 defined by

v2 + u4 + u2 + 1 = 0 .

We have a natural morphism C −→ Eσ × Eτ × Eσ◦τ , and this morphism induces a com-
pletely decomposed Richelot isogeny

J (C) −→ Eσ × Eτ × Eσ◦τ .
EXAMPLE 2. We consider the nonsinglar complete model C of a hyperelliptic curve

defined by the equation
y2 = x8 + x4 + 1 .

The genus of this curve is 3 and C has automorphisms σ , ι of order 2 given by

σ : x 7→ −x, y 7→ y ,

ι : x 7→ x, y 7→ −y .
The automorphism ι is a hyperelliptic involution. We set u = x2 and v = y (resp. u = x2

and v = xy). Then, u, v are invariant under the action of the group 〈σ 〉 (resp. the group
〈σ ◦ ι〉) and the quotient curve Eσ = C/〈σ 〉 (resp. Cσ◦ι = C/〈σ ◦ ι〉) is a curve defined by
the equation

v2 = u4 + u2 + 1 (resp. v2 = u(u4 + u2 + 1)) .

Eσ is an elliptic curve and Cσ◦ι is a curve of genus 2. We have a natural morphism C −→
Eσ × Cσ◦ι, and this morphism induces a decomposed Richelot isogeny

J (C) −→ Eσ × J (Cσ◦ι) .
On the other hand, we consider the following automorphism:

τ : x 7→ 1/x, y 7→ y/x4 .

We set u = x + (1/x) and v = y/x2 (resp. u = x − (1/x) and v = y/x2). Then, u and
v are invariant under the action of the group 〈τ 〉 (resp. the group 〈σ ◦ τ 〉) and the quotient
curve Eτ = C/〈τ 〉 (resp. Eσ◦τ = C/〈σ ◦ τ 〉) is an elliptic curve and given by the equation

v2 = u4 − 4u2 + 3 (resp. v2 = u4 + 4u2 + 3) .

Since the group G = 〈τ, σ ◦ τ 〉 ∼= Z/2Z × Z/2Z acts on C and we have C/G ∼= P1,
we see that the original curve C is a hyperelliptic Howe curve given by the fiber product
Eτ ×P1 Eσ◦τ . We have a natural morphism C −→ Eσ × Eτ × Eσ◦τ and this induces a
completely decomposed Richelot isogeny

J (C) −→ Eσ × Eτ × Eσ◦τ .
EXAMPLE 3. We consider the nonsingular complete model C of a curve defined by

the equation

C : x4 + y4 + 1 = 0 .

The genus of this curve is 3 and C has automorphisms σ , τ of order 2 given by

σ : x 7→ −x, y 7→ y ,

τ : x 7→ x, y 7→ −y .
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We set u = y and v = x2 (resp. u = x and v = y2). Then, u, v are invariant under
the action of the group 〈σ 〉 (resp. the group 〈τ 〉) and the quotient curve Eσ = C/〈σ 〉
(resp. Eτ = C/〈τ 〉) is an elliptic curve defined by the equation

(5.1) v2 + u4 + 1 = 0 .

Since the group G = 〈σ, τ 〉 ∼= Z/2Z × Z/2Z acts on C and we have C/G ∼= P1, we
see that the original curve C is a non-hyperelliptic Howe curve given by the fiber product
Eσ ×P1Eτ . Since u = y/x and v = 1/x2 are invariant under the action of the group 〈σ ◦τ 〉,
we have the third elliptic curve Eσ◦τ = C/〈σ ◦ τ 〉 defined by the equation (5.1). We have
a natural morphism C −→ Eσ × Eτ × Eσ◦τ , and this morphism induces a completely
decomposed Richelot isogeny

J (C) −→ Eσ × Eτ × Eσ◦τ .
Since the elliptic curve defined by the equation (5.1) has automorphism of order 4, it is
isomorphic to the elliptic curve E0 defined by

E0 : y2 = x3 − x

over an algebraically closed field k. E0 is supersingular if and only if p ≡ 3 (mod 4).
Since our Richelot isogeny is separable, we see that the curve C is a superspecial non-
hyperelliptic Howe curve if p ≡ 3 (mod 4), that is, the Jacobian variety J (C) is isomorphic
to a product of three supersingular elliptic curves. The elliptic curve E0 has an automor-
phism ρ of order 4 defined by

ρ : x 7→ −x, y 7→ iy .

Here, i is a primitive fourth root of unity. We denote by F the Frobenius morphism of E0.
We note that if p ≡ 3 (mod 4), the endomorphism ring of E0 is given by

End(E0) = Z + Zρ + Z(1 + F)/2 + Zρ(1 + F)/2

(cf. Katsura [16]).

REMARK 2. In the case of curves of genus 3, decomplosed Richelot isogenies are
studied in Howe–Leprévost–Poonen [13] and Katsura [17] in detail.

We give two more examples of higher genera. By this method, we can construct many
superspecial curves (see also Kudo–Harashita–Howe [20]).

EXAMPLE 4. Assume the characteristic p > 2. We consider two elliptic curves

C1 : y2
1 = x4 + 1, C2 : y2

2 = x4 − 1 .

They are isomorphic to each other and supersingular if and only if p ≡ 3 (mod 4). Let C be
the generalized Howe curve which is birational to C1 ×P1C2. Then we have a Galois exten-
sion k(C)/k(x) with the Galois group ∼= Z/2Z × Z/2Z and we have k(C) ∼= k(x, y1, y2).
In this case we have r = 0, and by the formula (4.1), we have g(C3) = 3. We set y3 = y1y2.
Then we have

y2
3 = x8 − 1

which is the equation for the curve C3 of genus 3 and we have three intermediate field
k(C1), k(C2) and k(C3) of the field extension k(C)/k(x). By the calculation of the Cartier
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operator, we can easily show that C3 is superspecial if and only if p ≡ 7 (mod 8). Now, we
set y = y1 + y2. Then, we have y1y2 = y2/2 − x4. Using this equation, we know that the
curve C is the nonsingular model of the curve defined by the following equation:

y4 = 4x4y2 − 4 .

Since we have r = 0, C is non-hyperelliptic by Theorem 2. Since we have a Richelot
isogeny J (C) −→ J (C1) × J (C2) × J (C3) and the Richelot isogeny is separable, the
curve C is superspecial if and only if p ≡ 7 (mod 8).

Incidentally, the three automorphims of order 2 of the curve C are given by

σ : x 7→ x, y 7→ 2/y, τ : x 7→ x, y 7→ −2/y ,

and σ ◦ τ .

EXAMPLE 5. Assume the characteristic p ≥ 7. We consider two curves of genus 2:

C1 : y2
1 = x5 + 1, C2 : y2

2 = x6 + x .

By the isomorphism
x 7→ 1/x, y2 7→ y1/x

3

they are isomorphic to each other. Moreover, they are superspecial if and only if p ≡
4 (mod 5) (cf. Ibukiyama–Katsura–Oort [14]). Let C be the generalized Howe curve which
is birational to C1 ×P1 C2. Then we have a Galois extension k(C)/k(x) with the Galois
group ∼= Z/2Z × Z/2Z and we have k(C) ∼= k(x, y1, y2). In this case we have r = 5,
and by the formula (4.1), we have g(C3) = 0. Therefore, C is hyperelliptic and we have
g(C) = 4 by (4.2). We set y3 = y2/y1. Then we have the equation of C3:

(5.2) y2
3 = x

and we have three intermediate fields k(C1), k(C2) and k(C3) of the field extension k(C)/
k(x). Now, we set y = y1 + y2. Then we have

(5.3) y2 = (x5 + 1)(1 + x + 2y3) .

Using the equation (5.2), and putting z = y/(1 + y3), we have the equation of the curve C
over C3:

z2 = y10
3 + 1 .

Using the equations (5.3) and (5.2), we have the equation of the curve C:

y4 − 2(x5 + 1)(x + 1)y2 + (x5 + 1)2(x − 1)2 = 0 .

Since we have a Richelot isogeny J (C) −→ J (C1) × J (C2) and the Richelot isogeny is
separable, the curve C is superspecial if and only if p ≡ 4 (mod 5).

Incidentally, the three automorphims of order 2 of the curve C are given by

σ : x 7→ x, y 7→ −(x − 1)(x5 + 1)/y ,
τ : x 7→ x, y 7→ (x − 1)(x5 + 1)/y ,

and σ ◦ τ .
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