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Abstract. We propose an effective method for primary decomposition of symmetric
ideals. Let K[X] = K[x1, . . . , xn] be the n-valuables polynomial ring over a field K and
Sn the symmetric group of order n. We consider the canonical action of Sn on K[X]
i.e. σ(f (x1, . . . , xn)) = f (xσ(1), . . . , xσ(n)) for σ ∈ Sn. For an ideal I of K[X], I is
called symmetric if σ(I) = I for any σ ∈ Sn. For a minimal primary decomposition
I = Q1 ∩ · · · ∩ Qr of a symmetric ideal I , σ(I) = σ(Q1) ∩ · · · ∩ σ(Qr) is a minimal
primary decomposition of I for any σ ∈ Sn. We utilize this property to compute a full
primary decomposition of I efficiently from partial primary components. We investigate the
effectiveness of our algorithm by implementing it in the computer algebra system Risa/Asir.

1. Introduction

Algebraic structures with symmetry are often treated in mathematics. For example,
symmetric polynomials and ideals generated by them appear in invariant theory and Galois
theory. For analyzing the structure of ideals, primary decompositions are well-known as
one of the useful tools. In this paper, we prove good properties of primary decompositions
of symmetric ideals and propose an effective algorithm for primary decompositions of those
ideals.

For a proper ideal I of K[x1, . . . , xn], a primary decomposition of I is a set of primary
ideals {Q1, . . . , Qk} such that I = Q1 ∩ · · · ∩Qk . Several algorithms for primary decom-
position have been studied in [2, 3, 5, 7] and the algorithms are mainly based on Gröbner
basis computations. However, Gröbner bases are incompatible with the symmetry in gen-
eral, thus a specialized algorithm utilizing the symmetry can be effective for symmetric
ideals.

For a polynomial f (x1, . . . , xn) over a filed K , f is called symmetric if f (x1, . . . , xn)

= f (xσ(1), . . . , xσ(n)) for any permutation σ over {1, 2, . . . , n}. For example, f (x1, x2) =
x2

1+x1x2+x2
2 is a symmetric polynomial. The factorization of a symmetric polynomial has

also a symmetric structure. For a factorization f = ge1
1 · · · gek

k of a symmetric polynomial
f with irreducible polynomials gi , f = σ(g1)

e1 · · · σ(gk)
ek is also a factorization of f for

any permutation σ over {1, 2, . . . , n}. In other words, the symmetric group Sn of degree n

acts on {g1, . . . , gk}. Hence, we can define the equivalent classes C1, . . . , Cl of {g1, . . . , gk}
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with respect to the equivalent relation ∼ where gi ∼ gj if and only if σ(gi) = gj for some
σ ∈ Sn. In each class Ci , we can compute other factors of Ci from one factor of Ci i.e.
Ci = {σ(gi) | σ ∈ Sn} for gi ∈ Ci . Therefore, we can reduce the computation for the
factorization by the group action.

We consider such symmetric structures in the ideals as well. For an ideal of K

[x1, . . . , , xn], I is called symmetric if σ(I) = I for any permutation σ over {1, 2, . . . , n}.
For a minimal primary decomposition Q = {Q1, . . . , Qk} of I , σ(Q) = {σ(Q1), . . . ,

σ (Qk)} is also a minimal primary decomposition of I . However, Sn does not always
act on Q = {Q1, . . . , Qk} in general since primary decompositions of I are not neces-
sarily unique. In order to solve this problem, we introduce a notion of “the quotient set of
primary components of I” which is uniquely determined from I . For the quotient set of pri-
mary components Q[I ] = {QP1 [I ], . . . ,QPk

[I ]} of I , we can define the equivalent classes
C1, . . . , Cl of Q[I ] with respect to the equivalent relation ∼ where QPi

[I ] ∼ QPj
[I ] if

and only if σ(QPi
[I ]) = QPj

[I ] for some σ ∈ Sn. In each class Ci , we can compute other
classes of primary components in Ci from one class of a primary component in Ci . We say
that {C1, . . . , Cl} is the orbit decomposition of I . As in the case of symmetric polynomials,
we can reduce the computation for the primary decomposition. For practical computations,
we also consider other symmetric properties of the quotient set of primary components. We
implemented the algorithm in the computer algebra system Risa/Asir. In a naive computer
experiment, we examine its effectiveness in several examples.

This paper is organized as follows. In Section 2, we recall some fundamental notions
and definitions for symmetric ideals and primary decompositions. In Section 3, we intro-
duce the quotient set of primary components of a symmetric ideal for effective primary
decompositions. In Section 4, we provide some improvements for symmetric primary de-
compositions toward practical algorithms. In Section 5, we implement our algorithm in the
computer algebra system Risa/Asir [6] and examine the effectiveness of our algorithm in
several examples. In Section 6, we summarize the conclusion and discuss future works.

2. Mathematical Basis

We let X = {x1, . . . , xn} be a set of n-valuables and K[X] the polynomial ring over
a field K . Also, let Sn be the symmetric group of degree n and ϕ : Sn ×K[X] → K[X]
the canonical action of Sn on K[X] such that σ(f (x1, . . . , xn)) = f (xσ(1), . . . , σσ(n))

for σ ∈ Sn and f ∈ K[X]. Here, for distinct i1, . . . , ik ∈ {1, . . . , n}, (i1 i2 i3 · · · ik) is
a permutation such that i1 7→ i2, i2 7→ i3, . . . , ik−1 7→ ik , ik 7→ i1. For polynomials
f1, . . . , fl , we denote by 〈f1, . . . , fl〉 the ideal generated by them. For an ideal I , we call
{f ∈ K[X] | f m ∈ I for a positive integer m} the radical of I and denote it by

√
I . Also,

we call I : J = {f | f J ⊂ I } and I : J∞ = {f | f mJ ⊂ I, for a positive integer m} the
quotient and the saturation of ideals I and J respectively.

2.1. Symmetric Ideal
First, we introduce a notion of symmetric ideal.

DEFINITION 2.11. For an ideal I of K[X], I is called symmetric if σ(I) = I for
any σ ∈ Sn, where σ(I) = {σ(f ) | f ∈ I }.
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EXAMPLE 2.12. I = 〈x2
1 − x2

2 , x1x2〉 ⊂ K[x1, x2] is a symmetric ideal.

REMARK 2.13. Since σ is invertible, σ(I) ⊂ I implies I ⊂ σ−1(I ). Thus, the
condition σ(I) = I can be replaced by σ(I) ⊂ I .

We generalize the term “symmetric ideal” and consider an action by a subgroup of Sn

on I .

DEFINITION 2.14. For an ideal I of K[X] and a subgroup G of Sn, I is called
G-invariant if σ(I) = I for any σ ∈ G.

EXAMPLE 2.15. For G = {(1), (1 2 3), (1 3 2)} ⊂ S3 and I = 〈x1x2, x2x3, x3x1〉 ⊂
K[x1, x2, x3], I is a G-invariant ideal.

REMARK 2.16. Here, symmetric ideals are not necessarily generated from symmet-
ric polynomials. For example, I = 〈x−y〉 is generated by non-symmetric polynomial x−y

but it is a symmetric ideal.

Next, we recall a definition of primary decomposition and prime divisors of an ideal
as follows.

DEFINITION 2.17. Let I be a proper ideal of K[X]. A set {Q1, . . . , Qk} of primary
ideals is called a primary decomposition of I if

I = Q1 ∩ · · · ∩Qk .

A primary decomposition {Q1, . . . , Qk} of I is called minimal or irredundant if
√

Qi 6=√
Qj for any pair (i, j) with i 6= j and Qi 6⊃ ∩

j 6=i Qj for any i. Each Qi is called a
(
√

Qi-)primary component of I and
√

Qi is called a prime divisor or an associated prime
of I .

We denote by Ass(I ) the set of prime divisors of I i.e. Ass(I ) = {√Q1, . . . ,
√

Qk}
for a minimal primary decomposition {Q1, . . . , Qk} of I . In the set of prime divisors,
prime divisors which are minimal under set inclusion are called isolated, others are called
embedded respectively.

REMARK 2.18. A minimal primary decomposition of I is not always unique in gen-
eral. For instance, I = 〈x2

1 , x1x2〉 has infinitely many primary decompositions of type
{〈x1〉, 〈x2

1 , x1x2, x
m
2 〉} for any positive integer m. In Section 3, we define the set of all

P -primary components with respect to a prime divisor P to avoid the non-uniqueness of
primary decompositions.

2.2. Criteria for Symmetric Ideal
In order to check whether a given ideal is symmetric or not, one can utilize a Gröbner

basis of the ideal. For permutations σ1, . . . , σl of Sn, we denote by 〈〈σ1, . . . , σl〉〉 the
subgroup generated by them.

LEMMA 2.21. Let I = 〈f1, . . . , fk〉 be an ideal of K[X] and G a subgroup of Sn.
Then, I is G-invariant if and only if σ(fi) ∈ I for any i ∈ {1, . . . , k} and σ ∈ G. In
particular, one can check whether a given ideal I is G-invariant or not.
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Proof. If I is G-invariant, then it is obvious that σ(fi) ∈ I for any i and σ ∈ G.
Suppose that σ(fi) ∈ I for any i and σ ∈ G. Then, for f ∈ I , there exist h1, . . . , hk ∈
K[X] such that f = h1f1 + · · · + hkfk . Since σ(f ) = σ(h1)σ (f1)+ · · · + σ(hk)σ (fk) ∈
〈σ(f1), . . . , σ (fk)〉 ⊂ I , we obtain that σ(I) ⊂ I and I is G-invariant by Remark 2.13. In
order to check whether f ∈ I or f 6∈ I , one can use a Gröbner basis of I with respect to a
monomial ordering on K[X].

One can check if I is G-invariant or not more easily by using a generating set of G as
follows.

LEMMA 2.22. Let I = 〈f1, . . . , fk〉 be an ideal of K[X] and G be a subgroup of
Sn. If G is generated by σ1, . . . , σl then I is G-invariant if and only if σj (fi) ∈ I for any
i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.

Proof. It is obvious that σj (fi) ∈ I if I is G-invariant. Suppose that σj (fi) ∈ I

for any i ∈ {1, . . . , k} and j ∈ {1, . . . , l}. For σ ∈ G, there exist σi1 , . . . , σim (1 ≤
i1, . . . , im ≤ l) such that σ = σi1 · · · σim . Thus, for any σ ∈ G and f ∈ I , it follows that
σ(f ) = σi1(· · · (σim(f ))) ∈ I and σ(I) ⊂ I .

EXAMPLE 2.23. Since Sn is generated by (1 2) and (1 2 3 · · · n), I is symmetric if
and only if (1 2)(I ) = I and (1 2 3 · · · n)(I ) = I .

Finally, we obtain a decision algorithm for G-invariant ideals as Algorithm 1.

Algorithm 1 ISINVARIANTIDEAL

Input: {f1, . . . , fk}: a set of polynomials. σ1, . . . , σl : permutations of Sn

Output: 1 if 〈f1, . . . , fk〉 is 〈〈σ1, . . . , σl〉〉-invariant; 0 otherwise
for i = 1 to k do

for j = 1 to l do
if σj (fi) 6∈ I then

return 0
end if

end for
end for
return 1

3. Primary Decomposition of Symmetric Ideals

In this section, we reveal a symmetric structure in primary divisors of a symmetric
ideal. We remark that σ ∈ Sn is an automorphism of K[X], and thus P is a prime ideal
if and only if σ(P ) is a prime ideal. Also, Q is a primary ideal if and only if σ(Q) is a
primary ideal. Similarly, other algebraic property of an ideal I holds for σ(I). In addition,
σ is commutative with many ideal operations, for example, σ(I ∩ J ) = σ(I) ∩ σ(J ) and
σ(I + J ) = σ(I)+ σ(J ).

3.1. Group Action on Primary Components
First, we show that primary decomposition is commutative with a group action.
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LEMMA 3.11. Let I be a G-invariant ideal and σ ∈ G. For a primary decomposition
Q = {Q1, . . . , Qk} of I , σ(Q) = {σ(Q1), . . . , σ (Qk)} is also a primary decomposition of
I . If Q is minimal, then σ(Q) is also minimal.

Proof. Since σ is commutative with the ideal intersection,

I = σ(I) = σ(Q1) ∩ · · · ∩ σ(Qk) .

Here, each σ(Qi) is primary and thus σ(Q) is a primary decomposition of I . If Q is
minimal then

√
σ(Qi) = σ(

√
Qi) 6= σ(

√
Qj ) =

√
σ(Qj ) for any pair (i, j) with i 6= j

and σ(Qi) 6⊃ σ
(∩

j 6=i Qj

)
=∩

j 6=i σ(Qj ) for any i. Thus, σ(Q) is also minimal.

Next, we prove that the set of prime divisors of a symmetric ideal has also a symmetric
structure.

PROPOSITION 3.12. Let I be a G-invariant ideal and Ass(I ) = {P1, . . . , Pk}. Then,
G acts on Ass(I ) by σ(Pi) for σ ∈ G and Pi ∈ Ass(I ).

Proof. It is enough to show that σ(Pi) ∈ Ass(I ) for any σ ∈ G. For a minimal
primary decomposition {Q1, . . . , Qk} of I , {σ(Q1), . . . , σ (Qk)} is also a minimal primary
decomposition of σ(I) by Lemma 3.11 and thus σ(Pi) ∈ Ass(σ (I )). Since σ(I) = I for
any σ ∈ G, we obtain σ(Pi) ∈ Ass(σ (I )) = Ass(I ).

EXAMPLE 3.13. Let I = 〈x1x2, x2x3, x3x1〉 ⊂ Q[x1, x2, x3] and G = 〈〈(1 2 3)〉〉.
Then, I is G-invariant and I = 〈x1, x2〉 ∩ 〈x2, x3〉 ∩ 〈x3, x1〉 i.e. Ass(I ) = {〈x1, x2〉, 〈x2,

x3〉, 〈x3, x1〉} = {P1, P2, P3}. Here, for σ = (1 2 3), we obtain that σ(P1) = P2,
σ(P2) = P3 and σ(P3) = P1.

REMARK 3.14. In general, Q = σ(Q) is not always true. For example, I = 〈x1 +
x2〉∩〈x3

2+x2+1, (x1+x2)
2〉∩〈x3

2+x2−1, (x1+x2)
2〉 is a symmetric ideal and has a minimal

primary decomposition Q = {〈x1+x2〉, 〈x3
2+x2+1, (x1+x2)

2〉, 〈x3
2+x2−1, (x1+x2)

2〉}.
However, Q 6= σ(Q) for σ = (1 2). Indeed, σ(Q) = {〈x2 + x1〉, 〈x3

1 + x1 + 1, (x2 +
x1)

2〉, 〈x3
1 + x1 − 1, (x2 + x1)

2〉} and 〈x3
1 + x1 + 1, (x2 + x1)

2〉 ∈ σ(Q) is not in Q.

In Remark 3.14, we see that G does not always act on a primary decomposition of a
G-invariant ideal I . Thus, we extend the notion of the primary decomposition as follows.

DEFINITION 3.15. Let P be a prime divisor of I . We call the set of all P -primary
components of I the class of a (P -)primary component of I and denote it by QP [I ]. We
call the set of all classes of primary components {QP [I ] | P ∈ Ass(I )} the quotient set of
primary components of I and denote it by Q[I ].

EXAMPLE 3.16. Let I = 〈x2
1 , x1x2〉 ⊂ Q[x1, x2]. Then, Ass(I ) = {〈x1〉, 〈x1, x2〉}

= {P1, P2}. Here, QP1 [I ] = {〈x1〉} and QP2 [I ] contains 〈x1, x1x2, x
m
2 〉. In general, it is

very difficult to express the elements of QP [I ] explicitly. However, it is enough to know
just one element of QPi

[I ] for each i for computing a primary decomposition of I by
Proposition 3.17.
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Regardless of the choice of each primary component QP of QP [I ], the set {QP | P ∈
Ass(I )} is a minimal primary decomposition. The following proposition is proved directly
from Proposition 2.9 in [4].

PROPOSITION 3.17 ([4], Proposition 2.9). Let Q[I ] = {QP1 [I ], . . . ,QPk
[I ]} and

Qi an element of QPi
[I ] for each i ∈ {1, . . . , k}. Then, {Q1, . . . , Qk} is a minimal primary

decomposition of I .

Finally we obtain the action on the quotient set of primary components of I .

THEOREM 3.18. Let I be a G-invariant ideal. Then, G acts on Q[I ] by σ(QP [I ])
for σ ∈ G and QP [I ] ∈ Q[I ].

Proof. Let P be a prime divisor and Q a P -primary component of I . Then, σ(P ) is
a prime divisor and σ(Q) is a σ(P )-primary component of I by Proposition 3.12. Thus,
σ(QP [I ]) = Qσ(P )[I ] ∈ Q[I ].
3.2. Algorithm for Primary Decomposition of Symmetric Ideals

Here, we devise an effective algorithm specialized to symmetric ideals. For a G-
invariant ideal, we only need to compute l primary components where l is the number of
the orbit decomposition of I with respect to G in Definition 3.21. In particular, if G acts on
Ass(I ) transitively, then we can compute a minimal primary decomposition from just one
primary component of I (see Example 3.23).

DEFINITION 3.21. Let ∼ be an equivalent relationship between Q[I ] defined by
QPi
[I ] ∼ QPj

[I ] if and only if σ(QPi
[I ]) = QPj

[I ] for some σ ∈ G. We call the set
{C1, . . . , Cl} of all equivalent classes of Q[I ] with respect to ∼ the orbit decomposition of
I with respect to G.

EXAMPLE 3.22. Let I = 〈(x1 + 1)(x2 + 1)(x1 + x2)〉 ⊂ Q[x1, x2]. Then, I is a
symmetric ideal and Ass(I ) = {〈x1+1〉, 〈x2+1〉, 〈x1+x2〉} = {P1, P2, P3}. Then, for C1 =
{QP1 [I ],QP2 [I ]} and C2 = {QP3 [I ]}, it follows that {C1, C2} is the orbit decomposition
of I with respect to S2.

In each orbit Ci , one can compute other classes of primary components from one class
of a primary component QPi

[I ] in Ci since Ci = {σ(QPi
[I ]) | σ ∈ G}. Hence, we

can compute a minimal primary decomposition from l-primary components Q1, . . . , Ql ,
where each Qi is in QPi

[I ] respectively. Here, Algorithm 2 is an outline of an algorithm
for primary decompositions of symmetric ideals.

EXAMPLE 3.23. Let I = cyclic(3) = 〈x1x2x3 − 1, x1x2 + x2x3 + x3x1, x1 + x2 +
x3〉 ⊂ Q[x1, x2, x3] (see [1] for the definition of cyclic(n)). Then, I is a symmetric ideal.
By computing a Gröbner basis of I , it follows that

I ∩Q[x3] = 〈x3
3 − 1〉 = 〈x3 − 1〉 ∩ 〈x2

3 + x3 + 1〉 .
Then, I = (I + 〈x3 − 1〉) ∩ (I + 〈x2

3 + x3 + 1〉) and we obtain a primary component

Q1 = (I + 〈x3 − 1〉) = 〈x2
2 + x2 + 1, x1 + x2 + 1, x3 − 1〉
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Algorithm 2 SYMMETRICPRIMARYDECOMPOSITION

Input: I : a G-invariant ideal of K[X]. G: a subgroup of Sn

Output: a minimal primary decomposition of I

Q = {}
while Q is not a minimal primary decomposition of I do

Compute a primary component Q of I , whose radical
√

Q is not in {√Q′ | Q′ ∈ Q}
Q← Q ∪ {σ(Q) | σ ∈ G}

end while
return Q

By acting S3 on Q1, we obtain other primary components

Q2 = (1 2 3)(Q1) = 〈x2
3 + x3 + 1, x2 + x3 + 1, x1 − 1〉

Q3 = (1 3 2)(Q1) = 〈x2
1 + x1 + 1, x3 + x1 + 1, x2 − 1〉

and a minimal primary decomposition

I = Q1 ∩Q2 ∩Q3 .

4. Improvements for Symmetric Primary Decomposition

In this section, we devise practical techniques and propose several improvements for
symmetric primary decomposition. Here, we modify Shimoyama-Yokoyama Algorithm
(SY-Algorithm) [7], one of the effective algorithms for primary decomposition, by spe-
cializing in symmetric ideals. After a brief review of the SY-algorithm, we introduce a
symmetric ideal version of the SY-algorithm.

4.1. Outline of Shimoyama-Yokoyama Algorithm
First, we recall an outline of SY-algorithm. For an ideal I , SY-algorithm uses the

prime decomposition of
√

I to compute the pseudo-primary decomposition of I . In more
detail, it utilizes separators to compute pseudo-primary components. An ideal I is called a
pseudo-primary ideal if

√
I is a prime ideal (see Definition 2.3 in [7]).

DEFINITION 4.11 ([7], Definition 2.5 and Definition 2.8). Let I be an ideal, which is
not a pseudo-primary ideal, P1, . . . , Pk all isolated prime divisors of I , and S1, . . . , Sr are
finite subsets in K[X]. Each Si is called a separator of I with respect to Pi if they satisfy
the following conditions;

Si ∩ Pi = ∅, and Si ∩ Pj 6= ∅ for i 6= j .

A set of separators {S1, . . . , Sr} is called a system of separators of I . For a separator Si

of I with respect to Pi and si = ∏
s∈Si

s, we say that Qi = I : s∞i is a P -pseudo-primary
component of I . Also, there exists an ideal I ′ of K[X] such that

I = Q1 ∩ · · · ∩Qr ∩ I ′

and this decomposition is called a pseudo-primary decomposition of I . Here, I ′ is called
the remaining component of the pseudo-primary decomposition of I .
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For a pseudo-primary component Qi of I , we can compute the isolated primary com-
ponent Qi of Qi (i.e. that of I ) and an ideal Q′i such that Q1 = Qi ∩ Q′i by a maximal
independent set of Qi (see Procedure 3.3 in [7]). Thus, applying the pseudo-primary de-
composition recursively for Q′i and I ′, we obtain a primary decomposition Q of I . How-
ever, Q may have an unnecessary component i.e. Q is not necessarily minimal. In order to
solve this problem, we use “saturated separating ideal” proposed in [5].

DEFINITION 4.12 ([5], Definition 1). Let I and Q be ideals satisfying I ⊂ Q. An
ideal J is called a separating ideal for (I,Q) if I = Q ∩ (I + J ) holds. If a separating
ideal for (I,Q) satisfies

√
I : Q = √I + J then J is called a saturated separating ideal

for (I, Q).

The following proposition states that every isolated primary component of I + J is a
primary component of I for a saturated separating ideal J for (I,Q).

PROPOSITION 4.13 ([5], Theorem 7). Suppose that I = Q ∩ J and
√

J = √I : Q
for a proper ideal J . Let Q1. . . . , Qr be the set of all isolated primary components of J

and set Q′ = Q∩∩r
i=1 Qi . If I = Q′ ∩ J ′ and

√
J ′ = √I : Q′ for a proper ideal J ′, then

any minimal associated prime of J ′ is a non-minimal associated prime of J .

The existence of a saturated separating ideal for (I,Q) is ensured by the following
proposition.

PROPOSITION 4.14 ([5], Theorem 4). Let J be a separating ideal for (I, Q). If
f ∈ √I : Q then there exists a positive integer m satisfying I = Q ∩ (I + J + 〈f m〉).

Here, Algorithm 3 is a derivative version of SY-algorithm, which outputs a minimal
primary decomposition of a given ideal.

4.2. Symmetric Shimoyama-Yokoyama Algorithm
Here, we introduce an effective SY-algorithm specialized for symmetric ideals. For

such specialization and symmetric pseudo-primary decompositions, we need to prove the
computability of the followings:

1. a symmetric system of separators (see Proposition 4.21),
2. a symmetric saturated separating ideal (see Theorem 4.23).

First, we show that there exists a symmetric system of separators as follows.

PROPOSITION 4.21. Let I be a G-invariant ideal, which is not a pseudo-primary
ideal. Let P1, . . . , Pr be isolated prime divisors. There exists a system of separators
{S1, . . . , Sr} such that G acts on {S1, . . . , Sr}.

Proof. Let L = {1, . . . , r} and S1 be an arbitrary separator with respect to P1.
Then, σ(S1) is a separator with respect to σ(P1) for σ ∈ G. Indeed, σ(S1) ∩ σ(P1) =
σ(S1 ∩ P1) = ∅ and σ(S1) ∩ σ(Pj ) = σ(S1 ∩ Pj ) 6= ∅ for j 6= 1. Set L1 = L \ {i | Pi =
σ(P1) for some σ ∈ G}. If L1 6= ∅, then we pick i1 ∈ L1 and let Si1 be an arbitrary separa-
tor with respect to Pi1 . Then, σ(Si1) is a separator with respect to σ(Pi1) for σ ∈ G. Induc-
tively, for a positive integer j ≥ 2, we define Lj = Lj−1 \{i | Pi = σ(Pij−1) for some σ ∈
G} and pick ij ∈ Lj and a separator Sij with respect to Pij until L1 ∪ · · · ∪ LN = L at
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Algorithm 3 SHIMOYAMA-YOKOYAMA (SY)

Input: I : an ideal of K[X]
Output: a minimal primary decomposition of I

1: Q = {}
2: P1, . . . , Pr ← isolated prime divisors of I

3: {S1, . . . , Sr} ← a system of separators of I

4: for i = 1 to r do
5: si ←∏

s∈Si
s

6: Qi ← I : s∞i
7: end for
8: for i = 1 to r do
9: Q← the isolated primary component of Qi

10: J1 ← a saturated separating ideal for (Qi,Q)

11: if I + J1 6= K[X] then
12: Q← Q ∪ SY(I + J1)

13: end if
14: end for
15: J2 ← a saturated separating ideal for (I,

∩r
i=1 Qi)

16: if I + J2 6= K[X] then
17: Q← Q ∪ SY(I + J2)

18: end if
19: return Q

some positive integer N . It follows that {σ(Pik ) | σ ∈ G, k = 1, . . . , N} is a system of
separators of I and G acts on it.

We call {S1, . . . , Sr} in Proposition 4.21 a G-invariant system of separators of I . For
a symmetric ideal, its pseudo-primary component can be divided into two types as follows.

THEOREM 4.22. Let P1, . . . , Pr be isolated prime divisor of a G-invariant ideal I

and {S1, . . . , Sr} a G-invariant system of separators of I . Then, for each pseudo-primary
component Qi with respect to Si , it satisfies either one of the following conditions.

1. Qi is G-invariant
2. Qi does not have any G-invariant primary components.

Proof. Fix i. For σ ∈ G, σ(Qi) = σ(I : s∞i ) = I : σ(si)
∞. Since {S1, . . . , Sr}

is a G-invariant system of separators of I , σ(Qi) is also a pseudo-primary component of
I . If Pi is G-invariant, then Qi is also G-invariant. Otherwise, there exists j 6= i such
that σ(Qi) = Qj . In this case, for any primary component Q of Qi , σ(Q) is a primary
component of Qj . Since Qi and Qj do not have any common primary components, Q 6=
σ(Q). Therefore, Qi does not have any G-invariant primary components.

Next, we can take a symmetric saturated separating ideal for (I, Q) as follows.
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THEOREM 4.23. Let I and Q be G-invariant ideals with I ⊂ Q. Let J be a G-
invariant ideal and a separating ideal for (I, Q). There exist a non-negative integer l and
f1, . . . , fl ∈ K[X] such that

1. I = Q ∩ (I + J + 〈f1, . . . , fl〉),
2. 〈f1, . . . , fl〉 is a G-invariant ideal,
3. J + 〈f1, . . . , fl〉 is a saturated separating ideal for (I,Q).

Proof. If J is a saturated separating ideal for (I,Q), then l = 0 satisfies (1) − (3).
Suppose J is not a saturated separating ideal for (I, Q). Then we can take g1 ∈ (I :
Q) \ √I + J . By Proposition 4.14, there exists a positive integer m1 such that I = Q ∩
(I + J +〈gm1

1 〉). Since both I : Q and
√

I + J are G-invariant, σ(g1) ∈ (I : Q) \√I + J

for any σ ∈ G. Thus, there exists a positive integer mσ1 for some σ1 ∈ G \ {(1)} such
that I = Q ∩ (I + J + 〈gm1

1 , σ (g
mσ1
1 )〉). Repeatedly, there exist positive integers mσ

(σ ∈ G) such that I = Q ∩ (I + J + 〈σ(gmσ

1 ) | σ ∈ G〉) with m(1) = m1. Letting
M1 = max{mσ | σ ∈ G}, we obtain I = Q ∩ (I + J + 〈σ(g1)

M1 | σ ∈ G〉). Here,
F1 = {σ(g1)

M1 | σ ∈ G} satisfies (1) and (2). If F1 does not satisfy (3), then we can
take g2 ∈ (I : Q) \ √I + J and set M2 repeatedly. As K[X] is Noetherian, there exists
a positive integer N such that J + 〈σ(g1)

M1 | σ ∈ G〉 + · · · + 〈σ(gN )MN | σ ∈ G〉 is a
saturated separating ideal for (I, Q).

For an ideal I , we say that I is completely anti-symmetric if I does not have any
symmetric primary components. In the symmetric pseudo-primary decomposition I =
Q1∩· · ·∩Qr∩I ′ of I , there are 3-type of components by Theorem 4.22 and Theorem 4.23:

1. symmetric pseudo-primary component Q; in this case we apply our symmetric
decomposition to Q recursively.

2. completely anti-symmetric pseudo-primary component Q; in this case we apply an
ordinary primary decomposition algorithm to Q

3. symmetric remaining component I ′; in this case we apply our symmetric decom-
position to I ′ recursively.

Finally, we obtain the symmetric Shimoyama-Yokoyama Algorithm as Algorithm 4.
The following proposition ensures its termination and correctness.

PROPOSITION 4.24. Algorithm 4 terminates in finitely many steps and outputs a
minimal primary decomposition of I .

Proof. The termination is proved in a similar way to that of Shimoyama-Yokoyama
algorithm (Theorem 3.2 in [7]). Thus, it is enough to prove the correctness of Algorithm 4.
Let Q be the output for I and G. The element Q of Q is in one of the following cases:

1. Q is the isolated primary component of Qi (line 11)
2. Q is a primary component of I + J1 (line 15)
3. Q is equal to σ(Q′) for a primary component Q′ of Qi and σ ∈ G (line 19)
4. Q is a primary component of I + J2 (line 24)

In the case (1), since Qi is a pseudo primary component of I , Q is an isolated pri-
mary component of I . In the case (2), as J1 is a G-invariant saturated separating ideal
for (Qi,Q), Q is a primary component of both I and I + J1. In the case (3), since I is
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G-invariant, σ(Q′) is a primary component of I . In the case (4), as J2 is a G-invariant sat-
urated separating ideal for (I,

∩r
i=1 Qi), Q is a primary component of both I and I + J2.

Therefore, Q is a primary component in any cases and thus Q is a primary decomposition
of I . The minimality of Q follows from Theorem 4.23.

In Algorithm 4, SY is an ordinal primary decomposition algorithm (Algorithm 3)
based on Shimoyama-Yokoyama Algorithm.

Algorithm 4 SYMMETRICSY

Input: I : a G-invariant ideal of K[X]. G: a subgroup of Sn

Output: a minimal primary decomposition of I

1: Q = {}
2: P1, . . . , Pr ← isolated prime divisors of I

3: {S1, . . . , Sr} ← a G-invariant system of separators of I

4: for i = 1 to r do
5: si ←∏

s∈Si
s

6: Qi ← I : s∞i
7: end for
8: C1, . . . , Cl ← the orbit decomposition of {Q1, . . . , Qr} with respect to G

9: for i = 1 to l do
10: if |Ci | = 1 then
11: Q← the isolated primary component of Qi for Ci = {Qi}
12: Q← Q ∪ {Q}
13: J1 ← a G-invariant saturated separating ideal for (Qi,Q)

14: if I + J1 6= K[X] then
15: Q← Q ∪ SYMMETRICSY(I + J1)

16: end if
17: else
18: Pick Qi ∈ Ci and Qi ← SY(Qi)

19: Q← Q ∪∪
σ∈G σ(Qi)

20: end if
21: end for
22: J2 ← a G-invariant saturated separating ideal for (I,

∩r
i=1 Qi)

23: if I + J2 6= K[X] then
24: Q← Q ∪ SYMMETRICSY(I + J2)

25: end if
26: return Q

5. Experiment

In this section, we examine the effectiveness of our algorithm in a naive computa-
tional experiment. We implement our algorithm in the computer algebra system Risa/Asir
[6]. Here, the author implemented SY and symSY based on Algorithm 3 and Algorithm 4
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respectively. Both algorithms use the Risa/Asir package noro_pd to compute ideal quo-
tients, saturations, and prime decompositions of radical ideals. In order to measure the
effect of using symmetry, each algorithm is implemented as simple as possible. There-
fore, SY and symSY may be considered slower than the Shimoyama-Yokoyama algorithm
already implemented in Risa/Asir. Timings in seconds are measured on a PC with AMD
Ryzen Threadripper PRO 5965WX 24-Cores and 128GB memory.

In Table 1, there are timings of SY and symSY in the ideals I1, . . . , I10:

I1 = 〈(x1 + x2)
3 − 1, x1x2(x1 + x2)〉 ⊂ Q[x1, x2] ,

I2 = 〈σ(x2
1x2 + x1x3) | σ ∈ S3〉 ⊂ Q[x1, x2, x3] ,

I3 = 〈σ(x4
1x2 + x1x3) | σ ∈ 〈〈(1 2 3)〉〉〉 ⊂ Q[x1, x2, x3]

where 〈〈(1 2 3)〉〉 = {(1), (1 2 3), (1 3 2)} ,
I4 = cyclic(4) = 〈c1c2c3c4 − 1, c1c2c3 + c2c3c4 + c1c3c4 + c1c2c4 ,

c1c2 + c2c3 + c3c4 + c1c4, c1 + c2 + c3 + c4〉 ⊂ Q[c1, c2, c3, c4] ,
I5 = 〈(c1c2c3c4 − 1)2, (c1c2c3 + c2c3c4 + c1c3c4 + c1c2c4)

2 ,

(c1c2 + c2c3 + c3c4 + c1c4)
2, (c1 + c2 + c3 + c4)

2〉 ⊂ Q[c1, c2, c3, c4] ,
I6 =

∩
σ∈S4

σ(〈x3
1 − 1, x2

2〉) ⊂ Q[x1, x2, x3, x4] ,

I7 =
∩

σ∈S4

σ(〈x1x2, x
2
3 − x4〉) ⊂ Q[x1, x2, x3, x4] ,

I8 =
∩

σ∈S5

σ(〈x1x2x3, x
2
4 + x2

5〉) ⊂ Q[x1, x2, x3, x4, x5] ,

I9 =
∩

σ∈S5

σ(〈x2
1 − 1, x3

2 , x4
3〉) ⊂ Q[x1, x2, x3, x4, x5] ,

I10 =
∩

σ∈S6

σ(〈x2
1 − 1, x3

2 , x4
3〉) ⊂ Q[x1, x2, x3, x4, x5, x6] .

An invariant group to each row ideal Ii is in the second column. The cardinality of a
minimal primary decomposition of each ideal is in the third column. Also, the number of
the orbit decomposition {C1, . . . , Cl} of each ideal is in the fourth column. We see that
the symmetric SY-algorithm is effective for each Ii compared to the ordinal SY-algorithm.
While the computation time of SY increases as the number of primary components (#Q)
increases, that of symSY increases slowly since it essentially requires only l-primary com-
ponents, where l is the number of orbits (#Orbit). For example, I9 has 60-primary compo-
nents and SY takes 266 seconds for the computation. On the other hand, symSY computes
it much faster (in 7.62 seconds) since it computes 60 primary components from 2 primary
components which are in each orbit by the group action of S5. These results show that
symSY can be effective when the input ideal has many primary components and a highly
symmetric structure.
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ideal G #Q #Orbit SY symSY
I1 S2 4 2 0.01 0.01
I2 S3 7 3 0.03 0.03
I3 〈〈(1 2 3)〉〉 15 7 0.10 0.09
I4 〈〈(1 2 3 4), (1 3)〉〉 8 3 0.07 0.05
I5 〈〈(1 2 3 4), (1 3)〉〉 8 3 0.65 0.40
I6 S4 24 2 2.68 0.48
I7 S4 24 1 796 42.2
I8 S5 30 1 91.7 3.58
I9 S5 60 2 266 7.62
I10 S6 120 2 > 5 days 6377

TABLE 1. Timings of SY and symSY

6. Conclusions and Future Works

Symmetric ideals appear in various areas of mathematics. In this paper, we prove good
properties of symmetric ideals in order to provide an effective algorithm for a primary de-
composition of such an ideal. In the proposed algorithm, one can compute full primary
components from partial ones by the group action on the ideal. For practical computations,
we devise Shimoyama-Yokoyama Algorithm specialized to symmetric ideals. In a com-
putational experiment, we examine that the specialized algorithm is faster than the ordinal
one in several cases.

For future works, we plan to improve the algorithm and apply it to examples that
appear in several areas e.g. statistics. For improvements, we are thinking of devising
a specialized algorithm of Kawazoe-Noro algorithm [5] to compute efficiently for more
types of symmetric ideals. Also, we will consider generalized group actions, for example,
the general linear group GL(n,K) on K[X] by A(f (x1, . . . , xn)) = f (A(x1, . . . , xn)) for
a matrix A ∈ GL(n,K) and a polynomial f ∈ K[X].
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