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Abstract

We construct a generic scalar-tensor theory with two degrees of freedom (DOFs) when a
scalar !eld has a timelike gradient, which we dub the “extended cuscuton.”This nature
originates from the cuscuton theory being a subset of the k-essence model. The usual
scalar-tensor theories have three dynamical DOFs, and the number of DOFs is generally
independent of scalar !eld distributions. On the other hand, in the cuscuton, the number
of DOFs depends on the gradient of the scalar !eld. This theory has three DOFs with a
spacelike gradient and two DOFs with a timelike gradient. In the latter case, the scalar !eld
obeys a constraint equation, and thus it acts as a nondynamical auxiliary !eld. Even so, the
cuscuton indeed modi!es gravity and appears many fascinating features.

In this thesis, we aim to construct a unifying framework of cuscuton-like theories. We
particularly focus on the attractive two-DOFs situation with a timelike gradient, which
allows us to choose the unitary gauge without loss of generality. We start from a generic
scalar-tensor theory with three DOFs in general, and identify the speci!c form of the
Lagrangian by requiring that the theory has only two DOFs in the unitary gauge. We !rst
specify the cosmological prototype, that is, the class satisfying the cosmological features of
the cuscuton. Next, we identify which of the theory among the cosmological prototype has
two DOFs on an arbitrary background in the unitary gauge by means of the Hamiltonian
analysis. We study a relation between the original and the extended cuscuton theories
employing disformal transformations. We also compare the extended cuscuton with other
related theories, and analyze the stabilities in the presence of a matter !eld. Finally, we
investigate whether the extended cuscuton can account for the current cosmic acceleration.
We present a simple example that admits analytic solutions for the cosmological background
evolution that mimics ΛCDM cosmology. We argue that this example model can be
constrained, like usual scalar-tensor theories, by the growth history of matter density
perturbations and the time variation of Newton’s constant.
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Chapter 1

Introduction

General relativity (GR) is the most successful and standard gravitational theory. Unlike
Newtonian gravity, GR interprets gravitation as the geometry of spacetime and is described
in terms of a pseudo-Riemannianmanifold. The action of GR is given by the Einstein-Hilbert
action:

% =
∫

&4'
√−(

)2
Pl
2 *, (1.1)

where ( is the determinant of the metric tensor (+, with Lorentzian signature (−, +, +, +),
and )2

Pl ! -ℏ/(8./) is the reduced Planck mass. We use the four-dimensional Riemann
curvature tensor *+,01 , the Ricci tensor *+, ! *0+0, , and the Ricci scalar * ! *++
de!ned in [1], and we work in natural units (- = ℏ = 1). The Einstein-Hilbert action has a
very simple form, and this is one of the appealing features of GR.

Due to this geometrical paradigm of gravitation, GR can accurately describes
astrophysical phenomena that Newtonian gravity fails to explain, such as the perihelion
shift of Mercury. Also, GR predicts enormous never before seen phenomena, e.g., the
Shapiro time delay, gravitational lensing, black holes, and gravitational waves (GWs). As
of today, all of them have been ditected with high precision (see [2–4] for example). In
the context of cosmology, the recent observations of Type Ia supernovae strongly support
the current accelerated expansion of the universe [5, 6]. This cosmic expansion can also
be described in the framework of GR once one adds the cosmological constant Λ and the
matter terms Lm including the cold dark matter (CDM) to the Einstein-Hilbert action,

% =
∫

&4'
√−(

[
)2

Pl
2 (* − 2Λ) + Lm

]
. (1.2)

This ΛCDM model passes all late-time observations so far. Thanks to its simplicity and
consistency with observations, GR is widely accepted as a very successful gravitational
theory.

On the other hand, we cannot verify the validity of GR out of our observable regime,
and other gravitational theories are possibly more suitable than GR. Indeed, it is known that
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GR will break down at high energy scales such as the Planck scale (* ∼ )2
Pl), and therefore

it is natural to interpret GR as a low-energy limit of more general frameworks of gravity.
Even in the low-energy regime, it is no surprise that future measurements and observations
will contradict predictions of GR. For this reason, one can consider novel gravitational
theories called modi!ed gravity (MG), which reproduce GR in the observable limit such
as the low-energy or local scales but modify GR at the strong !eld or cosmological regimes
(see [7] for a review).

Besides the above motivation, MG is worth studying for many viewpoints. First, it
is widely believed that the early universe before the Big Bang expanded with increasing
speed. This scenario is hard to explain by simple models within GR. Instead, we expect
that MG can be a good candidate for the early universe models. Second, observations of
the cosmic microwave background (CMB) tells us that the current universe is dominated
by mysterious energy components; dark matter and dark energy [8]. These e"ects can be
described by modifying the matter sector in GR, but it is also possible by modifying the
gravitational sector, which is just the method of MG. Third, MG is helpful for testing and a
better understanding of GR. There is no doubt that GR is feasible since it is consistent with
any measurements and observations. However, we should also know the relative viability
of GR: whether only GR is a viable theory, or other theories are also viable. Moreover,
considering some deviations from GR, e.g., higher dimensions or breaking symmetries, tells
us the uniqueness of GR. For these reasons, it is meaningful to compare GR and MG.

A guideline for modifying GR is given by the Lovelock theorem [9, 10]. This theorem
implies that an action with only the metric tensor, the four-dimensional general covariance,
and second-order Euler-Lagrange equations is just the Einstein-Hilbert action plus the
cosmological constant. Given this, in order to construct MG, we must abandon some of
the above assumptions, e.g., adding new degrees of freedom (DOFs) besides the metric
tensor or considering higher dimensions. One obtains MG in various forms depending on
the violating method of assumptions. However, many MG can be described by actions
with additional !elds on top of the metric tensor. Among additional-!eld actions, the
scalar-tensor theory is the most fundamental model. This type of theory consists of scalar
!elds and the metric tensor, and is suitable for exploring intrinsic natures of MG. Also, the
scalar-tensor theory is often used for studying the dynamics of the universe. For example,
the most standard model for the early universe called in#ation causes the accelerating
cosmic expansion by using a scalar !eld.

Enormous models of the scalar-tensor theory have been constructed with various
motivations, and now it is no longer easy to analyze each model individually. For this
point, and for pure curiosity, some unifying frameworks of scalar-tensor theories have
been proposed, e.g., the Horndeski theory [11–13], the Gleyzes-Langlois-Piazza-Vernizzi
(GLPV, also known as beyond Horndeski) theory [14], and the degenerate higher-order
scalar-tensor (DHOST, also known as extended scalar-tensor) theories [15–17]. At the stage
of constructing generic theories, the theoretical restriction is evading the Ostrogradsky
ghost [18–20]. To avoid the ghost, the general single-!eld scalar-tensor theories have three
DOFs: two of that are tensor modes as in GR, and one of that is a scalar mode.

On the other hand, it is known that some classes of the Horndeski theory has only
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two dynamical DOFs. One example is the cuscuton theory [21], in which the number of
DOFs depends on a gradient of the scalar !eld: three DOFs with a spacelike gradient, and
two DOFs with a timelike gradient. In a timelike gradient case, the scalar !eld obeys a
constraint equation and then acts as a nondynamical auxiliary !eld. Consequently, the
scalar DOF does not propagate, and there remains only two tensor modes. The cuscuton
has the same number of DOFs as GR, but actually modi!es gravity, and moreover, has many
appealing features. For example, the cuscuton is useful for viable early/late-time universe
models [22–24], and the CMB and matter power spectra can be distinguished from those in
GR [24]. The existence of the McVitte black hole solution has also been shown [25].

Given these fascinating natures, it would be intriguing to !nd more general theories
sharing the same nature with the cuscuton model, i.e., general theories with only two
physical DOFs when a gradient of the scalar !eld is timelike. This thesis aims to !nd such
theories, which we dub the “extended cuscuton,” and explore its theoretical/cosmological
features. To this end, we start from the GLPV theories having three DOFs in general, and
identify the speci!c form of the Lagrangian by requiring that the theory has only two DOFs
when the scalar !eld has a timelike gradient. The timelike nature allows us to choose the
unitary gauge without loss of generality, and thus we discuss in this gauge for simplicity.
We !rst specify the cosmological prototype, that is, the subclass satisfying the cosmological
features of the cuscuton. Next, we obtain the proper extended cuscuton by identifyingwhich
of the theory among the cosmological prototype has two DOFs on an arbitrary background
in the unitary gauge. We study some relations between the original and the extended
cuscuton theories by using disformal transformations (i.e., a rede!nition of themetric which
depends on a scalar !eld and its !rst derivative). We also analyze comparison with other
related theories and cosmological perturbations in this theory in the presence of a matter
!eld. Finally, we investigate whether the extended cuscuton can account for the current
accelerated expansion of the universe.

The rest of the thesis is organized as follows. In Chap. 2, we !rst overview GR and
the underlying principles. We then introduce MG, particularly the scalar-tensor theories
and theories consisting of only the metric tensor (we call these “metric theories”), after
explaining the Ostrogradsky ghost. We also review the Lorentz-violating and two-DOFs
theories as groups sharing the same features with the cuscuton. Next, in Chap. 3, we
formulate the cuscuton theory. We then study the relations between its DOFs and scalar
!eld distributions, and explore the cuscuton cosmology and other various aspects. After
that, we construct the extended cuscuton theories and analyze its stability in the presence
of matter in Chap. 4. Some relations between the extended cuscuton and other theories, e.g.,
the original cuscuton and some two-DOFs/Lorentz-violating theories, are discussed. This
chapter is based on our published paper [26]. In Chap. 5, we apply the extended cuscuton
to the late-time cosmology. This chapter is based on our published paper [27]. Finally, we
draw our conclusions in Chap. 6.



4 CHAPTER 2. MODIFIED GRAVITY

Chapter 2

Modi!ed Gravity

In this chapter, we outline the modi!cation #ow of gravitational theories from Newtonian
gravity to GR to MG. Newtonian gravity describes many gravitational phenomena observed
on the Earth and in the Solar system well, however, it is incomplete especially at
cosmological scales. GR overcame that defect by extending Newtonian gravity and
reproducing it as an e"ective theory in the weak !eld limit. This extension unveils hidden
principles and phenomena which do not appear in Newtonian gravity. The same things
might be true of MG; that is, MGwill possibly unveil hidden principles or phenomena which
do not appear in GR. From this viewpoint, it is important to review the extension #ow from
Newtonian gravity to GR.

According to the Lovelock theorem, GR is the unique theory satisfying some theoretical
requirements as mentioned below. Therefore, one must violate either of these requirements
in order to modify GR. Resultant MG is categorized into several types depending on how
to break the requirements, or on the form of the action. Among these, we mainly introduce
the scalar-tensor theory and some related theories.

The rest of this chapter is organized as follows. First, we review GR as an extension of
Newtonian gravity and motivations of further modi!cations of GR in §2.1. Next, in §2.2,
we explain the Ostrogradsky theorem, which is the most crucial theorem to build generic
theories, and how we avoid the Ostrogradsky ghost. Then, we overview the scalar-tensor
theories in §2.3, and its related theories in §2.4. The extended cuscuton theory, which is the
main theme of this thesis, belongs to two particular classes of the scalar-tensor theories: the
Lorentz-violating theories and the two-DOFs theories. In §2.5 and §2.6, we introduce these
classes and some speci!c theories.

2.1 General Relativity and Modi!ed Gravity
GR was proposed by A. Einstein in 1915-1916 and is now the most standard gravitational
theory. GR was constructed based on the general principle of relativity and Einstein’s
equivalence principle. The underlying ideas of these principles had been introduced in the
Newtonian mechanics, such as
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• The principle of Galilean relativity
The laws of physics are the same in all inertial frames on the four-dimensional
absolute spacetime.

• The weak equivalence principle
The inertial mass and the gravitational mass are equivalent.

Newtonian mechanics is constructed on the four-dimensional absolute spacetime, including
the three-dimensional Euclid space and absolute time which every inertial frame shares.
In this spacetime, inertial frames are transformed by the Galilean transformation. This
transformation does not change three-dimensional distance in the three-dimensional Euclid
space and the equations of motion. Therefore, the Galilean principle of relativity means “the
laws of physics are invariant under the Galilean transformation.”

On the other hand, Michelson and Morley demonstrated that the propagating speed of
light is constant in vacuum, which is called the principle of invariant light speed. This result
is in con#ict with the Galilean covariance of the Newtonian mechanics. To resolve this
contradiction, the following extended principle was proposed:

• The special principle of relativity
The laws of physics are the same in all inertial frames on the four-dimensional
Minkowski spacetime.

To make the speed of light invariant, one adopts the Minkowski spacetime with relativistic
time as well as space. The transformations between inertial frames on the Minkowski
spacetime is the Lorentz transformation; thus, the special principle of relativity means“the
laws of physics are invariant under the Lorentz transformation.”The special relativity was
constructed based on this principle, and it explains relations between space, time, and speed
of objects especially in electrodynamics.

The special principle of relativity is valid only for physics other than the gravitational
e"ects, and is incompatible with Newtonian gravity describing the law of universal
gravitation. Because of the weak equivalence principle, the gravitational e"ects vanish
locally. Lets consider free-falling observers to the Earth. An observer on the Earth should
think the free-falling observers are in an accelerating frame. However, free-falling observers
to the Earth think they are in an inertial frame because the inertial force cancels the
gravitational force for every observer regardless of their mass. The gravitational force is
canceled locally, although, it remains in a !nite space. Indeed, two events located at a
spatial distance must experience the tidal force as a gravitational e"ect. From these points,
it is natural to think that the gravitational force arises from the spatial spread, and any local
frame is an inertial frame represented by theMinkowski spacetime like the special relativity.
Given that the Minkowski spacetime expresses a #at plane, the nonlocal spacetime with the
nonvanishing gravitational force can be interpreted as a curved surface which is locally
#at where the gravitational force is ignored. Therefore, spacetimes can be illustrated by
the pseudo-Riemannian geometry, which locally has the Minkowski metric, and curvatures
can be represented as gravitation. Considering the special principle of relativity is applied to
local inertial reference frames, gravitational theories should satisfy the following principles:
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• The general principle of relativity
The laws of physics are the same in all reference frames.

• Einstein’s equivalence principle
Free falling observers are in local inertial reference frames.

GR was constructed based on these principles. 1

GR has the Newtonian and post-Newtonian limit consistent with experiments [2], and
predicts the existence of GWs and black holes, which were directly con!rmed in recent
years [3, 4]. Moreover, GR with the cosmological constant Λ can explain the current
accelerated expansion of the universe strongly supported by recent observations of Type
Ia supernovae [5, 6], and this ΛCDM model passes every cosmological test so far. Given
these facts, GR is one of the most successful gravitational theories.

On the other hand, as mentioned in the previous chapter, it is meaningful to consider
broader frameworks of gravitational theory: MG. For example, one can use these theories
to explore undeveloped areas in cosmology, e.g., the early universe and the dark sector of
the late-time universe. MG is also helpful to test the validity of GR by means of future
measurements and observations. Not just concerning observational tests, MG gives us
a deeper understanding of GR because one of the best ways to understand something
is to break and reconstruct it. The action of MG should contain both the GR and an
additional sector. The Lovelock theorem [9, 10] plays an essential role in considering such
extensions, which states that the possible second-order Euler-Lagrange equations derived
from the four-dimensional general covariant action which consists of solely the metric tensor
are only the Einstein equations with the cosmological constant. Therefore, to modify the
gravitational !eld equations from the Einstein equations, we must violate the assumptions
of the Lovelock theorem: adding extra dynamical !elds/extra dimensions/higher-derivative
terms/non-locality, renouncing the four-dimensional general covariance, or extending into
more general geometry.

2.2 Ostrogradsky Theorem
Constructing actions of MG, one must take the Ostrogradsky ghost into account. This
ghost arises from a particular class of higher-derivative Lagrangians, which is stated by
the Ostrogradsky theorem: the Hamiltonians associated with nondegenerate Lagrangians
involving more than !rst-order derivatives of time are unbounded below and above [18]. Here,
“nondegenerate”means that the kineticmatrix of a system is not regular. Naively, if a system
with an unbounded Hamiltonian interacts with another system, energy of the systemwould
diverge into −∞. This instability is one aspect of the Ostrogradsky ghost. The Ostrogradsky
theorem was widely known by [19, 20] with discussions of various natures of the ghost.

1Einstein’s equivalence principle suggests the invariance of physics laws besides gravitational e"ects in
local inertial reference frames. As an extended principle, including the gravitational laws, there is the strong
equivalence principle. Various observations and experiments are still testing whether these three equivalence
principles (weak, Einstein, strong) are correct or not.
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We note that the Ostrogradsky ghost may show up once we de!ne the Lagrangian, and
the existence of the ghost is independent on every other factor, such as speci!c forms of
spacetimes or perturbations. By contrast, other instabilities like the gradient and tachyonic
instabilities appear after assuming speci!c perturbations or spacetimes, and hence we do
not need to mind these instabilities at the stage of constructing actions.

The Ostrogradsky theorem is a powerful tool to avoid the ghost, but is not enough
to build gerenal actions of MG. First, this theorem discusses the Lagrangians depending
only on one variable which is a function of time in the context of classical mechanics:
2 (' (3) (4), · · · , %'(4), '(4)). In order to apply the Ostrogradsky theorem to gravitational
theories, we need to extend it into !eld theories. Second, the Hamiltonians in the gauge
systems including GR and its extensions always vanish regardless of the ghost. Therefore,
we demand other analyses to check whether a gauge theory has the ghost or not. Third,
the Ostrogradsky theorem only tells a su$cient condition to !nd the instability, and the
no-ghost conditions are still an open question in this theorem.

To extend the Ostrogradsky theorem and achieve no-ghost conditions, many studies
have been done. The authors of [28] unveiled the no-ghost conditions for multiple
dynamical variables: 2 ('5(3) , · · · , %'5, '5), where 5 represents the number of variables
and '5 are functions of time. Also, the authors of [29] introduced the safe variables 6"
into higher-derivative Lagrangians: 2 ( &'5, %'5, '5; %6", 6"). After that, [30, 31] showed the
ghost-free conditions for arbitrary higher-derivatives and arbitrary number of variables:
2 ('5! (&+1) , . . . , '5! ; '5!−1 (&) , . . . , '5!−1 ; . . . ; %'50 , '50). The above studies are extensions in the
context of classical mechanics. An extension to multi-scalar !eld theories in a #at spacetime
was explored in [32], and to scalar-tensor theories in [15], which leads the DHOST theories.
The quantumOstrogradsky theoremwas analyzed in [19,20], andmore recently in [33]. The
authors of [34] investigated a relation between the ghost and constraint equations. One can
see [35] for a recent review about the ghost.

In this section, we explain the essence of the Ostrogradsky ghost in §2.2.1 based on [20],
and how to evade this ghost in §2.2.2.

2.2.1 Ostrogradsky ghost
We start with the usual classical mechanics with 2 = 2 ( %', '). Let us consider the harmonic
oscillator, whose Lagrangian is given by

2 =
1
27 %'2 − 1

278
2'2, (2.1)

with the mass 7 and the frequency 8. The general solution for its Euler-Lagrange equation
is

' = '0 cos(84) +
%'0
8

sin(84) = 1
2

(
'0 +

"

8
%'0
)
9−"84 + 1

2

(
'0 −

"

8
%'0
)
9"84 , (2.2)

with '0 and %'0 being the initial conditions for the position and the velocity. The canonical
variables are given by

: ! ', ; !
<2

< %:
= 7 %', (2.3)
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and the Hamiltonian is

= =
;2

27 + 72 8
2:2, (2.4)

which is clearly bounded below.
Next, we consider a general form of nondegenerate Lagrangians 2 = 2 ( &', %', '). This

system has the 1 × 1 kinetic matrix <22/< &'2, and we de!ne the nondegeneracy as

<22

< &'2 ≠ 0. (2.5)

The Euler-Lagrange equation is given by

&2

&42
<2

< &' − &

&4

<2

< %' + <2
<'

= 0. (2.6)

Note that this is a fourth-order di"erential equation, and hence it needs four initial
conditions to be solved. If we add an auxiliary variable > associated with %', the Lagrangian
reads

2 ( &', %', ') = 2̃ ( %>, >, ') + ?(> − %'), (2.7)

with ? being a Lagrange multiplier. In this case, we can determine the canonical variables
in the usual way,

:1 ! ', :2 ! >, :3 ! ?,

;1 !
<2

< %:1
= −:3, ;2 !

<2

< %:2
=
<2̃

< %:2
, ;3 !

<2

< %:3
= 0.

(2.8)

The nondegeneracy condition (2.5) is now

<22

< %:2
2
=
<;2( %:2, :2, :1)

< %:2
≠ 0, (2.9)

and we !nd %:2 = %:2(:1, :2, ;2). Using this, we de!ne the Hamiltonian by the Legendre
transformation as

= !;1 %:1 + ;2 %:2 + ;3 %:3 − 2̃ ( %:2, :2, :1) + ;1(:2 − %:1)
=;1:2 + ;2 %:2(:1, :2, ;2) − 2̃ ( %:2(:1, :2, ;2), :2, :1). (2.10)

It is clear that the Hamiltonian linearly depends on the momentum ;1. Even in this case, the
Hamiltonian is constant in isolated systems. However, once a system interacts with another
one, the Hamiltonian diverges as ;1 diverge. 2 If the Hamiltonian goes to −∞, there would
be no stable state; namely, the system would be unstable. This instability is the ghost which
appears in the Ostrogradsky theorem.

2Of course, when the range of ;1 is limited, the Hamiltonian can be bounded below.
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Note that if one would not add any auxiliary variables, one may adopt “Ostrogradsky’s
choice” to determine the canonical variables:

:1 ! ', :2 ! %', ;1 !
<2

< %' − &

&4

<2

< &' , ;2 !
<2

< &' . (2.11)

Using these variables and the nondegeneracy condition, we de!ne the Hamiltonian as

= !;1 %:1 + ;2 %:2 − 2 (:1, :2, ;1, ;2)
=;1:2 + ;2 %:2(:1, :2, ;2) − 2 (:1, :2, ;1, ;2). (2.12)

This de!nition seems to be di"erent from the usual Legendre transformation, but this
ensures the equivalence between the Lagrangian and Hamiltonian formalism with respect
to the time evolution of the system. This Hamiltonian also linearly depends on the momenta
as well as (2.10), and one can see the ghost instability.

An unboundedHamiltonian due to linear dependences onmomenta is a critical nature of
the Ostrogradsky instability. However, forms of Hamiltonian are unreliable as an indicator
of that instability in some cases. Let us consider for example the previous harmonic
oscillator (2.1), whose Hamiltonian is given by (2.4). After performing the following
canonical transformation:

: =

√
2@
78

sin ', ; =
√
2@78 cos ', (2.13)

one obtains the new Hamiltonian:

= = 8@. (2.14)

This = depends on the new momentum @ linearly as if there was the Ostrogradsky ghost.
Nevertheless, of course, this system has no ghost because the new position ' is a cyclic
coordinate, and hence its conjugate momentum @ is a positive constant. Even if this system
interacts another system, = is bounded below since @ is larger than zero as one can see
from (2.13).

Another example is the Hamiltonians of covariant systems. Due to the
time-reparametrization invariance, the Hamiltonian vanishes on shell (see [35] for a
review). To see this, we construct a time-reparametrization invariant action from a general
Lagrangian 20( %', ') for the dynamical variable '(4) by introducing a new dynamical
variable A(4) as follows:

2 ( %', ', %A) ! %A20( %'/ %A, '). (2.15)

If we change time coodinate 4 → >(4), the action reads

% =
∫

&42 ( %', ', %A) =
∫

&4 %A20( %'/ %A, ') =
∫

&>A′20('′/A′, ') (2.16)
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with ′ ! &/&>. This action is obviously invariant under time reparametrization. To move
to the Hamiltonian formalism, we introduce an auxiliary variable into 2 as follows:

2 = 320( %'/3 , ') + .( %A − 3), (2.17)

here we have added . as the conjugate momentum of A in advance. The momentum
conjugate to ' is

@ !
<2

< %' = 3
<20
< %' . (2.18)

Then, the canonical Hamiltonian is given by

= ! . %A + @ %' − 2 = 3
(
<20
< %' %' − 20 + .

)
" 3 (=0 + .), (2.19)

where =0 is the canonical Hamiltonian associated with 20. =0 + . is a !rst-class constraint,
and therefore = vanishes weakly, i.e., vanishes on the constraint surface. This occurs
irrespective of higher-derivative terms, and we can not !nd out the ghost by looking the
form of Hamiltonian.

A more rigorous method to check the instability is a mode decomposition. We consider
a higher-derivatives deviation from the harmonic oscillator,

2 = − B7282 &'
2 + 1

27 %'2 − 1
278

2'2, (2.20)

here B quanti!es a dimensionless parameter. Since this system satis!es the nondegeneracy
condition (2.5), there exists the Ostrogradsky ghost. The Euler-Lagrange equation is

B

82*' + &' + 82' = 0. (2.21)

We assume a general solution as

' = C cos(D4) + % sin(D4). (2.22)

Then, D2 follows the dispersion relation such as
B

82 D
4 + D2 + 82 = 0, (2.23)

whose solution is

D2 = 82 1 ±
√
1 − 4B
2B . (2.24)

This solution of D2 has two branches due to the fourth-order di"erential equation (2.21), and
we obtain the general solution of ',

' = C+ cos (D+4) + %+ sin (D+4) + C− cos (D−4) + %− sin (D−4) . (2.25)



2.2. OSTROGRADSKY THEOREM 11

with the frequencies D±, the coe$cients C± and %± being

D± = 8

√
1 ∓

√
1 − 4B
2B , C± =

D2∓'0 + &'0
D2∓ − D2±

, %± =
D2∓ %'0 + ,'0

D±
(
D2∓ − D2±

) . (2.26)

The Hamiltonian (2.12) is expressed by the canonical variables (2.11),

= = ;1:2 −
82

2B7;
2
2 −

7

2 :
2
2 +

782

2 :2
1 . (2.27)

TheHamiltonian can diverge into−∞ since its !rst term depends linearly on themomentum
;1. Substituting the solution (2.25) for the Hamiltonian, we obtain the energy of the isolated
system as below:

= =
7

2
√
1 − 4BD2+

(
C2
+ + %2+

)
− 7

2
√
1 − 4BD2−

(
C2
− + %2−

)
. (2.28)

We can see that the + modes carry positive energy and the − modes carry negative energy.
The existence of this negative energy modes leads the ghost instability.

2.2.2 No-ghost Conditions
The Ostrogradsky theorem tells us only su$cient conditions to appear the Ostrogradsky
ghost. The necessary and su$cient conditions, namely the no-ghost conditions, were
revealed by subsequent studies in classical mechanics and covariant !eld theories. In this
subsection, we illustrate the degeneracy of Lagrangian plays a key role in the no-ghost
conditions using classical mechanics framework.

We consider the following Lagrangian:

2̃ ( &6, %6, 6; %E, E) = !

2 &62 + #2 &6 %E + C %E2 + F %6 %E −G (6)

=
!

2
%H2 + #2

%H %E + C %E2 + FH %E −G (6) + ?(H − %6), (2.29)

here !, #,C,F are constant,H is an auxiliary variable associatedwith %6, and ? is a Lagrange
multiplier. Variations with respect to H, E, 6, and ? lead the Euler-Lagrange equations as
follows:

! &H + # &E − F %E − ? =0, (2.30)
# &H + C &E + F %H =0, (2.31)

%? −G ′(6) =0, (2.32)
H − %6 =0. (2.33)

Eqs. (2.32) and (2.33) are the constraints which eliminate two dependent variables: for
instance ? and H. The equations of motion (EOMs) (2.30) and (2.31) are rewritten into

I

( &H
&E

)
!

(
! #
# C

) ( &H
&E

)
=

(
F %E − ?
−F &H

)
. (2.34)
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Here I represents the kinetic matrix,

I !
(
2 %H %H 2 %H %E
2 %E %H 2 %E %E

)
, 2JK !

<22

<J<K
(J, K = %H, %E). (2.35)

The degenerate Lagrangians have a singular kinetic matrix:

detI = !C − #2 = 0. (2.36)

In a degenerate case, the variable rede!nition ' ! #H + CE simpli!es the equations
(2.30)-(2.33) into

F &' + CG ′(6) = 0, %' + F &6 = 0. (2.37)

These equations obviously contain up to second-derivatives for ' and 6. This is the
critical feature of degenerate systems: the Euler-Lagrange equations originally contain
the higher-derivatives, but after variable rede!nitions (equivalently linear combinations),
the equations are reduced to at most second-derivatives. One can also !nd that the
Hamiltonians of degenerate systems are bounded below, and there is no extra mode
propagating negative energy.

A general Lagrangian 2̃ ( &6, %6, 6; %E, E) was discussed in [29], which found the ghost is
absent if and only if the kinetic matrix is degenerate: detI = 0. We can extend this result
to single-scalar-tensor theories by associating 6 with a scalar !eld, and E with the metric
tensor (+, .

2.3 Scalar-Tensor Theories
In the previous section, we have explained the Ostrogradsky theorem as an important
theorem to construct the action of MG. Then, we proceed to discussions about individual
theories in the class of scalar-tensor theory. Regardless of modi!cation methods, many
MG can be (e"ectively) described by the metric tensor and additional !elds. For celebrated
example, L (*) gravity [36, 37] can be recasted into GR with a canonical scalar !eld (see
§2.4 for details). E"ective theories of higher-dimensional gravity also naturally arise
scalar-vector-tensor theories like Kaluza-Klein gravity [38]. In particular, the scalar-tensor
theory consists of scalar !elds and the metric tensor. Since a scalar !eld is the simplest
and most fundamental !eld, the scalar-tensor theory is suitable for exploring intrinsic
natures associated with additional !elds. We note that the single-!eld scalar-tensor theories
presented in this section generally have three dynamical DOFs: two tensor modes and one
scalar mode. These theories can be interpreted as violating the Lovelock theorem by adding
an extra scalar DOF.

The most simple scalar-tensor theory is Einstein’s gravity with a canonical scalar !eld
M, which action is given by

% =
∫

&4'
√−(

[
)2

Pl
2 * + : −N (M)

]
, (2.38)
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with the canonical kinetic term for the scalar !eld : ! −(+,<+M<,M/2, andN (M) being the
potential for M. This type can produce dynamical geometrical modi!cations, e.g., changing
the time evolution of the Hubble parameter, thanks to the dynamical scalar DOF.

The Brans-Dicke theory [39, 40] introduces a nonminimal coupling term:

% =
∫

&4'
√−(

[
M* − 8

M
<+M<

+M

]
, (2.39)

where8 is constant. In the !rst term of the action, M nonminimally couples to (+, other than
the kinetic term and √−(. Since the coe$cient of * naively plays a role of the gravitational
constant, one de!nes the e"ective gravitatiovnal constant /e! as

1
16./e!

! M. (2.40)

This implies /e! is no longer constant but a time-dependent quantity. The nonminimal
coupling term M* can be extended into L (M)*, with L (M) being an arbitrary function. We
note that this type of action is mapped into minimally coupled action by the conformal
transformation given by

(̃+, = Ω2(')(+, . (2.41)

This transformation is a !eld rede!nition for the metric tensor, which changes only a
measure mapped on spacetimes and does not change causality. After the conformal
transformation, the scalar (and matter) sector becomes a non-trivial form instead of the
coe$cient of the Ricci scalar becoming constant. This frame is so-called the Einstein frame
because of the existence of the Einstein-Hilbert term, and the original frame like (2.39) is
so-called the Jordan frame. 3

The k-essence model [41,42] and k-in#ation [43] have the following generalized kinetic
term for M:

% =
∫

&4'
√−(

[
)2

Pl
2 * + ;(M, :)

]
, (2.42)

with ;(M, :) being an arbitrary function, which generally has also nontrivial terms (even
non-polynomial functions like ln : are allowed). A further modi!cation is performed in the
kinetic gravity braiding [44] or equivalently G-in#ation [45], whose actions are given by

% =
∫

&4'
√−( [* + I (M, :) + / (M, :)!M] , (2.43)

with I (M, :) and / (M, :) being arbitrary functions. This action has a second-order
derivatives term of M, but the EOMs remain atmost second-derivatives and theOstrogradsky
ghost is absent.

3The idea of nonminimal couplings has been originally proposed by P. Jordan [39].
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The Galileon theory 4 [47] was constructed by adding higher-order terms of <+<,M in
the O-dimensional Minkowski spacetime, whose four-dimensional action is

% =
∫

&4'
[
-1M + -2: − -3:!M + -4:

[
(!M)2 − <+<,M<+<,M

]
−-53 :

[
(!M)3 − 3!M<+<,M<+<,M + 2<+<,M<,<?M<?<+M

] ]
, (2.44)

with -"’s being constant. This is the most general action under the conditions that (i) the
Galilean shift symmetry: M → M + P+'+ + - (P+, -: constant), (ii) up to second-derivatives in
the EOMs so as to avoid the Ostrogradsky ghost, and (iii) the O-dimensional Minkowski
spacetime. The Galilean shift symmetry is a generalization of the Galilean symmetry
%'" (4) → %'" (4)+Q" of non-relativistic mechanics. Note that a generic Galilean shift symmetric
Lagrangian forms a polynomial of

(
<2M

)O−1
<M<M, and the corresponding EOM has exactly

second-order derivatives of M: (<<M)O = 0.
The covariant Galileon [48] is an extension of the Galileon theory into curved

spacetimes. One covariantizes (2.44) by replacing R+, → (+, and < → ∇, and then adds the
counter terms in order to eliminate the higher derivative terms in the !eld equations. Then,
one obtain the following action:

% =
∫

&4'
√−(

[
-1M + -2: − -3:!M + -42 :

2* + -4:
[
(!M)2 − M+,M+,

]
+-5:2/+,M+, −

-5
3 :

[
(!M)3 − 3!MM+,M+, + 2M+,M,?M+?

] ]
, (2.45)

with M+ ! ∇+M, M+, ! ∇+∇,M, and /+, being the Einstein tensor.
The generalized Galileons [12] was constructed in the same way as the covariant

Galileon. One !rst derives the most general action which has up to second derivatives
of M and the second-order !eld equations in the Minkowski spacetime. After that, one
covariantizes that action and adds the counterterms, and then one gets the generalized
Galileons. This method can be performed in arbitrary dimensions.

On the other hand, in 1974, the author of [11] had proposed the Horndeski theory, which
is the most general four-dimensional covariant action consisting of up to second-order
derivatives of the metric and the scalar !eld whose !eld equations are at most second
derivatives. The generalized Galileons and the Horndeski theory were motivated by
di"erent reasons andwritten in the di"erent forms. Nonetheless, the authors of [13] showed
that these are comlpletely equivalent in four dimensions whose action is given by

%H =
∫

&4'
√−(

(
LH

2 + LH
3 + LH

4 + LH
5

)
, (2.46)

4 [46] is a good review of theories from the Galileon to DHOST.
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where

LH
2 = /2(M, :),

LH
3 = /3(M, :)!M,

LH
4 = /4(M, :)* + /4:

[
(!M)2 − M,+M

+
,

]
,

LH
5 = /5(M, :)/+,M+, −

1
6/5:

[
(!M)3 − 3(!M)M,+M

+
, + 2M,+M?,M

+
?

]
,

(2.47)

with /" (M, :) (" = 2, · · · , 5) being arbitrary functions. 5 It should be noted that the
generalized Galileons is determined in arbitrary dimensions, while the Horndeski theory
is still not generalized into higher dimensions. We also note that this theory (2.46) (we call
this the Horndeski theory throughout the thesis) can reproduce a number of models; for
example, /2 = 8:/M,/4 = M,/3 = /5 = 0 corresponds to the Brans-Dicke theory (2.39),
and /4 = )2

Pl/2,/2 = (3 = /5 = 0 corresponds to GR.
The Horndeski theory requires the !eld equations contains at most second derivatives

of (+, and M, which allows to circumvent the Ostrogradsky ghost trivially. However,
it is known that the Horndeski theory can be more generalized into what is called the
Gleyzes-Langlois-Piazza-Vernizzi (GLPV, also known as beyondHorndeski) theory [14]. The
action of the GLPV theory is given by

%GLPV = %H +
∫

&4'
√−((LbH

4 + LbH
5 ), (2.48)

where

LbH
4 = S4(M, :)T +,01T +

′,′0′1M+M+′M,,′M00′

= S4(M, :)U+,0+′,′0′M+M
+′M,

′
, M

0′
0

= S4(M, :)
[
−2:

[
(!M)2 − M,+M

+
,

]
− 2M+M+, (M,!M − M,?M?)

]
,

LbH
5 = S5(M, :)T +,01T +

′,′0′1′
M+M+′M,,′M00′M11′

= S5(M, :)U+,01+′,′0′1′M+M
+′M,

′
, M

0′
0 M

1′
1

= S5(M, :)
[
−2:

[
(!M)3 − 3(!M)M,+M

+
, + 2M,+M?,M

+
?

]
− 3M?M?1M1

[
(!M)2 − M,+M

+
,

]
+ 6M+M+, M1 (M,1!M − M,?M?1)

]
.

(2.49)

with S4(M, :) and S5(M, :) being arbitrary functions, T+,01 being the totally antisymmetric
Levi-Civita tensor, and U+1...+",1...," being the generalized Kronecker delta,

U+1...+",1...," ! O!U[+1···+"],1...," . (2.50)

The Horndeski theory is the subset satisfying

S4(M, :) = 0, S5(M, :) = 0. (2.51)
5Some papers adopt the following styles: LH

3 = −/3 (M, :)!M or : = M#M# . We indeed introduce :̄ !
M#M# in the DHOST theories. This di"erence does not a"ect any results, although, one must check which
kind of style is used in each study.
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To illustrate the method of constructing the GLPV theory, we consider the
Arnowitt-Deser-Misner (ADM) decomposition of the Horndeski theory. In the unitary
gauge M = M(4), the ADM Horndeski action reads

% =
∫

&4&3'3
√
V

[
!2 + !3I + !4(I2 − I"$I

$
" ) + #

(3)
4 *

+ !5(I3 − 3II"$I
$
" + 2I"$I

$
DI

D
" ) + #5I

" $

(
(3)*" $ −

1
2V" $

(3)*

)]
, (2.52)

where 3 is the lupse function, V" $ is the three-dimensional spatial metric, I" $ and (3)*" $ are
the extrinsic and intrinsic curvature tensors of the constant time hypersurfaces, V ! det V" $ ,
I ! I"" , (3)* !(3) *"" , and the coe$cients !2, !3, !4, !5, #4, and #5 are functions of (4, 3).
The functions !", #" are de!ned by the functions /", S" in the covariant action (2.48) as
follows:

!2 = /2 −
√
2:

∫ : /3M√
2:̄

d:̄ , !3 =
∫ : √

2:̄/3:̄d:̄ − 2
√
2:/4M,

!4 = −/4 + 2:/4: − :/5M, !5 = −16 (2:)
3/2/5: (2.53)

#4 = /4 −
√
2:

∫ : /5M

2
√
2:̄

d:̄ , #5 = −
∫ : /5:̄√

2:̄
d:̄ ,

here /"M ! </"/<M,/": ! </"/<: . We note that, in the unitary gauge, functions of
(M, :) are mapped to functions of (4, 3) due to M = M(4) and : = %M2(4)/(232). From (2.53),
one !nds the following relations:

!4 = −#4 − 3#43 , !5 =
3

6 #53 , (2.54)

here #"3 ! <#"/<3 . These conditions correspond to the Horndeski conditions (2.51).
Thanks to these conditions, only four of six functions !", #" are independent in the case of
the Horndeski theory. However, the Hamiltonian analysis shows that the number of DOFs
of the action (2.52) is always three irrespective of the existence of the Horndeski conditions.
Given that the Ostrogradsky ghost is absent if the number of physical DOFs is at most three,
we !nd that the Horndeski conditions is not necessary to evade the Ostrogradsky ghost. In
this way, the GLPV action in the ADM form was de!ned by (2.52) without the Horndeski
conditions (2.51). Since the GLPV theory has more general action than the Horndeski, its
EOMs contain higher-order derivatives. However, the EOMs are degenerate, and hence this
theory has no ghost.

The GLPV theory removes the Horndeski restrictions and consequently becomes a
degenerate system, but degenerate and ghost-free scalar-tensor theories are not only
the GLPV. From this point of view, the authors of [15–17] constructed the degenerate
higher-order scalar-tensor (DHOST) theories (see [49] for a review). These are the most
general four-dimensional covariant theories consisting of at most second derivative terms
of the scalar !eld which satisfying the no-ghost conditions (we call this degeneracy
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conditions), as we mentioned in §2.2.2. The speci!c action is determined for the quadratic
and cubic terms of M+, as follows:

%DHOST =
∫

&4'
√−(

[
L0( :̄ , M) + L1( :̄ , M)!M + L2( :̄ , M)* + C+,01(2) M+,M01

+ L3( :̄ , M)/+,M
+, + C+,01JK(3) M+,M01MJK

]
, (2.55)

where :̄ ! M+M+, C+,01(2) and C+,01JK(3) are the most general tensors depending on (+, and
M+. One can !nd the quadratic terms of M+, reads

C+,01(2) M+,M01 =
5∑
!=1

5! ( :̄ , M)2 (2)
! , (2.56)

with

2 (2)
1 = M+,M+,, 2 (2)

2 = (!M)2, 2 (2)
3 = (!M)M+M+,M,

2 (2)
4 = M+M+0M0,M,, 2 (2)

5 =
(
M+M+,M

,)2 , (2.57)

and 5! being functions of M and :̄ . The cubic terms of M+, also reads

C+,01JK(3) M+,M01MJK =
10∑
!=1

P! ( :̄ , M)2 (3)
! , (2.58)

with

2 (3)
1 = (!M)3, 2 (3)

2 = (!M)M+,M+,, 2 (3)
3 = M+,M,0M

+
0 , 2 (3)

4 = (!M)2M+M+,M,,
2 (3)
5 = !MM+M+,M,0M0, 2 (3)

6 = M+,M+,M0M01M1, 2 (3)
7 = M+M+,M,0M01M1

2 (3)
8 = M+M+,M,0M0M1M1?M?, 2 (3)

9 = !M
(
M+M

+,M,
)2
, 2 (3)

10 =
(
M+M

+,M,
)3
,

(2.59)

and P! being also functions of M and :̄ . If 5! and P! are entirely arbitrary, the above models
obviously have the ghost. Therefore, these functions are restricted by the degeneracy
conditions. As the Horndeski and GLPV theories, the DHOST theories can reproduce
numerous models by specifying 5! and P!. For instance, 51 = −52 = 2/4,:̄ , 53 = 54 =
55 = 0 corresponds to L=

4 , and

K1
:̄

= − K2
3:̄

=
K3
2:̄

= − K43 =
K5
6 =

K6
3 = − K76 = S5 (2.60)

corresponds to LbH
5 .

As §2.2.2, one obtains the ghost-free conditions using the kinetic matrix I so as to
detI = 0. Its speci!c forms for the quadratic DHOST are given by

F0 = 0, F1 = 0, F2 = 0, (2.61)
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with

F0 ! − 4 (J1 + J2)
[
:̄/4

(
2J1 + :̄J4 + 4/4,:̄

)
− 2/2

4 − 8:̄2/2
4,:̄

]
F1 !4

[
:̄2J1 (J1 + 3J2) − 2/4 − 4:̄/4J2

]
J4 + 4:̄2/4 (J1 + J2) J5 + 8:̄J31

− 4
(
/4 + 4:̄/4,:̄ − 6:̄J2

)
J21 − 16

(
/4 + 5:̄/4,:̄

)
J1J2

+ 4:̄
(
3/4 − 4:̄/4,:̄

)
J1J3 − :̄2/4J

2
3 + 32/4,:̄

(
/4 + 2:̄/4,:̄

)
J2

− 16/4/4,:̄J1 − 8/4
(
/4 − :̄/4,:̄

)
J3 + 48/4/

2
4,:̄ ,

F2 !4
[
2/2

4 + 4:̄/4J2 − :̄2J1 (J1 + 3J2)
]
J5 + 4J31 + 4

(
2J2 − :̄J3 − 4/4,:̄

)
J21

+ 3:̄2J1J
2
3 − 4:̄/4J

2
3 + 8

(
/4 + :̄/4,:̄

)
J1J3 − 32/4,:̄J1J2 + 16/2

4,:̄J1

+ 32/2
4,:̄J2 − 16/4/4,:̄J3.

(2.62)

We should note that the subclass having the following relation:

J1 + J2 = 0, J3 + J4 = 0, J5 = 0, (2.63)

is completely equivalent to the theory described by LH
4 + LbH

4 . The ghost-free conditions
for the cubic DHOST can be found in [50]. Moreover, some particular classes of the DHOST
is mapped into the Horndeki or the GLPV theories by invertible disformal transformations.
A disformal transformation is the following generalization of conformal transformations:

(̃+, = Ω(M, :)(+, + Γ(M, :)M+M, . (2.64)

This is invertible if

Ω(Ω − :Ω: + 2:2Γ:) ≠ 0. (2.65)

Since the invertible disformal transformations have the corresponding inverse
transformation, the above subclasses of the DHOST is identical to the Horndeki or
the GLPV theories. 6 On the other hand, the DHOST theories which are not connected
to the Horndeski theory by invertible disformal transformations are not equivalent to the
Horndeski. Such DHOST class, which includes the cubic DHOST, su"ers from the gradient
instabilities of tensor or scalar modes on a cosmological background [54, 55].

DHOST theories have been explored in the range of cubic powers of ∇+∇,M, and one can
extend it to arbitrary powers in principle. Moreover, some studies have attempted further
generalizations. For example, a series of papers [56–58] has been constructing ghost-free
four-dimensional covariant theories which contain *2 and ∇+∇,∇0M by using spatially
covariant theories and gauge recovery by the same method as XG3 theories (see §2.5). In
any case, however, further generalizations require much time and e"ort.

In the scalar-tensor theories, the scalar !eld e"ects must approximately vanish at
local scales since any measurements and observations support predictions of GR with

6More rigorously, the invertible !eld rede!nitions do not change the number of DOFs in the theories
[51–53]
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high precision. Thus, one demands that theories have some additional mechanisms to
remove such local e"ects, so-caled screening mechanisms. There are some types of these
mechanisms. In the chameleon mechanism [59, 60], the scalar !eld is e"ectively massive
in the vicinity of a source and screened. The symmetron screening mechanism [61]
e"ectively suppress coupling to matter. In the Vainshtein mechanism [62], the scalar
!eld is e"ectively weakly coupled to the source because of nonlinear perturbations. It is
known that the Horndeski theory, particularly /3,/4,/5, is equipped with the Vainshtein
mechanism [63–66]. On the other hand, the DHOST theory partially breaks the Vainshtein
screening inside stars [67–69].

2.4 Metric Theories
The Einstein equations, which are the !eld equations of GR, are derived only from the
Einstein-Hilbert action (1.1) plus the total derivative terms. Conversely, other actions will
lead di"erent gravitational equations from the Einstein equations, even if the actions consist
only of the metric. We consider such metric theories by introducing higher curvature
terms like (*....)O, or higher-derivatives of the curvature like !*. Generally, such terms
lead higher-order !eld equations since the Riemann tensor contains <<(+, . However, if its
Lagrangian is degenerate, the equations will be recasted to at most second-order equations.

The authors of [70] hunted such degenerate metric theories in a general way. One
starts from the four-dimensional general covariant and degenerate actions which depends
at most on second derivatives of the metric. For the general covariance, the action consists
of *+,01, (+,, B+,01 . Also, for generacy, the rank of the kinetic matrix

A" $ ,W7 (', >) ! <22

< %I" $ (')< %IW7 (>)
(2.66)

is supposed to be not full. All of the fully degenerate (rank(A" $ ,W7) = 0) Lagrangian densities
is derived in [71], as follows:

*, /# ! (★*+,JK)(★*JK+,),
; ! (★*+,JK)*JK+,, C ! (★*+,01)(★*01JK)(★*JK+,),

(2.67)

with★ holds for the Hodge dual★*+,01 ! B+,JK*JK01 . The Ricci scalar is nothing but the
Einstein-Hilbert term and leads second-order !eld equations. /# and ;, which are called
the Gauss-Bonnet and the Pontryagin term respectively, are topological invariants in the
four-dimensional spacetimes, and hence their variation yields no term to the !eld equations.
The last term C is the only one whose EOMs are of third derivatives. Unfortunately, the
theory % =

∫
&4'

√−(C has !ve DOFs and three of them are ghosts, while this has spacetime
di"eomorphisms.

*,/#, ;,C are all the fully degenerate Lagrangian densities. Then, we consider
partially degenerate Lagrangian densities, which means the rank of A" $ ,W7 is not zero but
not full. One simple term of that is L (Y ) (Y = *,/#, ;,C). These theories can be rewritten
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into scalar-tensor forms by adding new scalar !eld Z (see e.g., [37] for L (*) term), whose
action is given by

% =
∫

&4'
√−([MY −N (M)], (2.68)

whereN (M) is a potential de!ned by

N (M) = Z(M)M − L (Z(M)), M ! L ′(Z). (2.69)

Among the partially degenerate theories, L (*) gravity has three DOFs but is ghost-free.
Indeed, L (*) gravity in the scalar-tensor form,

% =
∫

&4'
√−([M* −N (M)], (2.70)

can be mapped to GR with a canonical scalar !eld by a conformal transformation. L (/#)
gravity has also three DOFs, and is ghost-free if one adds a kinetic term of a scalar !eld in
the scalar-tensor form. L (;) gravity is related to Chern-Simons gravity [72]. In fact, the
action of non-dynamical Chern-Simons gravity is

%C% =
∫

&4'
√−(M;, (2.71)

which is exactly the action (2.68) without the potential term N (M). This theory has four
DOFs but is ghost-free in the unitary gauge. On the other hand, generic L (;) theory has
!ve DOFs, and three of them are ghosts.

2.5 Lorentz-Violating Gravity
In general, scalar-tensor theories are Lorentz invariant following GR. Nevertheless, some
theories break that invariance and consequently obtain unique natures. One famous
example is the Einstein-æther theory [73]. This theory consists of the metric tensor and
a unit timelike vector !eld named “æther.” Due to its timelike nature, the æther never
vanishes, and it always singles out preferred timelike trajectories in spacetimes. These
trajectories will de!ne a preferred time direction even in a local coordinate frame, which can
choose the #at metric in a neighborhood of a certain event, and this implies the violation of
local Lorentz invariance. We note that the Lorentz-breaking can occur in four-dimensional,
generally covariant actions. Indeed, the action of the Einstein-æther theory is given by

% =
∫

&4'
√−(

)2
Pl
2 [4* − )+,

JK∇+[J∇,[K − ?((+,[+[, + 1)], (2.72)

where [+ is the æther, ? is a Lagrange multiplier constraining the æther to (+,[+[, = −1,
and )+,

JK is de!ned by

)+,
JK ! -1(

+,(JK + -2U+JU,K + -3U
+
KU
,
J − -4[+[,(JK, (2.73)
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with -" (" = 1, · · · , 4) being constant.
Another Lorentz-violating example is Hořava-Lifshitz gravity (or simply Hořava

gravity) [74]. This theory is a candidate for UV-completions of Einstein’s gravity in which
full spacetime di"eomorphism is abandoned and recovered only at low energies. In Hořava
gravity, one introduces higher spatial derivatives, i.e., higher terms of the three-dimensional
Riemann tensor (3)*.... (because schematically (3)*.... ∼ F"F $VDW). The generalized version
of this theory is in [75], for example, whose action contains up to six spatial derivatives.
The residual symmetries of Hořava gravity are space-independent time reparametrizations
and spatial di"eomorphisms: 4 → 4̃ (4), '" → '̃" (4, '"). Note in passing that a naive
non-projectable extension of Hořava gravity causes a strange feature: the phase space is
described by !ve !elds, and consequently the canonical structure is lost [76]. This pathology
is associated with an extra half DOF, and was discussed in [76, 77], for example.

Also, the e"ective !eld theory (EFT) of in#ation [78, 79] describing the #uctuations
around a backgroundwith time evolution, andmore generally, ghost condensate [80] breaks
the Lorentz invariance. The authors of [81] studied a general class of scalar-tensor models
where at most three DOFs propagate in the unitary gauge but the ghost DOF seemingly
revives in other gauges. This Theory is called the U-degenerate (or U-DHOST) theory. As
described later, minimally modi!ed gravity, which propagates only two tensorial degrees,
is also a Lorentz-breaking theory.

We note that the Lorentz-violation on local scales is constrained by some observations,
e.g., the constraints on the parameters of the parameterized post-Newtonian (PPN)
formalism. Speci!cally, the PPN parameters JPPN1 , JPPN2 describe preferred frame e"ects
related to breaking of Lorentz symmetry (see [82] for example). If the Lorentz invariance
does not violate on local scales, the Lorentz-breaking theories can be considered EFTs on
cosmological scales (e.g., the EFT of in#ation), or theories on higher scales of energy (e.g.,
Hořava gravity).

These Lorentz-breaking theories can often restore the full Lorentz invariance by
introducing a scalar !eld with timelike gradient which is constant on each spacelike
hypersurface in the ADM formalism. 7 For instance, Hořava gravity and the EFT of in#ation
can be reformulated in a fully covariant manner, as describing spacelike hypersurfaces
speci!ed by a scalar !eld coupled to a general background [75, 77, 78, 83]. In other words,
Hořava gravity can be viewed as the gauge-!xed version of some Lorentz invariant theories
having the full di"eomorphism. [84] brie#y summarized some Lorentz-breaking theories
and these covariantizations. The author of [84] also applied this method to generate more
general scalar-tensor theories (so-called the XG3 theories) than the Horndeski theories.
One starts from a general action covariant on the foliation of spacelike hypersurfaces,
encoded into a scalar !eld M with a timelike gradient. The normal vector to the foliation is
O" ! −3∇"M. The action is constructed by three-dimensional geometrical quantities used in
the ADM formalism: V" $ , I" $ , (3)*" $ , the spatial covariant derivative F" , and the acceleration

7This is one of the Stückelberg trick.
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55 = OP∇PO5 ! F5 ln 3 . The explicit form is given by

L =
3∑
O=1

KO + V, (2.74)

with

KO ! G"1 $1,...,"" $"(O) I"1 $1 . . .I"" $" , (2.75)

here G(O)’s and V are general functions of (M, 3 , V" $ ,(3) *" $ , 5",F"). This action contains
higher-order spatial derivatives as Hořava gravity, which extends scalar-tensor theories in
the fully covariant formalism. After imposing that unwanted DOFs do not propagate to
avoid the Ostrogradsky ghost, one obtains the XG3 theories. The Horndeski, the EFT of
in#ation, and Hořava gravity are di"erent theories in the literature, but indeed all of these
are special cases of the XG3 theories. A series of papers [56–58] mentioned in §2.3 were
discussed in a similar way to the XG3 theories.

2.6 Two-DOFs Scalar-Tensor Theories
The single-!eld scalar-tensor theories generally have three dynamical DOFs: two tensor
modes plus one scalar mode. On the other hand, given that GR is highly consistent with
many observations, it is natural to expect nature to not allow considerable modi!cations
besides at cosmological scales. Since additional DOFs can change gravitational e"ects at
various scales, MG without any extra DOFs is preferred. In fact, the Lovelock theorem
implies that four-dimensional generally covariant gravity containing only the metric tensor
is just Einstein’s gravity. Therefore, if we consider MG without additional physical DOFs in
a four-dimensional spacetime range, we should break the symmetries. The cuscuton theory
has this feature as well as the Lorentz-violation, as explained later.

Another example is “minimally modi!ed gravity (MMG)” [85–92]. The authors of [85]
aimed to construct two-DOFs theories by making all constraints !rst-class in the situation
that only the spatial di"eomorphism invariance is imposed. To this end, we consider the
ADM action linear in the lupse function 3 , such as

% =
∫

&4&3'3
√
VS (I" $ ,(3) *" $ ,F", V" $ , 4). (2.76)

This linearity ensures the Hamiltonian constraint does not contain 3 , and hence this
constraint is expected to eliminate an extra DOF rather than !xing the lupse function. We
de!ne MMG as this action with the conditions to make the number of physical DOFs two,
and !nd that all constraints of such theories are indeed !rst-class. If one add an independent
term of 3 to the above action,

% =
∫

&4&3'
√
ℎ

[
3S (I" $ ,(3) *" $ ,F", V" $ , 4) + / ((3)*" $ ,F", V" $ , 4)

]
, (2.77)
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it derives two second-class constraints instead of the !rst-class Hamiltonian constraint,
and thus the number of DOF remains two. MMG is constructed as a spatially covariant
theory, nevertheless, one can recover full di"eomorphism by introducing a scalar !eld M
with timelike gradient as other Lorentz-violating theories. After recovering the spacetime
di"eomorphism, MMG in the ADM formalism can be viewed as gauge-!xed scalar-tensor
theories in the unitary gauge M = M(4). This point particularly reminds us of the structure
of the U-degenerate theory. Moreover, the authors of [90] have shown that the cuscuton
theory is a subset of MMG. 8

MMG actions are classi!ed into type-I and type-II [88]. The main di"erence between
these two types is the existence of the Einstein frame. The type-I MMG theories can
be recasted into the Einstein frame with a nontrivial coupling to matter by a !eld
transformation. From this from, one !nds gravity is modi!ed due to a novel matter
coupling. Furthermore, one obtains this type if one imposes a gauge-!xing condition after
a canonical transformation to GR, and then adds matter !elds. The gauge-!xing condition
in this method violates the general covariance, and adding matter !elds after a canonical
transformation leads a novel matter coupling. Indeed, if one performs an appropriate !eld
transformation to the whole action, one can get the Einstein frame with a nontrivial matter
coupling. The type-II MMG theories do not have the Einstein frame, but it has an interesting
subclass called “minimal theory of massive gravity” [93,94] in which the graviton is massive.
There are more theories with only two tensor DOFs, and we will compare these theories and
the extended cuscuton in § 4.4.2.

Recently, the author of [95] studied “scalarless scalar theories” in which scalar
#uctuations do not propagate by using symmetry principles. Remind that the unitary
gauge M = M(4) singles out particular timelike trajectories, which suggests !xing the time
coordinate. As naively pointed out in [85], if a scalar-tensor theory in the unitary gauge has
a scalar DOF, this DOF is a Nambu-Goldstone boson associated with the broken temporal
di"eomorphism. The author of [95] clari!ed this point and described the same mechanisms
in the cases that scalar !elds interacting with themselves, with vectors, or with tensors.

8As explained in §3.2, the cuscuton theory has intrinsically the same structure as the U-degenerate theory
in the context of propagating DOFs.
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Chapter 3

Cuscuton Theory

In the present thesis, we focus on one of the two-DOFs scalar-tensor theories: the cuscuton
theory [21]. This theory is the unique subclass of the k-essence in which the scalar mode
becomes nondynamical if and only if the gradient of the scalar !eld M is timelike. The
cuscuton shows intriguing characteristics within timelike <+M, and hence this is suitable for
exploring homogeneous and isotropic cosmology. The unfamiliar theory name, “cuscuton”
(pronounced käs-kü-tän), is derived from a parasitic plant “cuscuta” (see Fig. 3.1 for its
appearance). The authors of [21] made the scalar !eld look like this plant, because the
scalar mode itself is nondynamical and merely follows the dynamics of the metric. The

Figure 3.1: “Cuscuta europaea in #ower” by Michael Becker CC BY-SA 3.0, cited from [96].
The magenta and yellow string plant, that is a cuscuta, have coiled around the other green
plant.

natures of the cuscuton DOF has been discussed from several aspects; the symplectic
structure [21, 97], a Hamiltonian analysis [97], and relations among the physical DOFs,
homogeneity and direction of the cuscuton [26,97]. Many theoretically and cosmologically
fascinating features of the cuscuton have been also unveiled by [22–24, 98–116].
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In this chapter, we !rst formulate the cuscuton theory based on [21] in § 3.1. Then, we
show relations between the scalar DOFs and the cuscuton !eld distributions in § 3.2. In the
next section, we investigate cosmological background and scalar parturbations based on [98]
in § 3.3.1, the viable power-low in#ation model based on [22] and some other early universe
models in § 3.3.2, applications to the dark energy cosmology based on [24] in § 3.3.3, and
other aspects of the cuscuton in § 3.3.4.

3.1 Formulation
Originally, the cuscuton was constructed as a subclass of the k-essence characterized by
the at most !rst-order !eld equation for the scalar !eld in a homogeneous limit. Note that a
!rst-order di"erential equation is not an EOMbut a constraint equation. Indeed, a!rst-order
di"erential equation in the phase space represents a constraint between canonical variables,
and one of these will be a dependent variable. We start with the k-essence action (2.42),
particularly

;(M, :) = 1
2S (: , M) −G (M), (3.1)

with S (: , M),G (M) being arbitrary functions [41, 117]. We identify the form of S (: , M)
which becomes a total derivative on a local Minkowski spacetime &]2 = −&42 + &'"&'" to
drop itself out of the !eld equation, and on the homogeneous scalar !eld M = M(4) satisfying
%M ≠ 0. In this limit, S (: , M) reads

S (: , M(')) → S
( %M2, M(4)) = &

&4
^ (M, %M, . . .) = %M <^

<M
+ &M <^

< %M
+ . . . . (3.2)

Since S contains at most !rst derivative of M,

S
( %M2, M) = &

&4
^ (M) =

√
%M2 <^ (M)

<M
. (3.3)

Here the sign of %M can be absorbed into ^ (M)/<M. Using this, the homogeneous limit of the
scalar sector of the action (3.1) will be

%homog
M = −

∫
&4'G (M). (3.4)

Variation with respect to M leads the algebraic equation:

<G

<M
= 0. (3.5)

This equation shows M has solely the constraint equation, not an EOM, and thus M has no
dynamical DOF. When M couples to another !eld _, the total action is

%M−_ =
∫

&4'
[
L_ (_, M) −G (M)

]
, (3.6)
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and the !eld equation with respect to M is

−<G
<M

+
<L_ (_, M)

<M
= 0. (3.7)

Because of the interaction terms, the dynamics of _ can be modi!ed by G (M). Moreover, as
long as _ is nondynamical, M behaves like an auxiliary !eld.

We have derived the action in which M becomes nondynamical in the homogeneous and
Minkowski limit. Now let us de!ne the most general four-dimensional covariant action in
the form of (3.1) which is equivalent to the action (3.3) and (3.4) in the homogeneous limit.
In order to that, all you need to do is replacement of the kinetic term

√ %M2 →
√
2|: |, and

then the generalized action is

%M =
∫

&4'
√−(

[
1
2
<^ (M)
<M

√
2 |: | −G (M)

]
. (3.8)

It is true that <^/<M might be a function of M, but as long as this term is positive, we can
rede!ne M so that 9

<^ (M)
<M

= 2+2 = const. (3.9)

The action (3.8) is well de!ned even in : > 0 (spacelike <+M). However, in this case, we could
not say the cuscuton !eld is nondynamical because any dynamics of that in inhomogeneous
situations is not assumed. Indeed, the inhomogeneous !eld equation in the Minkowski
spacetime reads

2+2:!M − +2<+M<,M<+<,M − (2:) 3
2G ′(M) = 0, (3.10)

which is the second-order di"erential equation, that is the EOM; therefore, M following the
above equation is dynamical. 10 Note in passing that the variation of this action is ill-de!ned
at : = 0, and hence we should de!ne the EOM without the variation. To summarize, the
action of the cuscuton theory is written as

% =
∫

&4'
√−(

[
)2

Pl
2 * + +2

√
2|: | −G (M)

]
, (3.11)

where + are nonvanishing constants.

3.2 DOF and Distributions of Cuscuton
The most critical feature of the cuscuton is a nondynamical scalar !eld. The variation of
the number of DOFs depending on a cuscuton !eld distribution is also a unique nature

9One can also take a negative <^/<M and <^/<M = −2+2. We will deal with the scalar perturbations and
the in#ation model for both cases in § 3.3.

10However, as shown in the next section, an inhomogeneous cuscuton with timelike gradient does not have
dynamical DOF.
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not existing in usual scalar-tensor theories. For the original cuscuton with timelike <+M,
the authors of [97] claimed that the cuscuton !eld in general carries a scalar DOF and it
vanishes only in the homogeneous limit. However, this result is counterintuitive as one can
always make the scalar !eld homogeneous, M = M(4), when <+M is timelike by choosing the
coordinate system appropriately, namely taking the unitary gauge.

We resolved such a contradiction in our paper [26] by showing that the potentially
existing scalar DOF does not propagate if an appropriate boundary condition is imposed.
Thus, provided that <+M is timelike, choosing the unitary gauge does not change the number
of physical DOFs. We note that the same idea had already been proposed in the context of
U-degenerate theory which was mentioned in §2.5. They have claimed that the ghost DOF
does not propagate once a physically reasonable boundary condition is imposed at spatial
in!nity. Thus, the U-degenerate theory is free of the Ostrogradsky ghost as long as one can
take the unitary gauge.

In what follows, we see the speci!c analysis of the above idea in the cuscuton. Assuming
G (M) = 0, +2 = 1 and the Minkowski spacetime for simplicity, the !eld equation for M with
a spacelike gradient (3.10) reads

2:!M + <+M<,M<+<,M = 0, (3.12)

which is satis!ed even for a timelike gradient. (3.12) is a second-order di"erential equation
and propagates the scalar DOF. Hereafter, we suppose M depends only on 4 and '.

At !rst, let us consider a timelike <+M. The !eld equation (3.12) in this case is

(M′)2 &M − 2 %MM′ %M′ + %M2M′′ = 0, (3.13)

where %M ! <4M and M′ ! <'M. Now we can introduce the following non-unitary gauge
background:

M = 4 + J', −1 < J < 1, J ≠ 0. (3.14)

We assume a small #uctuation on this background: M = M + .(4, .'), and then the quadratic
Lagrangian for . is given by

L(2) = − 1
2(1 − J2)3/2

(J %. − <'.)2 −
1

2(1 − J2)1/2
[
(<>.)2 + (<`.)2

]
. (3.15)

The kinetic term seems to have a wrong sign for J ≠ 0,

− J2

2(1 − J2)3/2
%.2, (3.16)

which implies a ghost. The EOM for . is given by

J2 &. − 2J<' %. + <2' . + (1 − J2)(<2> . + <2` .) = 0. (3.17)
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Substituting . = 9−"84+".D ·.' , we obtain the dispersion relation,

(J8 − D')2 + (1 − J2)(D2> + D2`) = 0. (3.18)

There exist two complex solutions,

8 =
D'
J

± " (1 − J
2)1/2

J

√
D2> + D2` , (3.19)

one of which leads a blowing up mode. However, as is discussed in Ref. [81], we expect that
the regularity at spatial in!nity could remove this dangerous ghost mode. To see this, we
would perform the following boost transformation:

4̃ =
4 + J'√
1 − J2

, '̃ =
J4 + '√
1 − J2

, >̃ = >, ˜̀ = `. (3.20)

Then, Eq. (3.17) becomes the Laplace equation,(
<2'̃ + <2>̃ + <2˜̀

)
. = 0. (3.21)

The solutions of this equation are at most linear in spatial coordinates, and once one require
regularity at spatial in!nity, the allowed solution is solely . = const. Therefore, the ghost
mode does not propagate if such an appropriate boundary condition is imposed.

The other case is spacelike <+M, and in this case, |J | is larger than unity. We then obtain

L(2) = − 1
2(J2 − 1)3/2

(J %. − <'.)2 +
1

2(J2 − 1)1/2
[
(<>.)2 + (<`.)2

]
, (3.22)

and the equaiton for . is again given by Eq. (3.17). Given J2 > 1, we de!ne the following
coordinate system:

4̃ =
J4 + '√
J2 − 1

, '̃ =
4 + J'√
J2 − 1

, >̃ = >, ˜̀ = `, (3.23)

by which Eq. (3.17) is transformed into(
−<2

4̃
+ <2>̃ + <2˜̀

)
. = 0. (3.24)

This is clearly a hyperbolic equation, and thus the dangerous mode . propagates.
To summerize, the key point of above discussions is the magnitude of |J |. The EOM

for . is (3.17) irrespective of the value of |J |, but the sign of (1 − J2) (<2> . + <2` .) in this
equation #ips depending on |J | ≷ 1, namely <+M being spacelike/timelike. This di"erence
consequently leads the di"erent types of di"erential equations like (3.21) and (3.24).

3.3 Various Aspects of the Cuscuton
In this section, we review various aspects of the cuscuton theory, mainly in the context of
cosmology: applications to the in#ation model, nonsingular bouncing cosmology, and the
late-time universe.
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3.3.1 Cosmological Backgrounds and Scalar Perturbations
The cuscuton !eld is nondynamical and causes a non-local modi!cation to Einstein gravity.
Details are discussed later, but at the beginning of this subsection, let us think about what
would happen if we consider a homogeneous and isotropic cosmology in the model (3.11)
in vacuum without other !elds. A homogeneous and isotropic spacetime is given by

&]2 = −32(4)&42 + 52(4)U" $ &'"&' $ , M = M(4), (3.25)

with the lapse function 3 (4) and the scale factor 5(4). The !eld equations are obtained by
substituting this metric into the action (3.11) and varying it with respect to 3 , 5, and M.
Thereafter, we may set 3 = 1. 11 The resultant equations are

3)2
Pl=

2 −G (M) = 0, (3.26)
2)2

Pl
%= + +2 | %M| = 0, (3.27)

sign( %M)3+2= +G ′(M) = 0. (3.28)

with = ! %5/5 being the Hubble parameter. (3.27) is clearly the second-order di"erential
equation for 5, although, the other two equations are atmost !rst-order di"erential equation
for both 5 and M. From (3.26) and (3.28), once one determine the form of G (M) one get

3)2
Pl=

2 −G
(
G−1 (

∓ sign( %M)3+2=
) )

= 0, (3.29)

where G ′−1 is the inverse function of G ′(M). This equation implies that the cuscuton drops
out from the Friedmann equations, but the form of its solutions = is controlled by the
cuscuton potential term G (M) (see § 3.3.3 for details). It is also manifest that the cuscuton
only modi!es gravity on large scales since the cuscuton itself has no dynamics. Therefore,
to produce dynamical geometrical modi!cations in a cuscuton scenario, other sources with
propagating DOFs are needed (see § 3.3.2).

If one considers a quadratic action for the perturbations around the background, the
scalar mode does not have a kinetic term. Hence, its !eld equation is not an EOM but a
constraint by which one can integrate the scalar mode out from the perturbed action, while
the tensor mode propagates as in GR. Hence, to obtain a viable cosmological scenario, we
must add some extra !elds that #uctuate the scale factor like the in#aton.

According to [98], we add the following scalar !eld _ with a canonical kinetic term and
a potential term,

% =
∫

&4'
√−(

[
)2

Pl
2 * − 1

2<+_<
+_ −N (_) ± +2

√
−2: −G (M)

]
. (3.30)

In §3.1, we have formulated the cuscuton action viable in both signs of : . On the other hand,
now we want to consider a cosmological setup, so that we have ignored the : > 0 case and

11If one sets 3 = 1 at the action level, onewill obtain only (4.1) and (4.2) besides the Euler-Lagrange equation
for 3 [118].
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replaced |: | → −: . Furthermore, we treat the both signs of +2
√
−2: in this discussion.

The !eld equations from (3.30) are

3)2
Pl=

2 −G (M) −N (_) − 1
2 %_2 = 0, (3.31)

2)2
Pl
%= ± +2 | %M | + %_2 = 0, (3.32)

±sign( %M)3+2= +G ′(M) = 0, (3.33)
&_ + 3= %_ +N′(_) = 0. (3.34)

Eq. (3.34) is the same as the EOM for the in#aton in the standard in#aton model. Eq. (3.33),
which is almost same as (3.27), determines M as a function of = by considering the inverse
function of G ′(M): G ′−1. Substituting it into (3.31), we obtain

3)2
Pl=

2 −G
(
G ′−1 (

∓sign( %M)3+2=
) )
−N (_) − 1

2 %_2 = 0. (3.35)

Furthermore, unlike in Einstein’s gravity with additional scalar DOF, no scalar contributions
are in the equation. Hence, one can derive the dynamics of = without initial or boundary
conditions for M. Even so, this algebraic equation can be controlled by the choice of function
G (M), which clearly represents the modi!cation of gravity.

After we use (3.32), the !rst slow-roll parameter is given by

T ! −
%=
=2 =

±+2 | %M | + %_2
2)2

Pl=
2 , (3.36)

which indicates that the cuscuton a"ects the slow-roll dynamics. To represent the cuscuton
contribution to deviation from the conventional single !eld in#ation, we de!ne the
following quantities:

1 ! T − J = ± +2 | %M |
2)2

Pl=
2 , J !

%_2
2)2

Pl=
2 . (3.37)

Here 1 = 0 represents + = 0, namely the absence of the cuscuton.

Now we will derive the quadratic action for the curvature perturbation a to investigate
the stability. We choose the uniform !eld gauge for _: U_ = 0, and we write the perturbed
metric and the cuscuton !eld as

&]2 = −(1 + 2U3)&42 + 2<"Z&4&'" + 52(1 + 2a)U" $ &'"&' $ ,
M = M(4) + UM(4, .'), (3.38)

where U3 ,Z, a and UM are the scalar #uctuations. 12 The equations for U3 and Z are
constraints, and one can remove them by substituting these constraints into the action. The
equations for UM is also a constraint, though, this contains the spatial derivative for UM like
the equation for inhomogeneous cuscuton !eld (3.10). Consequently, the solution of that

12Of course, the manner of gauge !xing does not a"ect the number of the propagating scalar #uctuations.
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constraint involves non-local operators, namely inverses of derivative operators. To avoid
such terms in the action, we recast the action into Fourier-space one before substituting UM.
After we take U3 ,Z and UM away, the quadratic action for scalar perturbations is

%(2) =
∫

&4&3'`2
[
%a2(4, k) − -2]

52
k2a2(4, k)

]
. (3.39)

Here `(4, k) and -] (4, k) are given by

`2 ! 53J

( (k/5)2 + 3J=2

(k/5)2 + J=2(3 − 1)

)
, -2] !

(k/5)4 + (k/5)2=2B1 + =4B2
(k/5)4 + (k/5)2=2A1 + =4A2

, (3.40)

and the other quantities are

R !
%T
=T

, K !
%J
=J

,

A1 ! 6J − J1, A2 ! 9J2 − 3J21,
B1 ! A1 + 1(6 + R + K − 2T) + J(R − K),

B2 ! A2 + 1J(12 − 41 + 3R) + 3J2(R − K),

(3.41)

where R and K are the second slow-roll parameters.
At this stage, we must check two instabilities. One is the ghost instability. This arises

from the negative sign of the coe$cient of the kinetic term: `2 < 0. If this is the case, the
enegy of this system will be unbounded below in the same way as the Ostrogradsky ghost.
The other one is the gradient instability, which appears with the wrong sign of the spatial
derivatives. Now we explain this instability brie#y using the simple model such as

L =
1
2
%M2 + 1

2 (<M)
2, (3.42)

with < being the spatial derivatives. The solutions in the Fourier space are given by MD (4) ∼
9±D4 . Among them, 9D4 represents the growing mode that time scale is 4 ∼ D−1. Therefore,
the high energy mode leads to an instability.

In (3.39), taking the 1 → 0 limit or the UV limit k → ∞, we get the standard single
scalar !eld result of -2] ∼ 1 and `2 ∼ 52J. In the UV limit, particularly, all the cuscuton
contributions vanish and there are neither ghost nor gradient instabilities. Furthermore,
when−+2 branch leads a negative1 and hence `2, which is the coe$cient of the kinetic term
for the curvature perturbation, is always positive regardless of scale. We note that, in the
infrared (IR) regime, both ghost/gradient instabilities are not necessarily problematic: Even
if the kinetic term has a wrong sign, it is legitimate to ignore the ghost instability if its
energy scale is much lower than the cuto" scale. The gradient instability is also irrelevant
when the timescale of interest is much shorter than the instability.

3.3.2 Early Universe
As we mentioned above, the cuscuton !eld can a"ect the dynamics of other dynamical
!elds in the absence of an additional DOF. As the next step, we would like to see if the
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cuscuton contributions might circumvent some pathologies in present cosmological models
or not. One successful example of this has been presented by [22], in which the cuscuton
can reconcile the in#ation model so-called “power-law in#ation” [119] with observations.
13 This model is known as a simple and exact solution, though, has been ruled out by recent
observations [120]. Ref. [22] has shown that the cuscuton can yield consistent values of the
scalar spectral index O] and the tensor-to-scalar ratio b with CMB data.

We consider the action (3.11) and regard _ as the in#aton !eld. We assume the potential
term of _ the same as the standard power-law in#ation model, such as

N (_) = N09
[ $
%Pl , (3.43)

here N0 and [ are constant. We would like to obtain an exact solution of the background
!eld equations (3.31)-(3.34) satisfying = = @/4 with the following ansatz:

G (M) = 1
27

2M2,
_

)Pl
= ] ln)Pl4, M =

6

4
, (3.44)

here 7, @, ], and 6 are parameters which are related with each other by the !eld equations.
One of nontrivial branches of the remaining parameters satisfying (3.31)-(3.34) is

[ = −2
]
, 6 = −3+

2]2

72

(
2 − 3+4

)2
Pl7

2

)−1
,

@ = ]2
(
2 − 3+4

)2
Pl7

2

)−1
,

N0
)4

Pl
=
]2

2
89
:

3]2

2 − 3+4
)2

&72

− 1;<
=
,

(3.45)

where 2 − 3+4
)2

Pl7
2 > 0 should be satis!ed to keep @ positive. This branch has two out of six

free parameters, and the !rst and second slow-roll parameter T and R reads

T =
1
@
, R = 0, (3.46)

which is of cource the same result of the standard power-law in#ation.
To calculate O] and b , let us consider the following scalar and tensor perturbations of

the metric:

&]2 = −(1 + 2U3)&42 + 2<"Z&4&'" + 52(1 + 2a) (U" $ + ℎ" $ )&'"&' $ . (3.47)

The quadratic action of the scalar perturbations is (3.39), and J and 1 in (3.37) become

J =
1
2]2

(
2 − 3+4

)2
Pl7

2

)2
, 1 =

3+4
2)2

Pl7
2]2

(
2 − 3+4

)2
Pl7

2

)
. (3.48)

13The power-law in#ation represents an accelerating universe satisfying 5(4) ∝ 4 & , @ = const. > 1. Note in
passing that @ = const. 0 1 brings T = const. 1 1, which implies this model needs an additional mechanism
of ending the in#ationary era.
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The power spectrum of the curvature perturbations, which is associated with two point
correlation function of the curvature perturbations, is given by

;a =
=2

8.2)2
PlJ

>>>>>
5==D

. (3.49)

One the other hand, the tensor perturbations is not mixed with the scalar ones at the
linear order, and hence the power spectrum of tensor perturbations is the same as that
of conventional single !eld in#ation,

;ℎ =
2=2

.2)2
Pl

>>>>>
5==D

. (3.50)

Using these quantities, we get O] and b as follows:

O] − 1 =
& ln ;a
& ln D 2 −2T , b =

;ℎ
;a

= 16J, (3.51)

which shows that we can control O] and b independently as long as 1 is nonvanishing. More
explicitly, these reads

O] − 1 = − 2
]2

(
2 − 3+4

)2
Pl7

2

)
, b =

8
]2

(
2 − 3+4

)2
Pl7

2

)2
. (3.52)

From these, we !nd

b = 2]2(O] − 1)2. (3.53)

Since ]2 is a model parameter, b can take any values even if one !xes O] to the observational
value. Therefore, by tuning model parameters, we can obtain consistent O] and b values
with observations.

Finally, we comment that (3.51) is the general result in an in#ationary scenario with the
(original) cuscuton. We thus believe the cuscuton can bypass observational constraints at
least the linear level.

The in#ationary scenario resolves the horizon and #atness problems in the standard
Big Bang cosmology, and moreover provides the seeds for large-scale structure of the
universe by quantum #uctuations of the in#aton !eld. Even though in#ationary models
are successful, such universe has the curvature singularity at the beginning of the universe,
classical gravitational theories become useless. To evade this problem, one may consider
alternative models, e.g., nonsingular bouncing cosmology (see [121] for a review). This
model is never singular so that the universe initially contracts and then “bounces” and starts
expansion. In the context of the cuscuton theory, the bounce scenarios seem naively to be
viable. As said in §3.3.1, the negative sign of +2 in (3.30) automatically circumvents the ghost
instabilities regardless of scale. Moreover, this sign can make the !rst slow-roll parameter
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T in (3.36) negative. A negative T , namely %= > 0, means the dynamics of the universe can
turn from contraction (= < 0) to expansion (= > 0) as time goes by, which is exactly a
bounce scenario. The authors of [23] have found a healthy cuscuton bounce solution for
the action (3.30) with N (_) = 0, which has no pathologies associated with the violation of
null energy condition (NEC) (see also [99]). In this model, NEC is e"ectively broken in FRW
backgrounds while the actual matter sources satisfy NEC. More intrinsic interpretation of
this point has been studied in [100, 101], associating with the limiting (extrinsic) curvature
principle [102–104].

Utilizing the cosmic expansion, one can compactify extra space dimensions into a
relatively smaller size than our three-dimensional space. Speci!cally, all spatial dimensions
were initially compact, and subsequently, along with the cosmological evolution, the only
four-dimensional universe has expanded up to the present scale. 14 The authors of [105]
have studied this scenario in the context of the (4+1)-dimensional cuscuton theory in which
the cuscuton !eld couples with a vector !eld. They have shown that a solution of this model
describes accelerating expansion of four-dimensional spacetime with a completely static
extra dimension. This seems to be the !rst concrete model of accelerating universes besides
the de Sitter spacetime with an extra static dimension. This discussion can be extended into
(O + 1)-dimensional spacetime.

3.3.3 Dark Energy

As previously mentioned, the present cosmic accelerated expansion is strongly supported
by recent observations. All matters attract each other by gravitational force, and hence an
unknown repulsive long-range force should cause this accelerated expansion. The source of
the repulsive force is called “dark energy,” and it is the dominant component of the energy
density in the current universe [8] after the matter dominant era. The simplest candidate for
the dark energy is the cosmological constant Λ. Let us consider Einstein gravity only with
dark energy, that is, the Einstein-Hilbert action plus Λ > 0 whose action is given by (1.2),
to study the dark energy dominant era. The Friedmann equation reads 3=2 = Λ, namely
5 = 9

√
Λ/34 , and this implies an accelerating cosmic expansion. On the other hand, another

unknown non-relativistic component called “dark matter” is also supported. The ΛCDM
model containing Λ as dark energy and cold dark matter (CDM) passes all of the precise
cosmological observations so far.

Other than the ΛCDM model, one can apply MG to the dark energy models. The
authors of [24] have studied the cuscuton as dark energy. The present universe is the dark
energy dominant era. Still, it is important to consider the non-relativistic matter because
measurements for matter, e.g., the gravitational lensing and the large-scale structures, are
powerful tools to test the dark energy models. Hence, we consider the cuscuton (3.11) with
a minimally coupled matter component. If this is the case, the Einstein equations are similar

14The original idea was in [122], but details of this scenario is di"erent from the above (see [105]).
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to (3.26) and (3.27),
3)2

Pl=
2 −G (M) − 0m = 0, (3.54)

2)2
Pl
%= + +2 | %M| + @m = 0, (3.55)

with 0m and @m is the energy density and pressure of matter respectively. The variation
with respect to M is the same as (3.28). For simplicity, hereafter, we assume %M > 0. From
these equations, we obtain an algebraic equation for =,

3)2
Pl=

2 −G
(
G ′−1 (

∓( %M)3+2=
) )
− 0m = 0. (3.56)

In addition to the features of (3.35), the dependence between = and 0m is also changed by
the potential term G (M).

For example, let us consider the quadratic potential for M: G (M) = G0 + 72M2/2 with
G0 = const. In this case, (3.56) reads

3
(
)2

Pl −
3+4
272

)
=2 − 0m = 0. (3.57)

This is equal to the conventional Friedmann equation with the following renormalized
Planck mass,

)̃2
Pl = )

2
Pl −

3+4
272 . (3.58)

Indeed, this type of potential derives the exactly equivalent expansion history to that of a
ΛCDM cosmology. To see this, we de!ne the following quantity:

ΩQ ! −
)̃2

Pl − )2
Pl

)2
Pl

=
3+4

2)2
Pl7

2 = const. (3.59)

This represents actually a part of the density parameter of dark energy contributed by the
quadratic term of G (M). We de!nie the energy density of dark energy as follows:

0DE ! 3)2
Pl=

2 − 0m = G0 +
1
27

2M2, (3.60)

and then the density parameter of dark energy is given by

ΩDE !
0DE

3)2
Pl=

2 =
G0

3)2
Pl=

2 +
1
27

2M2

3)2
Pl=

2 " ΩG0 +
3+4

2)2
@72 = ΩG0 +ΩQ, (3.61)

where we have used Eq. (3.28). Considering G0 = const., ΩG0 is identical to the density
parameter of the cosmological constant and causes the same time evolution of = as that
in the ΛCDM model. On the other hand, ΩQ = const. maintains a constant fraction of
the total energy density of the universe by transforming each density parameter besides
ΩQ: Ω" →

(
1 −ΩQ

)
Ω" . Thus, the quadratic term does not a"ect the cosmic expansion

history, and consequently, that history is identical to that in the ΛCDM cosmology as long
as G0 ≠ 0. On the contrary, the CMB and matter power spectra can be distinguished from
those in ΛCDM (see [24] for details). Therefore, geometrical tests such as supernovae Ia,
or the angular scale of baryonic acoustic oscillations, are blind to a quadratic term in the
Cuscuton potential, while the integrated Sachs-Wolfe e"ect in the CMB might detect its
in#uence.
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3.3.4 Others
Besides the DOFs and cosmology, other various aspects of the cuscuton have been still
actively investigated. The Cuscuton theory is a subclass of minimally modi!ed gravity [85].
Also, the cuscuton appears as the extreme relativistic limit of a !ve-dimensional brane
theory [106] and as the UV limit of an anti-Dirac-Born-Infeld theory [107]. Furthermore,
relations between the cuscuton and other Lorentz-violationg theories, especially the
Einstein-æther and the Hořava-Lifshitz theory (see § 2.5 for brief overview) [108, 109]. The
authors of [110] have pointed out the absence of caustic singularities in cuscuton-like scalar
!eld theories, and cuscuton kinks and the braneworld scenario have been explored in [111].
The McVitte solution [25], which is a solution of GR describing time-dependent black holes,
is an exact solution for cuscuton gravity [112,113]. More formally, the cuscuton admits extra
symmetries other than the Poincaré symmetry [114–116].
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Chapter 4

Extended Cuscuton: Formulation

The cuscuton theory (3.11) is the unique k-essence subclass that the scalar mode is
nondynamical if and only if the scalar !eld has a timelike gradient. Given that the k-essence
is also a subclass of more general scalar-tensor theories, e.g., the Horndeski or the DHOST
theories, it is natural to expect that the cuscuton is not the unique subclass of these general
frameworks as two-DOFs theories, and there are some comprehensive classes sharing the
same nature as the cuscuton. In this chapter, we dub such extended theories the “extended
cuscuton” and !nd its speci!c form. If we identify the extended cuscuton, we can explore the
following questions. The !rst one is whether the intriguing features of the original cuscuton
are unique to itself or shared with the whole extended framework. The second one is how
relevant are the extended cuscuton to other two-DOFs theories with timelike M+ ! <+M
developed with di"erent motivations from ours (for example, [85, 87, 108, 110, 123]).

To this end, we start from the GLPV theory as a general scalar-tensor theory with three
DOFs in general, and identify the forms of the free functions in the Lagrangian by requiring
that the theory has only two DOFs. Here we suppose that M+ is timelike, and use the unitary
gauge. As the !rst step, we consider a relatively easy situation: we specify the Lagrangian
having some cosmological properties. As mentioned in §3.3, the cuscuton has mainly two
properties in a homogeneous and isotropic cosmology:
[a] The !eld equation of the scalar !eld is at most of !rst order in the case of homogeneous

and isotropic cosmology. In this cosmological setup, one may safely choose the unitary
gauge M = M(4). Then, the second term in Eq. (3.11) takes the form +2 | %M| with a
dot denoting </<4, so the Euler-Lagrange equation for M does not contain second or
higher derivatives of M. Thus, the scalar !eld becomes nondynamical and its evolution
is determined by the dynamics of the metric through the constraint equation.

[b] The kinetic term of scalar cosmological perturbations vanishes. If the action (3.11) is
expanded to second order in scalar perturbations around a cosmological background,
one ends up with the quadratic action for a single variable a (the curvature
perturbation), where it turns out that the coe$cient of the kinetic term %a2 vanishes.
This is due to the nondynamical nature of M in the cuscuton theory.

As is anticipated, the two properties [a] and [b] are closely related to each other (see §4.1).
These conditions ensure the two-DOFs nature only in a cosmological background, and hence
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these are just necessary conditions for the theory we aim to construct. Next, we identify
which of the theory among this cosmological prototype of the extended cuscuton has two
DOFs on an arbitrary background in the unitary gauge. Note that if one starts from the
k-essence model, the above procedure leads to the original cuscuton theory. We believe
that the same procedure can, in principle, be applied to even broader classes such as DHOST
theories as a starting point, but this topic is out of scope of this work.

The rest of this chapter is organized as follows. In §4.1, we construct a prototype model
for the extended cuscuton theory as a subclass of the GLPV theory, which has two DOFs
at least in a cosmological background. Then, in §4.2, we perform a nonlinear Hamiltonian
analysis of the prototypes in an arbitrary background in which one can choose the unitary
gauge, and identify the theory with only two propagating DOFs which is just our desired
extended cuscuton theory. The above discussions are performed in the ADM formalism,
and we transform (a part of) the extended cuscuton in the covariantized form in §4.3. In
§4.4, we study relations between the extended cuscuton and other theories. The relation
between the original and the extended cuscuton theories is studied employing disformal
transformations in §4.4.1, and we discuss the other two-DOFs models in §4.4.2. In §4.5,
we also analyze cosmological perturbations in the presence of a matter !eld and study the
stability conditions for the tensor and scalar modes.

4.1 Cosmological Prototype for Extended Cuscuton

4.1.1 Prototype in Flat Cosmology

We start with the GLPV theory, whose action is given by (2.48), and a homogeneous and
isotropic universe (3.25). In this spacetime, variations of (2.48) with respect to 5 and M lead
the following dynamical equations (see, e.g., Ref. [67]):

E5 = 2Gc %= − 2M &M + U = 0, (4.1)
EM = 6M %= + K &M + V = 0, (4.2)
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where

Gc ! 2
(
/4 − 2:/4: + :/5M − = %M:/5: + 4:2S4 − 12= %M:2S5

)
,

M ! −:/3: + /4M − 2:/4M: + =2:
(
3/5: + 2:/5:: + 60:S5 + 24:2S5:

)
+ 2= %M

(
/4: + 2:/4:: − /5M − :/5M: − 8:S4 − 4:2S4:

)
,

K ! /2: + 2:/2:: + 2
(
/3M + :/3M:

)
− 6= %M

(
/3: + :/3:: + 3/4M: + 2:/4M::

)
+ 6=2 (

/4: + 8:/4:: + 4:2/4::: − /5M − 5:/5M:

− 2:2/5M:: − 24:S4 − 36:2S4: − 8:3S4::
)

+ 2=3 %M
(
3/5: + 7:/5:: + 2:2/5::: + 120:S5 + 132:2S5: + 24:3S5::

)
,

U ! /2 + 2:/3M + 4:/4MM + 4= %M
(
/4M − 2:/4M: + :/5MM + 4:2S4M

)
+ 2=2 (

3/4 − 6:/4: + 3:/5M − 2:2/5M: + 12:2S4 − 24:3S5M
)

− 4=3 %M
(
:/5: + 12:2S5

)
,

V ! −/2M + 2:/2M: + 2:/3MM + 3= %M
(
/2: + 2/3M − 2:/3M: − 4:/4MM:

)
− 6=2 (

3:/3: + 2/4M + 6:/4M: − 4:2/4M::

+ :/5MM − 3=2:/5: − 2=2:2/5:: + 2:2/5MM:

+ 12:2S4M + 8:3S4M: − 60=2:2S5 − 24=2:3S5:
)

+ 2=3 %M
(
9/4: + 18:/4:: − 9/5M − 7:/5M: + 2:2/5M::

− 72:S4 − 36:2S4: + 48:2S5M + 24:3S5M:
)
.

(4.3)

These quantities (4.3) contain at most !rst derivatives of the metric and the scalar !eld.
In the case of the k-essence (2.42), we have /3 = /5 = 0, /4 = const, and hence M

vanishes. Then, the property [a] reads

K = /2: + 2:/2:: = 0 ⇒ /2 = -1(M)
√
|: | + -2(M). (4.4)

The original cuscuton theory (3.11) is thus recovered. However, we haveM ≠ 0 in general,
which signals a kinetic mixing of gravity and the scalar !eld. In this case, the statement
of [a] is not necessarily correct, and instead it is more appropriate to require the following
extension of [a]:

[a′] The system composed of the two dynamical equations (4.1) and (4.2) is degenerate:

det
(
2Gc −2M
6M K

)
= 2

(
GcK + 6M2) = 0. (4.5)

This condition can be rewritten into the polynomial in =,

GcK + 6M2 =
4∑
O=0

5O (M, %M)=O = 0, (4.6)
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where 5O’s are functions of M and %M. The property [a′] is satis!ed if

5O = 0 (O = 0, 1, 2, 3, 4), (4.7)

which is a set of di"erential equations satis!ed by /2, /3, · · · of the extended cuscuton.
To provide conditions for the property [b], we consider the quadratic action for the

curvature perturbation a in the GLPV theory. Following the standard procedure (see, e.g.,
Ref. [14] or §3.3.1 in this thesis ), we have

%(2)% =
∫

&4&3'353
[
G% %a2 −

F%
52

(<D a)2
]
, (4.8)

where it is found that

G% ∝ GcK + 6M2. (4.9)

Therefore, the two requirements [a′] and [b] are consequently equivalent.
Although Eq. (4.7) provides some restrictions on the functions in the GLPV action, and

one can specify the subclass satisfying this in principle, the actual manipulation is tedious.
To bypass this nonessential issue, we move to the ADM formalism rather than sticking
to the covariant formulation. It turns out that the ADM formalism dramatically simpli!es
the analysis. The GLPV action (2.48) is translated to the ADM language in the unitary
gauge M = M(4), (2.52). In terms of (!", #$ ) instead of (/", S$ ), 5O can be expressed as

50 ∝ 3
(
!′3

)2 − 4
(
!′2 + !′′2

)
!4, (4.10)

51 ∝
(
!′3 + !′′3

)
!4 − 2!′3!′4 +

(
!′2 + !′′2

)
!5, (4.11)

52 ∝ 2
(
!′4 + !′′4

)
!4 − 4

(
!′4

)2 + 3
(
!′3 + !′′3

)
!5 − 3!′3!′5, (4.12)

53 ∝ 3
(
!′4 + !′′4

)
!5 − 6!′4!′5 + !4

(
!′5 + !′′5

)
, (4.13)

54 ∝ 3
(
!′5

)2 − 2
(
!′5 + !′′5

)
!5, (4.14)

where ′ ! </< ln 3 .
In the following, we solve the system of di"erential equations 5O = 0 to obtain the

prototype of the extended cuscuton. Since the structure of the system is di"erent for !5 = 0
and !5 ≠ 0, we treat these two cases separately. It is worth noting that the coe$cients 5O
are independent of #4 and #5. This in particular means that no restrictions on #4 and #5
can be imposed from the analysis of the cosmological setup. It should also be noted that
the condition 5O = 0 is a su$cient but not a necessary condition for G% = 0: There is still a
possibility that G% vanishes after imposing the Hamiltonian constraint for the background.
This is indeed the case in theories generated from the original cuscuton theory via generic
disformal transformation (see §4.4.1).

We !rst focus on the case !5 = 0 (and !4 ≠ 0). In this case, 54 = 0 and 53 = 0 are
automatically satis!ed. From 52 = 0, we obtain

!4 = − Q43

3 + [4
, (4.15)



4.1. COSMOLOGICAL PROTOTYPE FOR EXTENDED CUSCUTON 41

with [4 and Q4 being arbitrary functions of 4. Hereafter, we assume Q4 ≠ 0 so that !4 ≠ 0.
Then, 51 = 0 yields

!3 = [3 +
Q3

3 + [4
, (4.16)

and 50 = 0 can be solved to give

!2 = [2 +
Q2
3

−
3Q23

8Q43 (3 + [4)
, (4.17)

where [2, [3, Q2, and Q3 are arbitrary functions of 4. Since [3 in Eq. (4.16) can be absorbed
into Q2 through integration by parts (see the form of the Lagrangian (2.52)), we take [3 = 0
from the beginning. Thus, we have obtained for the !5 = 0 case,

!5 = 0, !4 = − Q43

3 + [4
, !3 =

Q3
3 + [4

, !2 = [2 +
Q2
3

−
3Q23

8Q43 (3 + [4)
. (4.18)

Next, in !5 ≠ 0 case, 54 = 0 leads to the following solution for !5:

!5 =
±32

(+53 + ,5)2
, (4.19)

with +5 and ,5 being arbitrary functions of 4 that do not vanish simultaneously. Throughout
this section, double signs are in the same order. One can then successively solve 53 = 0,
52 = 0, and 51 = 0 to obtain

!4 =
3 (+43 + ,4)
(+53 + ,5)2

,

!3 = +3 +
,3

+53 + ,5
± 2(+43 + ,4)2
3(+53 + ,5)2

,

!2 = +2 +
,2
3

± ,3(+43 + ,4)
3 (+53 + ,5)

+ 2(+43 + ,4)3
93 (+53 + ,5)2

,

(4.20)

where +2, +3, +4, ,2, ,3, and ,4 are arbitrary functions of 4. Finally, ,3 = 0 is imposed from
50 = 0, so that we now have

!5 =
±32

(+53 + ,5)2
, !4 =

3 (+43 + ,4)
(+53 + ,5)2

,

!3 = +3 ±
2(+43 + ,4)2
3(+53 + ,5)2

, !2 = +2 +
,2
3

+ 2(+43 + ,4)3
93 (+53 + ,5)2

.

(4.21)

Here, +3 can be absorbed into ,2, but we avoid doing so for later convenience. Note that
one can take a smooth limit +5 → 0 or ,5 → 0 in Eq. (4.21). It should also be noted that the
result of the case with !5 = 0 can be reproduced by choosing the integration functions as

,5 = [4+5, +4 = −Q4+25, ,4 = ∓3Q34Q4
− [4Q4+25, +3 = ∓23Q

2
4+

2
5,

+2 = [2 +
2
9Q

3
4+

4
5, O[2 = Q2 ±

1
2Q3Q4+

2
5 +

2
9[4Q

3
4+

4
5,

(4.22)

and then taking the limit +5 → ∞.
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4.1.2 Prototype in Non-Flat Cosmology
We have determined a prototype for the extended cuscuton in a #at cosmological
background, and we have found that one cannot determine the form of #4 and #5 by this
approach. In what follows, we show that one can !x the form of #4 and #5 by considering
a non-#at cosmological background.

For a non-#at cosmological background with

&]2 = −32&42 + 52
[

&b2

1 − Ib2 + b
2 (
&d2 + sin2 d&e2

) ]
, (4.23)

with I being the spatial curvature. The two dynamical equations take the same form as
Eqs. (4.1) and (4.2),

E5 = 2Gc %= − 2M &M + · · · = 0, (4.24)
EM = 6M %= + K &M + · · · = 0, (4.25)

but now with

Gc = Gc "at, M = M"at + :/5:
I

52
,

K = K"at + 6
[
/4: + 2:/4: − /5M − :/5M: + = %M(/5: + :/5:: )

] I
52

,
(4.26)

where the quantities labeled by “#at” represent the corresponding ones in the #at case found
in Eq. (4.3). This leads to

GcK + 6M2 =
4∑
O=0

5O=
O + 55

I

52
+ 56

I2

54
+ 57=

I

52
+ 58=2 I

52
, (4.27)

where the coe$cients of the four additional terms must vanish.
Switching from the (/", S$ ) representation to the (!", #$ ) representation, !rst we see

that

56 = 6(:/5:)2 ∝ (#53 )2 = 0. (4.28)

Substituting this to the other coe$cients, we obtain

55 ∝ !4(3#4)33 , 57 ∝ !5(3#4)33 , 58 = 0. (4.29)

We thus arrive at

(3#4)33 = 0, #53 = 0 ⇒ #4 = P0(4) +
P1(4)
3

, #5 = 0. (4.30)

It is not until one consider a non-#at cosmological background that one obtain these new
conditions for #4 and #5.
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4.2 Extended Cuscuton from Hamiltonian Analysis
Having constructed the cosmological prototype of the extended cuscuton, we now perform
its Hamiltonian analysis to identify the theories having two DOFs in the unitary gauge
without any assumption on the underlying spacetime. The method of the Hamiltonian
analysis in the constrained systems are in [124].

4.2.1 General Discussion
Before proceeding to the Hamiltonian analysis of the cosmological prototype of the
extended cuscuton, we derive a (su$cient) condition for a theory written in the ADM
language to have DOFs less than three. We start from a general ADM action of the form

% =
∫

&4&3' 3
√
V

[
2 (4, 3 , V" $ , *" $ ,H" $ ) + Q" $ (H" $ − I" $ )

]
, (4.31)

respecting the three-dimensional spatial di"eomorphism invariance, and explore the
condition for 2 to yield two DOFs. Since I" $ contains %V" $ , 3 , and 3" , the original Lagrangian
density 2 (4, 3 , V" $ , *" $ ,I" $ ) will make the following analysis complicated. To bypass this
trouble, here we have introduced Lagrange multipliers Q" $ to replace I" $ in 2 by auxiliary
variables H" $ . This is thought of as the ADM expression of general scalar-tensor theories
in the unitary gauge. Note that some DHOST theories yield the velocity of the lapse
function %3 [125], which is beyond the scope of this paper. We shall revisit later in §4.2.3 the
Hamiltonian structure when 2 is at most quadratic in I" $ , which is the case for the extended
cuscuton theory with !5 = 0.

Switched to the Hamiltonian formalism, this theory has 44 canonical variables:
(
3 , 3", V" $ , H" $ , Q" $

.3 , .", ." $ , ;" $ , N" $

)
, (4.32)

where the lower variables are the conjugate momenta as follows:

.3 !
<2

< %3
, ." !

<2

< %3"
, ." $ !

<2

< %V" $
, ;" $ !

<2

< %H" $
, N" $ !

<2

< %Q" $ . (4.33)

From the action (4.31), we obtain the primary constraints as

.3 ≈ 0, ." ≈ 0, ;" $ ≈ 0, N" $ ≈ 0, Ψ" $ ! ." $ +
√
V

2 Q" $ ≈ 0, (4.34)

here the symbol ≈ represents weak equalities, i.e., equalities that hold on the surface of the
constraints. We will use the following notations for derivatives of 2 with respect to H" $ :

2" $H !
<2

<H" $
, 2" $ ,DWHH !

<22

<H" $ <HDW
. (4.35)
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The canonical Hamiltonian can be obtained by the Legendre transformation as

= =
∫

&3'
(
3H0 + 3"V"

)
, (4.36)

with

H0 ! −√V2 (4, 3 , V" $ , *" $ ,H" $ ) + 2." $H" $ , H" ! −2√VF $

(
." $√
V

)
, (4.37)

The total Hamiltonian is written as

=c = = +
∫

&3'(?3.3 + ?"." + _" $ ;" $ + e" $N" $ + ?" $Ψ" $ ), (4.38)

with the coe$cients of the primary constraints being spatial functions. Time evolutions in
the Hamiltonian formalism is generated by the total Hamiltonian.

Some of the consistency relations for the primary constraints produce the following
secondary constraints:

%.3 ≈ √
V(32)3 − 2." $H" $ " C ≈ 0,

%." ≈ −H" ≈ 0,
%;" $ ≈ 3 (√V2" $H − 2." $ ) " 3Π" $ ≈ 0,

(4.39)

while %N" $ ≈ 0 and %Ψ" $ ≈ 0 just !x the multipliers ?" $ and e" $ , respectively. The consistency
relation from the time evolution of the secondary constraint H" ≈ 0, i.e., %H" ≈ 0, is
automatically satis!ed on the constraint surface. Among the constraints derived so far,
." ≈ 0 is !rst class, which re#ects the fact that one can freely specify the shift vector.
The momentum constraint H" ≈ 0 can be promoted to a !rst-class constraint by adding
appropriate terms that vanish weakly, i.e.,

H" → H̄" ! H" + .3F"3 + ;$DF"H $D − 2√VF $

(
;$D√
V
H"D

)
, (4.40)

so that H̄" de!nes the generator of spatial di"eomorphisms for V" $ , 3 , and H" $ .
Now we proceed to the consistency relations for C ≈ 0 and Π" $ ≈ 0. One !nds

%C ≈ {C,=}P +
√
V

[
?3 (32)33 + _DW32DWH3

]
≈ 0, (4.41)

%Π" $ ≈
{
Π" $ ,=

}
P +

√
V

[
?32

" $
H3 + _DW 2" $ ,DWHH

]
≈ 0, (4.42)

with {}P being the Poisson bracket. Therefore, if the matrix

) !

(
(32)33 32DWH3
2" $H3 2" $ ,DWHH

)
(4.43)
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has a nonvanishing determinant, the above consistency relations !x ?3 and _DW , and the
Poisson algebra closes here. If this is the case, wewould have 6 !rst-class and 26 second-class
constraints, resulting in three DOFs. Hence, we require

det) =
(
det 2" $ ,DWHH

) [
(32)33 − 32" $H3 (2

−1
HH)" $ ,DW 2DWH3

]
= 0 (4.44)

⇒ Δ ! (32)33 − 32" $H3 (2
−1
HH)" $ ,DW 2DWH3 = 0, (4.45)

so that the theory (4.31) has DOFs less than three. Here, we have assumed det 2" $ ,DWHH ≠ 0 to
guarantee the existence of two propagating tensor DOFs. Note that this requirement might
be too strong for the absence of the third DOF, because it should be su$cient that det)
vanishes only weakly, det) ≈ 0 (see §4.4.1). Nevertheless, in this thesis, we demand the
presumably stronger condition (4.44) for simplicity. Then, combining Eqs. (4.41) and (4.42)
we obtain the tertiary constraint

Ξ ! {C,=}P − 3
{
Π" $ ,=

}
P (2

−1
HH)" $ ,DW 2DWH3 ≈ 0. (4.46)

The manipulations required hereafter are too involved to carry out, but we can estimate
the upper limit for the number of dynamical DOFs by a naive analysis. The time evolution
of the tertiary constraint will produce the quaternary constraint: %Ξ ≈ 0 ⇒ Φ ≈ 0, because
otherwise the number of phase-space dimensions would be odd and the theory would be
inconsistent. Finally, the consistency relation %Φ ≈ 0 will !x the multiplier ?3 . As we have
two more second-class constraints than what we would have in the Δ ≠ 0 case, the system
has only two physical DOFs. 15 We note that the above estimation is not con!rmed by
rigorous calculations, and we leave it a future work.

4.2.2 The form of !" and #$
In the previous section, we have obtained the extended cuscuton theory candidate from the
cosmological considerations. We now check whether or not the candidate can satisfy the
condition (4.45). For theories whose action can be written in the form (2.52), we have

(32)33 = (3!2)33 + (3!3)33H + (3!4)33Q2 + (3!5)33Q3 + (3#4)33 (3)*

+ (3#5)33
(
(3)*" $H" $ −

(3)*
2 H

)
,

2" $H3 = (!33 + 2!43H + 3!53Q2)V" $ − (2!43 + 6!53H)H" $ + !53H"DHD $

+ #53

(
(3)*" $ −

(3)*
2 V" $

)
,

2" $ ,DWHH = −(2!4 + 6!5H)G" $ ,DW + 6!5
(
HD ("V $)W +HW ("V $)D −H" $VDW − V" $HDW

)
,

(4.47)

15There may be another possibility for the system to have two physical DOFs: If Ξ ≈ 0 is automatically
satis!ed by the existing primary/secondary constraints, then .' ≈ 0 and C ≈ 0 should be !rst-class
constraints, and thus the number of DOFs is again two. In any case, Δ = 0 is a su$cient condition for the
theory to have DOFs less than three.
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where G" $ ,DW ! VD ("V $)W − V" $ VDW , and

H ! H"", Q2 ! H2 −H"$H
$
" , Q3 ! H3 − 3HH"$H

$
" + 2H"$H

$
DH

D
" . (4.48)

The inverse of 2" $ ,DWHH can be written as

(2−1HH)" $ ,DW = − 1
2!4

(
VD ("V $)W −

1
2V" $ VDW

)

+ 3!5
4!24

[ (
2VD ("V $)W − V" $ VDW

)
H + V" $HDW + VDWH" $ − 2VD ("H $)W − 2VW ("H $)D

]
+ · · · , (4.49)

where the ellipsis denotes the terms quadratic and higher in H" $ . Thus, we obtain the
equation of the form

Δ =-̃0(4, 3) + -̃1(4, 3)H + · · · + &̃1(4, 3) (3)* + &̃2(4, 3)
(
(3)*" $

(3)*" $ − 3
8
(3)
*2

)

+ &̃3(4, 3)H (3)* + · · ·
=0, (4.50)

and all the coe$cients must vanish. Here, the &̃" coe$cients contain #4 and #5. We see that
&̃2 ∝ (#53 )2 = 0 ⇒ #5 = P2(4). Then, &̃1 ∝ (3#4)33 = 0 ⇒ #4 = P0(4) + P1(4)/3 .
However, P2 can be absorbed into the rede!nition of P1. We thus get

#4 = P0(4) +
P1(4)
3

, #5 = 0, (4.51)

with P0 and P1 being free functions of 4, which is identical to the conditions arising from a
non-#at cosmological background (4.30). Now #4 and #5 are found to be eliminated from
Eq. (4.47) and Δ, and hence all the &̃" coe$cients vanish.

Let us then check that the form of !" we have found in the previous section is consistent
with Δ = 0. First, we take a look at the case with !5 = 0, for which simple explicit
expressions of the equations can be obtained. In this case, the inverse of the matrix
2" $ ,DWHH = −2!4G" $ ,DW is given explicitly by

(2−1HH)" $ ,DW = − 1
2!4

(
VD ("V $)W −

1
2V" $ VDW

)
, (4.52)

and hence we have

Δ =
4(!′2 + !′′2 )!4 − 3(!′3)2

43!4
+
(!′3 + !′′3 )!4 − 2!′3!′4

3!4
H +

(!′4 + !′′4 )!4 − 2(!′4)2
3!4

Q2, (4.53)

where recall that the prime denotes </< ln 3 . As is clear from Eqs. (4.10), (4.11), and (4.12),
the three coe$cients vanish if and only if 50 = 51 = 52 = 0 (with !5 = 0), and therefore
Δ = 0 is satis!ed for the functions (4.18).
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In the !5 ≠ 0 case, one cannot express 2−1HH in a closed form, but rather one has an
in!nite sum of the form (4.49). Then, we obtain Δ as

Δ =
4(!′2 + !′′2 )!4 − 3(!′3)2

43!4
+
4(!′3 + !′′3 )!24 − 8!′3!4!′4 + 3!′23 !5

43!24
H

+
8(!′4 + !′′4 )!34 − 16!24(!′4)2 + 12!′3!4(2!′4!5 − !4!′5) − 9!′23 !25

83!34
Q2

+
8(!′5 + !′′5 )!44 + 3(3!′3!5 − 4!4!′4)(4!24!′5 − 4!4!′4!5 + 3!′3!25)

83!44
Q3

+
(
2!24!′5 − 4!4!′4!5 + 3!′3!25

)2 Δ̃≥4, (4.54)

where Δ̃≥4 denotes higher-order terms of H" $ . It should be noted that this reduces to
Eq. (4.53) in the limit !5 → 0. Although Eq. (4.54) has in!nitely many terms for generic
choices of the !" functions, one can check directly that Δ = 0 is satis!ed if and only if the
!" functions are given by (4.21).

Thus, we have established that the cosmological prototype constructed in §4.1 can be
promoted to a theory with two DOFs in arbitrary spacetime in the unitary gauge, i.e., the
extended cuscuton. It turns out that we do not need to impose further constraints on
the form of the !" and #$ functions obtained from the non-#at cosmological analysis. In
general, the extended cuscuton theory contains a nonminimal derivative coupling to the
curvature. This is the reason why we have worked in the GLPV framework. The Horndeski
conditions (2.54) are satis!ed if and only if !5 = 0, [4 = 0, and Q4 = P0(4). Only in this case,
the extended cuscuton theory can be described as a particular case of the Horndeski theory.

4.2.3 More on the Hamiltonian analysis in the !5 = 0 case
At the last subsection, we examine the Hamiltonian structure of the extended cuscuton
theory with !5 = 0 in more detail to show that (i) the Hamiltonian can be recasted into
the form in which the lapse function appears only linearly, as in the theories studied in
Ref. [85], via a canonical transformation; and that (ii) this linearity directly appears without
any canonical transformations if we do not introduce the auxiliary variables H" $ from
the beginning. For the extended cuscuton model with !5 = 0, the explicit form of the
Lagrangian is given by

2 = [2 +
Q2
3

−
3Q23

8Q43 (3 + [4)
+ Q3
3 + [4

H + Q43

3 + [4
(H"$H

$
" −H

2) +
(
P0 +

P1
3

)
*, (4.55)

plus the Lagrange multiplier term enforcingH" $ = I" $ . The subsequent analysis can be done
in the same way as in §4.2. Using the notation, the total Hamiltonian is given by

=c = = +
∫

&3'(?3.3 + ?"." + _" $ ;" $ + e" $N" $ + ?" $Ψ" $ ),

= =
∫

&3'
(
−3√V2 + 23." $H" $ + 2." $F"3 $

)
.

(4.56)
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This Hamiltonian depends nontrivially on 3 . Now we perform the following canonical
transformation:

H" $ →
3 + [4
3

H" $ +
Q3

4Q43
V" $ , V" $ → V" $ ,

;" $ → 3

3 + [4
;" $ , ." $ → ." $ − Q3

4Q4(3 + [4)
;" $ .

(4.57)

Then, = is transformed to

= →
∫

&3'

{
− √

V
[
3[2 + Q2 + (3 + [4)(H"$H

$
" −H

2) + (3P0 + P1)*
]

+ 2." $
[
(3 + [4)H" $ +

Q3
4Q4

V" $

]
+ 2." $F"3 $

}
, (4.58)

where the terms proportional to ;" $ were absorbed into the rede!nition of _" $ . Now we see
that the new Hamiltonian depends on 3 at most linearly. If #4 satis!es the condition (4.51),
this form of the total Hamiltonian form belongs to the model studied in [85].

We have employed auxiliary !elds H" $ for convenience of calculations so far. However,
if one does not introduce H" $ from the beginning, one can see the linear dependence of
the Hamiltonian on 3 without canonical transformations. Indeed, after straightforward
calculations, the total Hamiltonian is obtained as

=c = = +
∫

&3'(?3.3 + ?"."),

= =
∫

&3'

{
√
V

[
−3[2 − Q2 − (3P0 + P1)* + 3 + [4

2Q4
2."$ .

$
" − .2

V
+ Q3
2Q4

.√
V

]

+ 2." $F"3 $
}
,

(4.59)

where . ! ."" , and thus it is found without invoking the canonical transformation that the
dependence of = on 3 is at most linear.

= =
∫

&3'
[
3 C̃(H" $ , *" $ , V" $ , ." $ , 4, 3) + 3"H" + /̃

]
, (4.60)

where

C̃ ! −√V
[
− 1
Q4V

(
V"DV $W −

1
2V" $ VDW

)
." $ .DW + [2 + #4*

]
, (4.61)

/̃ ! −√V −
[
[2
Q4V

(
V"DV $W −

1
2V" $ VDW

)
." $ .DW − Q3

2Q4
√
V
." $ V" $ + Q2

]
. (4.62)

Thus, again the Hamiltonian is linear in the lapse function if #4 satis!es the condition (4.51).
This is intrinsically the same result as the case usingH" $ , namely if #4 satis!es the condition
(4.51) this theory will be contained in the minimally modi!ed gravity theories.
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4.3 Covariantized Form of the Extended Cuscuton
Now we have obtained the action of the extended cuscuton in the ADM form. Then, it
is straightforward to recast the theory to a covariant form via Stückelberg trick, though
the resultant expression is messy. We present, therefore, the covariantized form of the
extended cuscuton model, particularly with !5 = 0. To restore general covariance, we
introduce a Stückelberg !eld M so that its gradient is proportional to the unit normal vector
to a constant-time hypersurface: O+ = −M+/

√
2: [77,82]. Then, the ingredients of the ADM

action can be rewritten in the following way:

3 → 1√
2:

, V" $ → ℎ+, ! (+, +
1
2: M+M,,

I" $ → K+, ! ℎ?+∇?O,, *" $ → ℎJ+ℎ
V
, ℎ

KURJKVU −KJ
JK+, + KJ

+KJ,,
(4.63)

while the functions of 4 are replaced with those of M: [" (4) → [̃" (M), Q" (4) → Q̃" (M), and
P" (4) → P̃" (M). The result is given by

/2 = [̃2 + Q̃2
√
2: − 4P̃′′0 : + 2P̃′′1 (2:)3/2 −

Q̃3:

1 + [̃4
√
2:

(
3Q̃3
4Q̃4

+ 2[̃′4
√
2:

)

+ 2Q̃′3: log
√
2:

1 + [̃4
√
2:

+ 2P̃′′0 : log : ,

/3 = −4P̃′1
√
2: − Q̃3

(
1

1 + [̃4
√
2:

+ log
√
2:

1 + [̃4
√
2:

)
− P̃′0 log : ,

/4 = P̃0 + P̃1
√
2: ,

S4 =
1

4:2

(
−P̃0 +

Q̃4

1 + [̃4
√
2:

)
,

/5 = 0, S5 = 0,

(4.64)

where a prime here denotes </<M. One may further add to this any terms that vanish when
the unitary gauge is chosen. Note that, in the above expressions, we have assumed that M+
is timelike because our extended cuscuton was obtained under the unitary gauge M = M(4).
If one makes a replacement : → |: |, one could incorporate a case where M+ is spacelike,
but this is beyond the scope of the present paper.

The case with !5 ≠ 0 can be divided into three subtypes: (i) +5 = 0 and ,5 ≠ 0; (ii) +5 ≠
0 and ,5 = 0; and (iii) +5 ≠ 0 and ,5 ≠ 0. One can straightforwardly obtain the full
expressions for /" and S$ in each case, but we do not present them here because the result
is too complicated to be illuminating.

4.4 Relations between Other Theories
It is known that a certain class of the GLPV theories can be reproduced from the Horndeski
theory by invertible disformal transformations [126, 127]. Given that the original cuscuton
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is the subclass of the Horndeski, one may expect that the original cuscuton can generate a
part or all of the extended cuscuton by disformal transformations. In §4.4.1, we study the
behavior of the extended cuscuton theory under disformal transformation and show that a
particular subclass with !5 = 0 can be generated from the original cuscuton theory. We also
compare our extended cuscuton theory with some other related theories in the literature in
§4.4.2.

4.4.1 Disformal Transformations
The original cuscuton model (3.11) can be represented in the language of the GLPV
action (2.48) as

!2 = −G (M(4)) + 1(4)
3

, !4 = −#4 = −
)2

Pl
2 , !3 = !5 = #5 = 0, (4.65)

with 1(4) ! +2 | %M(4) |. Let us consider a (invertible) disformal transformation (+, →
Ω(4)(+, + Γ(4, 3)M+M, of the original cuscuton model, with

Ω =
2
)2

Pl
Q4, Γ = −Ω[4%M2

(23 + [4) . (4.66)

The above transformation contains two arbitrary functions, [4 and Q4, of 4. Then, the
original theory with the coe$cients (4.65) is mapped to another GLPV theory with the
following coe$cients:

!5 = 0, !4 = − Q43

3 + [4
, !3 =

Q3
3 + [4

, !2 = [2 +
Q2
3

−
3Q23

8Q43 (3 + [4)
,

#5 = 0, #4 = Q4
(
1 + [4

3

)
,

(4.67)

where Q3, [2, and Q2 are given by

Q3 = −2 %Q4, [2 = −Ω2G , Q2 = Ω3/21 −Ω2[4G . (4.68)

These !" and #$ functions are of the form of (4.18) and (4.30), but the 4-dependent functions
are subject to (4.68). Therefore, the theory generated from the original cuscuton via the
disformal transformation (4.66) resides in a particular subclass of the extended cuscuton
theory. The generated theory has two DOFs on any spacetime, which is compatible with
the unitary gauge. This result is reasonable as an invertible disformal transformation does
not change the number of physical DOFs.

One could perform more general disformal transformations, but then the resultant
theories generically lie beyond the current framework in the sense that the condition Δ = 0
for the absence of the third DOF (see §4.2.1) is satis!ed only weakly. Although it may o"er a
possible generalization of the present formulation of cuscuton theories retaining two DOFs,
we leave it for future study.



4.5. STABILITY IN THE PRESENCE OF MATTER 51

4.4.2 Comparison with Other Related Theories
The authors of [108] extended the cuscuton theory to include /3(M, :)!M to obtain
consistently a generalization of the McVittie solution. Their theory is included as a special
case in our extended cuscuton, but seemingly they have not addressed the kinetic mixing of
gravity and the scalar !eld or the importance of the property [a′]. Another extension is the
“cuscuta-Galileon" proposed in [110]. This model is a subclass of the generalized Galileons
in arbitrary dimensions that can avoid caustic singularities. The cuscuta-Galileon is de!ned
only in #at spacetime, so a direct comparison with our extended cuscuton would not be
meaningful. Nevertheless, another model was developed in [123] as an extension of the
Hořava-Lifshitz theory respecting the power-counting renormalizability. This theory was
shown to have two DOFs in the unitary gauge, and it contains terms quadratic or higher
in the curvature tensor, which are not incorporated in our extended cuscuton. However, at
the same time, many extended cuscuton models do not fall into the theory studied in [123].

Besides the above concrete models, some general classes of two-DOF theories are
constructed in di"erent ways than ours. The authors of [85] studied a class of theories
depending on the lapse function at most linearly, and derived a condition on the Lagrangian
to yield two DOFs (see §2.6). Although this theory generically lies outside our theory, it
does not cover the whole of the extended cuscuton since our Lagrangian depends on 3
nonlinearly. In [87], another general class of scalar-tensor theories with two DOFs was
invented by performing a canonical transformation on GR. There should be some relation
between this theory and ours, but the comparison would be far from trivial, and thus we
leave it for future work.

4.5 Stability in the Presence of Matter
In this section, we discuss the stability of cosmological solutions in the extended cuscuton
theory in the presence of a matter !eld, generalizing the result of [98]. We add a scalar !eld
_ minimally coupled to gravity, whose Lagrangian has the form

Lm = ;(Y ), Y ! −12(
+,<+_<, _. (4.69)

For simplicity, we assume that ; is a function of Y and does not depend on _ explicitly.
Such a scalar !eld can mimic a barotropic perfect #uid [43]. The energy density, pressure,
and sound speed of _ are respectively written as

0m = 2Y;Y − ;, @m = ;, -2] =
&@m
&0m

=
;Y

;Y + 2Y;YY
. (4.70)

Now we consider scalar perturbations around a cosmological background. We choose the
unitary gauge for the cuscuton !eld, M = M(4), and write each constituent of the metric as

3 = 1 + U3 , 3" = <"Z, V" $ = 5292a
(
9ℎ

)
" $
= 5292a

(
U" $ + ℎ" $ +

1
2ℎ"D ℎD $ + · · ·

)
, (4.71)
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where U3 , Z, and a are scalar perturbations and ℎ" $ denotes transverse-traceless tensor
perturbations. The matter scalar !eld also #uctuates as _ = _(4) + U_(4, .').

The quadratic action for the tensor perturbations ℎ" $ is independent of the matter sector,
which takes the form

%(2)c =
1
8

∫
&4&3'53

[
Gc %ℎ2" $ −

Fc
52

(<Dℎ" $ )2
]
, (4.72)

where

Gc ! −2(!4 + 3=!5), Fc ! 2#4 + %#5. (4.73)

Thus, the ghost and gradient instability for the tensor perturbation are absent if Gc > 0 and
Fc > 0. The equations are entirely the same as in the GLPV theory and we do not see any
cuscuton nature at this point.

The quadratic Lagrangian for the scalar perturbations is 2 (2) = 53
(
L(2)
= + L(2)

_

)
with

L(2)
= = −3Gc %a2 +

Fc
52

(<D a)2 + ΣU32 − 2ΘU3 <
2Z

52
+ 2Gc %a

<2Z

52
+ 6ΘU3 %a − 2ḠcU3

<2a

52
,

(4.74)

L(2)
_ =

;Y
-2]

[
− -2]
252 (<DU_)

2 + -2] %_
<2Z

52
U_ + YU32 − %_

(
U3 − 3-2]a

) %U_ + 1
2

%U_2
]
, (4.75)

where

Ḡc !2(#4 + #43 ) − =#53 ,

Σ !!23 + 1
2!233 + 3

2=!333 + 3=2 (2!4 − 2!43 + !433 )

+ 3=3 (6!5 − 4!53 + !533 ) ,

Θ !
1
2!33 − 2= (!4 − !43 ) − 3=2 (2!5 − !53 ) .

(4.76)

Note that G% in Eq. (4.8) can be written as G% = (Gc/Θ2) (ΣGc +3Θ2), so the condition G% =
0, which any cuscuton theory must satisfy (see §4.1), implies

ΣGc + 3Θ2 = 0. (4.77)

Variations of 2 (2) with respect to the auxiliary variables U3 and Z yield
(
Σ + Y;Y

-2]

)
U3 − Θ

<2Z

52
+ 3Θ %a − Gc

<2a

52
− %_;Y

-2]
%U_ = 0, (4.78)

ΘU3 − Gc %a −
1
2 %_;YU_ = 0, (4.79)
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by which we can eliminate U3 and Z from 2 (2) :

2 (2) = 53
[
G2
cY;Y

-2]Θ2

(
%a − Θ

Gc
%U_
%_

)2
− 2(Y;Y )2

-2]Θ

%U_U_
%_2

+
(
Σ + Y;Y

-2]

)
Y;Y
Θ2

(
2Gc %a

U_

%_ + Y;Y
U_2

%_2
)

− F%
52

(<D a)2 + 2Ḡc
Y;Y
Θ

<D a<DU_

52 %_ − Y;Y
52

(<DU_)2
%_2

]
, (4.80)

where we have de!ned

F% !
1
5

&

&4

( 5
Θ
Gc Ḡc

)
− Fc , (4.81)

and used the background EOM for _, &_ + 3-2]= %_ = 0. One can remove the kinetic term for
U_ by making the !eld rede!nition

ã ! a − Θ
Gc

U_

%_ . (4.82)

Then, U_ becomes an auxiliary variable and thus can be eliminated by using its EOM. After
tedious but straightforward manipulations, we !nally arrive at

2 (2) = 53
[
A(4, <2) %̃a2 − B(4, <2) (<D ã)

2

52

]
, (4.83)

where A and B are given respectively by

A =
G2
cY;Y

-2]Θ2
<2/52 − J1
<2/52 − J2

, B = Υ
G2
cY;Y

Θ2
<4/54 − K1<2/52 + K2

(<2/52 − J2)2
. (4.84)

Here, we have de!ned

J1 !
3
L
J2, J2 ! − Ῡ2-2]Θ

2Y;Y
F%Θ2 − ΥG2

cY;Y
L ( L − 3),

K1 ! J2

(
1 + F%Θ2

ΥG2
cY;Y

)
− Θ2

53ΥG2
cY;Y

&

&4

[
53ῩGcY;Y

Θ
( L − 3)

]
,

K2 !
Θ2J22

ΥG2
cY;Y

{
F% −

1
5

&

&4

[
5ῩGcY;Y

ΘJ2
( L − 3)

]}
,

(4.85)

with

Υ !
F%Θ2 − Ḡ2

cY;Y

F%Θ2 − Gc (2Ḡc − Gc )Y;Y
,

Ῡ !
F%Θ2 − Gc ḠcY;Y

F%Θ2 − Gc (2Ḡc − Gc )Y;Y
,

L !
GcY;Y
-2]Θ2 − 1

-2]

&

&4

(Gc
Θ

)
+ 3Gc=

Θ
.

(4.86)
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Thus, we have a single scalar DOF associated with the matter !eld. Interestingly, the
quadratic action is of a nonlocal form and as a result the dispersion relation is nonstandard.
This means that the nature of scalar cosmological perturbations is di"erent from that in GR
in the presence of a perfect #uid. In other words, gravity is indeed modi!ed in the cuscuton
theory. Note in passing that under the Horndeski tuning (2.54), Gc and Ḡc coincide, and
hence Υ = Ῡ = 1.

It follows that as long as

0m + @m = 2Y;Y > 0, -2] > 0, Υ > 0, (4.87)

are satis!ed, scalar perturbations are stable in the UV regime. Previously said in §3.3.1,
both ghost/gradient instabilities are not necessarily problematic in the IR regime given the
magnitudes of their energy/time scale. Note that the !rst two conditions are related only
to the matter !eld, stating that _ must be “usual” matter in the sense that it satis!es the
null energy condition and has a positive sound speed squared. However, the last condition,
Υ > 0, depends on the concrete form of the cuscuton Lagrangian as well as the matter !eld,
and hence is nontrivial.
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Chapter 5

Extended Cuscuton: Dark Energy

For models of the late-time cosmic acceleration, GR with the cosmological constant has
been an appealing candidate due to its simplicity and consistency with any cosmological
observations so far. In order to test this paradigm, it is helpful to compare the ΛCDMmodel
with alternative ones, i.e., dark energy/MG models. The two-DOFs scalar-tensor theories
can be regarded as minimal modi!cations of GR, providing the second most economical
explanation of the accelerated expansion next to the cosmological constant. Indeed, the
authors of [88] have shown that the model proposed in [87] can explain dark energy. This
model has been obtained by performing a canonical transformation on GR, utilizing the
idea that a canonical transformation preserves the number of physical DOFs [52,53]. Along
this line, we in this chapter aim to investigate its cosmological aspects as to whether the
extended cuscuton can account for the current accelerated expansion of the universe. If
a solution of the extended cuscuton mimics the cosmological background evolution in the
ΛCDMmodel, one can consider this theory as a candidate for the viable dark energymodels.
One should also need the observational consistency for the matter density #uctuation, but
once our model ful!lls these constraints, deviations from the ΛCDM model will be useful
to test these models’ validity.

The rest of this chapter is organized as follows. In §5.1, we present the models on which
we focus. Then, in §5.2, we study cosmology in these models with a matter !eld. We
derive the background !eld equations and the quadratic action for scalar perturbations,
particularly the density #uctuation of matter, to investigate the e"ective gravitational
coupling and the Newton’s constant measured in the local scale. Also, we propose some
requirements for the extended cuscutons to be a viable dark energy model. In §5.3, we focus
on an analytically solvable case and obtain the criteria for the model to satisfy the above
requirements. We !nd that this model can mimic the cosmological background evolution
in the ΛCDMmodel, though the density #uctuations evolution deviates from the one in the
ΛCDM model.
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5.1 The Model

From the simultaneous detection of the gravitational waves and the V-ray burst from a
binary neutron star merger, GW180817/GRB170817A [128–131], the deviation of -GW from
the speed of light (-light ! 1) is strongly constrained at the low-redshift universe:

|-GW − 1| # 10−15 for ` # 0.01. (5.1)

Now we emphasize that -GW can deviate from unity in the early universe. Furthermore,
according to Ref. [132], the energy scale observed by LIGO lies close to the cuto" scale of
many dark energy models. In other words, dark energy models whose cuto" scale is lower
than the observed energy scale do not have to ful!ll the above constraint. From this point
of view, the constraint (5.1) might be too intense for our model, but partly for simplicity, we
focus on the GLPV subclass having -GW = 1.

In the GLPV theory satisfying this condition irrespective of the background spacetime,
the functions /4, /5, S4, and S5 in Eq. (2.48) must obey [133–135]

S4 = −8/4:
:

, /5 = S5 = 0. (5.2)

Let us apply this requirement to the extended cuscuton Lagrangian. Since /5 = S5 = 0
implies !5 = #5 = 0, we employ the !5 = 0 case with Eq. (4.51). Then, imposing the
condition S4 = −8/4:/: we obtain

!2 = [2 +
Q2
3

−
3Q23

8Q432 , !3 =
Q3
3
, !4 = −#4 = −Q4, (5.3)

in the ADM representation, which is translated to the covariant form (2.48) with

/2 = [̃2 + Q̃2
√
2: −

(
2Q̃′3 + 4Q̃′′4 +

3Q̃23
4Q̃4

)
: +

(
Q̃′3 + 2Q̃′′4

)
: log : ,

/3 = −
(
Q̃3
2 + Q̃′4

)
log : , /4 = Q̃4, /5 = S4 = S5 = 0,

(5.4)

where [̃2, Q̃2, Q̃3, and Q̃4 are arbitrary functions of M. Hereafter, we omit tildes of [̃", Q̃"
since this will not confuse us. Interestingly, this model is conformally equivalent to the one
studied in Ref. [113]. Note also that the original cuscuton model (3.11) is recovered by Q3 = 0
and Q4 = )2

Pl/2 . And note in passing that the GLPV theory with /4 = /4(M), /5 = S4 =
S5 = 0 satis!es -GW = 1 without "cuscuton tuning" of /2,/3 in (5.4), since it is conformally
equivalent to the Einstein-Hilbert action with a scalar !eld in the form of kinetic gravity
braiding [44] (see also [45]).
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5.2 Cosmology

5.2.1 Background
We study a homogeneous and isotropic universe (3.25) in the presence of a matter !eld _,
and consider the following action with (5.4) and (4.69):

% =
∫

&4'
√−( [/2(M, :) + /3(M, :)!M + /4(M)* + ;(Y )] . (5.5)

In this chapter, we consider the contributions of the cuscuton, instead of the cosmological
constant Λ, as the dark energy which gives rise to the current cosmic acceleration. The
matter Lagrangian ;(Y ) mimics a barotropic perfect #uid, and its energy density, pressure,
and squared sound speed are given by (4.70).

We substitute the ansatz (3.25) into the action (5.5), and derive the !eld equations for 3 ,
5, M, and _. Among these EOMs, only three of the four equations are independent, and the
EOM for 3 cannot be reproduced from the other ones. Therefore, one may set 3 = 1 only
after deriving the EOM for 3 [118] and then we focus on those for 3 , 5, and M. We also note
that the dust limit @m = 0 and -s = 0, which is introduced in late-time cosmology where
only the dust component is essential, is now well-de!ned. One may naively think that this
dust limit is ill-de!ned in (4.69) since @m → 0 implies that ;(Y ) in the action goes to zero.
Nevertheless, once we rewrite every ; and its derivative in terms of 0m, @m, and -s, we can
safely take the dust limit [136]. In deriving the !eld equations, we assume %M > 0 to !x the
sign of the terms originating from the

√
2: term in the action. It is possible to assume %M < 0

instead, and in that case, one should replace Q2 → −Q2 in the following analysis.
The equations for 3 , 5, and M read, respectively,

E3 ! 6Q4=2 + [2 − 3Q3= %M +
3Q23
8Q4

%M2 − 0m = 0, (5.6)

E5 ! 2Q4(3=2 + 2 %=) + [2 + Q2 %M + 4Q4M= %M −
3Q23
8Q4

%M2 − Q3M %M2 − Q3 &M + @m = 0, (5.7)

EM ! −
3Q23
4Q4

&M + 3Q3 %= −
9Q23
4Q4

= %M −
3Q3(2Q3MQ4 − Q3Q4M)

8Q24
%M2 − [2M

+ 3Q2= + 3=2(3Q3 + 2Q4M) = 0. (5.8)

Taking a linear combination 4Q4EM − 3Q3E5 , one can simultaneously remove %= and &M and
obtain a constraint equation, which degeneracy is a essential property of the extended
cuscuton theories as said in the previous section. Note that, when Q3 = 0, there is no %= or &M
in EM from the beginning. Also, one can get the continuity equation %0m + 3= (0m + @m) = 0
by combining the EOMs (5.6), (5.7), and (5.8).

Here we comment on the equation of state (EOS) parameter fDE. We can de!ne the dark
energy component by regarding the equations E3 = 0 and E5 = 0 as

E3 = 3/4(M0)=2 − 04 = 0, E5 = /4(M0) (3=2 + 2 %=) + @4 = 0, (5.9)
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where M0 is the present value of M, and 04 and @4 denotes the total energy density and
pressure

04 = 0m + 0DE, @4 = @m + @DE. (5.10)

In this case, we can obtain fDE as follows:

fDE !
@DE
0DE

=
E5 − @m − /4(M0) (3=2 + 2 %=)

−E3 − 0m + /4(M0)=2 . (5.11)

However, fDE is not an observable, and its restrictions from the CMB data depend on the
underlying ansatz. Furthermore, the de!nition of fDE is subtle in MG, and one may de!ne
it other manners. Therefore, we will focus on the evolutions of the Hubble parameter and
the matter density #uctuation.

In what follows, let us discuss some viability requirements for the present framework to
serve as a dark energy model. Later in §5.3, these requirements are used to constrain model
parameters.

[A] Asymptotic behavior of the Hubble parameter
We require the following asymptotic behavior for the Hubble parameter:

{
= → const · 5−3/2 for 4 → 4i,
= → const for 4 → ∞,

(5.12)

so that it behaves as in the matter-dominated universe for 4 → 4i (with 4i being some
early initial time) and the de Sitter universe for 4 → ∞.

[B] Accelerating universe at the present time
Whether the universe is experiencing an accelerated expansion can be judged by
looking at the Hubble slow-roll parameter T= ! − %=/=2. Since &5 ∝ 1 − T= , the
accelerated (decelerated) expansion corresponds to T= < 1 (T= > 1). We require that
the current value of T= should be less than unity.

[C] Positive %M
Since we assumed %M > 0 as mentioned above, we require that %M must remain positive
throughout its time evolution.

[D] Positive nonminimal coupling function
A negative coupling to the Ricci scalar leads to unstable tensor perturbations.
Moreover, it also results in negative Newton’s constant, as we shall see in the next
section. Therefore, we require that /4 = 2Q4(M) > 0.

5.2.2 Scalar Perturbations
We now consider the cosmological scalar perturbations. We have derived the quadratic
action for the curvature perturbation a to the stability analysis in §4.5. On the other hand,
in this subsection, we would instead focus on the matter density #uctuations to examine
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the evolution equation for these. In any case, one can remove all #uctuations from the
action other than only one scalar mode, since the extended cuscuton has just one scalar
propagating DOF.

As in §4.5, we consider scalar perturbations around the cosmological background (3.25).
One can take the dust limit by @m → 0, -s → 0, but we keep @m and -s for the moment and
take this limit in the !nal step. We use the perturbed metric (3.38) and perturbed matter
!eld_ = _(4) + U_(4, .'), and take the unitary gauge for the cuscuton: M = M(4). The
following quantity represents the gauge-invariant density #uctuation of _:

U =
0m + @m
0m-2s

( %U_
%_ − U3

)
+ 30m + @m

0m
a . (5.13)

Below, we organize the Lagrangian. We !rst recast the real-space Lagrangian into the
Fourier-space one. To this end, we perform integration by parts so that each variable has
an even number of spatial derivatives and replace <2 → −D2. We then proceed to reexpress
the Lagrangian in terms of U instead of U_. The Lagrangian contains the following terms
associated with U_:

L ⊃ 53
(
0m + @m
4-2sY

%U_2 − 0m + @m
4Y

D2

52
U_2 + U_ · L (U3 ,Z, a)

)
, (5.14)

where L (U3 ,Z, a) denotes the linear terms in U3 , Z, and a . One can add the following term
to L without changing the dynamics:

LU_→U = −53 0m + @m
4-2sY

{
%U_ − %_

[
-2s

(
0m

0m + @m
U − 3a

)
+ U3

]}2
, (5.15)

because after substituting the solution to the Euler-Lagrange equation for U, namely (5.13),
this Lagrangian vanishes. Note that we have chosen the overall normalization of (5.15) so
that L′ ! L + LU_→U becomes linear in %U_. Consequently, one can eliminate U_ by use of
its Euler-Lagrange equation, and we are left with the quadratic action written in terms of
(U3 ,Z, a , U): 16

L′ = 53
{
−6Q4 %a2 +

[
2Q4

D2

52
− 9
2-

2
s (0m + @m)

]
a2 − 3Θ2

2Q4
U32 + 2Θ D

2

52
U3Z − 4Q4

D2

52
Z %a

+ 6ΘU3 %a +
[
4Q4

D2

52
+ 3(0m + @m)

]
U3a + 5202m

2D2(0m + @m)

[
%U + D

2(0m + @m)
520m

Z

]2

− 0m
2(0m + @m)

(
0m-

2
s +

352
D2

{
5=2(0m-2s − @m) +

&

&4

[
(0m-2s − @m)=

]})
U2

− 0mU3U + 3= (0m-2s − @m)ZU + 30m-2saU
}
, (5.16)

16This Lagrangian modi!cation L → L ′ might be not valid in general. However, in this case, we can verify
that the Lagrangian L ′ can reproduce the EOMs derived from the original Lagrangian L.
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where
Θ ! 2Q4= − 1

2Q3
%M. (5.17)

After we eliminate U3 and Z by using their Euler-Lagrange equations, the Lagrangian can
be written in the form

L′′ = 53
[
51(4, D) %U2 + 52(4, D)U2 + 253(4)aU + 54(4, D)a2

]
. (5.18)

Finally, by integrating out a , we obtain the quadratic action for U as

LU = 53
(
A %U2 + BU2

)
, (5.19)

from which we obtain the evolution equation for U as follows:

&U +
(
3= +

%A
A

)
%U − B

A U = 0. (5.20)

In the case of generic scalar-tensor theories where the scalar !eld is dynamical, we still
have an additional dynamical DOF other than U at this stage. In order to extract the
e"ective dynamics of the density #uctuations on subhorizon scales, one usually makes the
quasi-static approximation. In the present case of the extended cuscutons, however, the
quadratic action is written solely in terms of the density #uctuations even before taking the
subhorizon limit. This is one of the distinct properties of cuscuton-like theories.

In what follows, we consider a dust #uid by taking the limits @m → 0 and -s → 0. 17

Then, the coe$cients A and B are respectively written as

A =
2Q40m

4Q4 + 3(52/D2)0m
52

D2
, B =

2?Q402m
[4Q4 + 3(52/D2)0m]2

52

D2
, (5.21)

with

? !
4Q4

[
2 ( %Q4 + Q4=)2 − Q4

(
0m + 2 %Θ + 2=Θ

) ]
− 3(52/D2)0m

[
Q4

(
0m + 2 %Θ

)
− 2 %Q4Θ

]
4Q4

[
Θ (4 %Q4 − Θ) − Q4

(
0m + 2 %Θ − 2=Θ

) ]
− 3(52/D2)0m

[
Q4

(
0m + 2 %Θ

)
− 2 %Q4Θ

] .

(5.22)
In the subhorizon limit D → ∞, (5.20) reduces to

&U + 2= %U − 4./e!0mU = 0, (5.23)

where we have de!ned the e"ective gravitational coupling /e! for the density #uctuations
as

4./e! ! lim
D→∞

B
0mA

=
1
4Q4

[
1 + (2 %Q4 + 2Q4= − Θ)2

Θ (4 %Q4 − Θ) − Q4
(
0m + 2 %Θ − 2=Θ

)
]
. (5.24)

17This limiting procedure is justi!ed in [94, 137]. Considering the action for irrotational dust [138] is a
simple way as our procedure. However, we have already calculated the quadratic Lagrangian for the scalar
perturbations on the same setup as this paper in [26], so we take over this setup. Instead, one may consider
the action for a dust #uid from the beginning [138].
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The Poisson equations for two gauge-invariant gravitational potentials, Ψ ! U3 + %Z and
Φ ! −a − =Z, are given by

− D2

52
Ψ = 4./e!0mU, − D

2

52
Φ = 4./̄e!0mU, (5.25)

with

4./̄e! !
1
4Q4

[
1 + (2Q4= − Θ) (2 %Q4 + 2Q4= − Θ)

Θ (4 %Q4 − Θ) − Q4
(
0m + 2 %Θ − 2=Θ

)
]
. (5.26)

Note that, if and only if %Q4(2 %Q4 + 2Q4= − Θ) = 0, i.e., Q4M = 0 or Q3 + 4Q4M = 0, we have
/e! = /̄e! and then the so-called gravitational slip parameter R ! Ψ/Φ is equal to unity
as in GR. 18

It is important to see the di"erence between the above e"ective gravitational coupling
for linear density #uctuations and the locally measured value of Newton’s constant, /3 .
The deviations of /e! from /3 at present can change the dynamics of matter on the
cosmological scales, i.g., the large scale structure from that in GR. Such e"ects might be
observed by the integrated Sachs-Wolfe e"ect or weak gravitational lensing. Also, the
time derivative of /3 is strongly restricted by local observations, such as the lunar laser
ranging [140]. Therefore, %/3 is one of the essential quantities to judge the validity of the
dark energy models.

To evaluate /3 in the extended cuscuton theory, one can follow the discussion for the
Vainshtein solution of [141]. Although M is nondynamical in the present setup due to the
particular choice of the functions in the action (5.5), this “cuscuton tuning” does not change
the procedure to derive a static and spherically symmetric solution in the weak gravity
regime. Thus, regardless ofwhether M is dynamical or not, its nonlinearities play an essential
role below a speci!c scale to reproduce Newtonian gravity, provided that/3: ≠ 0. 19 It then
follows that /3 is given by [141] 20

4./3 =
1
4Q4

, (5.27)

which is di"erent from /e! as long as Q3 + 4Q4M ≠ 0. Note that /3 depends on time and is
not a constant since Q4(M) varies in time.

To sum up, although M is nondynamical in the extended cuscuton theory, the evolution
of density #uctuations is modi!ed in the same way as in usual scalar-tensor theories.

18As was shown in [139], the deviation of the slip parameter from unity is characterized by the functions
called JM and JT, which are !xed once the arbitrary functions in the action (5.5) are !xed. Speci!cally, the
slip parameter becomes unity if and only if JM = JT = 0. On the other hand, for our model satisfying (5.4), we
have JT = 0 and JM ∝ %/4 = Q4( %M ≠ 0 in general, and thus the slip parameter deviates from unity. Therefore,
our result is consistent with the one in [139].

19Although it is not directly related to the subject, we mention that the authors of [142] have recently
derived the subclass of the Horndeski theories, which does not require the Vainshtein screening mechanism
because the scalar DOF is e"ectively not sourced by matter. Such action is given by /3 = L ′(M) log : ,/4 =
L (M),/5 = 0, where L (M) has no term linear in M. This model is quite similar to our model (5.28) introduced
in §5.3 when L (M) = )2

∗/2 + +M2, but the sign of /3 is di"erent and hence these are not related to each other.
20Some assumptions on the size of various coe$cients are made in [141]. All these assumptions are valid

as well in the extended cuscuton theory if it accounts for the present accelerated expansion of the Universe.
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5.3 Exactly Solvable Model
In the previous section, we obtained the background !eld equations, the e"ective
gravitational coupling /e! , and the Newton’s constant /3 for generic models described
by (5.5). Now, we proceed to more speci!c discussions using a simple subclass that can be
solved analytically.

5.3.1 The Lagrangian and Basic Equations
We consider the extended cuscuton theory with a quadratic nonminimal coupling,

%EC =
∫

&4'
√−(

[(
)2

∗
2 + +M2

)
* − 1

27
2M2

+(J + KM)
√
2: + 4+: (−2 + log :) − 2+M log :!M

]
, (5.28)

which corresponds to the following choice of the functions in (5.4):

[2 = −127
2M2, Q2 = J + KM, Q3 = 0, Q4 =

)2
∗
2 + +M2. (5.29)

Here, )∗, +, J, K, and 7 are nonvanishing constant. Note that + → 0 and K → 0 limit
reproduces the original cuscuton; hence the terms with + and K characterize the di"erence
from the original model. We also note that nonvanishing + leads to /3: ≠ 0, meaning that
Newtonian gravity is reproduced except for the time dependence of/3 . The !eld equations
read

E3 = 3()2
∗ + 2+M2)=2 − 1

27
2M2 − 0m = 0, (5.30)

E5 = ()2
∗ + 2+M2)(3=2 + 2 %=) − 1

27
2M2 + (J + KM) %M + 8+=M %M = 0, (5.31)

EM = 3(J + KM)= + (72 + 12+=2)M = 0, (5.32)

where we have set @m = 0. Previouly said, EM does not have %= or &M from the beginning
since Q3 = 0. We use the redshift ` ! 5(40)/5(4) − 1 (with 40 being the present time) as
the time coordinate. Provided that the scale factor is monotonically increasing from zero to
in!nity in time, then ` = ∞ corresponds to the initial time, and ` = −1 corresponds to the
in!nite future. Let us de!ne the following dimensionless variables:

) !
=2
0

72 +, ! !
J

7)∗
, # !

=0
72 K, M̂(`) ! 7

)∗=0
M(`), =̂ (`) ! = (`)

=0
, (5.33)

with =0 ! = (` = 0). In terms of the above variables, Eqs. (5.31) and (5.32) are rewritten as
E5

)2
∗=

2
0
= (1 + 2)M̂2)=̂

[
3=̂ − 2(1 + `)=̂′] − 1

2 M̂
2 − (! + #M̂ + 8)=̂M̂) (1 + `)=̂M̂′

= 0, (5.34)
EM

7)∗=0
= 3!=̂ + (1 + 3#=̂ + 12)=̂2)M̂ = 0, (5.35)
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where a prime denotes a derivative with respect to `. Removing M̂ from (5.34) by using
(5.35), we are left with the following !rst-order di"erential equation for =̂:

(1 + `)=̂′ =
3=̂
2

(1 + 3#=̂ + 12)=̂2)
[
2(1 + 3#=̂ + 12)=̂2)2 − 3!2(1 − 12)=̂2)

]
2(1 + 3#=̂ + 12)=̂2)3 − 3!2(1 − 36)=̂2 − 36)#=̂3)

. (5.36)

Here we require 1 + 3#=̂ + 12)=̂2 ≠ 0 for any ` so that (5.35) can always be solved for M̂.
This equation is surely solvable, Note that, in the limit =̂ → ∞, Eq. (5.36) takes the form

(1 + `)=̂′ =
3=̂
2 , (5.37)

which yields the desired behavior of the Hubble parameter at early times, namely, = →
const · 5−3/2 ∝ (1 + `)3/2. We will see that (5.36) can be solved analytically in §5.3.3.

Equation (5.30) is used to determine the matter energy density 0m. In terms of the matter
density parameter Ωm0 ! 8./30m/3=2 |`=0, Eq. (5.30) can be written as

Ωm0 = 1 − 3!2
2[(1 + 3# + 12))2 + 18)!2] , (5.38)

showing that Ωm0 is !xed by the parameters ) , !, and #.

5.3.2 Viable Parameter Region
Now we apply the requirements [A]–[D] to the present case and !nd the viable region in
the three-dimensional parameter space (), !, #) by studying the dynamics of =̂ based on
(5.36).

We !rst demand [A], namely, we require that =̂ starts from a great value at some early
initial time and approaches to a constant (denoted by =̂dS) in the in!nite future. Then, the
asymptotic value =̂dS should correspond to the largest stable equilibrium point of (5.36).
Here, an equilibrium point =̂ = =̂∗ is said to be stable if and only if =̂′ < 0 (i.e., &=̂/&4 > 0)
for =̂ ∈ (=̂∗ − T , =̂∗) and =̂′ > 0 (i.e., &=̂/&4 < 0) for =̂ ∈ (=̂∗, =̂∗ + T), with T being an
in!nitesimal positive number. Given that =̂ > 0 and 1 + 3#=̂ + 12)=̂2 ≠ 0, =̂dS is given by
one of the positive solutions (if they exist) of the following quartic equation:

2(1 + 3#=̂ + 12)=̂2)2 − 3!2(1 − 12)=̂2) = 0. (5.39)

Provided that this equation has positive solutions, the largest one is a candidate of =̂dS.
Let us now demand [C]: − %M ∝ M̂′ < 0. By using (5.35), M̂′ reads

M̂′ = − 3!(1 − 12)=̂2)=̂′

(1 + 3#=̂ + 12)=̂2)2
. (5.40)

When ) is positive, the factor 1 − 12)=̂2 should be negative de!nite as otherwise M̂′
changes sign during its evolution. However, this contradicts the fact that =̂ travels to =̂dS
because

1 − 12)=̂2
dS =

2(1 + 3#=̂dS + 12)=̂2
dS)2

3!2 > 0. (5.41)
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Hence, in what follows, we require ) < 0. In this case, one can show that (5.39) has at
least one positive solution and that the largest solution provides a stable equilibrium point
of (5.36). Then, this largest solution can be identi!ed as =̂dS. One can also verify that =̂′ > 0
for =̂ > =̂dS, and therefore one always has M̂′ < 0 as long as ! > 0. Moreover, we require
=̂dS < 1 so that the evolution of =̂ is consistent with the condition =̂ (` = 0) = 1. Given
that ) < 0, the requirement =̂dS < 1 is satis!ed if

1 + 3# + 12) < 0, 2(1 + 3# + 12))2
3!2(1 − 12)) > 1. (5.42)

Regarding [D], it is trivially satis!ed as

2Q4
)2

∗
= 1+ 18)!2=̂2

(1 + 3#=̂ + 12)=̂2)2
> 1+

18)!2=̂2
dS

(1 + 3#=̂dS + 12)=̂2
dS)2

=
1

1 − 12)=̂2
dS

> 0. (5.43)

Thus, the requirement [D] does not narrows down the viable parameter region.
Finally, let us consider [B]. The present value of the Hubble slow-roll parameter is

written as

T= (` = 0) = =̂′(` = 0) =
3(1 + 3# + 12))

[
2(1 + 3# + 12))2 − 3!2(1 − 12))

]
2 [2(1 + 3# + 12))3 − 3!2(1 − 36) − 36)#)] . (5.44)

Requiring T= (` = 0) < 1 to guarantee the accelerated expansion of the Universe at the
present time, we have

3!2
[
1 + 72) − 432)2 + 9#(1 − 4))

]
2(1 + 3# + 12))3 > 1. (5.45)

In summary, the requirements [A]–[D] are satis!ed if the following four conditions are
ful!lled:

) < min
(
0,−1 + 3#

12

)
, ! > 0, 2(1 + 3# + 12))2

3!2(1 − 12)) > 1,

3!2
[
1 + 72) − 432)2 + 9#(1 − 4))

]
2(1 + 3# + 12))3 > 1.

(5.46)

We present two-dimensional sections of the viable parameter region (5.46) at some !xed
values of # in Fig. 5.1. The matter density parameter Ωm0 is given in terms of ) , !, and #
as (5.38). For a !ducial value Ωm0 = 0.3, Eq. (5.38) de!nes a two-dimensional surface in the
parameter space () , !, #), which appears as the solid curves in Fig. 5.1. For the parameters
in the vicinity of these curves, one expects to have a background cosmological evolution
similar to the one in the currently viable ΛCDM model.

5.3.3 The Solution
Having obtained the viable parameter region, we are now able to analyze the exact solution
to (5.36). It is straightforward to integrate (5.36) to obtain the following algebraic equation
for =̂:
=̂2 [

2(1 + 3#=̂ + 12)=̂2)2 − 3!2(1 − 12)=̂2)
]
+C (1+`)3(1+3#=̂+12)=̂2)2 = 0, (5.47)
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Figure 5.1: Two-dimensional sections of the parameter space () , !, #) satisfying (5.46) are
colored gray (the boundary is indicated by dashed curves). The solid curves correspond to
the parameters that yield Ωm0 = 0.3, which almost overlap with the upper dashed curves.

where the integration constant C is determined from =̂ (` = 0) = 1 as

C = −2 + 3!2(1 − 12))
(1 + 3# + 12))2 . (5.48)

Note that (5.39) is recovered in the limit ` → −1.
The Newton’s constant (5.27) and the e"ective gravitational coupling (5.24) are given,

respectively, by

8./3)
2
∗ = 1 − 18)!2=̂2

(1 + 3#=̂ + 12)=̂2)2 + 18)!2=̂2
, (5.49)

8./e!)
2
∗ = 8./3)

2
∗ +

864)2!2(1 − 12)=̂2)(1 + 3#=̂ + 12)=̂2)=̂3

(1 − 36)=̂2)
[
(1 + 3#=̂ + 12)=̂2)2 + 18)!2=̂2]2 (1 + `)=̂′,

(5.50)

One can draw some information on the asymptotic behavior of these quantities from (5.49)
and (5.50). In the in!nite future, we have =̂′ → 0, and thus /e!//3 → 1, while for large `
where =̂ ∝ (1 + `)3/2, we have

8./e!)
2
∗ → 1 + !2

8)=̂2
, 8./3)

2
∗ → 1 − !2

8)=̂2
. (5.51)

As an illustrative example, we plot the evolution of =̂, T= , and the gravitational
couplings for () , !, #) = (−0.02, 17.5,−10) in Fig. 5.2. Note that this parameter choice
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ful!lls the viability conditions (5.46) (see Fig. 5.1a). From these examples, we see that the
background evolution is similar to the conventionalΛCDMmodel. In contrast, the evolution
of the density #uctuations can be used to test the extended cuscuton as dark energy by
observations associated with the density #uctuations, e.g., the integrated Sachs-Wolfe e"ect
or weak gravitational lensing. The time variation of Newton’s constant can also be used to
constrain the model, which, in the present case, is given by

%/3

=/3

>>>>
`=0

=
54)!2(1 − 12))

[
2(1 + 3# + 12))2 − 3!2(1 − 12))

]
[(1 + 3# + 12))2 + 18)!2] [2(1 + 3# + 12))3 − 3!2(1 − 36) − 36)#)] ,

(5.52)
while the observational bound reads | %/3//3 | # 10−3=0. One can check that the parameter
choice () , !, #) = (−0.02, 17.5,−10) satis!es this bound. We note that the parameter
region ful!lls this bound is only a neighborhood of the Ωm0 = 0.3 line in 5.1, and hence
(5.52) imposes a substantial restriction on the viable parameter region.
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Figure 5.2: Time evolution of =̂, T= , /e!//3 , and /3//30, with /30 ! /3 (` = 0). The
solid lines correspond to (), !, #) = (−0.02, 17.5,−10) and the dashed lines represent the
result of the ΛCDM model with Ωm0 = 0.3.

Before closing this subsection, let usmention some limiting caseswhere one of themodel
parameters in (5.28) is vanishing. When J = 0 (i.e., ! = 0), we obtain M = 0 from (5.32),
which contradicts the assumption that <+M is timelike (see §5.1). On the other hand, when
+ = 0 (i.e., ) = 0), we obtain /3 = /e! = (8.)2

∗ )−1 from (5.49) and (5.50), while the
spacetime and the cuscuton !eld can evolve in a nontrivial manner.
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Chapter 6

Conclusions

The cuscuton theory is a special case of single-!eld scalar-tensor theories having only two
DOFs, i.e., no propagating scalar DOF, with timelike <+M. Given that GR is two-DOFs
gravity, the cuscuton minimally modi!es GR in terms of dynamical DOFs. In this thesis,
we have extended the framework of the cuscuton into the GLPV theories, which we call
the “extended cuscuton,” and have investigated its theoretical and cosmological features. In
particular, we have found a viable dark energy solution mimicing background dynamics of
the ΛCDM model with di"erent evolutions for the matter #uctuations from that in ΛCDM
model.

At the beginning of this thesis, in Chap. 2, we overviewed the modi!cation #ow
of gravitational theories from Newtonian gravity to GR. Then, we introduced MG and
explained the Ostrogradsky ghost and the ghost-free conditions, which are the most
important issues to construct new frameworks of gravity. Among several types of MG,
we mainly mentioned the scalar-tensor theories and the metric theories. Also, many
MG satis!es the Lorentz invariance, but some special classes violate this invariance.
Furthermore, there are only two-DOFs scalar-tensor theories other than the (extended)
cuscuton. We referred these two types of MG.

Next, we formulated the cuscuton theory and reviewed its various fascinating features
in Chap. 3. The cuscuton (3.11) was constructed as a subset of the k-essence model
characterized by the at most !rst-order EOM for M in a homogeneous limit. A homogeneous
limit of M is identical to the unitary gauge M = M(4), but indeed this limit is not necessary
to kill the scalar propagating mode. Actually, the scalar mode with timelike <+M does not
propagate if an appropriate boundary condition at spatial in!nity is imposed. This implies
the number of propagating DOFs of the timelike cuscuton is always two irrespective to
homogeneity of the scalar distributions. Then, we reviewed the cuscuton cosmology with
and without an extra !eld _, and explored its applications to the in#ation, bounce, and dark
energy models. Various aspects of the cuscuton found so far was also referred.

In Chap. 4, we explored a possible extension of the cuscuton theory in the context of
the GLPV theory. At !rst, we constructed the cosmological prototype of the extended
cuscuton theory by requiring the conditions [a′] and [b] on the GLPV action. At this
stage, the #" functions remain arbitrary in a #at cosmological background, while both
the !" and #$ functions are !xed in a non-#at cosmological background. Thereafter, to
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obtain the complete form of the extended cuscuton theory, i.e., the theory having two
physical DOFs on any background spacetime under the unitary gauge, we performed a
Hamiltonian analysis of the precursory models. Then, the obtained model is identical
to the non-#at cosmological prototype. So that this class violates the Lorentz symmetry
and only has the three-dimensional di"eomorphism, the Hamiltonian constraint is not
the !rst-class constraint. And we found the condition to less-than-three DOFs as that to
appear some tertiary constraints; namely the condition not to determine the either of the
multipliers ?3 or _" $ from the consistency conditions for the secondary constraints Θ and
Π" $ , which is given by (4.45), whose explicit form for GLPV theories is (4.51). Furthermore,
we showed that the theory that are mapped from the original cuscuton model by the
disformal transformation (4.66) belong to the !5 = 0 case of our extended cuscuton theory.
We also studied scalar and tensor cosmological perturbations in the presence of another
scalar !eld as matter. The scalar modes acquire nonlocal interaction as in (4.83) and the
stability conditions read (4.87).

In Chap. 5, we applied the extended cuscuton to the late-time cosmology. We studied
homogeneous and isotropic cosmology in the extended cuscutons satisfying -GW = 1
in the presence of a matter !eld. First, we derived the background !eld equations and
proposed the requirements [A]–[D] for these theories to serve as a viable dark energy
model. Also, we investigated scalar perturbations to derive the evolution equation for
the density #uctuations and the gravitational Poisson equations. Then, we turned to more
speci!c discussions using a simple model (5.28) that can be solved analytically. The model
parameter J appears as a coe$cient of

√
2: , which is typical in the original cuscutonmodel.

On the other hand, the parameters + and K characterize the di"erence from the original
model. In order to avoid technical complexity, we de!ned dimensionless parameters ) , !,
and #, corresponding to +, J, and K, respectively. We obtained the viable region in the
parameter space (), !, #) which satis!es the requirements [A]–[D]. We also plotted the
evolution of the dimensionless Hubble parameter =̂, the Hubble slow-roll parameter T= ,
the ratio of the e"ective gravitational coupling /e! to the Newton’s constant /3 , and /3

normalized by its present value for the parameter choice (), !, #) = (−0.02, 17.5,−10),
which lies in the viable parameter region. We found that the background evolution in
this model can mimic the conventional ΛCDM model while the evolution of the density
#uctuation deviates from the one in the ΛCDM case. Moreover, this set of parameters
satis!es the observational constraint on the time variation of the Newton’s constant,
| %/3//3 | < O(10−3)=0. Hence, one can test the extended cuscuton as dark energy by
observations associated with the density #uctuations, e.g., the integrated Sachs-Wolfe e"ect
or weak gravitational lensing, which we leave for future study.

Having formulated the extended cuscuton theory, it would be intriguing to study its
phenomenological aspects such as the early universe or large scale structure, which about
the original cuscuton had been considered in [24]. In parallel to phenomenology, we expect
that further extension of the cuscuton framework is still possible. In §4.4.1, we found that
the original cuscuton can produce a certain class of the extended cuscuton by a disformal
transformation. Then, we expect that more general disformal transformation than (4.66)
may map the original cuscuton into a class of DHOST theories. This prediction may o"er
further generalization of the extended cuscuton theory. Also, in §4.2, we performed the
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Hamiltonian analysis to identify the theories truly having two DOFs in the unitary gauge.
However, our analysis after obtaining the tertiary constraint (4.46) was just a brief analysis.
On the other hand, the authors of [143] found the conditions to only two-DOFs in a speci!c
theories. Refering to this result, we might perform more precise analysis. We should also
study more details on its cosmology: the history of cosmic acceleration, in#ation models or
large scale structure, which about the original cuscuton had been considered in [24]. We
hope to discuss this point in the near future.
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