
Doctoral Thesis

Photon Surface and Relevant Phenomena

光子曲面とその周辺の理論的現象

Yasutaka Koga

Department of Physics, Graduate School of Science,

Rikkyo University

1



Abstract

A photon surface is a geometrical structure first introduced by Claudel, Virbhadra and
Ellis (2001) as the generalization of a photon sphere. The surface is defined so that it
inherits only the local geometrical properties of a photon sphere and does not necessarily
have the global symmetries. Because of the definition, it has more applicability to many
physical problems in addition to its own interest as a geometrical object. In this thesis,
after reviewing the basics of a photon sphere and a photon surface, we see their relevant
phenomena; the existence of photon surfaces in asymmetric vacuum spacetimes, which
shows the utility of the definition; sonic point/photon surface (sphere) correspondence,
the coincidence of sonic points of radiation accretion flow and photon surfaces (spheres);
the appearance of pure-tensional thin shells on a photon surface, which leads to the
uniqueness theorem of pure-tensional thin shell wormholes.
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Chapter 1

Introduction

General relativity predicts formation of black holes in the universe as a consequence of
gravitational collapse of massive stars. In the last few years, there have been great de-
velopments in the observation of black holes. In 2016, the first detection of gravitational
waves from binary black holes had been achieved by the first observing run of Advanced
LIGO [1]. Not only does it prove the existence of black holes, but also it is the first
step of the gravitational-wave astronomy. From then on, numerous events of gravita-
tional wave detection have been announced by Advanced LIGO and Advanced Virgo. In
2019, the Event Horizon Telescope Collaboration showed the first image of a black hole
shadow [2]. A black hole shadow observation is, among several optical observations, the
evidence which proves most directly the existence of a black hole. For determination of
the parameters characterizing a black hole, further developments of the observation are
expected.

A sphere consisting of circular photon orbits around a black hole is called a photon
sphere. It is the characteristic structure of black hole spacetimes. Photon spheres
have attracted much attention due to the variety of their applications to astrophysical
problems, black hole shadows [3, 2], quasinormal modes of gravitational waves [4, 5],
and nonlinear spacetime instability [6, 7], for example. Since the surface of a black
hole, i.e. the event horizon, is invisible by definition, a photon sphere can be only the
characteristic structure of a black hole spacetime we can observe.

A photon surface is a geometrical structure first introduced by Claudel, Virbhadra
and Ellis [8] as the generalization of a photon sphere. The surface is defined so that it
inherits only the local geometrical properties of a photon sphere and does not necessar-
ily have symmetries. Together with the definition, the authors also proved a theorem
concerning the equivalent conditions for a surface to be a photon surface as one of the
main results. The theorem (Theorem 2.2 in [8]) states that a given timelike hypersurface
is a photon surface if and only if it is totally umbilic, i.e. the second fundamental form
is pure trace everywhere. Subsequently, Perlick [9] proved that the theorem holds for
arbitrary dimensions of the surface and the spacetime. Since a photon surface requires
no symmetries, it would have applicability to many physical problems in addition to
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its own interest as a geometrical object. For example, there is a photon surface in the
uniformly accelerated Schwarzschild spacetime, which is no longer spherically symmetric
due to the acceleration [10]. The photon surface corresponds to the photon sphere of
the Schwarzschild spacetime in the zero-acceleration limit. Similarly to the black hole
uniqueness theorems, uniqueness theorems of spacetimes possessing photon surfaces have
been established in Refs. [11, 12, 13, 14].

This thesis presents the basics of photon spheres and photon surfaces and recently
found phenomena concerning them.

This thesis is organized as follows:

Chapter 2

We review the photon sphere of the Schwarzschild spacetime. Following Synge’s analy-
sis [3], we see that the black hole shadow we will observe is shaped by the photon sphere.
The photon sphere of the Reissner-Nordström spacetime is also reviewed.

Chapter 3

We introduce a photon surface and see the equivalent condition for a hypersurface to
be a photon surface, which is stated in the theorems in Refs. [8, 9]. We also define and
analyze the stability of photon surface. It is a notion which generalizes the stability of
circular orbits of photons on a photon sphere. The latter part is based on Ref. [15].

Chapter 4

We find explicit examples of photon surfaces appearing in less symmetric, or possibly
non-symmetric spacetimes. Remarkably, the spacetimes are solutions to the Einstein
equation. This chapter is based on Ref. [16].

Chapter 5

We consider an accretion problem of perfect fluid in a spherically symmetric system.
Especially, we focus on the sonic point of the flow, which is known to be crucial in
the analysis of accretion problems. As the main result, we establish the theorem of
the sonic point/photon sphere (SP/PS) correspondence, which states that a sonic point
of radiation fluid flow must be located on a photon sphere. The theorem holds in
an arbitrary spacetime of arbitrary dimensions as far as it is static and spherically
symmetric. This chapter is based on Ref. [17].

Chapter 6

We generalize the SP/PS correspondence to the rotational flow. The fluid is distributed
as a rotational thin disk lying on the equatorial plane of a spherically symmetric space-
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time. It is revealed that the correspondence exactly holds in this case. This chapter is
based on Ref. [18].

Chapter 7

The SP/PS correspondence is generalized to the correspondence between sonic points
and photon surfaces in hyperbolically and planar symmetric spacetimes. The result
provides a geometrical implication for the correspondence. This chapter is based on
Ref. [19].

Chapter 8

The thin-shell formalism allows us to construct a new spacetime by joining two space-
times and putting thin matter distribution, called a thin shell, along the joint surface.
We see that if the equation of state of the shell is pure tension and a few conditions are
additionally satisfied, the joined boundaries of the two original spacetimes must be pho-
ton surfaces. The relation between the stabilities of the joined spacetime and the photon
surfaces is also investigated. Applying the photon sphere uniqueness theorem [11], we
finally establish the uniqueness theorem of pure-tensional thin shell wormholes. This
chapter is based on Ref. [20].

Chapter 9

This chapter is devoted to the conclusion of this thesis.

In this thesis, we use geometrical units G = c = 1. We denote vectors and tensors
(vector and tensor fields) with or without indices. For the notation with indices, we ba-
sically adopt the Wald’s convention [21]. The Latin indices a, b, ... of vectors and tensors
are the Wald’s abstract indices except for Chap. 8, Appendix C.1, and Appendix C.2.
The Greek indices µ, ν, ... and α, β, ... denote indices with respect to a generic or specific
coordinate system {xµ} of a spacetime depending on the context. The Latin indices
i, j, ... and A,B, ... denote a part of the coordinate indices. For the notation without
indices, we use brackets ( ) to express a tensor acting on vectors. For example, a (0, 2)-
type tensor T acting on vectors v, u takes the value T (v, u). This is what is expressed
as Tabv

aub in the abstract index notation. This notation is often adopted in Chap. 8.
The other notations concerning geometrical calculations are basically based on Wald’s
convention [21] throughout this thesis.
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Chapter 2

Photon sphere

A photon sphere is a sphere of spacetime on which null geodesics take circular orbits.
In astrophysical cases, black holes usually have photon spheres near their horizons. A
photon sphere has been widely studied in its various aspects. for optical observations of
black holes through background light emission, the photon sphere is related to the size of
the black hole shadow. In the case of the Schwarzschild black hole, for example, we can
see their relation from the calculation by Synge [3]. Quite recently, the Event Horizon
Telescope Collaboration has observed, for the first time, the shadow of the supermassive
black hole candidate in the center of the galaxy M87 and derived its mass by comparing
the images with the theoretical expectations [2]. properties of gravitational waves from
black holes are also closely related to the photon sphere. It is known that the frequencies
of quasinormal modes are related to the parameters of null geodesic motions on and near
the photon sphere in various situations [4] [5].

Stability of a photon sphere, i.e. stability of the circular orbits on the sphere, plays
key roles in the applications of a photon sphere to astrophysics. For instance, a photon
sphere that shapes a black hole shadow is unstable. A stable photon sphere, on the
other hand, is inferred to cause nonlinear instability of spacetime [22] [23] [6]. When
a spacetime is perturbed, gravitational waves propagating nearly along a stable photon
sphere would grow nonlinearly while they are being trapped and coupled with each other
in the vicinity of the radius. They will probably break the structure near the photon
sphere and, finally, the spacetime. In fluid dynamics on a curved spacetime, the stability
of a photon sphere also has remarkable importance.

In this chapter, we review the photon spheres of the Schwarzschild spacetime and
the Reissner-Nordström spacetime. We see their significance from Synge’s analysis [3],
which relates photon spheres to black hole shadow observations.

This chapter is organized as follows. In Sec. 2.1, we analyze the photon sphere of
the Schwarzschild spacetime and the relation to the black hole shadow. In Sec. 2.2, we
also investigate the Reissner-Nordström case. In Sec. 2.3, the other examples of the
applications of photon spheres are introduced. In Sec. 2.4, we summarize this chapter.
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2.1 Photon sphere in Schwarzschild spacetime

The Schwarzschild spacetime (M, g) is given by the metric,

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2 θdϕ2), f(r) = 1− 2m

r
, (2.1)

where m > 0 is the mass. The spacetime is static, spherically symmetric, and a vacuum
solution to the Einstein equation. The radius r = 2m gives f(r) = 0 and is called a
Killing horizon. This is the surface of the Schwarzschild black hole. Note, since the
inside is non-stationary, a single patch spanned by the static coordinates {t, r, θ, ϕ} can
cover only the stationary region r > 2m.

Consider a null geodesic xµ = xµ(λ) with the affine parameter λ. We assume the
orbit is confined in the equatorial plane, θ = π/2, without loss of generality. The null
condition leads to the equation

H =
1

2
gµν ẋ

µẋν = 0 (2.2)

for its Hamiltonian H, where ˙ = d/dλ. From the two Killing vectors relevant to the
motion,

ξ(t) = ∂t, ξ(ϕ) = ∂ϕ, (2.3)

we have the two conserved quantities,

E := −gµνξµ(t)ẋ
ν = f(r)ṫ, (2.4)

L := gµνξ
µ
(ϕ)ẋ

ν = r2 sin2 θϕ̇ = r2ϕ̇. (2.5)

They are the energy and the angular momentum. Then the null geodesic equation
reduces to the equation,

1

2
ṙ2 + V (r) = 0, V (r) := −1

2

(
E2 − L2f(r)r−2

)
, (2.6)

with its effective potential V (r). The problem reduces to the one-dimensional dynamical
system in the r-direction.

With the scaling λ→ λ/E, we have

1

2
ṙ2 + V (B, r) = 0, V (B, r) := −1

2

(
1−B2f(r)r−2

)
(2.7)

where B := L/E is the impact parameter. Synge [3] analyzed the behavior of null
geodesics by drawing the curve of V (B, r) = 0 in an r −B2 plane as in Fig. 2.1. In the
plane, null geodesic motions are described by horizontal lines of 1/B2 = const. The region
r < 2m is the inside of the black hole, the solid curve corresponds to V (B, r) = 0, and
the shaded region below the curve is not allowed for null geodesics since 1

2
ṙ2 = −V (r) <

0 in the region. Thus, null geodesics at a point in the non-shaded region propagate
horizontally with finite radial velocity until reflected by the V (B, r) = 0 curve. Null
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geodesics can asymptote the curve if and only if they approach the maximum. In other
words, only the null geodesics starting at the maximum of the potential in the r − B2

plane stay the point. The radius of the maximum is r = 3m and the corresponding
critical impact parameter is B2 = B2

c := 27m2. Since the critical null geodesics have
non-zero angular momenta, they are the null circular geodesics. In the real space, the
set of photons orbiting around the black hole at the radius r = 3m form a sphere. The
sphere of r = 3m is called the photon sphere of the Schwarzschild spacetime. Note that
the circular null geodesics at r = 3m are unstable circular orbits.

0 2 4 6 8 10

r

m
0.00

0.01

0.02

0.03

0.04

0.05

m2

B2

V(r)

Figure 2.1: The allowed region for null geodesics in the Schwarzschild spaceitme

2.1.1 Black hole shadow

When a black hole in our universe is observed through background light emissions, what
we actually see as a black hole shadow is the mapping of the impact parameters of the
photons to our sight. Here we see the relation among the black hole shadow, the critical
impact parameter of the photons, and the photon sphere.

Suppose that the Schwarzschild black hole and the observer are at rest and the
observer observes a photon emitted from a light source. Since the spacetime is spherically
symmetric, the free photon orbit and the center of the black hole lie in a common plane.
The observer should also lie in the plane to observe the photon. We focus on this plane
in the following.

Without loss of generality, we can assume the photon and the observer are on the
equatorial plane, i.e. the surface of θ = π/2 with respect to the Schwarzschild coordinates
in Eq. (2.1). The observer is at a point po given by xi = (ro, π/2, 0) where x

i = (r, θ, ϕ)
is the spatial coordinates. The observer’s spatial orthonormal basis is defined by

e1 = −f 1/2(ro)∂r,

e2 = r−1
o ∂θ,

e3 = r−1
o ∂ϕ. (2.8)

The vector e1 is directed to the black hole center. The vector e3 is orthogonal to e1
but lies in the equatorial plane. The vector e2 is orthogonal to the equatorial plane
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and therefore to the null geodesic along which the photon propagates. Letting k be the
tangent to the null geodesic, the angle of incidence Θ measured from the axis e1 in the
observer’s sight is given by

tanΘ =
g(e3,−k)
g(e1,−k)

=
−rokϕ

[f(ro)]−1/2kr
= −[f(ro)]

1/2r−1
o

B

[1−B2f(ro)r−2
o ]1/2

. (2.9)

Since the right-hand side is monotonically decreasing in B, there is a one-to-one mapping
between Θ and B in the range Θ ∈ [0, π/2). Specifically, B = 0 for Θ = 0 and
B → ∓[f(ro)]

−1/2ro as Θ → ±π/2.
We are interested in light emissions from background sources which shape the black

hole shadow. Suppose a photon which is emitted from a source at a point distant to
the black hole, passes by the black hole, and finally reaches the distant observer. That
is, the orbit decreases its radius initially and increases it finally. From Eq. (2.7) or
Fig. 2.1, a photon can change its state from ṙ < 0 to ṙ > 0 only if B2 > B2

c . In other
words, a photon with an impact parameter B2 ≤ B2

c , corresponding to the incident angle
−Θc ≤ Θ ≤ Θc, can never reach the observer. From the observer’s point of view, there
are no photons coming from the angle −Θc ≤ Θ ≤ Θc where

Θc := arctan

[
[f(ro)]

1/2r−1
o

|Bc|
[1−B2

cf(ro)r
−2
o ]1/2

]
(2.10)

is the critical angle corresponding to the critical impact parameter B2
c . The outside of

the critical angle can be bright depending on the light source distributions around the
black hole. The dark region −Θc ≤ Θ ≤ Θc is called the black hole shadow. The shadow
is said to be shaped by the photon sphere because the photons with the critical impact
parameter B2

c corresponds to the edge of the shadow and they are the photons reflected
by the top of the potential V (r) at r = 3m.

2.2 Photon sphere in Reissner-Nordström spacetime

Let (M, g) be the Riessner-Nordström spacetime. The metric is given by

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2 θdϕ2), f(r) = 1− 2m

r
+
Q2

r2
(2.11)

where Q is the electric charge. The field strength of the electromagnetic field is given
by

F =
q

2r2
dt ∧ dr, q2 = 2κ−2Q2 (2.12)

where κ = 8πG/c4 = 8π. For the parameters 0 < Q2/m2 < 1, there are two Killing
horizons,

r± = m±
√
m2 −Q2. (2.13)

The stationary regions are r < r− and r > r+. This state is called sub-extremal. For
Q2/m2 = 1, the horizons degenerate to r± = m. The state is called extremal. For
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Q2/m2 > 1, the spacetime is stationary over 0 < r < ∞ and the Killing horizons
disappear. The state is said to be over-extremal and has the naked singularity at the
center. This spacetime is a solution to the Einstein-Maxwell equation and has a photon
sphere for the various parameter values.

The null geodesic equation also reduces to Eq. (2.6) with the replacing of f(r) by
that of Eq. (2.11). There are photon spheres on the radii given by V ′(rp) = 0 in the
stationary region. The radii are

rp± =
3m±

√
9m2 − 8Q2

2
. (2.14)

For the sub-extremal case, since r− < rp− < r+ < rp+, only r = rp+ is the photon
sphere. Similarly, rp+ is the unique photon sphere in the extremal case. The null
geodesics staying at r± = rp− are not circular but have fixed angles (θ, ϕ). For the
over-extremal case, there are two photon spheres rp± as far as 1 < Q2/m2 < 9/8. The
outer one corresponds to unstable circular null geodesics like as the photon sphere of the
Schwarzschild spacetime. The inner one corresponds to stable circular null geodesics.
For the larger Q2/m2 > 9/8, the spacetime has no photon spheres.

2.2.1 Black hole shadow

For the parameter Q2/m2 ≤ 1, the unique photon sphere r = rp+ shapes the black
hole shadow. It can be seen from analysis parallel to that in the previous section.
Photons with sub-critical impact parameters B2 < B2

c , where B
2
c is now given by B2

c =
[f(rp+)r

−2
p+]

−1, cannot be reflected by the potential barrier and are absorbed by the black
hole. Then the observer observes the shadow of the angle −Θc < Θ < Θc in the sight
where Θc is the critical angle corresponding to this B2

c . However, for 1 < Q2/m2 ≤ 9/8,
any photon is eventually reflected by the potential and the shadow is not form. Moreover,
the inner photon sphere rp− do nothing special for the observer because photons orbiting
near the local minimum of V (r) are never observed by the distant observer. In this
sense, photon spheres of stable circular null geodesics are irrelevant to black hole shadow
observations. Such stable photon spheres are also called anti-photon spheres [10].

As we can see from the above studies, the unstable and stable photon sphere have
different physical significance. The other applications of unstable and stable photon
spheres are provided in the following.

2.3 Applications to astrophysical problems

Photon spheres play key roles in not only the formation of black hole shadows but also
various astrophysical problems. In particular, the stability of corresponding circular null
geodesics, namely the stability of the photon sphere, are crucial for the applications.

A black hole has its quasinormal modes (QNMs), which dominate the ringing of the
hole. Cardoso et al. [4] found surprising coincidence between QNMs of a black hole
and the unstable photon sphere surrounding it. That is, the quasinormal frequencies
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(QNFs) are determined by the parameters of the photon sphere, Ωc and λ, where Ωc

is the angular velocity of the unstable circular null geodesics along the photon sphere
and λ is their principal Lyapunov exponent representing the instability time scale of the
orbits. The relation, being valid in the eikonal limit of a mode l → ∞, is given by

ωQNM = Ωcl − i(n+ 1/2)|λ|, (2.15)

where n is the overtone number and l is the angular momentum of the mode. In the
mathematical aspect, the equation enables us to calculate QNFs more easily without
solving the eigen value problem of the Regge-Wheeler equation for the gravitational,
scalar, and vector perturbations. In the astrophysical aspect, it implies that not only
optical observations but also gravitational wave observations are characterized by the
photon sphere rather than the black hole horizon. The coincidence is also known to
appear in another case [5].

A stable photon sphere, on the other hand, is considered to cause nonlinear instability
of spacetime [22, 7, 6]. In general, if a spherical star is compactified so that its areal
radius is less than 3m, there must be a stable photon sphere inside the star in addition
to the unstable photon sphere of r = 3m. Such a compact star is called a ultra compact
object (UCO). The emergence of a stable photon sphere inside a UCO causes long-
lived modes for the gravitational perturbation in linear order because of the trapping
of gravitational waves along the sphere. The long-lived modes imply the growth of the
perturbation amplitude in nonlinear order due to the mode-mode coupling and may lead
to the generic instability of a UCO. The nonlinear instability of UCOs is also crucial from
the observational view point. Suppose the surface of a UCO neither emits nor reflects
lights. In that case, the UCO can have the shadow as a black hole does. Thus, the
observation of a shadow might not prove the existence of the black hole in the shadow.
We need not take into account this possibility if the nonlinear instability of UCOs is
concluded.

In the analysis of accretion problems, photon spheres play key roles. In Refs. [17, 18],
the correspondence between sonic points of radiation accretion flow and photon spheres
was found. The works had shown the one-to-one correspondence between the radii of
critical points, which is defined in the analysis of accretion problems by Chaverra and
Sarbach [24], and photon spheres for accretion problems of radiation fluid. In more detail,
saddle-type critical points and extremum-type critical points correspond to unstable and
stable photon spheres, respectively. Since the sonic point of the physical accretion flow
coincides with one of the saddle points, the one-to-one correspondence implies that any
radiation flow has its sonic point on an unstable photon sphere. The coincidence was
named the sonic point/photon sphere (SP/PS) correspondence and proven for radial [17]
and rotational [18] flow in a spherically symmetric spacetime. Subsequently, the result
was generalized to the correspondence between the sonic points and photon surfaces in
Ref. [19]. We see the works [17, 18, 19] in Chaps. 5–7.
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2.4 Summary

In this chapter, we have overviewed the photon spheres of the Schwarzschild spacetime
and the Reissner-Nordström spacetime. They are defined as radii where null geodesics
take circular orbits. From the symmetry of the spacetimes, the geodesic equations reduce
to the potential problems with the effective potentials V (r) and their extrema correspond
to the photon spheres.

It is important to recognize that the null geodesics on the photon spheres are unstable
circular orbits because the corresponding extrema of the potentials are local maxima.
This fact is crucial for the analysis of black hole shadows and we have clarified that the
edges of the shadows are shaped by the unstable photon spheres. That is, the critical
impact parameters, corresponding to the circular null geodesics on the photon spheres,
are the smallest ones for null geodesics we can observe at infinity. The corresponding
critical angles of incidence were also derived.

Depending on the stability, photon spheres have many applications to astrophysics.
Unstable photon spheres are related to the QNFs for the black holes inside the spheres.
On the other hand, stable photon spheres can cause the nonlinear instability of space-
time. We see another physics named SP/PS correspondence in Chaps. 5–7.
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Chapter 3

Photon surface

Originally published as:
Y. Koga and T. Harada, Phys. Rev. D 100 (2019) 064040.

Copyright (2019) by the American Physical Society.

A photon surface is a geometrical structure first introduced by Claudel, Virbhadra
and Ellis [8] as the generalization of a photon sphere. The surface is defined so that it
inherits only the local properties of a photon sphere and does not necessarily have global
symmetries. Together with the definition, the authors also proved a theorem concerning
the equivalent conditions for a surface to be a photon surface as one of the main results.
The theorem (Theorem 2.2 in [8]) states that a given timelike hypersurface is a photon
surface if and only if it is totally umbilic, i.e. the second fundamental form is pure
trace everywhere. Subsequently, Perlick [9] proved that the theorem holds for arbitrary
dimensions of the surface and the spacetime. Since a photon surface requires no global
symmetries, it would have more applicability to many physical problems in addition to
its own interest as a geometrical object.

As with the stability of a photon sphere, the stability of a photon surface should
be also important for the applications to various problems of physics. In this paper,
we define the stability of null geodesics along a photon surface and derive the stability
conditions. Usually, the stability of a photon sphere is easily defined because the null
geodesic in static and spherically symmetric spacetime obeys a one-dimensional equation
of motion and the problem reduces to the analysis of the effective potential. In particular
cases, the stability of photon surface was defined by use of optical metric [10] and by
the effective potential method [19]. For a generic photon surface, we define the stability
in a covariant manner by considering a geodesic deviation. Since a geodesic deviation is
governed by a local geometrical quantity, the Riemann curvature, the stability condition
is finally obtained in terms of the curvature.

This chapter is organized as follows. In Sec. 3.1 we introduce a photon surface and
review the theorems for the equivalent conditions for a hypersurface to be a photon sur-
face. In Sec. 3.2, after reviewing and reformulating the stability of a photon sphere, we
define the stability of null geodesics along a photon surface based on the arguments for
a photon sphere and derive the stability condition in terms of the Riemann curvature.
In Sec. 3.3, we derive an alternative expression of the stability condition in terms of the
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second fundamental form with an appropriate foliation, and give another interpretation
of our definition of stability. The stability conditions in Secs. 3.2 and 3.3 are guaran-
teed to be equivalent by Raychaudhuri equation for the unit normal vector field of the
foliation. The stability conditions indicate that we can a priori identify the stability
before finding photon surfaces of spacetime explicitly. For example, any photon surface
in conformally flat spacetime is stable if the null energy condition is satisfied. We see
the corollaries for such special cases in Sec. 3.4. The summary is given in Sec. 3.5.

3.1 Photon surface

The photon sphere of the Schwarzschild spacetime gives the criterion for trapping of
infalling and outgoing light rays. Inside the photon sphere, any null geodesics directed
inwardly will fall into the black hole. Outside the sphere, any null geodesics directed
outwardly will escape to infinity. Comparing this property with the concept of a closed
trapped surface, Claudel, Virbhadra, and Ellis [8] introduced a geometrical definition
of a photon surface, which generalizes the photon sphere to a structure of a general
spacetime.

The authors first summarized the photon sphere of the Schwarzschild spacetime; the
photon sphere is a static and spherically symmetric hypersurface on which every null
geodesic initially tangent to it remains tangent. A photon surface is then defined as a
hypersurface on which every null geodesic initially tangent to it remains tangent:

Definition 3.1.1 (Photon surface [8]). A photon surface of a spacetime (M, g) is an
immersed, nowhere-spacelike hypersurface S of (M, g) such that, for every point p ∈ S
and every null vector k ∈ TpS, there exists a null geodesic γ : (−ϵ, ϵ) → M of (M, g)
such that γ̇(0) = k, |γ| ⊂ S.

Note that any null hypersurface is trivially a photon surface. Note also that a photon
surface is an invariant structure of spacetime under any conformal transformation. That
is, a photon surface S of a spacetime (M, g) is a photon surface of (M,Ω2g) for any
smooth function Ω :M → (0,∞) [8].

As in the case of photon spheres, we are interested in timelike photon surfaces es-
peacially. One can find a trivial example of a timelike photon surface in the Minkowski
spacetime:

Example 3.1.2 (Plane in Minkowski 3-spacetime). A timelike plane S in the 3-dimensional
Minkowski spacetime M3 is trivially a photon surface. Let {t, x, y} be the Cartesian co-
ordinates such that the metric is given by

η = −dt2 + dx2 + dy2 (3.1)

and S is given by y = 0. Any null vector k ∈ TpS tangent to S at a point p ∈ S is given
by kµ = α(1,±1, 0) with a constant α. Since a geodesic is a straight line in Minkowski
spacetime of any dimensions, the null geodesic γ to which k is tangent at p ∈ S is given
by

γµ(λ) = kµλ+ xµp = α(λ,±λ, 0) + xµp (3.2)
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with the affine parameter λ where xµp is the coordinates of p. The null geodesic γ is
tangent to S for any λ and therefore, the plane S is a timelike photon surface according
to Definition 3.1.1.

The example is easily generalized to higher dimensions:

Example 3.1.3 (Hyperplane in Minkowski D-spacetime). A timelike hyperplane S in
the D-dimensional Minkowski spacetime MD with D ≥ 3 is a photon surface. Let
{t, x1, ..., xD−1} be the Cartesian coordinates such that the metric is given by

η = −dt2 + dx21 + ...+ dx2D−1 (3.3)

and S is given by xD−1 = 0. Let k ∈ TpS be a null vector tangent to S at p ∈ S. The
null vector k has the components kµ = α(1, k1, ..., kD−2, 0) with the condition (k1)2+ ...+
(kD−2)2 = 1 where α is a constant. The null geodesic γ to which k is tangent at p ∈ S
is given by the equation,

γµ(λ) = kµλ+ xµp = α(λ, k1λ, ..., kD−2λ, 0) + xµp , (3.4)

with the affine parameter λ where xµp is the coordinates of p. Trivially, γ is tangent to
S for any λ and therefore, the hyperplane S is a photon surface of MD.

Another type of a photon surface in the Minkowski spacetime is a hyperboloid. A
single-sheeted hyperboloid of the three-dimensional Minkowski spacetime was proven to
be a photon surface in Ref. [8]:

Example 3.1.4 (Hyperboloid in Minkowski 3-spacetime). A single-sheeted hyperboloid
S given by

− t2 + x2 + y2 = a2 (3.5)

for a constant a > 0 in the Minkowski 3-spacetime M3 is a timelike photon surface. One
can see that the family of null geodesics given by

γµθ,±(λ) := aλ(1,∓ sin θ,± cos θ) + a(0, cos θ, sin θ) (3.6)

with the parameter θ ∈ [0, 2π) and the sign ± are tangent to S for any λ. These are the
rulings of S and therefore, at every point p ∈ S, there exist two independent null geodesics
tangent to S. Since a two-dimensional timelike hypersurface has only two independent
null vectors tangent to it at each point p ∈ S, the two independent null geodesics are
the null geodesics to which all the possible null vectors k± ∈ TpS are tangent. Hence the
single-sheeted hyperboloid S is a photon surface.

The example is also generalized to the D-dimensional case:

Example 3.1.5 (Hyperboloid in Minkowski D-spacetime). A single-sheeted photon sur-
face S given by

ηµνx
µxν = −t2 + x21 + ...+ x2D−1 = a2 (3.7)
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for a constant a > 0 in the Minkowski D-spacetime MD is a timelike photon surface.
Defining the function Φ := ηµνx

µxν − a2, which gives S by Φ = 0, the normal to S is
given by dΦ = 2ηµνx

µdxν. A null vector k ∈ TpS is a vector at p ∈ S which satisfies
ηµνk

µkν = 0 and dΦ(k)|p = 2ηµνx
µ
pk

ν = 0. The null geodesic γ to which k is tangent at
p ∈ S is given by

γµ(λ) = kµλ+ xµp . (3.8)

For any point on γ given by xµ0 = γµ(λ0) with a parameter value λ0, it is satisfied that

Φ(x0) = ηµx
µ
0x

ν
0 − a2

= ηµγ
µ(λ0)γ

ν(λ0)− a2

= ηµνk
µkνλ20 + 2ηµνx

µ
pk

ν + ηµνx
µ
px

ν
p − a2

= ηµνx
µ
px

ν
p − a2

= Φ(xp)

= 0. (3.9)

That is, any point on the null geodesic γ is on S, or equivalently, γ is tangent to S for
any λ. Therefore, there exists a null geodesic tangent to S for any null vector k ∈ TpS
such that k is tangent to γ at p ∈ S. Hence the single-sheeted hyperboloid S is a timelike
photon surface of MD.

Since a photon surface is an invariant structure under a conformal transformation,
the flat FLRW spacetime also has photon surfaces as many as the Minkowski spacetime
does [8]:

Example 3.1.6 (The Robertson-Walker models). Since all the Robertson-Walker models
are conformally flat and therefore locally conformally transformable to the Minkowski
spacetime, the photon surfaces of any such model may thus be obtained, at least locally,
by conformal transformations of the Minkowski spacetime.

Gibbons and Warnick [10] found photon surfaces in the uniformly accelerated black
hole spacetime, which is less symmetric and less trivial than the examples above:

Example 3.1.7 (Photon surface of the C-metric). A uniformly accelerated Λ-vacuum
black hole spacetime is given by the C-metric,

ds2 =
1

A2(x+ y)2

[
−F (y)dt2 + 1

F (y)
dy2 +

1

G(x)
dx2 +G(x)dϕ2

]
, (3.10)

where

F (y) = y2 + 2mAy3 − 1− Λ

3A2
,

G(x) = 1− x2 − 2mAx3, (3.11)

and A > 0, m > 0, and Λ are the constants representing the acceleration, mass, and
the cosmological constant, respectively. The function F is positive on an interval (y0, y1)
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and vanishes at y0 and y1, where y0 < y1 < 0, if Λ < Λc := (1 − 27m2A2)/(9m2). The
region corresponds to the stationary region of the spacetime and the zero-points of F at
y0 and y1 correspond to the black hole horizon and the acceleration horizon, respectively.
For Λ < Λc, there is a photon surface given by y = −(3mA)−1 ∈ (y0, y1). The photon
surface corresponds to the photon sphere r = 3m of the Schwarzschild (anti-)de Sitter
spacetime in the zero-acceleration limit A→ 0.

See [10] for the details and charged and scalarized cases.
The works by Claudel et al. [8] and Perlick [9] give the equivalent condition for a

timelike hypersurface to be a photon surface:

Theorem 3.1.8 (Claudel et al. (2001), Perlick (2005)). Let S be a timelike hypersurface
of spacetime (M, g) with D := dimM ≥ 3. Let n be the unit normal to S. Let hab =
gab−nanb, χab = hca∇cnb, Θ = habχab, and σab = χab− Θ

D−1
hab be the induced metric, the

second fundamental form, the mean curvature, and the trace-free part of χab, respectively.
S is a photon surface if and only if it is totally umbilic, i.e.,

σab = 0 ∀p ∈ S. (3.12)

The theorem enables us to see whether a given hypersurface is a photon surface or not
by straight forward geometrical calculations. With this useful technique, we investigate
other interesting examples of photon surfaces in Chap. 4.

3.2 Stability of null orbits along Photon Surface

Here, after reviewing the stability of a photon sphere, we define the stability of a photon
surface. Then we derive the stability condition in terms of curvature.

3.2.1 Stability of Photon Sphere

Consider static and spherically symmetric spacetime. A hypersurface of constant radius,
S = R×S2, is called a photon sphere if there exist null circular orbits, i.e. null geodesics
whose spatial orbits are circles, on S. The photon sphere is said to be stable if the circular
orbits are stable circular orbits and unstable if unstable circular orbits. We can describe
the stability in a covariant manner as follows.

For a stable photon sphere, if a null geodesic on the sphere is perturbed from the
sphere, the perturbed geodesic is attracted to (accelerated toward) the unperturbed
geodesic. On the other hand, the perturbed geodesic is repelled from (accelerated
fromward) the unperturbed geodesic if the photon sphere is unstable. Therefore, the
stability of a null circular geodesic is given by the relative acceleration between the
circular geodesic and its infinitesimally nearby null geodesic.

The above argument is represented in terms of a geodesic deviation. Consider a null
circular geodesic γ with its tangent vector k on a photon sphere S and the infinitesimally
nearby null geodesic γ̃ which is obtained by perturbing γ in the radial direction at a point

18



p ∈ S. Let X be the deviation vector arising from γ and γ̃. It satisfies the condition
X ∝ n at p for the unit normal vector n of S. Then the relative acceleration between
γ and γ̃ is given by a = ∇k (∇kX) and γ is stable if g(X, a)|p < 0 while unstable if
g(X, a)|p > 0. If g(X, a)|p = 0, γ is marginally stable.

Note that because of the symmetry, if there is a null geodesic γ on a photon sphere S
that is stable, unstable, and marginally stable at p, γ is stable, unstable, and marginally
stable, respectively, everywhere on S and all other null geodesics on S has the same
stability as γ. Therefore photon spheres are completely classified into stable, unstable,
and marginally stable ones.

3.2.2 Stability of null geodesics on a photon surface

Following the argument in Sec. 3.2.1, we define the stability of a null geodesic γ on a
photon surface S in terms of the deviation vector orthogonal to S. The deviation is
interpreted as what gives the perturbation of γ from S:

Definition 3.2.1 (Stability of a null geodesic). Let S be a timelike photon surface of
(M, g) and n be the unit normal vector of S. Let γ be a null geodesic on S passing a point
p ∈ S and k be the tangent vector to γ. Let X be the deviation vector of γ satisfying the
condition,

X|p ∝ n|p . (3.13)

The null geodesic γ is said to be stable, unstable, and marginally stable at p if the
acceleration scalar a := g (X,∇k (∇kX)) satisfies

a|p < 0, > 0, and = 0, (3.14)

respectively.

The spacetime dimension is implicitly assumed to be dimM ≥ 3 since a photon
surface in spacetime with dimM = 2 is one-dimensional, i.e. a null geodesic itself, and
cannot be timelike. The deviation vector X is, usually, physically interpreted as what
gives the null geodesic γ̃ which is obtained when γ is perturbed at p in the direction
orthogonal to S. a represents the relative acceleration of γ̃ to γ or S. This is what we
need for our description of the stable or unstable behaviors of (perturbed) null geodesics,
being attracted to or repelled from S. Note that γ can be either stable or unstable
depending on the point p. Furthermore, the stability also depends on the direction
k ∈ TpS of the null geodesic. If γ is stable, unstable, and marginally stable at ∀p ∈ |γ|,
we simply call it stable, unstable, and marginally stable, respectively.

From the geodesic deviation equation, the left-hand side of Eq. (3.14) is calculated
as

a|p = −
[
RacbdX

akcXbkd
]
p

= −
[
X2Racbdn

akcnbkd
]
p

(3.15)

where X2 := gabX
aXb is positive. Then we reach the following stability condition:
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Proposition 3.2.2. Let S be a timelike photon surface and γ be a null geodesic on S
with the tangent vector k at p ∈ S. Then γ is stable, unstable, and marginally stable at
p if and only if

Racbdk
anckbnd > 0, < 0, and = 0, (3.16)

respectively, at p.

It is worth noting that the componentRacbdk
anckbnd, or more generallyRecfdh

e
an

chfbn
d

where hab is the induced metric on S, is the missing component in Gauss-Codazzi equa-
tions for the decomposition of the curvature concerning S and n. Therefore it cannot
be expressed solely in terms of the intrinsic and extrinsic curvatures [25].

The decomposition of Riemann tensor into Weyl tensor Cabcd and Ricci tensor Rab

often helps us to understand the physics. We also have the expression alternative to
Proposition 3.2.2:

Proposition 3.2.3. Let S be a timelike photon surface and γ be a null geodesic on S
with the tangent vector k at p ∈ S. Then γ is stable, unstable, and marginally stable at
p if and only if

Cacbdk
anckbnd +

1

D − 2
Rabk

akb > 0, < 0, and = 0, (3.17)

respectively, at p where D ≥ 3 is the spacetime dimension.

Although a photon surface S of spacetime (M, g) is invariant submanifold under
a conformal transformation (M, g) → (M,Ω2g) [8], Proposition 3.2.3 tells us that the
stability of S is not conformally invariant due to the presence of Ricci tensor in the
stability condition.

3.2.3 Stability of a photon surface

There can be both stable and unstable null geodesics on a photon surface S. We define
the stability of a photon surface in cases where all the null geodesics on S are (un)stable:

Definition 3.2.4 (Stability of a photon surface). Let S be a timelike photon surface.
Let kp ∈ TpS be a null vector on a point p ∈ S. Let γ be the null geodesic on S passing
p with the tangent vector kp. The photon surface S is said to be

• stable if akp
∣∣
p
≤ 0 ∀kp ∈ TpS, ∀p ∈ S,

• strictly stable if akp
∣∣
p
< 0 ∀kp ∈ TpS, ∀p ∈ S,

• unstable if akp
∣∣
p
≥ 0 ∀kp ∈ TpS, ∀p ∈ S,

• strictly unstable if akp
∣∣
p
> 0 ∀kp ∈ TpS, ∀p ∈ S, and

• marginally stable if akp
∣∣
p
= 0 ∀kp ∈ TpS, ∀p ∈ S,

where akp is the acceleration scalar defined for each γ at each p as in Definition 3.2.1.

The left-hand side of the conditions can be expressed in terms of curvatures from
Propositions 3.2.2 and 3.2.3.
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3.3 Stability and second fundamental form

With a spacetime foliation, the curvature of spacetime is related to the first derivative of
second fundamental forms, which is the tensor constructed from the second derivative of
the unit normal vector field. Therefore, the stability condition in Proposition 3.2.2 can
be rewritten in terms of the second fundamental form instead of the curvature. We here
derive the stability condition in terms of the second fundamental form and give another
interpretation of the stability, defined in Definition 3.2.1, with a particular spacetime
foliation.

3.3.1 Stability condition in Gaussian normal foliation

Consider a timelike photon surface S of (M, g) and a spacetime foliation {Sr} in the
vicinity of S which includes S as

S0 = S (3.18)

for the parameter r = 0. For any foliation, the unit normal vector field na of the surfaces
generates curves and the congruence consisting of them. Then the trace-free part of the
second fundamental form, σab, of each surface coincides with the shear of the congruence,
while the vorticity ωab = 0 by construction. We identify the shear of the congruence
with σab. Raychaudhuri equation for the congruence gives the relation between the shear
evolution and the curvature,

∇nσab + σacσ
c
b + 2

Θ

D − 1
σab + ṅaṅb +∇(aṅb) −

1

D − 1
hab

[
σcdσcd + ṅcṅ

c +∇cṅ
c
]

= −Racbdn
cnd +

1

D − 1
Rcdn

cndhab,(3.19)

where ṅa := ∇nn
a. On the photon surface Srp = S, the equation reduces to

∇nσab+ṅaṅb+∇(aṅb)−
1

D − 1
hab [ṅcṅ

c +∇cṅ
c] = −Racbdn

cnd+
1

D − 1
Rcdn

cndhab (3.20)

from the fact σab = 0 ∀p ∈ S. The left-hand side of the stability condition in Proposi-
tion 3.2.2 is therefore rewritten as

Racbdk
anckbnd = −kakb∇nσab − kakbṅaṅb − kakb∇aṅb (3.21)

for any foliation satisfying Eq. (3.18). Thus a null geodesic on a photon surface in the
direction k at p is stable, unstable, and marginally stable if and only if the right-hand
side of Eq. (3.21) is negative, positive, and zero, respectively.

Suppose the foliation in the vicinity of S satisfies the condition,

dn = 0, (3.22)

for the unit normal n in addition to Eq. (3.18). The condition implies

nb∇bn
a = 0 (3.23)
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and therefore the parameter r is the one of Gaussian normal coordinates which parametrizes
each hypersurface Sr. We refer to the foliation {Sr} satisfying the conditions Eqs. (3.18)
and (3.22) as Gaussian normal foliation. (One can rescale r → r′ = r′(r) so that n = dr,
however, here we only assume that the unit normal n points in the same direction as
the normal dr.) From Eq. (3.22), Eq. (3.21) reduces to

Racbdk
anckbnd = −kakb∇nσab (3.24)

for the Gaussian normal foliation. Then we obtain the alternative expression of stability
condition in Proposition 3.2.2 in terms of the second fundamental form:

Proposition 3.3.1. Let S be a timelike photon surface and γ be a null geodesic on S
with the tangent vector k ∈ TpS at p ∈ S. Let {Sr}, χab, and σab be Gaussian normal
foliation, defined by the conditions in Eqs. (3.18) and (3.22), second fundamental form of
each Sr, and its trace-free part, respectively. Then γ is stable, unstable, and marginally
stable at p if and only if

kakb ∇nσab|p < 0, > 0, and = 0, (3.25)

respectively.

A timelike photon surface is a hypersurface characterized by the vanishing of σab.
Similarly, stability of null geodesics on a photon surface is determined by ∇nσab. To
identify the stability of a photon surface, it would be easier to calculate the left-hand
side of Eq. (3.25) in Proposition 3.3.1 rather than the curvature, Eq. (3.16), in Propo-
sition 3.3.1 in many cases. In the analysis of the photon surfaces in Chap. 4, we derive
the stability by using Proposition 3.3.1.

We give the interpretation of Proposition 3.3.1 by considering acceleration of a
geodesic with respect to a surface in the following.

3.3.2 Acceleration with respect to a hypersurface

Consider a non-null hypersurface S of spacetime (M, g) and a (null or non-null) geodesic
γ which is tangent to S at a point p ∈ S with the tangent vector v ∈ TpS. The tangent
vector v to γ at p also generates the geodesic γ̃ of the subspace (S, h) where h is the
induced metric on S. For the tangent vector ṽ to γ̃, it holds that ∇̃ṽṽ = 0 along γ̃ where
ṽ = v at p and ∇̃ is the covariant derivative associated with h. The geodesic γ̃ of (S, h),
as the curve of (M, g), has the acceleration ∇ṽṽ,

ṽb∇bṽ
a = ṽb∇̃bṽ

a − ϵχbcṽ
bṽcna

= −ϵχbcṽbṽcna

= −ϵχbcvbvcna (3.26)

at p. Here, na is the unit normal vector of S and ϵ := n2. This can be interpreted as the
acceleration of γ̃ with respect to γ at p. Therefore, conversely, the geodesic γ of (M, g)
has the relative acceleration,

aaS := ϵχbcv
bvcna, (3.27)
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with respect to γ̃, or the hypersurface S, at p.
The relative acceleration takes the form,

aaS = σbck
bkcna, (3.28)

for null vectors k in the case S is timelike. From the viewpoint of the relative acceleration
aaS , a photon surface is a hypersurface on which every (temporally) tangent null geodesics
has no relative accelerations with respect to the surface due to the vanishing of σab at
all the point; aaS = 0 ∀ null k ∈ TpS ∀p ∈ S.

3.3.3 Reinterpretation of the stability

The stability of null geodesics on a photon surface, defined in Definition 3.2.1, can be
reinterpreted in terms of the relative acceleration aaS with the Gaussian normal foliation.
That is, for a photon surface S and the Gaussian normal foliation {Sr}, the relative
acceleration aaS of a perturbed null geodesic γ̃ with respect to a nearby hypersurface
S̃ ∈ {Sr} determines whether γ̃ is attracted to or repelled from S.

Consider a null geodesic γ with its tangent vector k ∈ TpS at a point p ∈ S. Let
Sδr ∈ {Sr} be a hypersurface close to S with a small parameter δr and q ∈ Sδr be the
intersection of Sδr and the geodesic generated by na from p. We generate k from p to
q by parallel transport along na, ∇nk

a = 0. Then we obtain the nearby null geodesic γ̃
with the initial condition ˙̃γ(0) = k ∈ TqSδr at q. The fact k ∈ TqSδr is guaranteed by
the conditions, nak

a = 0 at p and Eq. (3.23). If γ is stable, i.e. γ̃ is attracted to S, γ̃
has the relative acceleration, aaSδr

, with respect to Sδr which is directed toward S. The
condition is

aSδr
< 0 for δr > 0,

aSδr
> 0 for δr < 0 (3.29)

where aSδr
:= naa

a
Sδr

. Taking the limit δr → 0, i.e. the limit where Sr and γ̃ are
infinitesimally close to S, the two inequalities reduce to the condition,

∇naSδr
|δr=0 < 0. (3.30)

In the same way, if γ is unstable, the condition is

∇naSδr
|δr=0 > 0. (3.31)

From Eq. (3.28), the left-hand sides of the conditions further reduce to

∇naSδr
= ∇n

(
kbkcσbc

)
= kbkc∇nσbc (3.32)

where the last equality is verified by the fact ∇nk
a = 0. Therefore the normal derivative

of the second fundamental form, ∇nσab, determines the stability of the photon surface
and we indeed reproduce Proposition 3.3.1.

23



3.4 Corollaries

From the propositions in the previous sections, we can identify the stability of null
geodesics on photon surfaces or photon surfaces themselves without specifying the pho-
ton surfaces explicitly if the spacetime satisfies some geometrical conditions.

From Proposition 3.2.2:

Corollary 3.4.1. A photon surface of spacetime of constant curvature is marginally
stable. Specifically, this applies for the Minkowski spacetime, the de Sitter spacetime,
and the anti-de Sitter spacetime.

Corollary 3.4.2. The symmetry of spacetime (M, g) and a photon surface S restricts
the variation of stability for null geodesics on S. For example, if S is spatially maximally
symmetric and also symmetric in a time direction, then all the null geodesics on S has
the same stability. Therefore S is stable, unstable or marginally stable. Photon spheres
of spherically symmetric spacetimes are in this case.

From Proposition 3.2.3:

Corollary 3.4.3. Let (M, g) be a conformally flat spacetime satisfying the null energy
condition. Then a photon surface of (M, g) is stable. For example, photon surfaces of
the FLRW spacetime with matter satisfying null energy condition must be stable.

Corollary 3.4.4. Let (M, g) be a spacetime with dimM = 3 satisfying the null energy
condition. Then a photon surface of (M, g) is stable. Therefore, unstable null geodesics
are allowed to exist only in spacetime with dimM ≥ 4 if the null energy condition is
satisfied. For example, the charged BTZ spacetime, which is the electrovacuum solution
of Einstein-Maxwell equation [26], has a photon surface (sphere) if the mass is negative,
the spin is zero, and the negative cosmological constant is sufficiently small. Since the
spacetime satisfies the null energy condition, the photon surface is stable.

Corollary 3.4.5. Let (M, g) and S be a spacetime satisfying the null energy condition
and a photon surface of S. Then a null geodesic γ in a principal null direction is stable
or marginally stable.

This is because the principal null condition, kbkck[eCa]bc[dkf ] = 0, implies that only
the components corresponding to bases of the form k∗ ⊗ ω or ω ⊗ k∗ of the second-rank
tensor kbkcCabcd can be nonzero, where ω is some one-form and k∗ := g(·, k) is the one-
form dual to the vector k [21]. Therefore, the first term in Eq. (3.17) vanishes from the
fact naka = 0 if ka is in a principal null direction.

3.5 Summary

In the beginning of this chapter, we have reviewed the definition and the equivalent
condition of a photon surface, Definition 3.1.1 and Theorem 3.1.8, respectively. The
examples of timelike photon surfaces in the known spacetimes have been also given.
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After the introduction, we have defined the stability of null geodesics on a photon
surface by reformulating the stability of a photon sphere in a covariant manner. The
stability represents whether a null geodesic γ̃ perturbed from a null geodesic γ on a
photon surface is attracted to or repelled from the surface. Since such a behavior is
subject to the geodesic deviation equation, the stability condition of null geodesics on
a photon surface is given in terms of the Riemann curvature, as in Proposition 3.2.2,
or the Weyl and Ricci curvature, as in Proposition 3.2.3. We have named a photon
surface on which all the null geodesics are (un)stable a (un)stable photon surface. If
there exist no marginally stable null geodesics, the surface is called a strictly (un)stable
photon surface. As we have defined the stability only in terms of a local geometrical
quantity, the definition is applicable to any photon surfaces even if the photon surfaces
and the spacetime have no symmetries.

Although the stability of null geodesics is interpreted as what represents the behavior
of perturbed orbits, Proposition 3.2.2 implies that it depends only on the values of
the curvature on the photon surface. This fact can also be seen from our definition,
Definition 3.2.1, which requires only the null geodesic and its deviation vector defined
just on the surface.

Proposition 3.2.3 tells us that we can a priori identify the stability before finding pho-
ton surfaces of spacetime explicitly. For example, any photon surface in conformally flat
spacetime is stable if the null energy condition is satisfied. Several corollaries concerning
this fact were shown in Sec. 3.4.

We have also found that the stability of null geodesics can be expressed by the normal
derivative of the second fundamental form of the surface under an appropriate spacetime
foliation, named Gaussian normal foliation, as stated in Proposition 3.3.1. As we see
in Chap. 4 and 7, the stability condition of Proposition 3.3.1 is easier to calculate than
Proposition 3.2.2.
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Chapter 4

Photon surfaces of asymmetric
vacuum spacetimes

For spherically symmetric black hole spacetimes which are solutions to the Einstein
equation, many photon surfaces, i.e., photon spheres, have been found. Similarly, photon
surfaces exist in the hyperbolically and planar symmetric counterparts of the spherical
spacetime solutions [19]. However, a photon surface does not exist for rotating vacuum
black hole spacetimes such as the Kerr spacetime. One may expect that photon surfaces
can exist only in highly symmetric spacetimes although the symmetry of the surfaces
and the spacetimes are not assumed in the definition. More specifically, the maximal
symmetry of the submanifolds of codimension-two might be necessary for a spacetime
to have photon surfaces.

In this chapter, we see that spatially less symmetric, or possibly nonsymmetric space-
times which are solutions to the Einstein equation have photon surfaces. We consider a
spacetime given by the metric ansatz,

ds2 = −f(r)dt2 + g(r)dr2 + r2γij (x) dx
idxj, (4.1)

where the spacetime dimension is D ≥ 3 and the metric γij(x) = γij(x
1, x2, ..., xD−2) of

the Riemannian (D − 2)-submanifold are arbitrary. The spacetime is static but there
are no spacelike Killing vectors in general. The spacetime metric can be regarded as the
generic form of some class of warped products. See Appendix A for the derivation of
Eq. (4.1). If γij(x) is the metric of the unit (D− 2)-sphere, the ansatz is the well-known
generic form of a static spherically symmetric spacetime.

In Sec. 4.1, we define an r-photon surface and derive the pseudopotential V , which
allows us to find the photon surface and analyze its stability easily. In Sec. 4.2, we
specifically consider the Λ-electrovacuum solutions to the Einstein equation with the
ansatz (4.1) and find the parameters for which the r-photon surfaces exist. We summa-
rize the results in Sec. 4.3.

4.1 r-photon surface

Here we define an r-photon surface and derive its stability condition.
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4.1.1 Definition

An r-photon surface is a photon surface of a hypersurface of constant r in our spacetime:

Definition 4.1.1 (r-photon surface). A hypersurface

Sr := {p ∈M |r = const.} (4.2)

of a spacetime with the metric (4.1) is called an r-photon surface if it is a photon surface.

4.1.2 Condition for an r-photon surface

For general Sr, its unit normal is given by

n =
√
gdr (4.3)

provided that it is timelike, i.e., g(r) > 0. The trace-free part of the second fundamental
form, σab, is then given by

σµν = − 1

2(D − 1)

(fr−2)′

(fr−2)

√
g−1 [(D − 1)fµν + hµν ] (4.4)

where hµν = gµν − nµnν is the induced metric of Sr and fµν := f(r)δtµδ
t
ν . Theorem 3.1.8

gives the condition for Sr to be an r-photon surface:

Proposition 4.1.2. A timelike hypersurface Sr is an r-photon surface if and only if

(fr−2)′ = 0 (4.5)

at the radius.

Note that Sr is timelike for r such that g(r) > 0. The condition is equivalent to
f(r) > 0 because otherwise the spacetime (4.1) violates its Lorentz signature.

4.1.3 Stability condition

Let {Sr} be a foliation of the spacetime, Eq. (4.1), consisting of Sr. As one can see from
Eq. (3.22), it is a Gaussian normal foliation. With σab defined on each Sr, we calculate
∇nσab. For a radius r = rp such that Sr=rp is an r-photon surface, we have

∇nσµν = − 1

2(D − 1)

(fr−2)′′

(fr−2)
g−1 [(D − 1)fµν + hµν ] (4.6)

by using Eq. (4.5). For any null vector k ∈ TpSrp , we have

kakb∇nσab = −1

2

(fr−2)′′

(fr−2)
g−1f(kt)2 (4.7)

at r = rp Then from Proposition 3.3.1, we obtain the stability condition of an r-photon
surface:
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Proposition 4.1.3. A timelike r-photon surface Srp is strictly stable, strictly unstable,
and marginally stable if and only if

(fr−2)′′
∣∣
r=rp

> 0 , < 0 , and = 0, (4.8)

respectively.

r-photon surfaces are classified into only the three types, strictly stable, strictly
unstable, and marginally stable ones, which are not overlapped each other. We simply
call them stable, unstable, marginally stable r-photon surfaces in the following.

4.1.4 Pseudopotential

Here we define the pseudopotential,

V (r) := f(r)r−2, (4.9)

which is useful for investigating r-photon surfaces. From Proposition 4.1.2 and 4.1.3,
the conditions for an r-photon surface are given by this proposition:

Proposition 4.1.4. Suppose f(rp) > 0, or equivalently, V (rp) > 0 at a radius rp. Then
Srp is an r-photon surface if and only if

V ′(rp) = 0. (4.10)

It is stable, unstable, and marginally stable if and only if

V ′′(rp) > 0 , < 0 , and = 0, (4.11)

respectively.

r-photon surfaces appear as the extrema of V (r).

4.2 r-photon surface in vacuum spacetimes

We see that timelike r-photon surfaces exist in spacetimes of solutions to the Einstein
equation.

4.2.1 Electrovacuum spacetime with cosmological constant

Ansatz (4.1) gives the solution to the electrovacuum Einstein equation with a cosmolog-
ical constant [27],

f(r) = g−1(r) = k − 2Λ

(D − 2)(D − 1)
r2 − 2m

rD−3
+

Q2

r2(D−3)
, (4.12)
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where the (D−2)-dimensional space given by the metric γijdx
idxj is an arbitrary Einstein

manifold with the constant curvature k, that is, it is an arbitrary (D − 2)-dimensional
Rieamannian space with the Ricci curvature given byRij = (D−3)kγij. The parameters
m and Λ are the mass and the cosmological constant, respectively. The parameter Q is
related to the electric charge Q̄ by

Q2 :=
κ2Q̄2

(D − 2)(D − 3)
(4.13)

where κ is the gravitational constant. The electromagnetic field is given by

F =
1

2

Q̄

rD−2
dt ∧ dr. (4.14)

The spacetime is invariant under an appropriate simultaneous scaling of the coordi-
nates t, r and the parameters k,m,Q,Λ. For nonzero k, we can scale it so that k = ±1.

Einstein manifolds have been extensively investigated and there are many examples
for them. A constant curvature space of any dimension d is an Einstein manifold. For a
space of the dimension d = 1, although the Ricci curvature is not defined, the metric can
always be written in the form analogous to a flat space, γij(x)dx

idxj = dl2. For d = 2,
all the Riemaniann spaces are Einstein manifolds. For d = 3, all the Einstein manifolds
are constant curvature spaces. For d ≥ 4, various nontrivial Einstein manifolds have
been found. The variety of Einstein manifolds in higher d should be due to the degrees
of freedom of Weyl curvature. See [28, 29, 30, 31, 32] for more examples of Einstein
manifolds.

The solution Eq. (4.12) would be less symmetric spacetime in the sense that the
(D− 2)-space γijdx

idxj can be less symmetric than the maximal. If there exist Einstein
manifolds without any Killing vectors, the spacetime can be a static vacuum spacetime
with only the timelike Killing vector, ∂t.

4.2.2 Existence and stability

Let us focus on a timelike hypersurface Srp . The timelike condition of Srp is given by

f(rp) > 0. (4.15)

For Srp to be an rp-photon surface, the radius rp must be a real positive solution to
Eq. (4.10). Using the explicit form of V (r),

V (r) = − 2Λ

(D − 2)(D − 1)
+
k

r2
− 2m

rD−1
+

Q2

r2(D−2)
, (4.16)

the equation is rewritten as

kr2(D−3)
p − (D − 1)mrD−3

p + (D − 2)Q2 = 0. (4.17)
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Once find an rp-photon surface, we can determine the stability of Srp by the sign of

V ′′(rp) =
4(D − 3)

r4p

[
(D − 1)m

2rD−3
p

− k

]
. (4.18)

Let us focus the case D = 3. Then Eqs. (4.15), (4.17), and (4.18) reduce to f(rp) =
−Λr2p > 0, k − 2m+Q2 = 0, and V ′′(rp) = 0, respectively. Therefore, we conclude that
only for Q2 = 2m− k ≥ 0 and Λ < 0 (i.e., 3D anti-de Sitter spacetime), a hypersurface
Srp is a timelike rp-photon surface at any rp and is marginally stable.

We focus on the case D ≥ 4 in the what follows. In each case, k = 0 in Sec. 4.2.2,
k ̸= 0 & m = 0 in Sec. 4.2.2, and k ̸= 0 & m ̸= 0 in Sec. 4.2.2, we apply the following
procedure to show the existence of a timelike rp-photon surface: First, we find a solution
to Eq. (4.17) and restrict parameters to the range where the solution is real and posi-
tive. The timelike condition (4.15) further restricts the allowed range of a dimensionless
cosmological constant,

λ := Λ|m|2/(D−3). (4.19)

Evaluating the sign of Eq. (4.18), we determine the stability of Srp by Eq. (4.11). Here
for later convenience, we introduce a dimensionless charge for m ̸= 0,

q :=
|Q|
|m|

. (4.20)

The results are summarized in Table 4.1 for k = 0, Table 4.2 for k = 1, and Table 4.3
for k = −1.

Case k = 0

Suppose that k = 0. Then Eqs. (4.17) and (4.18) reduce to

(D − 1)mrD−3
p − (D − 2)Q2 = 0, (4.21)

V ′′(rp) = (D − 3)(D − 1)
2m

rD+1
p

. (4.22)

Note that if Srp is a timelike rp-photon surface, then it is stable for m > 0, unstable for
m < 0, and marginally stable for m = 0 because the sign of m coincides with that of
V ′′(rp). In the followings, we consider each case, m = 0 and m ̸= 0, separately.

(k = 0 & m = 0) Suppose that k = 0 and m = 0. Then Eq. (4.21) leads to Q = 0.
Hence, V becomes constant, V = −2Λ/[(D − 2)(D − 1)], and satisfies V ′(rp) = 0 and
V ′′(rp) = 0 for any value of rp. The timelike condition of Srp in Eq. (4.15) reduces to
f(rp) = −2Λr2p/[(D − 2)(D − 1)] > 0, and therefore,

Λ < 0. (4.23)

Finally we conclude that only for k = 0, m = 0, Q = 0 and Λ < 0, a timelike rp-photon
surface exists at any rp > 0 and is marginally stable.
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(k = 0 & m ̸= 0) Suppose that k = 0 and m ̸= 0. Then we obtain the solution to
Eq. (4.21) in the form

rD−3
p =

D − 2

D − 1

Q2

m
. (4.24)

The positivity of rp requires Q ̸= 0 and m > 0, and thus, V ′′(rp) > 0. The timelike
condition of Srp in Eq. (4.15) leads to a negative upper bound for λ,

λ < −(D − 3)(D − 1)2

2(D − 2)

(
D − 1

D − 2

)2/(D−3)

q−2(D−1)/(D−3) < 0. (4.25)

Finally we conclude that only for k = 0, m > 0, Q ̸= 0, and Eq. (4.25), a timelike
rp-photon surface exists at the radius (4.24) and is stable.

Case k ̸= 0 & m = 0

Suppose that k ̸= 0 and m = 0. Then Eq. (4.17) reduces to

kr2(D−3)
p + (D − 2)Q2 = 0. (4.26)

The positivity of rp requires Q ̸= 0 and k = −1. The positive branch takes the form

rD−3
p+ =

√
D − 2|Q| (4.27)

and leads to V ′′(rp+) = 4(D−3)/r4p+ > 0 from Eq. (4.18). The timelike condition (4.15)
gives a negative upper bound for Λ,

Λ < − (D − 3)(D − 1)

2(D − 2)1/(D−3)
|Q|−2/(D−3) < 0. (4.28)

Finally we conclude that only for k = −1, m = 0, Q ̸= 0, and Eq. (4.28), a timelike
rp-photon surface exists at the radius (4.27) and is stable.

Case k ̸= 0 & m ̸= 0

Suppose that k ̸= 0 and m ̸= 0. Then Eq. (4.17) has roots

rD−3
p± =

D − 1

2k
m(1± γ), (4.29)

where

γ :=

√
1− k

q2

q2c
, (4.30)

qc :=
D − 1

2
√
D − 2

. (4.31)

Using these roots, V ′′(rp) in Eq. (4.18) is formally written as

V ′′(rp±) = ∓(D − 3)(D − 1)
2mγ

rD+1
p±

, (4.32)

where V ′′(rp+) corresponds to the upper sign in the right-hand side and vice versa. In
the followings, we consider each case, k = 1 and k = −1, separately.
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(k = 1) Suppose that k = 1. Then γ is restricted to the range 0 ≤ γ = (1−q2/q2c )1/2 ≤
1 (i.e., 0 ≤ q ≤ qc). First, let us focus on the case γ = 1 (i.e., uncharged case, q = 0).
The branch rp− of the roots (4.29) vanishes, and therefore, here is no photon surface.
On the other hand, if m > 0, then the branch

rD−3
p+ = (D − 1)m (4.33)

is positive definite, and V ′′(rp+) < 0 holds. The timelike condition (4.15) provides a
positive upper bound of λ,

λ <
(D − 3)(D − 2)

2(D − 1)2/(D−3)
. (4.34)

Finally we conclude that only for k = 1, m > 0, q = 0, and Eq. (4.34), a timelike
rp+-photon surface exists at the radius (4.33) and is unstable.

Next, we focus on the case γ = 0 (i.e., q = qc). The roots (4.29) are degenerate as

rD−3
p =

D − 1

2
m. (4.35)

The positivity of rp requires m > 0. Since γ = 0, we have V ′′(rp) = 0 from Eq. (4.32).
The timelike condition (4.15) provides a positive upper bound of λ,

λ <
(D − 3)2

2

(
2

D − 1

)2/(D−3)

. (4.36)

Finally we conclude that only for k = 1, m > 0, q = qc, and Eq. (4.36), a timelike
rp-photon surface exists at the radius (4.35) and is marginally stable.

Next, we focus on the case 0 < γ < 1 (i.e., 0 < q < qc). If m < 0, both roots (4.29)
are negative and hence unsuitable. Suppose that m > 0. Then the roots satisfy rp+ >
rp− > 0. For each branch, V ′′(rp+) < 0 and V ′′(rp−) > 0. The timelike condition (4.15)
reduces to upper bounds of λ,

λ < λ±(D, q) :=
D − 3

2

[
2

(D − 1)(1± γ)

]2/(D−3)(
D − 1− 2

1± γ

)
. (4.37)

Note that λ+ > 0, and on the other hand, λ− ≥ 0 for 1 ≤ q < qc and λ− < 0 for
0 < q < 1. Finally we conclude that only for k = 1, m > 0, 0 < q < qc, and Eq. (4.37), a
timelike rp+-photon surface exists at the radius rp+ = (D−1)(1+γ)m/2 and is unstable,
and a timelike rp−-photon surface exists at the radius rp− = (D − 1)(1− γ)m/2 and is
stable.

(k = −1) For k = −1, γ is restricted to the range γ = (1+ q2/q2c )
1/2 ≥ 1. We consider

each case, m > 0 and m < 0, separately.
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Suppose that k = −1 and m > 0. For γ = 1 (i.e., uncharged case, q = 0), the
roots (4.29) satisfy rD−3

p− = 0 > rD−3
p+ , and hence, here are no photon surfaces. Now, we

focus on the case γ > 1 (i.e., q ̸= 0). The branch rp− of the roots (4.29) becomes

rD−3
p− =

D − 1

2
m(γ − 1) > 0, (4.38)

while the other branch is unsuitable because rD−3
p+ < 0. We find that V ′′(rp−) > 0 from

Eq. (4.32). The timelike condition (4.15) provides a negative upper bound of λ,

λ < −D − 3

2

[
2

(D − 1)(γ − 1)

]2/(D−3)(
D − 1 +

2

γ − 1

)
< 0. (4.39)

Finally we conclude that only for k = −1, m > 0, q ̸= 0, and Eq. (4.39), a timelike
rp−-photon surface exists at the radius (4.38) and is stable.

Suppose that k = −1 and m < 0. The branch rp+ of the roots (4.29) becomes

rD−3
p+ =

D − 1

2
|m|(1 + γ), (4.40)

while the other branch is unsuitable because rD−3
p− < 0. We find that V ′′(rp+) > 0 from

Eq. (4.32). The timelike condition (4.15) provides a negative upper bound of λ,

λ < −D − 3

2

[
2

(D − 1)(1 + γ)

]2/(D−3)(
D − 1− 2

1 + γ

)
< 0. (4.41)

Finally we conclude that only for k = −1, m < 0, and Eq. (4.41), a timelike rp+-photon
surface exists at the radius (4.40) and is stable.

4.3 Summary

In this chapter, we have investigated r-photon surfaces in the spacetime given by the
metric ansatz (4.1). The ansatz is a general form of a warped spacetime of some class
as shown in Appendix A.

First, we have found that the pseudopotential V (r) gives the radius and stability of
an r-photon surface. The local maxima correspond to unstable r-photon surfaces while
the local minima correspond to stable ones. It is remarkable that the stabilities of null
geodesics along the photon surfaces do not depend on the directions of the null geodesics
even if the spacetime is not spatially symmetric. That is, if V ′′(rp) > 0 (< 0) for an
r-photon surface Srp , it is a strictly stable (unstable) photon surface, and therefore, all
the null geodesics on it are everywhere stable (unstable).

Next, we have seen that r-photon surfaces indeed exist in the case where the space-
time is the electrovacuum solution to the Einstein equation with the cosmological con-
stant. Since the spacetime is a solution as far as the (D − 2)-space γijdx

idxj is an
Einstein manifold, it provides the examples of static photon surfaces existing in less
or non-symmetric electrovacuum spacetimes. For the discussion about the structure
that enables the spacetime to have a photon surface regardless of the spatial Killing
symmetry, see Ref. [16].
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m > 0 m = 0 m < 0
Q = 0 ̸ ∃ ∀r, Eq. (4.23), marginally stable, ̸ ∃
Q ̸= 0 Eqs. (4.24) and (4.25), stable ̸ ∃ ̸ ∃

Table 4.1: k = 0

m > 0 m = 0 m < 0
q = 0 Eqs. (4.33) & (4.34), unstable ̸ ∃ ̸ ∃

0 < q < qc Eqs. (4.29) & (4.37) (upper branch), unstable ̸ ∃ ̸ ∃
Eqs. (4.29) & (4.37) (lower branch), stable

q = qc Eqs. (4.35) & (4.36), marginally stable ̸ ∃ ̸ ∃

Table 4.2: k = 1

m > 0 m = 0 m < 0

Q = 0 ̸ ∃ ̸ ∃ Eqs. (4.40) & (4.41),
stable

Q ̸= 0
Eqs. (4.38) & (4.39),

stable
Eqs. (4.27) & (4.28),

stable
Eqs. (4.40) & (4.41),

stable

Table 4.3: k = −1
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Chapter 5

Sonic point/photon sphere
correspondence: spherical flow
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Copyright (2016) by the American Physical Society.

The accretion of fluid onto objects is a basic problem in astrophysics and the most
important issue concerning growth of stars and black holes. From an observational view
point, the accretion is considered to be responsible for the X-ray emission due to the
compression of the fluid. This is also connected to the observations of strong gravity
fields in a general relativistic context.

The first study of the accretion onto stars was established by Bondi [33]. He inves-
tigated stationary spherically symmetric flow of polytropic fluid in Newtonian gravity.
One of the interesting features is the existence of a critical point (or sonic point) and
transonic flow, that is, flow which experiences transition between subsonic and super-
sonic states. Michel extended the problem to general relativity on the Schwarzschild
spacetime under the assumption that the spacetime is not so strongly modified by the
fluid and also estimated several quantities on the critical point [34]. For the (anti-)de
Sitter spacetime, Mach, Malec and Karkowski gave not only numerical calculations with
a polytropic equation of state (EOS), but also the exact solutions of the accretion of fluid
with isothermal EOSs [35]. For other specific cases of spherically symmetric accretion
problems in the context of general relativity, see Refs. [36, 37]. For general static spher-
ically symmetric spacetimes and polytropic EOSs, the existence of the unique solution
of the accretion problem has been proved by Chaverra and Sarbach [24]. They analyzed
the problem by the method of dynamical systems. In the analysis of the outflow of fluid,
there exist the same features, i.e., a transonic flow and a sonic point as in the accretion
problem. Carter, Gibbons, Lin and Perry discussed the treatment of Hawking radiation
from astrophysical black holes as the outflow of perfect fluid [38].

In the study by Mach et. al [35], it was revealed that only for the case of the accretion
of radiation fluid, the radius of the sonic point is 3m for the black hole mass m. This
radius coincides with the photon sphere of the spacetime. This correspondence connects
between two independent observations, the observation of lights from sources behind a
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black hole and the observation of emission from accreted radiation fluid onto the hole,
because the size of the shadow of the hole is determined by the radius of the photon
sphere and the accreted fluid can signal the sonic point.

In this chapter, we see there exists the correspondence between the sonic points
of photon gas accretion and the photon spheres in a large class by generalizing the
analysis [24] to arbitrary dimensions. We consider general static spherically symmetric
spacetimes in D dimensions

ds2 = −f(r)dt2 + g(r)dr2 + r2dΩ2
D−2, (5.1)

where D ≥ 3 and the condition 0 < f, g <∞ are assumed and dΩ2
D−2, given by

dΩ2
D−2 = dθ21+ · · · +sin2 θ1 · · · sin2 θD−4dθ

2
D−3

+ sin2 θ1 · · · sin2 θD−3dϕ
2, (5.2)

is the unit (D − 2)-sphere metric. The main result is:

Theorem 5.0.1. For any physical transonic accretion flow of ideal photon gas in sta-
tionary and spherically symmetric state on the fixed background spacetime (5.1), the
radius of its sonic point coincides with that of (one of) the unstable photon sphere(s) of
the geometry.

The sonic point is a point at which transition between supersonic and subsonic states
occurs. The term unstable photon sphere means the instability of the corresponding
circular orbits of null geodesics. The rigorous definitions of “physical flow” and the
other terms will be given in the following sections.

In Sec. 5.1, we derive the conditions for the radius of photon sphere of the spacetime
and its stability. In Sec. 5.2, we formulate the general accretion problem of stationary
and spherically symmetric accretion on the D-dimensional spacetime. The critical point
and the sonic point are also defined. In Sec. 5.3, we introduce the EOS of ideal photon
gas in d dimensional space. Then the critical point of the ideal photon gas accretion in
D dimensions of spacetime is obtained. In Sec. 5.4, the main theorem is proved and the
summary is given in Sec. 5.5.

5.1 Photon sphere

A photon sphere is defined as a sphere on which circular null geodesics exist [39]. A pho-
ton sphere is said to be stable and unstable, if it has stable and unstable circular orbits,
respectively. We present the following lemma for the photon sphere of the spacetime
(5.1).

Lemma 5.1.1. Let the metric be Eq. (5.1). The photon sphere of the spacetime is
specified by the equation

(fr−2)′ = 0. (5.3)
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The stability condition of the photon sphere is given by

stable (unstable) ⇔ (fr−2)′′ > 0 (< 0) (5.4)

at the radius of the photon sphere.

Proof. Consider a null geodesic xµ = xµ(λ) confined in θ = π
2
surface where λ is the

affine parameter. The null condition leads to the equation

H =
1

2
gµν ẋ

µẋν = 0 (5.5)

for its Hamiltonian H, where ˙= d/dλ. From two Killing vectors relevant to the motion,

ξ(t) = ∂t, ξ(ϕ) = ∂ϕ, (5.6)

we have two conserved quantities,

E : = −gµνξµ(t)ẋ
ν , (5.7)

L : = gµνξ
µ
(ϕ)ẋ

ν , (5.8)

and the Hamiltonian reduces to

H =
1

2
gṙ2 − 1

2f
[E2 − L2fr−2]

= g

[
1

2
ṙ2 + V (r)

]
, (5.9)

where

V (r) := − 1

2fg
[E2 − L2fr−2]. (5.10)

Defining F (r) := E2 − L2fr−2, the conditions for the circular orbit are

ṙ = 0, (5.11)

V ′(r) = −1

2

[(
1

fg

)′

F +
1

fg
F ′

]
= 0. (5.12)

The former gives V (r) = 0 from Eq. (5.5) and so F (r) = 0 from 1/(fg) ̸= 0. Then
the latter implies F ′(r) = 0 and the radius of the photon spheres is specified by the
condition

(fr−2)′ = 0. (5.13)

Circular orbits are classified into two kinds, stable and unstable orbits. They correspond
to the conditions V ′′(r) > 0 and < 0, respectively, at the radius. Using the fact F =
F ′ = 0 at the radius, we have

V ′′(r) = −1

2
gf−1F ′′(r). (5.14)

Thus the (in)stability is established by (fr−2)′′ > 0 (< 0) uniquely and we get Eq. (5.4).

The conditions do not depend on the component g(r) of the metric.
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5.2 Accretion problem in D-dimensional spacetime

and its critical point and sonic point

Here, assuming three conservation laws and the metric (5.1), the formulation of the
accretion problem is given. The definitions of the critical point and the sonic point are
also given in the subsequent subsections.

We assume three conservation equations, i.e., the first law, continuity equation and
energy-momentum conservation with perfect fluid:

dh = Tds+ n−1dp (5.15a)

∇aJ
a = 0 (5.15b)

∇aT
a
b = 0, (5.15c)

where Ja := nua is the number current and T ab = nhuaub+pδ
a
b is the energy-momentum

tensor of the perfect fluid. The quantities h, T, s, n, p and ua represent the enthalpy per
particle, the temperature, the entropy per particle, the number density, the pressure
and the 4-velocity of the fluid, respectively. The system of the equations means the
adiabatic condition of the fluid through Eqs. (5.15a), (5.15b) and (5.15c) contracted
with ub. Furthermore, the stationary and spherically symmetric state of the flow implies
that the entropy is constant over the whole spacetime, allowing us to write h = h(p) or

h = h(n). (5.16)

Integrating Eq. (5.15b), we have

jn := 4π(fg)1/2rD−2nur = const, (5.17)

from the symmetry of the fluid and the spacetime metric (5.1). The quantity jn repre-
sents the particle flux of the fluid. The contraction of Eq. (5.15c) with ξb(t) = ∂bt gives
another independent equation. Its integration leads to

jϵ := 4π(fg)1/2rD−2nhur
√
f + fg(ur)2 = const, (5.18)

for the energy flux. Combining Eqs. (5.16), (5.17) and (5.18), we get(
jϵ
jn

)2

= h2
[
f + fg(ur)2

]
(5.19)

= h2(n)

[
f(r) +

(jn/4π)
2

r2(D−2)n2

]
= const. (5.20)

Then, defining the constant µ := jn/4π, the problem is formulated into the algebraic
equation:

Fµ(r, n) := h2(n)

[
f(r) +

µ2

r2(D−2)n2

]
= const. (5.21)

The physical meaning of µ is an accretion rate. Given µ, the function is specified and
the constant on the right-hand side (RHS) of Eq. (5.21) determines an accretion flow.
Note that this equation does not depend on the rr-component grr of the metric.
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5.2.1 Critical point

From the system (5.21), the stationary accretion solutions are described as curves on the
phase space (r, n). These curves can be obtained by integrating the ordinary differential
equation,

d

dλ

(
r
n

)
=

(
∂n

−∂r

)
Fµ(r, n), (5.22)

as orbits with a parameter λ. Then a notion of a critical point (or stationary point as
in dynamical systems) at which the RHS of Eq. (5.22) vanishes arises and its conditions
are {

∂nFµ = 0 (5.23a)

∂rFµ = 0. (5.23b)

These are equivalent to 
v2s

(
f +

µ2

r2(D−2)n2

)
− µ2

r2(D−2)n2
= 0 (5.24a)

f ′ − 2(D − 2)

r

µ2

r2(D−2)n2
= 0, (5.24b)

respectively, where the sound speed vs = vs(n) is defined by

v2s :=
∂ lnh

∂ lnn
. (5.25)

In the following, (rc, nc) denotes the critical point.

Types of critical points

The linearization of Eq. (5.22) around a critical point allows us to classify the critical
point into two types. The one is a saddle point and the other is an extremum point.
A saddle point is a point, in this case, through which two solution orbits pass. On the
other hand, orbits in vicinity of an extremum point are closed curves around the point.

The linearization matrix Mc is given by

Mc :=

(
∂r∂n ∂2n
−∂2r −∂r∂n

)
Fµ(rc, nc). (5.26)

This matrix, being real, 2×2 and traceless, has two eigenvalues with opposite signs. The
subscript c denotes the values at (rc, nc). If the determinant of the matrix is negative
(positive), the eigenvalues are real (pure imaginary). As in dynamical systems, real
eigenvalues imply that the critical point is a saddle point. For imaginary eigenvalues,
the orbits around the critical point are periodic in linear order. However, because they
are the contours of the real function Fµ(r, n), the orbits must be closed loops. Therefore
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the imaginary eigenvalues imply an extremum point. We can write the determinant
explicitly,

detMc = − 2

D − 2
rc(f

′
c)

2h
4
c

n2
c

F ′
µ(rc), (5.27)

where

Fµ(r) := v2s(n̄(r)) [1 + 2(D − 2)a(r)]− 1,

n̄(r) :=

√
D − 2

2

2|µ|√
rD+1f ′(r)

,

a(r) :=
f(r)

rf ′(r)
.

Then we have a simple relation:

saddle (extremum) point⇔ F ′
µ(rc) > 0 (< 0) (5.28)

5.2.2 Sonic point

Although a critical point is a mathematical notion defined on the phase space (r, n) of
a dynamical system, this also is closely related to a physical entity, a sonic point. We
define a sonic point and see its relation with a critical point in the following.

The transonic flow and the sonic point

In an accretion problem, one may expect that the fluid element at infinity, which falls
with small 3-velocity, becomes faster and faster as approaching the source of the gravity.
If the acceleration is sufficient, the velocity, initially smaller than its local sound speed
vs (subsonic) at infinity, would become greater than vs (supersonic) at the point near
the source. Such a fluid flow is said to be transonic and here we call any flow which
has both sub- and supersonic regions transonic. Since, in our accretion problem, a fluid
accretion flow is a solution orbit of Eq. (5.21), we define a sonic point of a transonic flow
as follows.

Definition 5.2.1 (Sonic point of a flow). For a stationary and spherically symmetric
accretion flow on the spacetime metric (5.1), let n = n(r) be its corresponding solution
orbit on the phase space (r, n). Let v = v(r) be the radial component of the 3-velocity
of the fluid measured by static observers. A sonic point (rs, ns) of the accretion flow is
defined as a point on the phase space satisfying the condition,

v2

v2s

∣∣∣∣
(rs,n(rs))

= 1, (5.29)

where ns = n(rs).
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The sonic point and the critical point

The critical point mentioned above is closely related to the sonic point and we present
a lemma.

Lemma 5.2.2. Assume the EOS of the fluid satisfies the condition

0 < v2s(n) < 1, (5.30)

∂nv
2
s(n) ≥ 0. (5.31)

That is, the sound speed of the fluid is subluminal and monotonically increasing with
respect to n. For a physical transonic accretion flow in our accretion problem, its sonic
point coincides with a critical point on the phase space, which is a saddle point.

Proof. For the flow, the radial component of its 3-velocity v(r) observed by static ob-
servers is given by

uµ∂µ =
1√

1− v2
(e0 + ve1), (5.32)

where e0 := f−1/2∂t is the observers’ 4-velocity and e1 := g−1/2∂r is a unit radial vector
orthogonal to it. Then, we have

v2(r) =
µ2

µ2 + f(r)r2(D−2)n2(r)
(5.33)

along the orbit n = n(r) using Eq. (5.17), −1 = uµuµ and µ = jn/4π. On the other
hand, letting n = ñ(r) be a curve satisfying the condition ∂nFµ = 0, or equivalently
Eq. (5.24a), we have the relation

v2s(ñ(r)) =
µ2

µ2 + f(r)r2(D−2)ñ2(r)
(5.34)

for the sound speed vs. From the two equations above and the assumption ∂nv
2
s ≥ 0,

if n(r0) > ñ(r0) for radius r = r0, v
2(r0) < v2s(ñ(r0)) ≤ v2s(n(r0)), i.e., subsonic. In the

same way, the flow is supersonic at the radius if n(r0) < ñ(r0). This means that the
curve n = ñ(r) divides the phase space into subsonic and supersonic region and the sonic
point must be the point at which the orbit n = n(r) and the curve n = ñ(r) cross each
other. (Conversely, such a crossing point must be the sonic point of the flow.) However,
if ∂rFµ ̸= 0 at the crossing point, such an orbit typically gets 2-valued (so unphysical) at
least locally because dn/dr = ∂rFµ/∂nFµ = ±∞ there from Eq. (5.22). In the current
paper, we require |dn/dr| <∞ as one of the conditions of a physical flow. Then, it is said
that physically acceptable transonic orbits cross the curve of ∂nFµ = 0 only at a critical
point and so the sonic point coincides with the critical point. Furthermore, according to
the discussion in Sec. 5.2.1, the critical point is a saddle point because orbits can pass
the point. Finally, we must show that the function ñ(r) is indeed single-valued. We can
separate Eq. (5.34) into a function of ñ and the rest,

N (ñ(r)) = µ−2f(r)r2(D−2),

where N (n) := (v−2
s (n)− 1)n−2. (5.35)
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The conditions (5.30) and (5.31) imply ∂nN (n) < 0, N (n) → 0 (n → ∞) and N (n) →
∞ (n → 0). Therefore, the inverse function N−1 : (0,∞) → (0,∞) exists and ñ(r) can
be expressed as a single-valued function,

ñ(r) = N−1
(
µ−2f(r)r2(D−2)

)
. (5.36)

5.3 Photon gas accretion and its critical point

In this section, we will construct the accretion problem of ideal photon gas in D dimen-
sions and find the condition of its critical point based on discussions in the previous
section.

5.3.1 The EOS of ideal photon gas in d dimensional space

To formulate the accretion of ideal photon gas in D dimensions, we must know its
equation of state at first. Here we construct the EOS.

From the discussion of black body radiation in a d dimensional space, we have a
relation

pV =
1

d
U, (5.37)

where the thermodynamical variables p, V and U are the pressure, the volume and the
energy of a system, respectively. This relation gives(

∂U

∂V

)
S

≡ −p = −1

d

U

V
, (5.38)

where S denotes the entropy. Integrating the both sides concerning U and V

UV 1/d = C(S), (5.39)

with the function C(S) being an arbitrary function. Then, the enthalpy H of the black
body radiation is

H = U + pV =
d+ 1

d
U ∝ V −1/d. (5.40)

Note that the proportionality coefficient of the last equality can depend on the entropy S.
Comparing this result with the usual convention of a polytrope index in the expression
per particle, we conclude that the EOS of ideal photon gas is

h =
kγ

γ − 1
nγ−1 (5.41)

with

γ =
d+ 1

d
(5.42)
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and k is an arbitrary function of the entropy. It can be revealed that the quantity k is
a constant constructed by the Planck constant and a numerical factor by the argument
about photon gas from statistical mechanics. However, the explicit form of k is not
relevant to the proof of the theorem. Since the entropy of the fluid is constant over the
spacetime, k is also constant. This is relevant to the proof.

5.3.2 The critical point of photon gas accretion

Lemma 5.3.1. For the accretion of ideal photon gas in our accretion problem, the radius
rc of a critical point is specified by

(fr−2)′ = 0 (5.43)

and the corresponding critical density nc is

nc =

√
D − 2

f(rc)

|µ|
rD−2
c

. (5.44)

The type of the critical point is classified by the equation

saddle point (extremum point) ⇔ (fr−2)′′ < 0 (> 0) (5.45)

at the radius.

Proof. The condition for a critical point (5.24a), (5.24b) can be transformed tov2s [2(D − 2)f + rf ′]− rf ′ = 0 (5.46a)

f ′ − 2(D − 2)

r

µ2

r2(D−2)n2
= 0. (5.46b)

From Eq. (5.41), the sound speed of ideal photon gas is constant,

v2s =
∂ lnh

∂ lnn
= γ − 1. (5.47)

Substituting this, Eq. (5.46a) determines the position r of the critical point,

0 = (γ − 2)r3(fr−2)′, (5.48)

where the formula Eq. (5.42) and the fact d = D − 1 are used in the last equality. The
corresponding number density at the critical point is uniquely obtained from Eq. (5.46b)
using the relation f ′(rc) = 2f(rc)/rc. The condition for a saddle or extremum point was
given in 5.2.1. In this case, the value of the function F ′

µ at a critical point is written in
the form,

F ′
µ = −2(γ − 1)(D − 2)rf(f ′)−2(fr−2)′′, (5.49)

where the fact (fr−2)′ = 0 at a critical point is used. Clearly, the sign of the value F ′
µ

is opposite to (fr−2)′′ and the proof has been done.

Note that the sound speed vs satisfies the subluminal condition 0 < v2s < 1 and the
monotonically increasing condition ∂nv

2
s ≥ 0 from v2s = γ − 1 = 1/d and d = D− 1 ≥ 2.
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5.4 Proof of Theorem: The correspondence among

the points

In this section, we see the correspondence among the three objects; the photon sphere,
the critical point and the sonic point of our ideal photon gas accretion problem and
complete the proof of the main theorem.

From Lemma 5.1.1 and 5.3.1, we can establish the following corollary about the
correspondence between the photon spheres and the critical points of ideal photon gas
accretion.

Corollary 5.4.1. If the spacetime has photon spheres, there exists a critical point of
the same radius for each of the spheres. Furthermore, for an unstable photon sphere,
the critical point on the same radius is always a saddle point while for a stable one, the
corresponding critical point is an extremum point.

The critical point radius rc depends on µ in general. However, the photon gas
accretion is interesting in the sense that its critical radius does not depend on µ and this
fact is responsible for the correspondence.

Ideal photon gas satisfies the condition of the EOS in Lemma 5.2.2 since v2s(n) = γ−1
and the lemma can be applied. Then we have the corollary about the relation between
critical points and sonic points.

Corollary 5.4.2. For any physical transonic accretion flow of the ideal photon gas
accretion, its sonic point is a critical and saddle point.

Then, the above two corollaries complete the proof of Theorem 5.0.1.

5.5 Summary

In this chapter, first we have derived the conditions for photon spheres, the radius and the
stability of the corresponding circular orbit of null geodesics. Next, we have generalized
the accretion analysis given by Chaverra and Sarbach [24] to arbitrary dimensions and
discussed the relation between sonic points and critical points in general. Then, for ideal
photon gas, it has been shown that radius of a sonic point always coincides with (one
of) photon spheres for physical solutions of the accretion problem.

We can say that a photon sphere is indeed special even for the radial accretion because
the flow can be interpreted as a set of geodesic motions of photons and some of the
photons must go round on the sphere. However, the sound speed and the fluid velocity
are macroscopic quantities. The reason for the correspondence is not yet so clear. Since
the correspondence seems to originate from the microscopic construction of radiation
fluid, we conjecture that the correspondence will be seen in more general situations,
such as axially symmetric steady-state accretion flows onto stationary rotating black
holes.

The correspondence can be broken if the effects of the back reaction is included.
However, since photon spheres are usually located near the source of gravity, it would
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be justified to neglect the self-gravity of the fluid and the correspondence still holds in
that case.

It should be noted that the present discussion applies not only to accretion but also
to outflow or stellar wind as long as it is steady-state and spherically symmetric. See
Ref. [38] for example.
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Chapter 6

Sonic point/photon sphere
correspondence: rotational flow

Originally published as:
Y. Koga and T. Harada, Phys. Rev. D 98 (2018) 024018.

Copyright (2018) by the American Physical Society.

The accretion problem formulated in Chap. 5 are for spherically symmetric fluid
flow in a spherically symmetric spacetime. Although the sonic point/photon sphere
(SP/PS) correspondence for radiation fluid flow is a surprising result and is generic in
the sense that the spacetime metric and the dimension are arbitrary, accretion flows
in real astrophysical situations are rarely spherically symmetric. Even for the nearly
spherically symmetric central objects, the accretion flows onto them are usually rotating.

In this chapter, we show there exists the correspondence between sonic points and
photon spheres in the case of rotational accretion of ideal photon gas. In the first half,
we construct our rotational accretion flow model which forms a disk on an equatorial
plane of D-dimensional static spherical symmetric spacetime (D ≥ 3) and analyze its
sonic points for a general equation of state (EOS) of fluid. The metric is given by

ds2 = −f(r)dt2 + g(r)dr2 + r2dΩ2
D−2 (D ≥ 3), (6.1)

where the condition 0 < f, g < ∞ is assumed and dΩ2
D−2 is the unit (D − 2)-sphere

metric given by

dΩ2
D−2 = dθ21+ · · · +sin2 θ1 · · · sin2 θD−4dθ

2
D−3

+ sin2 θ1 · · · sin2 θD−3dϕ
2. (6.2)

The polar and the azimuthal angle coordinates are denoted by θi (i = 1, ..., D − 3) and
ϕ, respectively. In the latter half, applying the analysis to radiation fluid, we show there
exists the SP/PS correspondence in the rotational accretion. This is the main theorem:

Theorem 6.0.1. For a physical transonic accretion flow of ideal photon gas fluid of our
accretion problem Eq. (6.20), its sonic point(s) must be on (one of) the unstable photon
sphere(s) of the spacetime Eq. (6.1).
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We start with the construction of our accretion disk model and the formulation of
the problem and present the definition of critical point and sonic point and their relation
in Sec. 6.1. In Sec. 6.2, we explicitly analyze the conditions for the critical point and
its classification without specifying the EOS. A fact used in this section is proven in
Sec. 6.3. In Sec. 6.4, Applying the EOS of the ideal photon gas (or, radiation fluid) to
the analysis, we derive the conditions about the critical point and its classifications in
that case. Then, recalling the conditions for the photon spheres in the previous chapter,
we see that there also exists the correspondence between the sonic point and the photon
sphere in the rotational accretion problem. The summary is given in Sec. 6.5.

6.1 Rotating accretion disk, critical point and sonic

point

Here assuming three conservation laws and the metric (6.1), we formulate the accretion
problem. The conditions for the critical point and the relation between the critical points
and the sonic points are also given in the subsequent subsections.

We assume the following three equations, the first law of thermodynamics, continuity
equation and energy-momentum conservation with perfect fluid:

dh = Tds+ n−1dp (6.3a)

∇aJ
a = 0 (6.3b)

∇aT
a
b = 0, (6.3c)

where Ja := nua is the number current and T ab = nhuaub+pδ
a
b is the energy-momentum

tensor of the perfect fluid. The quantities h, T, s, n, p and ua represent the enthalpy per
particle, the temperature, the entropy per particle, the number density, the pressure and
the 4-velocity of the fluid.

6.1.1 Configuration of the accretion disk

We assume several conditions for the accretion disk. Although there are many other
possibilities about disk thickness and the vertical equilibrium, we follow the simplest
model used by Abraham, Bilic and Das [40]. Although their model is based on the axial
coordinate, z, in rotational spacetime, however, we here choose the polar coordinate, θi,
in spherical spacetime. In this sense, strictly speaking, our model is not the same as
their model.

We assume the following conditions for the accretion disk:

1. The disk lying on the equatorial plane has symmetries which respects the back-
ground geometry;

• Stationarity along the Killing vector ξ(t) = ∂t

• Rotational symmetry along the Killing vector ξ(ϕ) = ∂ϕ
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• Reflection symmetry respective to the equatorial plane

2. The matter distribution is uniform in the θi-direction: The number density n, the
pressure p, the entropy and the components of the velocity uµ are independent of
θi

3. The disk is sufficiently thin so that we can ignore terms of the second or higher
order of θi − π/2 compared to that of the zero-th order.

4. The equilibrium between the inside and the outside of the disk surface in the polar
direction is achieved by pressure of external rarefied gas.

The equatorial plane here means the 2-plane (r, ϕ) with all the polar angles θi = π/2 (i =
1, 2, ..., D − 3) and the disk consists of the 2-dimensional plane with the (D − 3)-
dimensional (sufficiently small) thickness. Note that the disk surface is a spatial (D−2)-
space of θi = const. and uθi = 0 everywhere in the disk as the consequence of conditions 1
and 2.

In accretion problems, we are interested in the accretion rate and it is also important
for analysis of the dynamics. Consider t = const. hypersurface and the disk volume ΣD

on the hypersurface. Let Σr be the region inside the radius r in ΣD. The total particle
number N(t, r) in the volume Σr at the time t is given by

N(t, r) :=

∫
Σr

nuµdΣµ. (6.4)

Then the accretion rate Ṅ(t, r) of the particle number into the region Σr is given by

Ṅ(t, r) = −
∫
Sr

nur
√
fgrD−2dΩD−2 (6.5)

where Sr is the cross-section of ΣD with the sphere of radius r and dΩD−2 is the volume
element of (D− 2)-dimensional unit sphere. From stationarity of the disk, we can prove
the constancy of the accretion rate about both time t and radius r. Then we have the
following expression for the integration of the continuity equation:

jn(r) :=

∫
Sr

nur
√
fgrD−2dΩD−2 = const. (6.6)

This is the constancy of the particle number flux jn(r).

6.1.2 Construction of the accretion problem

The system of Eqs. (6.3a), (6.3b) and (6.3c) implies the adiabatic condition of the fluid,
or equivalently, uµ∂µs = 0. The conditions for the disk, the constancy of the entropy in
θi-direction and the stationarity and the rotational symmetry of the matter distribution
mean ∂θis = ∂ts = ∂ϕs = 0 and the adiabatic condition reduces to the condition ∂rs = 0.
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Therefore the entropy of the fluid is constant over the disk volume and independent of
the time. Then we can write the enthalpy as a function of the number density,

h = h(n). (6.7)

The projection of the energy-momentum conservation equation ∇µT
µ
ν = 0 onto the

direction of a Killing vector ξν generally gives conservation of the quantity huµξ
µ along

the fluid motion if the matter distribution has the symmetry associated with the Killing
vector:

uµ∇µ (huνξ
ν) = 0 (6.8)

The disk of our accretion problem has symmetries associated with the two Killing vectors,
ξ(t) = ∂t and ξ(ϕ) = ∂ϕ. Therefore we immediately get the following two integrals of
motion,

hut = const, (6.9)

huϕ = const, (6.10)

corresponding to ξ(t) and ξ(ϕ), respectively. These are the specific energy and the specific
angular momentum per particle and constant over the whole region in the disk due to
the assumptions on the disk.

From the assumption that n and ur are independent of all the polar angle θi, the
particle number flux jn is calculated as,

jn(r) = 2πΘ
√
fgrD−2nur, (6.11)

where 2πΘ is the (D− 2)-dimensional solid angle subtended by the disk. Together with
Eq. (6.9)-(6.10), we also have constancy of the energy flux and the angular momentum
flux,

jϵ(r) := −2πΘ
√
fgrD−2nhutu

r = const, (6.12)

jϕ(r) := 2πΘ
√
fgrD−2nhuϕu

r = const. (6.13)

Thus, the integration of the conservation equations leads to the constancy of jn, jϵ and
jϕ

From the assumption that the disk is sufficiently thin, we estimate the values of the
components of the 4-velocity through

−1 = gµνu
µuν = −f

(
ut
)2

+ g (ur)2 + r2
(
uϕ

)2
, (6.14)

where it should be noted that gϕϕ → r2 in the limit of geometrically thin disk. Intro-
ducing the fluid’s angular velocity Ωf := uϕ/ut, we have(

f − r2Ω2
f

) (
ut
)2

= 1 + g (ur)2 . (6.15)

Using Eq. (6.15), we obtain(
jϵ
jn

)2

= h2u2t = h2
[
f + fg (ur)2

] f

f − r2Ω2
f

= const. (6.16)
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The angular velocity Ωf can be expressed as

Ωf =
uϕ

ut
= − f

r2
uϕ
ut

= ωfr−2 (6.17)

in the limit of geometrically thin disk. The parameter ω := jϕ/jϵ = −uϕ/ut is constant
due to Eqs. (6.12)-(6.13). We can write (ur)2 in Eq. (6.16) as

(ur)2 =
µ2

fgr2(D−2)n2
, (6.18)

where Eq. (6.11) is used and the parameter µ := jn/2πΘ is constant from Eq. (6.6).
Substituting the above results into Eq. (6.16), we finally get(

jϵ
jn

)2

= h2
[
f +

µ2

r2(D−2)n2

]
1

1− ω2fr−2
= const. (6.19)

The function can be seen as a function of two variables, r and n, and the conservation
equations imply its constancy. As a consequence, we have constructed the master equa-
tion of the accretion problem by the following algebraic equation with two parameters,
µ and ω:

Fµ,ω(r, n) := h2(n)

[
f(r) +

µ2

r2(D−2)n2

]
1

1− ω2f(r)r−2
= const. (6.20)

The level curves satisfying the master equation on the phase space (r, n) are the solution
curves.

Given µ and ω, the function Fµ,ω(r, n) is specified and the constant in the rightmost
side of Eq. (6.20) determines the accretion flow, or equivalently, the solution curve on
the phase space (r, n). Once the distribution of the number density n is obtained, the
equations jn = 2πΘµ and jϕ/jϵ = ω give the velocity distribution. It is worth noting that
the master equation coincides with that of the spherically symmetric accretion problem
in Chap. 5 in the irrotational case ω = 0 and does not depend on the (r, r)-component
of the metric g(r).

6.1.3 Critical point

Here we give the definition of the critical point and its classification by reformulating the
problem in terms of a dynamical system on the phase space (r, n). The analysis of this
kind was introduced in an accretion problem by Chaverra and Sarbach [24]. Generally,
the critical point plays an important role in accretion problems and is closely related to
the sonic point of the flow.

Definition of critical point

In our accretion problem Eq. (6.20), the solutions are described as the level curves of
the function Fµ,ω(r, n) on the phase space (r, n). These curves can be also obtained by
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integrating the ordinary differential equation,

d

dλ

(
r
n

)
=

(
∂n

−∂r

)
Fµ,ω(r, n), (6.21)

as orbits with a parameter λ. This is reformulation of the master equation Eq. (6.20)
in terms of a dynamical system with the right-hand side (RHS) being the Hamiltonian
vector field with respect to the Hamiltonian Fµ,ω(r, n). Then, the notion of a critical
point (or stationary point as in a dynamical system) at which the RHS of Eq. (6.21)
vanishes arises and its conditions are{

∂nFµ,ω = 0 (6.22a)

∂rFµ,ω = 0. (6.22b)

We define a critical point (rc, nc) of the accretion problem as a point on the phase space
(r, n) at which the conditions Eqs. (6.22a)-(6.22b) are satisfied.

Types of critical points

The linearization of Eq. (6.21) around a critical point allows us to classify the critical
point into two types. The one is a saddle point and the another one is an extremum
point. A saddle point is a point, in this case, through which two solution orbits pass.
On the other hand, orbits in vicinity of an extremum point are closed curves around the
point.

The linearization matrix Mc is given by

Mc :=

(
∂r∂n ∂2n
−∂2r −∂r∂n

)
Fµ,ω(rc, nc). (6.23)

This matrix, being real, 2× 2 and traceless, has two eigenvalues with opposite signs. If
the determinant of the matrix,

detMc =
(
∂2rFµ,ω

)
c

(
∂2nFµ,ω

)
c
− (∂r∂nFµ,ω)

2
c , (6.24)

where the subscript c denotes the values at (rc, nc), is negative (positive), the eigenvalues
are real (pure imaginary). As in a dynamical system, the real eigenvalues imply that
the critical point is a saddle point. For the imaginary eigenvalues, the orbits around
the critical point are periodic in linear order. However, because they are the contours
of the real function Fµ,ω(r, n), the orbits must be closed loops. Therefore the imaginary
eigenvalues imply an extremum point.

6.1.4 Sonic point

The sonic point is the point on the phase space (r, n) at which the squared 3-velocity
v2 of the fluid equals to the squared sound speed v2s , or in other words, Mach number
equals to one (sometimes referred to as sonic surface because it forms a surface in the
physical space). The sonic point usually coincides with the critical point in accretion
problem in a reasonable frame. Here we introduce the fluid co-rotating frame (FCRF)
and observe that the 3-velocity v2 in the FCRF gives the coincidence between the sonic
point and the critical point.
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Fluid co-rotating frame (FCRF)

We refer to the fluid co-rotating frame as the frame staying at the same radius but
rotating with the same angular velocity Ωf of the fluid. The 4-velocity uo of an observer
at rest in this frame is defined as

uo := γ (∂t + Ωf∂ϕ) (6.25)

where Ωf := uϕ/ut is the fluid’s angular velocity. We consider the observer on the
equatorial plane. The factor γ is determined by the normalization of the 4-velocity,
gµνu

µ
ou

ν
o = −1, and we have

γ−2 = f − r2Ω2
f . (6.26)

The squared 3-velocity v2 of the fluid in the FCRF is given by

1

1− v2
= (gµνu

µuνo)
2 = 1 +

µ2

frδn2
(6.27)

or

v2 =
µ2

µ2 + frδn2
, (6.28)

where δ := 2(D − 2) and we have used the normalization condition of the 4-velocity,
uµuµ = −1.

Sonic point of a transonic flow and critical point

In an accretion problem, the fluid flow can transit from subsonic state (i.e. state where
its 3-velocity is smaller than its local sound speed vs) to supersonic state (i.e. state where
the 3-velocity is greater than vs) and vice versa. Such a fluid flow is said to be transonic
and here we call any flow which has both subsonic and supersonic regions transonic flow.
The point at which the transition between subsonic and supersonic states of a transonic
flow occurs is called sonic point. Since, in our accretion problem, a fluid accretion flow
is a solution orbit of Eq. (6.20), we define a sonic point of a transonic flow as follows.

Definition 6.1.1 (Sonic point of a flow). For a transonic accretion flow of our accretion
problem Eq. (6.20), let n = n(r) be the solution curve on the phase space (r, n). Let
v = v(r) be the 3-velocity of the fluid at radius r measured in the FCRF. A sonic
point (rs, ns) of the accretion flow is defined as a point on the phase space satisfying the
condition,

v2

v2s

∣∣∣∣
(rs,n(rs))

= 1, (6.29)

where ns = n(rs).
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Let us calculate explicitly the one of the conditions for the critical point, ∂nFµ,ω(r, n) =
0,

0 = ∂nFµ,ω

=
2h2

n

µ2

rδn2

(
v2s(n)

[
1 + f

rδn2

µ2

]
− 1

)
1

1− ω2fr−2
.

(6.30)

Therefore, we can see that the sound speed v2s(n) := ∂ lnh/∂ lnn can be always written
as

v2s(n) =
µ2

µ2 + frδn2
(6.31)

on the point (r, n) satisfying the condition ∂nFµ,ω(r, n) = 0 including the critical point.
Conversely, if Eq. (6.31) is satisfied on a given point (r, n), the condition ∂nFµ,ω(r, n) = 0
holds. From these facts, we can show that a sonic point of a physically acceptable tran-
sonic accretion flow is identified with a critical point of saddle type as follows. Consider
a physical transonic accretion flow which is specified by the solution curve n = n(r).
The squared 3-velocity v2 of the flow at radius r is given by v2(r) = µ2/

(
µ2 + frδn2(r)

)
from Eq. (6.28), while the squared sound speed v2s at the radius is v2s (n(r)). Therefore
the sonic point (rs, ns) of the flow is obtained from the condition v2(rs)/v

2
s (n(rs)) = 1,

or equivalently,

v2s (n(rs)) =
µ2

µ2 + frδn2(rs)
(6.32)

and ns = n(rs). Since the point (rs, ns) satisfies the condition Eq. (6.31), we have
∂nFµ,ω(rs, ns) = 0 as mentioned below Eq. (6.31). Then we have the following three
cases concerning the sonic point (rs, ns):

1. ∂rFµ,ω(rs, ns) ̸= 0.

2. ∂rFµ,ω(rs, ns) = 0 (i.e., the sonic point is a critical point because of the fact
∂nFµ,ω(rs, ns) = 0).

(a) The corresponding critical point is of saddle type.

(b) The corresponding critical point is of extremum type.

In the case 1, the curve n = n(r) typically gets double-valued (so unphysical) at least lo-
cally because dn/dr = −∂rFµ,ω(rs, ns)/∂nFµ,ω(rs, ns) = ±∞ there from Eq. (6.21). An-
other possibility with diverging density gradient, which is physically acceptable, is a tran-
sonic shock. In the current paper, we require the finite density gradient, |dn/dr| <∞, as
one of the conditions of a physical flow, thus excluding a transonic shock. Therefore the
case 1 is not allowed for the flow n = n(r) and the sonic point must be a critical point.
However, the case 2b is also excluded because any solution curve, being a contour of
Fµ,ω originally, cannot pass the critical point of extremum type. Then we have only the
case 2a for the sonic point (rs, ns) of the physically acceptable transonic flow n = n(r).
As a consequence, we have the following theorem:
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Theorem 6.1.2. For a physical transonic accretion flow in our accretion problem, its
sonic point coincides with a critical point on the phase space which is a saddle point.

6.2 Conditions for critical point and its classification

We explicitly calculate the conditions for the critical point Eqs. (6.22a)-(6.22b) and its
classification by the sign of the determinant of the matrix Eq. (6.24) without specifying
the EOS of the fluid in the following.

The conditions for the critical point Eqs. (6.22a)-(6.22b) can be explicitly written as

∂nFµ,ω =
2h2

n

µ2

rδn2

(
v2s

[
1 + f

rδn2

µ2

]
− 1

)
Ω = 0, (6.33)

∂rFµ,ω = h2fΩ

[
(fΩ)′

fΩ
− µ2

frδn2

(
rδΩ−1

)′
rδΩ−1

]
= 0, (6.34)

where the function Ω(r) is defined by

Ω(r) :=
1

1− ω2fr−2
. (6.35)

It should be noted that Ω(r) > 0 is always satisfied because of Eq. (6.20).
We can prove that

(
rδΩ−1

)′ ̸= 0 and (fΩ)′ ̸= 0 at the critical point (see Sec. 6.3) and

therefore Eq. (6.34) is solved for n2 with the help of
(
rδΩ−1

)′
≠ 0 and (fΩ)′ ̸= 0. Then

we get the condition for the radius rc of critical point eliminating the number density n
from Eqs. (6.33)-(6.34) as follows.

Fµ,ω(r) := v2s (n̄(r))

[
1 +

(
rδΩ−1

)′
rδΩ−1

fΩ

(fΩ)′

]
− 1 = 0, (6.36)

n̄(r) :=
|µ|

rδΩ−1

√
(rδΩ−1)′

(fΩ)′
(6.37)

Once the radius rc is obtained, the number density nc of the critical point is uniquely
determined by

nc = n̄(rc). (6.38)

The determinant of the matrix Mc can be expressed in terms of the function Fµ,ω(r)
defined above:

detMc = −
(
rδΩ−1

)
c

(rδΩ−1)′c

4h4c
n2
c

((fΩ)′c)
2F ′

µ,ω(rc) (6.39)

Therefore, using the fact that (rδΩ−1)′c and (fΩ)′c have the same sign, we can uniquely
classify the critical point through the sign of the derivative of the function F ′

µ,ω and the
factor (fΩ)′ at the critical radius:

saddle (extremum) point⇔ (fΩ)′cF
′
µ,ω(rc) > 0 (< 0) (6.40)
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6.3 Nonzero terms on the critical point

Here we show that
(
rδΩ−1

)′ ̸= 0 and (fΩ)′ ̸= 0 at the critical point as mentioned in
Sec. 6.2. Consider the case in which the two conditions, Eq. (6.34) and(

rδΩ−1
)′
= 0, (6.41)

are satisfied, simultaneously. Clearly, this is equivalent to the conditions,{ (
rδΩ−1

)′
= 0 (6.42a)

(fΩ)′ = 0. (6.42b)

Eliminating Ω from the above two equations, we get

(frδ)′ = 0. (6.43)

This condition solely determines the critical radius rc. Once the radius rc is obtained,
we can specify the parameter ω2 from the above equations. From Eq. (6.43), we find the
expression,

(fr−2)′ = (frδ−(2+δ))′ = frδ(r−(2+δ))′ = −(2 + δ)fr−3, (6.44)

for r = rc. Substituting the result into Eq. (6.42a), we get, at r = rc,

0 =
(
rδΩ−1

)′
= rδ−1

(
δ + 2ω2fr−2

)
. (6.45)

By definition, both the terms in the bracket must be positive and we do not have the
parameter ω satisfying the condition. Therefore the conditions for the critical point are
always accompanied by the additional conditions

(
rδΩ−1

)′ ̸= 0 and (fΩ)′ ̸= 0.
Note that the above proof relies on the only one of the critical conditions Eq. (6.34),

∂rFµ,ω(r, n) = 0. This implies that the conditions
(
rδΩ−1

)′ ̸= 0 and (fΩ)′ ̸= 0 hold
anywhere on the curve Γ defined by the equation ∂rFµ,ω(r, n) = 0 and the curve Γ can
be expressed by n = n̄(r).

6.4 Correspondence between sonic point and photon

sphere for photon gas accretion

In this section, we analyze the critical point in the case of ideal photon gas and prove
Theorem 6.0.1.

We derived the EOS of ideal photon gas in arbitrary spatial dimensions d in Eq. (5.41)
in Chap. 5. It is given by

h(n) =
kγ

γ − 1
nγ−1 (6.46)

where the index γ is related to the dimension by γ = (d+ 1)/d. The sound speed v2s(n)
is then computed as

v2s(n) :=
∂ lnh

∂ lnn
= γ − 1 =

1

d
=

1

D − 1
. (6.47)
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6.4.1 Critical point

For the conditions for the critical point (rc, nc) and its classification for the ideal photon
gas accretion, we have the following lemma.

Lemma 6.4.1. For the accretion of ideal photon gas in our accretion problem, radius
rc of a critical point is specified by

(fr−2)′ = 0 (6.48)

and the corresponding critical density nc is

nc = |µ|

√
δ

rδ+1
c f ′

c

. (6.49)

The type of the critical point is classified by the equation

saddle (extremum) point⇔
(
fr−2

)′′
r=rc

< 0 (> 0). (6.50)

Proof. The critical radius rc is determined by Eq. (6.36). Substituting the sound speed
of radiation fluid into Eq. (6.47), the condition for the critical radius rc is given by

Fµ,ω = − 1

δ + 2

fΩ

(fΩ)′
δ + 2ω2fr−2

fr−2 (1− ω2fr−2)

(
fr−2

)′
= 0. (6.51)

As mentioned above Eq. (6.36), (fΩ)′ ̸= 0 is always satisfied at critical point. Therefore,
the critical radius is obtained by solving the equation(

fr−2
)′
= 0. (6.52)

Once the radius rc is obtained, we get the corresponding number density nc from
Eq. (6.38),

nc = |µ|

√
δ

rδ+1
c f ′

c

, (6.53)

where we used the facts Ω′(rc) = 0 and f ′
c = 2fc/rc. This expression is also independent

of the parameter ω.
From Eq. (6.40) and (fΩ)′c = (f ′Ω)c > 0, the types of the critical point (rc, nc) are

determined by the sign of F ′
µ,ω(rc). Using the fact that Ω′(rc) = 0 and f ′

c = 2fc/rc, we
can explicitly write F ′

µ,ω(rc) as

F ′
µ,ω(rc) = − 1

δ + 2

[
r

2

δ + 2ω2fr−2

fr−2 (1− ω2fr−2)

(
fr−2

)′′]
r=rc

. (6.54)

Then we get the explicit form of Eq. (6.40) for radiation fluid accretion:

saddle (extremum) point⇔
(
fr−2

)′′
r=rc

< 0 (> 0) (6.55)

It should be noted that the conditions do not depend on the parameter of the rotation
ω and thereby coincides with the condition in the case of spherical flows.
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6.4.2 Proof of Theorem: Correspondence among the points

In the following, we see the correspondence among the three objects; the photon sphere,
the critical point and the sonic point of our accretion problem with fluid of ideal photon
gas and finally prove Theorem 6.0.1.

In the previous chapter, we derived the following lemma about the conditions for
photon spheres of the spacetime Eq. (6.1):

Lemma 6.4.2. The radius photon sphere is specified by the equation,

(fr−2)′ = 0. (6.56)

The stability condition of the photon sphere is given by

stable (unstable) ⇔ (fr−2)′′ > 0 (< 0) (6.57)

at the radius of the photon sphere.

The conditions of the critical radius Eq. (6.48) and its classification Eq. (6.50) co-
incide with that of the photon sphere Eqs. (6.56) and (6.57), respectively. Then we
immediately obtain the following corollary about the correspondence between photon
spheres and critical points of ideal photon gas accretion in our accretion problem from
Lemma 6.4.1 and 6.4.2:

Corollary 6.4.3. If the spacetime has photon spheres, there exists a critical point at
the same radius for each of the spheres. Furthermore, for an unstable photon sphere,
the critical point at the same radius is always a saddle point while for a stable one, the
corresponding critical point is an extremum point.

Note that if a critical point exists, there must be a photon sphere at the same radius
and the extremum(saddle) point corresponds to the stable(unstable) sphere. There is
a one-to-one correspondence between critical points and photon spheres. It is worth
noting that if the spacetime has more than one photon spheres, the stable and unstable
spheres appear alternately as we can see from Eqs. (6.56)-(6.57). The fact also leads to
the alternate appearance of the corresponding extremum and saddle points on the phase
space (r, n).

As mentioned in Theorem 6.1.2 in Sec. 6.1.4, the sonic point of the physical transonic
accretion flow coincides with a critical and saddle point. Then Theorem 6.1.2 and
Corollary above immediately prove Theorem 6.0.1.

Even if the accretion fluid flow is rotational, there exists a correspondence between
the photon sphere and the sonic point of the radiation fluid accretion as far as the fluid
rotates around the center on the equatorial plane and satisfies our disk conditions.

6.5 Summary

We have formulated the rotational accretion problem of the disk lying on the equatorial
plane of the D-dimensional static, spherically symmetric spacetime. We have adopted
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the simplest accretion disk model similar to the one given by Abraham et al. [40]. After
giving the definition of a critical point and observing its relation to the sonic point of a
transonic accretion flow, we have shown the explicit form of the conditions of the critical
point and its classification for the perfect fluid with an arbitrary EOS.

Applying the EOS of radiation fluid to the analysis, we have proved the existence
of the correspondence between the sonic points of rotational ideal photon gas accretion
and the photon spheres of the spacetime. We have showed, at first, that a critical point
that is a saddle point is always on the unstable photon sphere while a critical point that
is an extremum point is always on the stable photon sphere. Then, from the relation
between the critical point and the sonic point, we have proved a correspondence between
the photon sphere and the sonic point of radiation fluid in the rotational case. Then
we have proved that the physical transonic accretion flow must have its sonic point on
(one of) the unstable photon sphere(s) of the spacetime. The result holds in arbitrary
dimensions of the spacetime as in the case of spherical flows shown in the previous
chapter.

We have proved the correspondence in our idealized disk model, where the critical
and the sonic points are directly related. However, there are many other possibilities
about disk configurations such as disk thickness and vertical equilibrium and it is known
that the Mach number can deviate from one on the critical point depending on the disk
models [41] [42]. Therefore it is not so clear whether the correspondence exists between
the sonic point and photon sphere, or, between the critical point and photon sphere in
more realistic models, e.g., in the model by Abramowicz et al. [43].

If we focus on a spherical star in vacuum with general relativity, its exterior geometry
is described by the Schwarzschild spacetime. As considered in astrophysical cases, such
a star typically has a radius greater than 3m for the mass m and does not have a
photon sphere. Our result says that the star of radius greater than 3m cannot have
transonic accretion of radiation fluid as far as it meets the conditions in the current or
the previous chapter, that is, rotating geometrically thin accretion disks or spherically
symmetric accretion flows.

We have extended the correspondence from spherically symmetric flows in the previ-
ous chapter to rotating geometrically thin accretion disks. This result, more and more,
motivates us to consider its physical origin, that is to say, the connection between the
behavior of free photons on the geometry and behavior of photon gas. This is also
attractive as one of problems concerning hydrodynamics on curved spacetime.

It is also interesting to investigate a correspondence in a spacetime with a rotating
object. The central object in such a spacetime has angular momentum and there is
preferred direction of rotation for the motion of matter. The radius of the circular orbits
of particles depends on the direction of rotation and also that of the sonic point does.
The physics becomes more complicated but more interesting in that situation.
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Chapter 7

Sonic point/photon surface
correspondence: planar and
hyperbolical flow
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The existence of the sonic point/photon sphere (SP/PS) correspondence in quite wide
situations, as we have seen in the previous chapters, strongly suggests that there exists
some physical reason for it. To reveal the reason, it is necessary to know what properties
of a photon sphere are needed for the correspondence to hold; Circularity of null orbits,
positivity and constancy of the intrinsic curvature or else. Claudel et al. [8] introduced a
geometrical concept, photon surface, which inherits only the local geometrical property of
photon spheres called umbilicity but need not have spherical symmetry. In this chapter,
we see there exists the correspondence between sonic points and photon surfaces in
nonspherical spacetime like as the SP/PS correspondence. The result leads us to the
conclusion that the SP/PS correspondence is caused by the umbilicity of a photon sphere.

We consider static spacetime of spherical, planar and hyperbolic symmetry given by
the metric,

ds2 = −f(r)dt2 + g(r)dr2 + r2
(
dχ2 + s2(χ)dΩ2

D−3

)
, (7.1)

where f(r) > 0, g(r) > 0 and the function s(χ) is given by

s(χ) =


sinχ (spherical)
χ (planar)
sinhχ (hyperbolic)

(7.2)

in the spherically, planar and hyperbolically symmetric case, respectively. dΩ2
D−3 is a

unit (D − 3)-sphere,

dΩ2
D−3 = dθ21 + · · ·+ sin2 θ1 · · · sin2 θD−5dθ

2
D−4 + sin2 θ1 · · · sin2 θD−4dθ

2
D−3. (7.3)
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We investigate photon surfaces of r = const. hypersurfaces, which we call constant-r
photon surfaces, in the spacetime. (The photon surfaces in the spherical case are just
photon spheres.) Then, after formulating an accretion problem of radial fluid flows for
a general equation of state (EOS), we prove our main theorem, which states that there
exists the correspondence between the sonic points of the radiation fluid flows and the
photon surfaces:

Theorem 7.0.1. For any physical transonic flow of radiation fluid which is stationary
and spherically, planar or hyperbolically symmetric on the spacetime (7.1), the radius of
its sonic point coincides with that of (one of) the unstable constant-r photon surface(s).

We define photon surfaces of constant radius, named constant-r photon surface, in
the spacetime (7.1) in Sec. 7.1. The stability condition for a constant-r photon surface
is also derived. Then we formulate the accretion problem of radial fluid flow in Sec. 7.2
and finally prove the correspondence between the sonic point of radiation fluid flow and
the photon surfaces in Sec. 7.3. The summary is given in Sec. 7.4.

7.1 Photon surface of constant radius

We investigate the explicit condition for a timelike surface to be a photon surface in the
spherically, planar and hyperbolically symmetric spacetime of D-dimensions given by
the metric Eq. (7.1). Here we focus on a timelike photon surface of constant radius. We
consider the (D − 1)-dimensional timelike hypersurface of constant radius,

Sr := {p ∈M |r = const.} , (7.4)

and investigate the condition for Sr to be a photon surface. We name the photon surface
constant-r photon surface:

Definition 7.1.1 (Constant-r photon surface). Let (M, g) be spacetime with the metric,
Eq. (7.1). A hypersurface Sr is called constant-r photon surface if it is a photon surface.

Note that constant-r photon surfaces of the spacetime given by Eq. (7.1) coincides
with the particular cases of r-photon surfaces of the spacetime given by Eq. (4.1) where
the (D−2)-subspace γij(x)dx

idxj is the constant curvature space of curvature k = ±1, 0.
For k = 1 case, the photon surface is what is called photon sphere in Chap. 5.

7.1.1 Second fundamental form

The hypersurface Sr has the normal,

na =
√
gdra, (7.5)

and the induced metric hab on it,

hab = gab − nanb. (7.6)
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The second fundamental form χab is given by

χab := hca∇cnb

= hca(∂cnb − Γdcbnd)

= −hcaΓdcbnd (7.7)

where we used the fact that hνµ∂ν = (∂t, 0, ∂χ, ∂θ1 , ..., ∂θD−3
). The components are ob-

tained from

χµν = −hσµΓρσνnρ
= −Γrµν

√
g (7.8)

where µ, ν = t, χ, θ1, ..., θD−3. Hereafter we calculate the components in the tetrad
system {e(µ)} defined so that

e(µ) ∝ ∂µ. (7.9)

Because the brackets of the third term in Eq. (7.1) represents constant curvature (D−2)-
space, it is sufficient to evaluate the components χ(µ)(ν) only for µ, ν = t, χ, θ where θ :=
θ1 corresponds to one of the coordinate of the (D − 3)-sphere dΩ2

D−3. The calculations
of the Christoffel symbols gives

χ(i)(j) =
√
g−1diag

[
−1

2

f ′

f
,
1

r
,
1

r

]
(7.10)

where i, j = t, χ, θ.
The trace Θ of the second fundamental form is given by

Θ := habχab = η(µ)(ν)χ(µ)(ν) =
√
g−1

[
1

2

f ′

f
+ (D − 2)

1

r

]
. (7.11)

The trace-free part σab of the second fundamental form is then given by

σab = χab −
1

D − 1
Θhab. (7.12)

Its components are given by

σ(i)(j) = − 1

2(D − 1)

(fr−2)′

(fr−2)

√
g−1diag [D − 2, 1, 1] . (7.13)

Finally, for all the components including µ, ν = r, we have

σ(µ)(ν) = − 1

2(D − 1)

(fr−2)′

(fr−2)

√
g−1M(µ)(ν) (7.14)

where M(µ)(ν) := diag[D − 2, 0, 1, ..., 1].
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7.1.2 Radius of constant-r photon surface

From Theorem 3.1.8, the timelike hypersurface Sr is a photon surface if and only if it
is totally umbilic, i.e. σab = 0 ∀p ∈ S. Then we obtain the following proposition from
Eq. (3.12):

Proposition 7.1.2. A timelike hypersurface Sr of the radius r is a photon surface if
and only if

(fr−2)′ = 0 (7.15)

is satisfied at the radius.

7.1.3 Stability of constant-r photon surface

Let {Sr} be a foliation of the spacetime, Eq. (7.1), consisting of Sr. From Eq. (3.22), it
is a Gaussian normal foliation. With σab defined on each Sr, we calculate ∇nσab. On a
constant-r photon surface given by Sr=rp , we have

∇nσ(µ)(ν) = ∇nσabe
a
(µ)e

b
(ν)

= ∇n

[
σabe

a
(µ)e

b
(ν)

]
− σab∇n

[
ea(µ)e

b
(ν)

]
= ∇n

[
σ(µ)(ν)

]
= nr∂r

[
− 1

2(D − 1)

(fr−2)′

(fr−2)

√
g−1M(µ)(ν)

]
= − 1

2(D − 1)

(fr−2)′′

(fr−2)
g−1M(µ)(ν) (7.16)

by using Eq. (7.15). For any null vector k = kµ∂µ ∈ TpSrp tangent to Srp ,

kakb∇nσab = −1

2

(fr−2)′′

(fr−2)
g−1f(kt)2. (7.17)

From Proposition 3.3.1, the constant-r photon surface Srp is strictly stable, strictly
unstable, or marginally stable depending on the value of (fr−2)′′ at rp. Since constant-r
photon surfaces are classified into only the three types, which are not overlapped each
other, we simply call them stable, unstable, marginally stable r-photon surfaces in the
following. Then we obtain the following proposition:

Proposition 7.1.3. The stability condition of the constant-r photon surface Sr is given
by

stable (unstable) ⇔ (fr−2)′′ > 0 (< 0) (7.18)

at the radius.
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7.2 Accretion problem

We consider stationary radial fluid flow on the spacetime (7.1). The flow is spherically,
planar or hyperbolically symmetric depending on the spatial symmetry of the space-
time, Eq. (7.2). After formulating the accretion problem, we give a general analysis
using dynamical systems method. (We sometimes call the problem “accretion problem”
conventionally, however, it would not make sense because the spacetime we consider is
not interpreted as spacetime made by some central object in the nonspherical cases.)
The method clarifies the difference between a critical point, which is a singular point of
the system, and a sonic point, which is a point where Mach number of flow equals to
one.

We assume three conservation equations, the first law, continuity equation and
energy-momentum conservation with perfect fluid:

dh = Tds+ n−1dp (7.19a)

∇aJ
a = 0 (7.19b)

∇aT
a
b = 0 (7.19c)

where Ja := nua is the number current and T ab = nhuaub+pδ
a
b is the energy-momentum

tensor of the perfect fluid. The quantities h, T, s, n, p and ua are the enthalpy per
particle, the temperature, the entropy per particle, the number density, the pressure
and the 4-velocity of the fluid, respectively.

Contraction of Eq. (7.19c) with ub gives the adiabatic condition of the fluid, ua∇as =
0, in general together with Eqs. (7.19a) and (7.19b). The assumption that the fluid is
stationary and spherically, planarly or hyperbolically symmetric implies that the entropy
is a function of r only, s = s(r), and that the 4-velocity has only the t- and r- components,
u = ut∂t+u

r∂r. Besides, the spatial symmetry of the fluid distribution implies constancy
of the entropy s on a time slice. Therefore the entropy s is constant over the whole
spacetime and we can write the enthalpy as a function of the number density,

h = h(n). (7.20)

Integrating Eq. (7.19b), we have

jn := (fg)1/2rD−2nur = const, (7.21)

from the symmetries of the fluid and the spacetime metric. The quantity jn repre-
sents the particle flux of the fluid. Contracting with the static Killing vector ξb(t) = ∂bt ,

Eq. (7.19c) reduces to the equation of conservation of the energy current Ia := nhubξ
b
(t)u

a,

∇aI
a = 0. (7.22)

The integration gives
jϵ := (fg)1/2rD−2nhutu

r = const. (7.23)
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where jϵ is the energy flux. Combining Eqs. (7.20), (7.21) and (7.23) and using the
normalization condition of the 4-velocity u, we have(

jϵ
jn

)2

= h2
[
f +

j2n
r2(D−2)n2

]
= const. (7.24)

Then, the problem is formulated into the algebraic master equation:

Fµ(r, n) = h2(n)

[
f(r) +

µ2

r2(D−2)n2

]
= const, µ := jn (7.25)

Fµ is the energy square per particle and µ is the parameter interpreted as the accretion
rate of the flow. Our accretion problem is the problem of finding the solution of a fluid
flow as a level curve n = n(r) on the phase space (r, n) satisfying Fµ(r, n(r)) = const.
for a given parameter µ. Once the number density distribution n(r) obtained for the

parameter µ, the equation jn := (fg)1/2 rD−2nur = µ gives the corresponding velocity
distribution ur(r).

Note that there is no distinction concerning the spatial geometry s(χ) of the space-
time in the master equation Eq. (7.25). Thus far the problem completely coincides with
the accretion problem of spherical flow in Chap. 5. We analyze our accretion problem
in exactly the same procedure as Chap. 5 in the following.

7.2.1 Critical point

Here we give the definition of the critical point and its classification by reformulating
the accretion problem in terms of a dynamical system on the phase space (r, n). The
analysis of this kind was first introduced into an accretion problem by Chaverra and
Sarbach [24]. Generally, the critical point plays an important role in accretion problems
and is closely related to the sonic point of the flow.

Definition of critical point

In our accretion problem Eq. (7.25), the solutions are described as level curves of the
function Fµ(r, n) on the phase space (r, n). These curves can be also obtained by inte-
grating the ordinary differential equation,

d

dλ

(
r
n

)
=

(
∂n

−∂r

)
Fµ(r, n), (7.26)

as orbits with a parameter λ. This is a reformulation of the master equation Eq. (7.25)
in terms of a dynamical system with the right-hand side (RHS) being the Hamiltonian
vector field with respect to the Hamiltonian Fµ(r, n). Then, the notion of a critical point
(or stationary point as in a dynamical system) at which the RHS of Eq. (7.26) vanishes
arises and its conditions are {

∂nFµ(r, n) = 0 (7.27a)

∂rFµ(r, n) = 0. (7.27b)

We define a critical point (rc, nc) of the accretion problem as a point on the phase space
(r, n) at which the conditions Eqs. (7.27a)-(7.27b) are satisfied.
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Types of critical points

The linearization of Eq. (7.26) around a critical point allows us to classify the critical
point into two types. The one is a saddle point and the another one is an extremum
point. A saddle point is a point, in this case, through which two solution orbits pass.
On the other hand, orbits in the vicinity of an extremum point are closed curves around
the point.

The linearization matrix Mc is given by

Mc :=

(
∂r∂n ∂2n
−∂2r −∂r∂n

)
Fµ(rc, nc). (7.28)

This matrix, being real, 2 × 2 and traceless, has two eigenvalues with opposite signs.
If the determinant of the matrix is negative (positive), the eigenvalues are real (pure
imaginary). As in a dynamical system, the real eigenvalues imply that the critical point
is a saddle point. For the imaginary eigenvalues, the orbits around the critical point are
periodic in linear order. However, because they are the level curves of the real function
Fµ(r, n), the orbits must be closed loops in the vicinity of the critical point. Therefore
the imaginary eigenvalues imply an extremum point.

We know the explicit form of the determinant detMc from Chap. 5:

detMc = − 2

D − 2
rc(f

′
c)

2h
4
c

n2
c

F ′
µ(rc) (7.29)

where

Fµ(r) := v2s(n̄(r)) [1 + 2(D − 2)a(r)]− 1,

n̄(r) := |µ|

√
2(D − 2)

r2D−3f ′(r)
,

a(r) :=
f(r)

rf ′(r)
.

The subscript c means the value at (rc, nc). Then classification of a critical point at
radius rc is given by

saddle (extremum) point⇔ F ′
µ(rc) > 0 (< 0) (7.30)

while the critical point (rc, nc) itself is also obtained from

Fµ(rc) = 0, nc = n̄(rc). (7.31)

7.2.2 Sonic point

In an accretion problem, the fluid flow can transit from subsonic state (i.e. state where
its 3-velocity is smaller than its local sound speed vs) to supersonic state (i.e. state
where the 3-velocity is greater than vs) and vice versa. Such a fluid flow is said to be
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transonic and here we call any flow which has both subsonic and supersonic regions
transonic flow. The point at which transition between subsonic and supersonic states
of a transonic flow occurs is called sonic point. A sonic point is also related to a critical
point mathematically.

Definition of sonic point

Since, in our accretion problem, a fluid accretion flow is a solution orbit of Eq. (7.25),
we define a sonic point of a transonic flow as a point on the phase space (r, n):

Definition 7.2.1 (Sonic point of a flow). For a transonic fluid flow of our accretion
problem Eq. (7.25), let n = n(r) be the corresponding solution curve on the phase space
(r, n). Let v = v(r) be the 3-velocity of the flow at radius r measured by static observers.
A sonic point (rs, ns) of the flow is a point on the phase space satisfying the condition

v2

v2s

∣∣∣∣
(rs,n(rs))

= 1, (7.32)

where ns = n(rs).

Sonic point and critical point

The static observer uo = f−1/2∂t measures the squared fluid 3-velocity v2 by

1

1− v2
=

(
gabu

aubo
)2

(7.33)

which gives

v2 =
µ2

µ2 + fr2(D−2)n2
. (7.34)

Let us calculate explicitly one of the conditions for the critical point Eq. (7.27a):

0 = ∂nFµ

=
2h2

n

µ2

r2(D−2)n2

(
v2s(n)

[
1 + f

r2(D−2)n2

µ2

]
− 1

)
(7.35)

where v2s(n) := ∂ lnh/∂ lnn is the sound speed. We can see that the sound speed can
be always written as

v2s(n) =
µ2

µ2 + fr2(D−2)n2
(7.36)

on the points (r, n) satisfying the condition Eq. (7.27a) including the critical point.
Conversely, if Eq. (7.36) is satisfied on a given point (r, n), the condition Eq. (7.27a)
holds. From this fact and Eqs. (7.34) and (7.36), we can show that a sonic point of a
physically acceptable transonic flow is identified with a critical point of saddle type as
follows.
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Consider a physical transonic fluid flow which is specified by the solution curve
n = n(r). From Definition 7.2.1 and Eq. (7.34), the sonic point (rs, ns) is determined by

v2s (n(rs)) =
µ2

µ2 + fr2(D−2)n2(rs)
(7.37)

and ns = n(rs). Since Eq. (7.37) implies that the point (rs, ns) satisfies Eq. (7.36), the
condition ∂nFµ(rs, ns) = 0 also holds as mentioned below Eq. (7.36). Then we have the
following three cases concerning the sonic point (rs, ns):

1. ∂rFµ(rs, ns) ̸= 0 (i.e., the sonic point is not a critical point).

2. ∂rFµ(rs, ns) = 0 (i.e., the sonic point is a critical point due to the fact ∂nFµ(rs, ns) =
0).

(a) The corresponding critical point is of saddle type.

(b) The corresponding critical point is of extremum type.

In the case 1, the curve n = n(r) typically gets double-valued (so unphysical) at least
around (rs, ns) locally because dn/dr = −∂rFµ(rs, ns)/∂nFµ(rs, ns) = ±∞ there from
Eq. (7.26). Another possibility with diverging density gradient, which is physically
acceptable, is a transonic shock. In the current paper, we require the finite density
gradient, |dn/dr| < ∞, as one of the conditions of a physical flow, thus excluding a
transonic shock. Therefore the case 1 is not allowed for the physical flow n = n(r) and
the sonic point must be a critical point. However, the case 2b is also excluded because
any solution curve, being a level curve of Fµ(r, n) originally, cannot pass the critical
point of extremum type. Then we have only the case 2a for the sonic point (rs, ns)
of the physically acceptable transonic flow n = n(r). As a consequence, we have the
following theorem:

Theorem 7.2.2. For a physical transonic fluid flow which is stationary and spherically,
planar or hyperbolically symmetric on the spacetime (7.1), its sonic point coincides with
a critical point of saddle type on the phase space.

We can interpret a critical point of saddle type as a sonic point of some transonic
flow which is physically acceptable at least in the vicinity of the point on the phase space
(r, n).

7.3 SP/PS correspondence

In this section, we analyze a critical point of radiation fluid flow and, as the main result
of the current paper, prove Theorem 7.0.1.
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7.3.1 Critical point of radiation fluid flow

We derived the EOS of radiation (ideal photon gas) in arbitrary spatial dimensions d in
Eq. (5.41) of Chap. 5. It is given by

h(n) =
kγ

γ − 1
nγ−1, (7.38)

where the index γ is related to the dimension by γ = (d+ 1)/d. The sound speed v2s(n)
is then computed as

v2s(n) :=
∂ lnh

∂ lnn
= γ − 1 =

1

d
=

1

D − 1
. (7.39)

For the conditions of the critical point (rc, nc) and its classification for radiation flow,
we have the following lemma:

Lemma 7.3.1. For radiation fluid flow in our accretion problem Eq. (7.25), radius rc
of a critical point is specified by

(fr−2)′ = 0 (7.40)

and the corresponding critical density nc is

nc = |µ|

√
2(D − 2)

r2D−3
c f ′

c

. (7.41)

The type of the critical point is classified by the inequality,

saddle (extremum) point⇔
(
fr−2

)′′
r=rc

< 0 (> 0). (7.42)

Proof. Substituting the sound speed of radiation fluid, Eq. (7.39), into Eq. (7.31), the
condition for the critical radius rc is given by

Fµ = −D − 2

D − 1

1

f ′r−2

(
fr−2

)′
= 0. (7.43)

Therefore, the critical radius is specified by Eq. (7.40). Once the radius rc is obtained,
we get the corresponding number density nc from Eq. (7.31) which gives Eq. (7.41).
With the use of Eq. (7.40), the left-hand side (LHS) of the classification condition of a
critical point, Eq. (7.30), is written as

F ′
µ(rc) = −D − 2

D − 1

1

f ′r−2

(
fr−2

)′′
(7.44)

and we immediately obtain Eq. (7.42). Note that f ′ = 2f/r > 0 at r = rc from
Eq. (7.40).
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7.3.2 Proof of theorem: SP/PS correspondence

The conditions of the critical radius rc and its classification in Lemma coincide with the
conditions of the radius of the constant-r photon surface and its stability in Proposi-
tion 7.1.2 and 7.1.3, respectively. Then we immediately obtain the following proposition
about the correspondence between constant-r photon surfaces and critical points of ra-
diation fluid flow:

Proposition 7.3.2. A critical point of radiation fluid flow in our accretion problem (7.25)
exists at a radius r if and only if the spacetime Eq. (7.1) has a constant-r photon surface
Sr at the radius. If the constant-r photon surface Sr is stable, the critical point is of a
saddle type while if unstable, it is of an extremum type.

There is a one-to-one correspondence between critical points of radiation fluid flow
and constant-r photon surfaces. It is worth noting that if the spacetime has more
than one constant-r photon surfaces, the stable and unstable photon surfaces appear
alternately as we can see from Eqs. (7.40) and (7.42). The fact also leads to the alternate
appearance of the corresponding extremum and saddle points on the phase space (r, n).

Then Theorem 7.2.2 and Proposition 7.3.2 above immediately prove Theorem 7.0.1.
For a sonic point (rc, nc), the surface of the constant radius rc is sometimes referred

to as sonic surface. In this view point, Theorem 7.0.1 also states that the sonic surface
coincides with (one of) the photon surface(s).

7.4 Summary

We have investigated photon surfaces of constant radius and their stability in the space-
time (7.1). In spite of the different spatial geometries, spherical, planar and hyperbolic
symmetry, their conditions in Propositions 7.1.2 and 7.1.3 have been found to be exactly
the same. In other words, they are independent of the function s(χ) which depends on
the spatial symmetry of the spacetime according to Eq. (7.2). This fact comes from
that a photon surface is a structure of spacetime characterized by its second fundamen-
tal form and, in the cases we have investigated, the second fundamental forms of the
hypersurfaces take the same form irrelevant to the spatial symmetry in the tetrad frame.

We have formulated the accretion problem of stationary radial fluid flow which is
also spatially symmetric depending on the spatial symmetry of the spacetime, Eq. (7.2).
It has been revealed that the master equation (7.25) does not depend on the spatial
symmetry explicitly. Therefore we have applied the dynamical system analysis to the
problem and obtained the same results about the critical points and the sonic points as
the spherical case in Chap. 5.

Together with the results of the photon surfaces and the sonic points, we have proved
the main theorem of this chapter, Theorem 7.0.1, which states the correspondence be-
tween sonic points of radiation fluid flow and photon surfaces. This is the extension
of the theorem for the SP/PS correspondence in spherically symmetric spacetime in
Chap. 5 to non-spherically symmetric spacetime of the same degrees of symmetry.
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The main theorem has many implications which answers our questions about the
SP/PS correspondence. In Chaps. 5 and 6, we have found that there always exits a
correspondence between sonic points and photon spheres in the spherically symmetric
spacetime for the radial and rotational flow. However, it has been unclear which the
aspects of photon spheres are responsible to the correspondence. In this chapter, from
the correspondence between sonic points and photon surfaces, we can conclude that the
umbilicity of the hypersurfaces plays the most important role, or possibly, is needed in the
correspondence. Furthermore, the sphericity of the surface, the positivity of the intrinsic
curvature and the closed spatial topology are not necessary for the correspondence. We
can also infer that the correspondence will occur caused by the local geometrical structure
and the extrinsic structure of the hypersurfaces rather than the global structure and the
intrinsic structure. Since the correspondence seems to originate from the microscopic
construction of radiation fluid, our new result may suggest that transonic fluid flows
generally have their sonic points only at points where the geometry has some special
structures and the special structures are characterized by the geodesic motions of the
particles which constitute the fluid.

Since sonic points, or sonic surfaces, coincide with photon surfaces rather than pho-
ton spheres, it would be better to read “the SP/PS correspondence” as “the sonic
point/photon surface correspondence.”

The further investigation of the correspondence in a general setting is given in
Ref. [44]. In the work, it has been concluded that the assumptions of the symmetry
is essential for this correspondence to realize. Actually, the degrees of the symmetry of
the system in this chapter is exactly the same as those in Chap. 5. Similarly, it has been
also proved that the rotational extension of this chapter indeed holds, as the spherical
case in Chap. 5 has been extended to the rotational case in Chap. 6. See Ref. [44] for
the details.
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Chapter 8

Photon surfaces as pure tension
shells/branes: uniqueness of thin
shell wormholes

Originally published as:
Y. Koga, Phys. Rev. D 101 (2020) 104022.

Copyright (2020) by the American Physical Society.

A wormhole spacetime is a spacetime having two different asymptotic regions and
a throat connecting them. The structure enables us to travel from our universe to
another universe. A hole connecting two regions of our universe as a shortcut is also
called wormhole. The wormhole solutions to general relativity (GR) and the modified
theories of GR have been provided by the many authors [45, 46, 47] (see also [48] and the
citation therein). The uniqueness of wormholes has been proved for Einstein-phantom
scalar theory [49, 48, 50]. One of the most important properties of wormholes is that they
necessarily violate the energy conditions, which makes it difficult to construct physically
reasonable wormhole spacetimes [51, 52].

For the construction of thin shell wormholes, Visser proposed a mathematical proce-
dure consisting of truncation and gluing of two spacetimes [53]. By the truncation, inner
regions of the two spacetimes are removed and the resulting spacetimes become manifolds
with the inner boundaries. By gluing the two spacetimes along the inner boundaries, we
obtain a wormhole spacetime with two distinct asymptotic regions divided by the joint
hypersurface. Through the junction conditions [54, 25] imposed on the hypersurface, the
curvature singularity due to the gluing is interpreted as an infinitesimally thin matter
distribution along it. The matter is called a thin shell and corresponds to the throat of
the thin shell wormhole.

Barcelo and Visser [55] investigated four-dimensional thin shell wormholes consisting
of two isometric, static and spherically symmetric spacetimes joined at the same radii and
found that the radii of the throats coincide with those of photon spheres. Subsequently,
Kokubu and Harada [56] extended the analysis to arbitrary dimensions of spacetime and
the field equations with the cosmological constant. From their analysis, we can also find
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the coincidence of the throats and photon spheres. The key features of those models
are that (1) the wormhole spacetimes are Z2-symmetric across their throats and (2) the
thin shells on the throats have pure tension surface stress energy tensors.

In this chapter, we see that any joined spacetime which is Z2-symmetric across the
shell having pure tension surface stress energy tensor has the coincidence shown in
Ref. [55] if it is Λ-vacuum. That is, for any Z2-symmetric Λ-vacuum spacetime joined
by a pure tension shell, the glued inner boundaries of the two original spacetimes must
be photon surfaces. We call such a joined spacetime Z2-symmetric pure-tensional joined
spacetime (Z2PTJST). Not only the thin shell wormholes but also the brane world
models by Randall and Sundrum [57, 58] and baby universes [53, 55] are in the class of
Z2PTJST. The theorem we prove allows us to construct Z2PTJSTs from any Λ-vacuum
spacetime having a photon surface.

This chapter is organized as follows. In Sec. 8.1, we define a joined spacetime (JST)
and review Israel’s junction conditions, which are the field equations that joined space-
times have to satisfy in addition to the Einstein equation. In Sec. 8.2, we define the
Z2-symmetry of a JST and see that it reduces the junction conditions to simple forms.
In Sec. 8.3, we define a pure-tensional joined spacetime (PTJST) and establish one of our
main theorems, the coincidence between a pure-tensional shell and a photon surface of a
Z2PTJST. In Sec. 8.4, we analyze the stability of the JST against perturbations of the
shell preserving the Z2-symmetry and find the stability also coincides with the stability
of the corresponding photon surfaces. In Sec. 8.5, we establish the uniqueness theorem of
Z2-symmetric pure-tensional wormholes, i.e., the wormhole cases of Z2PTJST, applying
the uniqueness theorem of photon spheres by Cederbaum [11] to the JST. Section. 8.6
is devoted to the conclusion. We suppose that manifolds and fields on them are smooth
and the spacetimes are (d+1)-dimensional with d ≥ 2 if it is not mentioned particularly.

8.1 Joined spacetime

We consider joining two spacetimes (M±, g±) along their inner boundaries Σ±. The re-
sulting spacetime (M, g,Σ) with the hypersurface Σ corresponding to the joined bound-
aries Σ± is called a joined spacetime. The procedure for constructing the manifold M
consists of truncation and gluing ofM±. We also introduce the field equations interpreted
as Einstein equation for (M, g,Σ).

8.1.1 Truncation and gluing of manifolds

Let M± be manifolds with hypersurfaces Σ± which partition M± into two regions M ex
±

and M in
± and assume Σ± are diffeomorphic. Truncating M± along Σ±, we obtain the

manifolds M̄± := M± \M in
± with the inner boundaries Σ±. Gluing M̄± along Σ±, i.e.

identifying Σ± by a diffeomorphism ψ : Σ+ → Σ−, we construct a new manifold M [53].
M is a manifold such that a hypersurface Σ partitions it into two regions corresponding
to M ex

± .
The gluing also induces tensor fields on M from M±. As we see below, we are
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concerned with a tensor distribution and jump of tensor fields on M across Σ. Their
values on Σ are given by summations of each the tensor fields of M± on Σ±. To deal
with the summations, we need to specify the diffeomorphism which identifies the tangent
bundles TΣ±M± of M± on Σ±. Since ψ induces the diffeomorphism ψ∗ : TΣ+ → TΣ−
of the tangent bundles TΣ± of Σ±, it is sufficient to specify the diffeomorphism ψN :
NΣ+ → NΣ− of the normal bundles NΣ± = TΣ±M±/TΣ± of Σ±. Given metrics g± on
M±, it is natural to require

ψN : N+ 7→ N− (8.1)

for the unit normal vector fields N± ∈ NΣ± of Σ± which are given so that g±(N±, N±) =
1 and N+ and N− points insideM ex

+ andM in
− , respectively. The requirement is frequently

seen in, for example, [25, 55, 56].
Then, in the current paper, we express the gluing by

M = M̄+ ∪ψ,ψN
M̄−, (8.2)

which is characterized by the diffeomorphisms ψ and ψN above. Note that ψ and ψN
are dependent. The projections of NΣ± to Σ± give ψ from ψN . Note also that we have
denoted M ex

± as the regions we keep for convenience. We can exchange the roles of the
exterior regions M ex

± and the interior regions M in
± freely. See Fig 8.1 for the picture of

the construction of M.

8.1.2 Tensor distribution

Let l be a smooth function in the neighborhood of Σ in M satisfying l = 0 on Σ, l > 0
on M+, and l < 0 on M−. The tensor distribution T on M of tensors T± on M± is
defined by

T = Θ(l)T+ +Θ(−l)T− (8.3)

where Θ(l) is Heaviside distribution,

Θ(l) =


1 (l > 0)
1/2 (l = 0)
0 (l < 0).

(8.4)

The metric g on M is defined as the distribution,

g = Θ(l)g+ +Θ(−l)g−. (8.5)

8.1.3 Definition

According to the discussion above, we define the joined spacetime (JST) constructed
from the spacetimes (M±, g±) as follows.
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(a) Two manifolds M±

(b) Truncation and gluing along Σ±

(c) Resulting manifold M

Figure 8.1: (a) Two manifolds M± partitioned by the hypersurfaces Σ± are (b) truncated
and glued along Σ± (identified at Σ±) by ψ and ψN . (c) The resulting manifold
M possesses the regions M ex

± partitioned by Σ.

Definition 8.1.1 (Joined spacetime). A triple (M, g,Σ) of a manifold M, a metric
g, and a hypersurface Σ is called a joined spacetime constructed from (M±, g±) if the
hypersurfaces Σ± partitioning (M±, g±) into M

in
± and M ex

± are timelike and

M = M̄+ ∪ψ,ψN
M̄−, (8.6)

Σ = Σ+ ≡ Σ−, (8.7)

g = Θ(l)g+ +Θ(−l)g−, (8.8)

where the diffeomorphisms

ψ : Σ+ → Σ−, (8.9)

ψN : N+ 7→ N− (8.10)

are the identifications of Σ± and NΣ±, respectively. Σ is called the shell of the joined
spacetime.
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8.1.4 Einstein equations

The distribution g of (M, g,Σ) may not be smooth across Σ. Israel’s junction condi-
tions [54, 25], which we assume on g on Σ, are motivated from Einstein equation. Here
we consider the system consisting of Einstein equation and the junction conditions for
joined spacetimes. We call the system Einstein equations.

Definition 8.1.2 (Einstein equations). A joined spacetime (M, g,Σ) is said to satisfy
Einstein equations if (M̄±, g±) satisfy Einstein equation and the first junction condition
Eq. (8.11), the second junction condition Eq. (8.14), and the equation of motion (EOM)
of the shell Eq. (8.16) in the following are satisfied on Σ.

First junction condition

Israel’s first junction condition requires the induced metrics h± of Σ± to equal. It is
expressed as,

[h] = 0 (8.11)

where [A] is the jump of tensor fields A± of M± across Σ,

[A] := A+|Σ+
− A−|Σ−

. (8.12)

Note that the condition together with the gluing condition, Eq. (8.10), implies

[g] = 0. (8.13)

Thus, the first junction condition for a joined spacetime (M, g,Σ) guarantees the con-
tinuity of the metric distribution g across Σ [25].

Second junction condition

The distribution g may not be smooth across Σ and the curvature, the second derivative
of g, can be singular there. The second junction condition is what relates such singularity
on Σ to the infinitesimally thin matter distribution on the hypersurface. In the presence
of the singular terms in Einstein tensor distribution, Einstein equation leads to

− 1

8π
([χ]− [θ]h) = S (8.14)

where χ± is the second fundamental form of Σ± in M± with respect to N±, θ± is the
trace of χ±, h is the induced metric on Σ given by h(X,Y ) = g(X,Y ) ∀X,Y ∈ TΣ,
and S is the surface stress energy tensor of the matter on Σ [25]. This is called Israel’s
second junction condition.

The corresponding stress energy tensor TΣ of the shell as the matter on (M, g,Σ) is
given by,

TΣ = δ(l)Φ∗(S). (8.15)

where Φ∗ : TpΣ → TΦ(p)M is the push forward associated with the embedding Φ : Σ →
M and δ(l) is the delta function, or Dirac distribution. As a physical interpretation, Σ
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with S is called a thin shell. Eq. (8.14) is equivalent to the ordinary Einstein equation
with the stress energy tensor TΣ. Therefore, the brane world models can be regarded as
joined spacetimes [57, 58]. See [53] for the details of the interpretation.

If S = 0, i.e. [χ] = 0, Christoffel symbols are continuous across Σ and Riemann
curvature has no singular terms [25].

EOM of the shell

From Einstein equation, the surface stress energy tensor S of the shell satisfies a con-
servation law on Σ as ordinary matter does in M. It is given by,

∇h · S + [TN ] = 0, (8.16)

where ∇h is the covariant derivative associated with h, ∇h · S represents the divergence

∇hbSab, and TN± is given by TN±a := T±µνe
µ
aN

ν
±. Here the indices a, b... denote those of

the coordinate system {ξa} on Σ and the coordinate basis {eµa} is given by eµa = ∂xµ/∂ξa

with respect to the embedding of Σ, xµ(ξa) [25, 59].

8.2 Z2-symmetry of a joined spacetime

We focus on a Z2-symmetric joined spacetime (Z2JST). The Z2-symmetry is the reflec-
tion symmetry across Σ of a joined spacetime (M, g,Σ) across Σ.

8.2.1 Definition

We define the Z2-symmetry of a joined spacetime as follows.

Definition 8.2.1 (Z2-symmetric joined spacetime). A joined spacetime (M, g,Σ) con-
structed from (M±, g±) is said to be Z2-symmetric across Σ if there exists an isometry
ϕ : (M+, g+) → (M−, g−) such that

ϕ|Σ+
: Σ+ → Σ−, (8.17)

ϕ|Σ+
= ψ, (8.18)

ϕ∗ : N+ 7→ −N−, (8.19)

where ϕ|Σ+
is the restriction of ϕ to Σ+, ψ : Σ+ → Σ− is the diffeomorphism in Eq. (8.9)

in Definition 8.1.1, and ϕ∗ : TM+ → TM− is the map induced from ϕ.

The condition Eq. (8.19) together with Eq. (8.17) implies ϕ : M ex
+ → M ex

− : M in
+ →

M in
− . The picture of the definition is shown in Fig 8.2. For the validity of Definition 8.2.1,

see Appendix B.
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(a) Isometry ϕ

(b) ϕ acting on M

Figure 8.2: (a) Points p1, p2, ... ∈ M+ in the regions M in
+ , M ex

+ , and Σ+ are mapped by the
isometry ϕ to q1, q2, ... ∈ M− in the corresponding regions M in

− , M ex
− , and Σ−,

respectively. (b) After the truncation and gluing of M±, ϕ acts on M as the
reflection across Σ with the fixed points p1 ≡ q1, p2 ≡ q2 ∈ Σ, which have been
identified by ψ = ϕ|Σ+ .

8.2.2 Junction conditions under the Z2-symmetry

The Z2-symmetry of a joined spacetime simplifies the junction conditions.

Proposition 8.2.2. Let (M, g,Σ) be a Z2JST. Then, the first junction condition,

[h] = 0, (8.20)

is satisfied and the second junction condition reduces to

− 1

4π
(χ− θh) = S, (8.21)

where χ := χ+ = −χ− and θ is the trace of χ.

Proof. Let X,Y ∈ TΣ± be arbitrary vectors which are identical under the isometry ϕ,
i.e. the map ϕ∗ : TM+ → TM− induced from ϕ maps the vectors as X 7→ X, Y 7→ Y .
Note that the map ϕ∗ is also regarded as the map of any types of tensors [21]. The
induced metrics h±(X,Y ) := g±(X,Y ) are mapped as

h+(X,Y ) = g+(X,Y ) 7→ g−(X,Y ) = h−(X,Y ) (8.22)

by ϕ∗. The second fundamental forms χ±(X,Y ) := (∇±n±)(X,Y ) are mapped as

χ+(X,Y ) = (∇+n+)(X,Y ) 7→ (∇−ϕ
∗(n+))(X,Y ) = −(∇−n−)(X,Y ) = −χ−(X,Y ).

(8.23)
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by ϕ∗, where ∇± are the covariant derivatives associated with g± and n± = g±(N±, ·)
are the normal 1-forms dual to N±, which are mapped as ϕ∗ : n+ = g+(N+, ·) 7→
g−(−N−, ·) = −n− from Eq. (8.19). Since h± and χ± are tensors of Σ±, i.e. tensors
taking the values on the space TΣ± ⊗ TΣ±, we can regard Eqs. (8.22) and (8.23) as
the mapping induced from ϕ|Σ+

rather than ϕ due to Eq. (8.17). That is, the map
(ϕ|Σ+

)∗ : TΣ+ → TΣ− induced from ϕ|Σ+
is a map such that

(ϕ|Σ+
)∗ : h+ 7→ h− (8.24)

: χ+ 7→ −χ−. (8.25)

Therefore, from Eq. (8.18), we have

ψ∗ : h+ 7→ h− (8.26)

: χ+ 7→ −χ− (8.27)

for the map ψ∗ : TΣ+ → TΣ− induced from ψ. This means h+ = h− and χ+ = −χ− on
Σ since ψ∗ is the identification. Then the first junction condition,

[h] = h+ − h− = 0, (8.28)

is satisfied. The second fundamental form and its trace satisfy

[χ] = χ+ − χ− = 2χ+, (8.29)

[θ] = θ+ − θ− = 2θ+. (8.30)

Defining χ := χ+ and θ := Tr(χ), the second junction condition reduces to

S = − 1

8π
([χ]− [θ]h) = − 1

4π
(χ− θh). (8.31)

8.3 Pure-tensional joined spacetime

Here, we define a pure-tensional joined spacetime (PTJST). After reviewing photon
surfaces, we prove that the shell of the spacetime coincides with a photon surface of the
original spacetimes.

8.3.1 Definition

A thin shell having pure-trace stress energy tensor is called a pure tension shell. We
consider a Λ-vacuum joined spacetime with a pure tension shell in the following.

Definition 8.3.1 (Pure-tensional joined spacetime). Let (M, g,Σ) be a joined spacetime
constructed from (M±, g±). Let S be the surface stress energy tensor of Σ and T± be
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the stress energy tensors of (M±, g±). The joined spacetime (M, g,Σ) is called a pure-
tensional joined spacetime if (M, g,Σ) satisfies Einstein equations with the conditions,

S = −ϵh, (8.32)

T± = −Λ±

8π
g± (8.33)

where ϵ : Σ → R is the tension of the shell Σ, h is the induced metric on Σ, and Λ± are
the cosmological constants of (M±, g±). Σ is called the pure tension shell of (M, g,Σ).

8.3.2 Photon surface in Λ-vacuum

A photon surface we reviewed in Chap. 3 has a geometrical equivalent condition for a
timelike hypersurface to be a photon surface. The theorem proved by Claudel et al. [8]
and Perlick [9] can also be expressed as follows.

Theorem 8.3.2 (Claudel et al. (2001), Perlick (2005)). Let S be a timelike hypersurface
of spacetime (M, g) with d + 1 := dimM ≥ 3. Let h, χ, and θ be the induced metric,
the second fundamental form, the trace of χ, respectively. Then S is a photon surface if
and only if it is totally umbilic, i.e.

χ =
θ

d
h ∀p ∈ S. (8.34)

The following proposition for a photon surface in a Λ-vacuum spacetime is also crucial
for our main theorem for PTJSTs.

Proposition 8.3.3 (Photon surfaces in Λ-vacuum). Let (M, g) be a Λ-vacuum spacetime
with dimM ≥ 3. Then, a timelike photon surface S of (M, g) is constant mean curvature
(CMC).

Proof. Let nµ, hµν = gµν − nµnν , and χµν be the unit normal vector, the induced
metric, and the second fundamental form of S, respectively. From the Codazzi-Mainardi
equation, we have

Rµανβh
µ
ρh

α
γh

ν
σn

β = ∇h
ρχγσ −∇h

γχρσ

=
1

d

[(
∇h
ρθ
)
hγσ −

(
∇h
γθ
)
hρσ

]
(8.35)

where d is the dimension of S, θ = hργχργ is the mean curvature, and ∇h
ρ is the covariant

derivative on S associated with hργ. We have used Theorem 8.3.2 in the last equality.
Contracting with hγσ, the equation reduces to

hγσRµανβh
µ
ρh

α
γh

ν
σn

β = −Rµβh
µ
ρn

β =
d− 1

d
∇h
ρθ. (8.36)

From that (M, g) is Λ-vacuum, i.e. Rµν = [2/(d− 1)]Λgµν for some constant Λ, we have

∇h
ρθ = 0. (8.37)

Therefore, θ = const. along S and S is CMC.

See also Proposition 3.3 in [11] for general totally umbilic hypersurfaces.
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8.3.3 Photon surfaces as pure tension shells

The following theorem states about the coincidence of pure-tensional shells of joined
spacetimes and photon surfaces.

Theorem 8.3.4 (Photon surface as a pure tension shell). Let (M, g,Σ) be a Z2JST
constructed from (M±, g±) with d + 1 := dimM = dimM± ≥ 3. Then (M, g,Σ)
is a PTJST if and only if (M̄±, g±) are Λ-vacuum and Σ± are photon surfaces. The
tension ϵ and the mean curvature θ of the shell Σ are constant and given by the relation
θ = ±θ± = −4π[d/(d− 1)]ϵ.

Proof. From the Z2-symmetry of (M, g,Σ) and Proposition 8.2.2, the first junction con-
dition is automatically satisfied and the second junction condition reduces to Eq. (8.21)
where χ := χ+ = −χ− and θ := Tr(χ) = θ+ = −θ−. Then the Einstein equations
for (M, g,Σ) consist of the reduced second junction condition, Eq. (8.21), the EOM of
the shell Σ, Eq. (8.16), and Einstein equation on (M̄±, g±). The induced metric on Σ
is given by h = h+ = h− due to the fact that the first junction condition is satisfied.
In fact, h(X,Y ) := g(X,Y ) = 1

2
(g+(X,Y ) + g−(X,Y )) = 1

2
(h+(X,Y ) + h−(X,Y )) =

h+(X,Y ) = h−(X,Y ) ∀X,Y ∈ TΣ ≡ TΣ±.
We prove the “if” part. From that (M̄±, g±) are isometric and Λ-vacuum, the energy

momentum tensors satisfy T± = −(Λ/8π)g± for the common cosmological constant Λ
and Eq. (8.33) in Definition 8.3.1 is satisfied. From Theorem 8.3.2, the photon surfaces
Σ± give the conditions

χ = ±χ± =
±θ±
d
h± =

θ

d
h. (8.38)

From Proposition 8.3.3, we have

θ = ±θ± = const. (8.39)

The second junction condition Eq. (8.21) then reduces to

1

4π

d− 1

d
θh = S. (8.40)

Letting ϵ be a function on Σ given by

ϵ = − 1

4π

d− 1

d
θ, (8.41)

the surface stress energy tensor becomes

S = −ϵh (8.42)

and Eq. (8.32) in Definition 8.3.1 is satisfied. From Eqs. (8.39) and (8.41), we have
∇hϵ = 0 implying

∇h · S = 0. (8.43)

Therefore, from the fact that T± = −(Λ/8π)g±, the EOM of the shell Σ, Eq. (8.16),

∇h · S + [TN ] = 0, (8.44)
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is satisfied. (M, g,Σ) is a joined spacetime satisfying Definition 8.3.1 of PTJST.
We prove the “only if” part. From Definition 8.3.1, the PTJST (M, g,Σ) satisfies

S = −ϵh and T± = −(Λ/8π)g±. Then (M̄±, g±) are Λ-vacuum and the second junction
condition, Eq.(8.21), under Z2-symmetry requires that

χ = χ+ = −χ− ∝ h, (8.45)

i.e. Σ± are timelike totally umbilic hypersurfaces. From Theorem 8.3.2, Σ± are photon
surfaces of (M̄±, g±).

From Eqs. (8.39) and (8.41), we finally obtain

θ = ±θ = −4π
d

d− 1
ϵ = const. (8.46)

for the PTJST.

Theorem 8.3.4 applies to the Λ-vacuum cases of the thin shell wormholes investigated
in [55, 56]. That is, the thin shell, or throats, of the wormholes correspond to photon
surfaces. From the viewpoint of symmetry, the static throats are R×SO(d), R×E(d−1),
and R × SO(1, d − 1)-invariant photon surfaces depending on the symmetry of the
spacetimes. The dynamical throats are SO(d − 1), E(d), and SO(d − 2, 1)-invariant
photon surfaces.

The theorem states that two copies of any Λ-vacuum spacetime with a photon surface
can be joined to give a Z2PTJST. For example, two copies of the MinkowskiD-spacetime
can be joined along either the hyperplane or the hyperboloid, which are shown to be
photon surfaces in Examples 3.1.3 and 3.1.5. The spacetimes given by C-metrics can be
joined along the photon surface shown in Example 3.1.7. If the regions outside the photon
surfaces are joined, the resulting spacetime is “a uniformly accelerated wormhole”. If the
inside regions are joined, it is “a uniformly accelerating baby universe”. The Z2PTJSTs
constructed from the spacetimes given by Eq. 4.1 in Chap. 4 are the less-symmetric
generalizations of the Λ-vacuum cases of the thin shell wormholes investigated in the
works [55, 56]. These examples are shown in Sec. 8.3.4.

We can also confirm that the positive and negative branes of the brane world model
by Randall and Sundrum [57, 58] are indeed located on the four-dimensional timelike
photon surfaces of the five-dimensional bulk spacetime. It follows from the facts that the
bulk spacetime is conformally transformed Minkowski spacetime and photon surfaces are
invariant manifolds under conformal transformations as mentioned in Chap. 3 or in [8].

8.3.4 Examples

Theorem 8.3.4 states that two copies of any Λ-vacuum spacetime with a photon surface
can be joined to give a Z2PTJST by truncating and gluing them along the photon
surfaces. Here we show the examples of Z2PTJSTs constructed from the spacetimes
investigated in Chaps. 3 and 4.
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Example 8.3.5 (Minkowski spacetimes joined along planes). Example 3.1.3 shows that
the hyperplane,

S =
{
xD−1 = 0

}
, (8.47)

is a photon surface of MD. By truncating MD along S, we obtain the incomplete
Minkowski spacetime,

M̄D =
{
xD−1 ≥ 0

}
. (8.48)

We denote two copies of M̄D and their coordinates by M̄D
± and

{
x0±, ..., x

D−1
±

}
, respec-

tively. Redefining the coordinate of M̄D
− so that xD−1

− → −xD−1
− , we have

M̄D
+ =

{
xD−1
+ ≥ 0

}
, (8.49)

M̄D
− =

{
xD−1
− ≤ 0

}
. (8.50)

The boundaries due to the truncation are given by

∂M̄D
± =

{
xD−1
± = 0

}
. (8.51)

The unit normal vectors N± to the boundaries ∂M̄D
± are given by

N± = ∂xD−1
±

, (8.52)

where we have determined the orientations by following the procedure for the truncation
of manifolds in Sec. 8.1.1. We glue the two manifolds M̄D

± by the indentification ψ :
∂M̄D

+ → ∂M̄D
− of the boundaries such that ∂M̄D

+ ∋ (x0+, ..., x
D−2
+ , 0) ≡ (x0−, ..., x

D−2
− , 0) ∈

∂M̄D
− and the indentification ψN : N+ 7→ N− of the normal vectors and obtain a new

manifold M. Then the metric distribution g = Θ(l)η++Θ(−l)η− is induced on M, where
η± are the Minkowski metrics on M̄D

± and l is the smooth function on M introduced in
Sec. 8.1.2, which takes the value ±l ≥ 0 on each region M̄D

± of M. We define the global
coordinates

{
x0, ..., xD−1

}
of M by the identification

{
x0, ..., xD−1

}
=

{
x0±, ..., x

D−1
±

}
on M̄D

± . Then the regions M̄D
± of M correspond to

{
±xD−1 ≥ 0

}
and the hypersurface

corresponding to the glued boundaries, i.e., the shell, is given by Σ =
{
xD−1 = 0

}
. Since

the metrics η± on M̄D
± are now given by η± = −(dx0±)

2 + (dx1±)
2 + · · · + (dxD−1

± )2 =
−(dx0)2 + (dx1)2 + · · · + (dxD−1)2 and the function l can be identified with xD−1, the
metric distribution g is given by

g = Θ(l)η+ +Θ(−l)η− = Θ(xD−1)η +Θ(−xD−1)η = η (8.53)

where η = −(dx0)2+(dx1)2+ ·+(dxD−1)2. The resulting joined spacetime (M, g,Σ) is a
Z2PTJST according to Theorem 8.3.4 and is trivially the Minkowski D-spacetime MD.
Indeed, the mean curvatures θ± of the photon surfaces S± = ∂M̄D

± vanish and therefore,
the energy of the thin shell vanishes, ϵ = 0. The pure tension shell Σ at xD−1 = 0 is
absent in this case.

Example 8.3.6 (Minkowski spacetimes joined along hyperboloids). Example 3.1.5 shows
that the hyperboloid,

S =
{
−t2 + x21 + · · ·+ x2D−1 = a2

}
, (8.54)
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for a constant a > 0 is a photon surface of MD. By transforming the spatial coordinates
{t, x1, ..., xD−1} to the spherical coordinates {r, θ1, ..., θD−2}, the further transformation
given by T = arctanh(t/r) and R =

√
r2 − t2 gives the expressions of the metric and the

hyperboloid,
η = −R2dT 2 + dR2 +R2dΩ2

D−2 (8.55)

and
S = {R = a} , (8.56)

respectively. Truncating MD along S and removing the inside of S, we obtain the man-
ifold,

M̄D = {R ≥ a} . (8.57)

Two copies of M̄D, denoted by M̄D
± with the coordinates

{
T±, R±, θ

±
1 , ..., θ

±
D−2

}
, are given

by
M̄D

± = {R± ≥ a} . (8.58)

The boundaries are given by
∂M̄D

± = {R± = a} . (8.59)

Before joining the manifolds, we introduce new radial coordinates l± by R± = ±l±+a so
that we can smoothly introduce the global coordinates of the resulting joined spacetime.
The new coordinates give

η± = −(±l± + a)2dT 2
± + dl2± + (±l± + a)2dΩ2

D−2,±, (8.60)

M̄D
± = {±l± ≥ 0} , (8.61)

∂M̄D
± = {l± = 0} . (8.62)

The unit normal vectors N± to ∂M̄D
± are given by

N± = ∂l± . (8.63)

Then the indentification ψ : ∂M̄D
+ → ∂M̄D

− of the boundaries given by ∂M̄D
+ ∋ (T+, l+ =

0, ..., θ+1 , ..., θ
+
D−2) ≡ (T−, l− = 0, ..., θ−1 , ..., θ

−
D−2) ∈ ∂M̄D

− and the identification ψN :
N+ 7→ N− of the normal vectors give a new manifold M. Defining the global coordinates
{T, l, θ1, ..., θD−2} of M by the identification {T, l, θ1, ..., θD−2} =

{
T±, l±, θ

±
1 , ..., θ

±
D−2

}
on M̄D

± , the regions M̄± of M are given by M̄D
± = {±l ≥ 0} and the shell is given by

Σ = {l = 0}. Since the metrics of M̄D
± are now given by η± = −(|l| + a)2dT 2 + dl2 +

(|l|+ a)2dΩ2
D−2 for ±l ≥ 0, the metric distribution on M is given by

g = −(|l|+ a)2dT 2 + dl2 + (|l|+ a)2dΩ2
D−2. (8.64)

The resulting joined spacetime (M, g,Σ) is a Z2PTJST. The mean curvatures of the
photon surfaces S± = ∂M̄D

± of M̄D
± are θ± = ±(D − 1)a−1. The tension of the pure

tension shell is thus ϵ = −[(D − 2)/(4π)]a−1.
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Remark 8.3.7. In Example 8.3.6, the timelike infinities has been removed from the
original two spacetimes. Thus, the resulting Z2PTJST does not have timelike infinities
corresponding to them. Although the Z2PTJST have two different null infinities corre-
sponding to IM±, from the viewpoint of the causal structures, it should be distinguished
from the thin shell wormholes obtained in [55, 56], which have the throats (shells) ex-
tended to the timelike infinities.

Remark 8.3.8. We have removed the inside of the hyperboloid S from the original
spacetime MD in Example 8.3.6. We can instead remove the outside and obtain another
Z2PTJST by the same procedure with the opposite orientation of the unit normal vectors,
N±. The opposite orientation gives the flip of the sign of θ± and hence ϵ. Note that, in
that case, the coordinates {T,R, θ1, ..., θD−2} can cover only a part of the inside. Namely,
the coordinates are valid in the region between the hyperboloid S, R2 = −t2 + r2 = a2,
and the null cone, R2 = −t2 + r2 = 0. One needs to introduce other patches or further
transform the coordinates to cover the whole of the Z2PTJST.

Example 8.3.9 (Joined C-metrics). The photon surface of the uniformly accelerated
black hole spacetime, (M, g), with the metric (3.10) is given by

S =

{
y = yph := − 1

3mA

}
(8.65)

as shown in Example 3.1.7. Since the spacetime is a Λ-vacuum solution to the Einstein
equation, we can construct a Z2PTJST from two copies of it by the truncation and
gluing along S. In the truncation, one can remove either the inside region, y < yph,
or outside region, y > yph, from the two copies of (M, g). The former case gives “a
uniformly accelerated wormhole” while the latter does to “a uniformly accelerated baby
universe.” In particular, the wormhole case corresponds to, in the zero-acceleration limit,
the wormhole constructed from two copies of the Schwarzschild spacetime investigated in
Ref. [55] and results in a characteristic causal structure due to the acceleration since
the causal structure of the infinity of the spacetime with the C-metric drastically differs
from that of the Schwarzschild spacetime. Letting (M±, g±) be the spacetimes with the
metrics g± given by Eq. (3.10) and {t±, x±, y±, ϕ±} be the corresponding coordinates, the
truncated manifolds of M± for the wormhole case are given by

M̄± = {y± ≥ yph} . (8.66)

By identifying the boundaries ∂M̄± = {y± = yph} so that (t+, x+, y+ = yph, ϕ+) ≡
(t−, x−, y− = yph, ϕ−), we obtain the Z2PTJST (M, gdis,Σ) where gdis is the metric
distribution and Σ is the shell given by y+ = y− = yph. Transforming the radial coordi-
nates y± of M̄± to the new coordinates l± := ± (y± − yph) and identifying the coordinates
{t, x, l, ϕ} of M with the coordinates {t±, x±, l±, ϕ±} of each region M̄±, we obtain the
explicit form of the metric distribution,

gdis =
1

A2 (x+ |l|+ yph)
2

[
−F (|l|+ yph) dt

2 +
1

F (|l|+ yph)
dl2 +

1

G(x)
dx2 +G(x)dϕ2

]
.

(8.67)
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The shell Σ corresponding to the wormhole throat is given by l = 0. The stationary
region, − (y1 − yph) < l < y1 − yph, which includes the throat, is surrounded by the two
acceleration horizons, l = ± (y1 − yph). The mean curvatures of the boundaries ∂M̄± are
given by θ± = ±(

√
3m)−1 and therefore, the tension of the thin shell is ϵ = −(6

√
3πm)−1.

They do not depend on the parameter A of the acceleration.

Remark 8.3.10. As shown in Refs. [10, 60], the C-metric can be extended beyond the ac-
celeration horizon, y = y1, and there is another acceleration horizon, beyond which there
is another stationary region isometric to the stationary region {y0 < y < y1}. There-
fore, for the wormhole spacetime (M, gdis,Σ) in Example 8.3.9, there also exist such
acceleration horizons and stationary regions beyond each of the acceleration horizons,
l = ± (y1 − yph). There can be black holes in the stationary regions or, since there also
exist other photon surfaces in the regions, thin shell wormhole throats.

Example 8.3.11 (Junction along r-photon surfaces). The Λ-vacuum cases of the space-
time investigated in Chap. 4 give other examples of Z2PTJSTs if there exist the r-photon
surfaces. Consider a spacetime (M, g) with the metric given by Eqs. (4.1) and (4.12)
and Q2 = 0. Suppose there exist an r-photon surface at r = rp in (M, g). We
denote two copies of the truncated outside region of the r-photon surface of (M, g),
r ≥ rp, by (M̄±, g±) and the coordinates by

{
t±, r±, x

i
±
}
. Identifying the boundaries

∂M̄± = {r± = rp} so that (t+, r+ = rp, x
i
+) ≡ (t−, r− = rp, x

i
−), we obtain a Z2PTJST

(M, gdis,Σ) where gdis is the metric distribution and Σ is the shell given by r+ = r− = rp.
Transforming the radial coordinates r± of M̄± to the new coordinates l± := ± (r± − rp)
and introducing the coordinates {t, l, xi} of M by the identification {t, l, xi} =

{
t±, l±, x

i
±
}

on each region M̄±, the metric distribution is expressed as

gdis = −f (|l|+ rp) dt
2 + f−1 (|l|+ rp) dl

2 + (|l|+ rp)
2 γij(x)dx

idxj. (8.68)

The mean curvatures of the boundaries are given by θ± = ±3
√
f(rp)r−2

p and the tension

of the thin shell is ϵ = −[(D − 2)/4π]
√
f(rp)r−2

p .

Remark 8.3.12. Example 8.3.11 can be viewed as the topological extension of the Λ-
vacuum cases of the thin shell wormholes in Refs. [55, 56]. Barcelo and Visser investi-
gated the spherically symmetric cases of thin shell wormholes in Ref. [55]. Kokubu and
Harada extended the work to the hyperbolically and planar symmetric cases with exten-
sions in other directions [56]. If compactified, the hyperbolically and planar symmetric
submanifolds of codimension-two become double and single toruses, respectively [61]. The
Einstein submanifolds γij of the Z2PTJST in Example 8.3.11 can be compact manifolds
with various topology [32]. In that sense, the Z2PTJST would be the topological exten-
sion of the above works. Note that, although the geometry and the topology of γij are
non-trivial, the structures in the radial direction of the Z2PTJST is not different from
that given in Refs. [55, 56]. This is because the geometry of γij contributes to the metric
coefficients f(r) and g(r) only by the scalar curvature k = ±1, 0 as we can see from
Eq. (4.12). Although we have extended the geometry of γij from a constant curvature
space to an Einstein manifold, the difference does not appear in the coefficients f(r) and
g(r).
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8.4 Stability of pure-tensional joined spacetime

We consider a shell perturbation of a Z2JST preserving its Z2-symmetry. That is,
perturbing the hypersurfaces Σ± of (M±, g±) to Σ̃±, we rejoin the spacetimes along the

new boundaries Σ̃± to give a new perturbed Z2JST (M̃, g, Σ̃) (Fig. 8.3). Since (M±, g±)

are isometric to each other including their hypersurfaces Σ± and Σ̃±, it is sufficient to
focus only on the “plus” ones and we denote them as (M, g), Σ, Σ̃, and so on in the
following.

After reviewing the deformation formalism of surfaces given by Capovilla and Gu-
ven [59], we apply it to Z2PTJSTs, that is, the case where Σ is a photon surface. We
also see that the stability of Σ corresponds to the stability of null geodesics on Σ defined
in Chap. 3.

(a) Perturbed inner boundaries Σ̃±

(b) Rejoining along Σ̃±

Figure 8.3: (a) The unperturbed inner boundaries Σ± (dashed lines) are perturbed to Σ̃±
(solid lines). (b) The truncation and gluing of M± along Σ̃± gives the perturbed

joined manifold M̃ with the perturbed shell Σ̃ := Σ̃+ ≡ Σ̃−.

8.4.1 Deformation of a hypersurface

Let Σ be a timelike hypersurface of a spacetime (M, g). Consider a one-parameter family
of the deformation,

Fε : Σ → Σε, (8.69)

with the parameter ε where Σ0 = Σ. Expanding in ε, points on the surfaces are expressed
as

Σµ
ε = Σµ + εXµ +O

(
ε2
)

(8.70)

in a coordinate system {xµ}. The vector field X on Σ is called the deviation between Σ
and its infinitesimal deformation limε→0Σε. Without loss of generality, we assume X to

86



be orthogonal to Σ by diffeomorphisms on Σ and Σε [59]. Define a scalar field Φ on Σ
by

X = ΦN (8.71)

where N is the unit normal vector of Σ. This quantity represents the distance between Σ
and its infinitesimal deformation. According to the deformation formalism by Capovilla
and Guven [59], we have equations which relate Φ with the geometrical quantities on Σ.
A tiny fraction of the calculation processes in [59] is incorrect and we recalculate it for
our purpose by following their procedure in Appendix C.1.

The deformation of the intrinsic geometry of Σ is related to Φ by

(∇NR) Φ = −2Rabχ
abΦ + 2∇h

a∇h
b

(
χabΦ

)
− 2∆h (θΦ) (8.72)

where ∆h := hab∇h
a∇h

b and Rab and R are the Ricci tensor and scalar of Σε, respectively.
This is the codimension one version of Eq. (C.10) in Appendix C.1. Note that the indices
a, b, ... are with respect to the coordinate basis vectors {ea} of Σ. For a tensor T of M ,
Tab represents T (ea, eb) for example. We lower and raise the indices by the induced
metric hab = g(ea, eb) and its inverse matrix hab, respectively. For the deformation of
the extrinsic geometry, Φ obeys

∇h
a∇h

bΦ = − [∇Nχab − χacχ
c
b +RaNbN ] Φ (8.73)

where the subscripts ofN represent the contraction withN , i.e., RaNbN = Rµανβe
µ
aN

αeνbN
β.

We obtain the equation from Eq. (4.6) in [59] by setting the codimension one. Note that
χab and Rab is now defined on each surface Σε and can be differentiated along N . The
equation,

2χab = ∇Nhab, (8.74)

is also useful in the calculations. See Eq. (3.8) in [59] for the derivation.
In the case where each surface Σε obeys the same equations of motion, the deforma-

tion Fε should be called a perturbation. Then we say Σ is stable against the perturbation
if Φ is bounded as time evolves along Σ and otherwise unstable.

8.4.2 Perturbation of a photon surface

We consider the Z2-symmetric perturbation of a Z2PTJST (M, g,Σ). The perturbed

spacetime (M̃, g, Σ̃) is also Z2PTJST and therefore, from Theorem 8.3.4, the hypersur-

face Σ̃ is another photon surface of the original spacetime (M±, g±). More precisely,

Σ and Σ̃ corresponds to CMC photon surfaces Σ± and Σ̃± of the Λ-vacuum spacetime
(M±, g±), respectively, because of Theorem 8.3.4 and Proposition 8.3.3. Then, what
we do in the following is to impose the conditions, CMC, totally umbilic (recall Theo-
rem 8.3.2), and Λ-vacuum on the deformation formalism, Eqs. (8.72) and (8.73).

Let Σ be a CMC photon surface of a Λ-vacuum spacetime (M, g). The EOMs of Σ
are given by

χab =
θ

d
hab, (8.75)

θ = const. (8.76)

87



with the Λ-vacuum condition on the spacetime,

Gµν = −Λgµν , (8.77)

where Gµν is the Einstein tensor. We denote the perturbation of Σ to Σε, which also
obeys the EOMs, as FPS

ε : Σ → Σε.
First we calculate Eq. (8.72) for FPS

ε . The contracted Gauss-Codazzi relation in
Λ-vacuum reads

R+ χabχab − θ2 = −2GNN = 2Λ. (8.78)

From Eq. (8.75), the equation reduces to

R =
d− 1

d
θ2 + 2Λ. (8.79)

Then the LHS of Eq. (8.72) reduces to

(∇NR) Φ = 2
d− 1

d
(θ∇Nθ) Φ. (8.80)

The RHS of Eq. (8.72) reduces to

−2χabRabΦ + 2∇h
a∇h

b

(
χabΦ

)
− 2∆h (θΦ)

= −2
θ

d
RΦ + 2∇h

a∇h
b

(
θ

d
habΦ

)
− 2∆h (θΦ)

= −2
θ

d
RΦ− 2

d− 1

d
θ∆hΦ (8.81)

where we have used Eqs. (8.75) and (8.76) in the first and last equalities, respectively.
Equating both sides with the use of Eq. (8.79), we finally obtain

∇Nθ = −θ
2

d
− 2

d− 1
Λ− Φ−1∆hΦ. (8.82)

Next we calculate Eq. (8.73) for FPS
ε . From Eq. (8.75), the first term in the brackets

in Eq. (8.73) reduces to

∇Nχab = ∇N

(
θ

d
hab

)
=

1

d

[
θ2

d
− 2

d− 1
Λ− Φ−1∆hΦ

]
hab (8.83)

where Eqs. (8.74) and (8.82) were used in the last equality. Then the LHS of Eq. (8.73)
reduces to

− [∇Nχab − χacχ
c
b +RaNbN ] Φ

=
1

d
∆hΦhab +

[
−RaNbN +

2

d(d− 1)
Λhab

]
Φ (8.84)
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where Eqs. (8.75) and (8.83) were used. Substituting the result into Eq. (8.73), we
obtain

∇h
a∇h

bΦ− 1

d
∆hΦhab =

[
−RaNbN +

2

d(d− 1)
Λhab

]
Φ, (8.85)

or from the Λ-vacuum condition Eq. (8.77),

∇h
a∇h

bΦ− 1

d
∆hΦhab = −CaNbNΦ. (8.86)

We have another expression of Eq. (8.86). The contraction of Gauss-Codazzi relation,

Rαµβνh
α
ah

µ
ch

β
b h

ν
d = Racbd − χabχcd + χadχcb,

with hcd gives
Rαβh

α
ah

β
b −RaNbN = Rab − θχab + χacχ

c
b. (8.87)

from hcdhµch
ν
d = hµν = gµν −NµNν . Using the fact that the spacetime is Λ-vacuum and

the hypersurface is totally umbilic, the equation reduces to

− CaNbN +
2

d
Λhab = Rab −

d− 1

d2
θ2hab. (8.88)

From Eq. (8.79), we have

− CaNbN = Rab −
R
d
hab. (8.89)

Then Eq. (8.86) is rewritten as

∇h
a∇h

bΦ− 1

d
∆hΦhab =

(
Rab −

R
d
hab

)
Φ. (8.90)

The expression tells us that the linear perturbation Φ is governed only by the intrinsic
geometry, the Ricci curvature Rab, of (Σ, h).

Note the master equation of the perturbation, Eq. (8.86) or (8.90), does not have its
trace part. Therefore, Φ−1∆hΦ is unspecified a priori and will be determined after we
solve the trace-free part of the equation for given initial values of Φ.

8.4.3 Stability of the shell and a photon surface

Let us physically interpret the master equation Eq. (8.86) for the perturbation Φ of the
photon surface Σ.

Let kp ∈ TpΣ be a null vector at a point p ∈ Σ. Since Σ is a photon surface, there
always exists a null geodesic γ(λ) everywhere tangent to Σ such that kp = γ̇(0). The
contraction of Eq. (8.86) with k = γ̇(λ) gives

∇h
k∇h

kΦ = −CkNkNΦ. (8.91)

Therefore, we have
d2

dλ2
Φ(λ) = −CkNkNΦ(λ) (8.92)
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along γ(λ). This implies that given the initial values Φ|t=t0 and ∂aΦ|t=t0 at time t = t0,
the value of Φ at the point p in the future is determined by integrating the ordinary
differential equation Eq. (8.92) along γ(λ) from q = γ(λt=t0) to p.

The factor −CkNkN in Eq. (8.92) coincides with what determines the stability of the
null geodesic γ on Σ. That is, an orthogonally perturbed null geodesic γ̃ from γ is stable
(attracted to Σ) if −CkNkN < 0 and unstable (repelled from Σ) if −CkNkN > 0 in our
Λ-vacuum case (see Proposition 3.2.2 and 3.2.3). In particular, if Σ is a strictly stable
photon surface, i.e. all the null geodesics on Σ are stable, the factor in Eq. (8.92) is
always negative along any null geodesics. This is suggestive that Φ will be bounded as
time evolves. In fact, in the case where −CkNkN varies sufficiently slowly, Φ oscillates
with the almost constant amplitude along any null geodesic and will be bounded.

This is quite natural from the physical point of view. Since a photon surface is
a hypersurface generated by null geodesics, the photon surface Σε perturbed from Σ is
generated by the orthogonally perturbed null geodesics γ̃. Therefore, if all the perturbed
null geodesics γ̃ are attracted to Σ, Σε should also be attracted to Σ. As a consequence,
Σ should be stable if the null geodesics along Σ are stable.

Then our conclusion is this: if Σ is a strictly stable photon surface, then Σ is stable
against the linear perturbation given by FPS

ε : Σ → Σε. For Z2PTJSTs, we also con-
clude as this: if Σ± is a strictly stable photon surface of (M±, g±), then the Z2PTJST
(M, g,Σ) constructed from (M±, g±) is stable against shell perturbations preserving the
Z2-symmetry.

In Appendix C.2, we explicitly solve the perturbation equation, Eq. (8.86), in the case
where the geometry of Σ is static and spherically, planar, and hyperbolically symmetric.
The case is frequently seen in, for example, [53, 55, 56]. The induced metric is given by

h = a2(−dt2 + σ)

where a is constant and σ represents the metric of the (d− 1)-dimensional space of con-
stant curvature α = ±1, 0. The general solution in spherically (α = 1) and hyperbolically
(α = −1) symmetric case is given by

Φ = Ce
√
αt + Fe−

√
αt (α = ±1) (8.93)

with the arbitrary constants C and F from Eq. (C.51). In the planar case (α = 0), we
have

Φ = Dηabx
axb +Bax

a + C (α = 0) (8.94)

with the arbitrary constants D, Ba, and C from Eq. (C.52). xa = (t, xi) is the Cartesian
coordinate on Σ. Since the Weyl curvature gives −CkNkN = Rkk = α for any null vector
k ∈ TΣ with an appropriate scaling, Σ is a strictly stable photon surface if and only if
α = −1, i.e. the hyperbolic case, and it is only the case where the solution Φ is bounded
for any possible perturbation. Therefore, the result agrees with the above conclusion,
indeed. See Appendix C.2 for the derivation and the detailed interpretations of the
result.
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8.5 Uniqueness of pure-tensional wormholes

A joined spacetime (M, g,Σ) is a wormhole spacetime if both regions M̄± have asymp-
totically flat domains. If, additionally, (M, g,Σ) is Z2-symmetric and pure-tensional,
the spacetimes (M̄±, g±) constituting (M, g,Σ) are asymptotically flat spacetimes with
their inner boundaries Σ± being photon surfaces according to Theorem 8.3.4. Cederbaum
established the uniqueness theorem of such spacetimes, (M̄±, g±), with some assump-
tions [11]. Using the theorem, we prove the uniqueness theorem of pure-tensional thin
shell wormholes.

In Cederbaum’s uniqueness theorem, the spacetime is assumed to be AF-geometrostatic
(“AF” stands for “asymptotically flat”)(see below) and the lapse function with respect
to the static Killing vector is assumed to be constant along the photon surface being
the inner boundary. In the following, we call the photon surface under the assumptions
Cederbaum’s photon sphere (Definition 2.6 in [11]).

8.5.1 Pure-tensional wormhole

An AF-geometrostatic spacetime (Definition 2.1 in [11]) is a spacetime which is static,
asymptotically flat, and a vacuum solution to Einstein equation with the cosmological
constant Λ = 0. We define the following AF-geometrostatic wormhole spacetime:

Definition 8.5.1 (Static pure-tensional wormhole). Let (M, g,Σ) be a Z2PTJST con-
structed from (M±, g±). (M, g,Σ) is called a static pure-tensional wormhole if (M̄±, g±)
are AF-geometrostatic spacetimes and their inner boundaries Σ± are static.

8.5.2 Proof of the uniqueness

We impose a technical assumption on a static pure-tensional wormhole (M, g,Σ) to
prove the uniqueness theorem. Since (M, g,Σ) is Z2-symmetric and Σ is static, (M̄±, g±)
have a common static Killing vector field ∂t which are tangent to Σ± on Σ± and satisfies
ψ∗ : ∂t|Σ+ 7→ ∂t|Σ− for the identification of the inner boundaries ψ : Σ+ → Σ−. The lapse
functions N± of (M̄±, g±) and N of (M, g,Σ) with respect to the Killing vector are given
byN 2

± = −g±(∂t, ∂t) andN 2 = −g(∂t, ∂t), respectively. Since the first junction condition
is satisfied from the Z2-symmetry, N 2 = −g(∂t, ∂t) = −1

2
[g+(∂t, ∂t) + g−(∂t, ∂t)] =

−g±(∂t, ∂t) = N 2
±. Then we assume that N± are constant along Σ± in M̄± and therefore,

N = const. along Σ in M. This is equivalent to the requirement that the time-time
component of the surface stress energy Sab is constant, Stt = −ϵhtt = ϵN|Σ2 = const.,
since ϵ = const. from Theorem 8.3.4. Although the assumption may restrict the class of
solutions, the pure-tensional wormholes which have been investigated satisfy it [55, 56].
We have the following theorem.

Theorem 8.5.2 (Uniqueness of static pure-tensional wormhole spacetimes). Let (M, g,Σ)
be a four-dimensional static pure-tensional wormhole constructed from (M±, g±). Let ϵ
and θ be the tension and the mean curvature of Σ, respectively. Assume that the lapse
functions N± of (M̄±, g±) regularly foliate M̄± and are constant along Σ±. Then, each
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of the regions M̄± of (M, g,Σ) is isometric to the Schwarzschild spacetime with the mass
m = 1/(

√
3θ) = −1/(6

√
3πϵ) > 0.

Proof. From Definition 8.5.1, M̄± :=M± \M in
± , which constitute M by M = M̄+ ∪ψ,ψN

M̄−, are the manifolds with the asymptotically flat regions and the inner boundaries
Σ±. From Theorem 8.3.4, Σ± of (M̄±, g±) are photon surfaces with the constant mean
curvatures

θ± = ∓6πϵ. (8.95)

Therefore, from the assumptions, (M̄±, g±) are AF-geometrostatic spacetimes regularly
foliated by N± and the inner boundaries Σ± are Cederbaum’s photon spheres, i.e.
they are photon surfaces with the constant lapse functions N± along them in the AF-
geometrostatic spacetimes (Definition 2.6 in [11]). Then, from the uniqueness theorem
of photon spheres (Theorem 3.1 in [11]), (M̄+, g+) is Schwarzschild spacetime with the
mass m = 1/(

√
3θ+) > 0. From Eq. (8.95), we have

m =
1√
3θ+

= − 1

6
√
3πϵ

> 0 (8.96)

and ϵ < 0. Since the Z2-symmetry of (M, g,Σ) implies that (M̄±, g±) are isometric,
(M̄−, g−) is also Schwarzschild spacetime with the mass

m =
1√
3θ+

= − 1√
3θ−

= − 1

6
√
3πϵ

> 0. (8.97)

Note that the static photon surface in Schwarzschild spacetime is the hypersurface
of radius 3m [8].

8.6 Summary

We have defined a joined spacetime (JST), which is obtained by truncating and gluing
two spacetimes along the boundaries, in Sec. 8.1. Z2-symmetry of JSTs has been defined
in Sec. 8.2. A pure-tensional JST (PTJST) has been defined as a Λ-vacuum JST with a
pure tension shell. For a Z2-symmetric pure-tensional joined spacetime (Z2PTJST), we
have proved that its shell must be photon surfaces of the original spacetimes constituting
the JST (Theorem 8.3.4) in Sec. 8.3. Conversely, if two isometric Λ-vacuum spacetimes
have photon surfaces, we can join them to give a Z2PTJST. Therefore, we have solutions
of Z2PTJSTs as many as the photon surfaces of Λ-vacuum spacetimes found in, for
example, Chap. 3 and 7 and Refs. [8, 10, 19, 16].

Z2PTJSTs have been widely investigated in the contexts of wormholes [55, 56], baby
universes [55], and brane worlds [57, 58]. The shells correspond to the throats in the
wormhole cases and the branes we live in in the brane world cases. One can infer that we
can extend Theorem 8.3.4 to electrovacuum cases because the coincidence of the shells
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and photon spheres holds in the electrovacuum cases in Refs. [55, 56]. It is fascinating
since the electric charges enrich the variety of thin shell wormhole solutions.

Theorem 8.3.4 can be used to exclude the possibility to construct a Z2PTJST from a
given spacetime. In a stationary axisymmetric spacetime like the Kerr spacetime, there
can be null circular geodesics, however, photon surfaces would not exist on the radii.
This is because the corotating and counterrotating circular orbits have the different
radii in general. Even if the corotating orbits generate a hypersurface on the radius, the
counterrotating orbits cannot be tangent to the surface. Then the hypersurface does not
satisfy the definition of photon surface. Therefore, we cannot join the two copies of the
spacetime along the radii of null circular geodesics to give a Z2PTJST. One needs to
violate the Z2-symmetry, the pure tension equation of state of the shell, or the Λ-vacuum
condition to construct shell wormholes from stationary axisymmetric spacetimes.

Since the shell of a Z2PTJST coincides with a photon surface, the stability of the
JST against the shell perturbation also coincides with the stability against the surface
perturbation of the photon surface in the original spacetime. In Sec. 8.4, after deriving
the master equation for the perturbation of photon surfaces, Eq. (8.90), from the surface
deformation formalism by Capovilla and Guven [59], we have found its close relationship
to the stability of null geodesics on a photon surface introduced in Chap. 3. Namely, if
null geodesics on a photon surface are stable (unstable), the photon surface itself, and
therefore the Z2PTJST, is stable (unstable) against the surface (shell) perturbation. We
have also confirmed it by solving the perturbation equation for photon surfaces explicitly
in Appendix C.2 with the specific induced metrics.

It is remarkable that the perturbation equation, Eq. (8.90), is also useful to seek
photon surfaces in the vicinity of a given photon surface. Actually, we have found the
hyperboloid, Eq. (C.50), by perturbing the plane of y = 0 in the 3-Minkowski spacetime
M3. The hyperboloid, as well as the plane, is known to be a timelike photon surface of
M3, indeed [8] (see also Examples 3.1.2–3.1.5 in Chap. 3). In contrast with the planar
case, in the spherically and hyperbolically symmetric cases, it is suggested that there
would not be photon surfaces violating the spatial symmetries because the perturbation
Φ in Eq. (C.51) depends only on the time t.

In the wormhole cases of Z2PTJSTs with the vanishing cosmological constant, we
have applied the uniqueness theorem of photon spheres by Cederbaum [11] and estab-
lished the uniqueness theorem of static pure-tensional wormholes with Z2-symmetry
(Theorem 8.5.2) in Sec. 8.5. The theorem states that both sides of the wormhole are
isometric to the Schwarzschild spacetim with the same masses. It is also interesting that
the tension of the shell and the mass of the wormhole are inversely proportional to each
other and the positive mass implies the negative tension and the negative energy of the
shell. This is consistent with the result that wormhole spacetimes have to violate energy
conditions in the vicinity of the throats [51, 52].

The static pure-tensional wormhole in our uniqueness theorem has the photon sur-
face (shell) of the geometry (8.93) with α = +1. Therefore, from the general solution
of the perturbation, Eq. (8.93), in Sec. 8.4, the static pure-tensional wormhole is un-
stable against general throat (shell) perturbation preserving Z2-symmetry. Note that
the instability of this spacetime was also concluded for the Z2-symmetric, spherically
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symmetric, nonlinear perturbation of the shell in Refs. [55, 56].
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Chapter 9

Conclusion

In this thesis, we have studied the basics of a photon sphere and a photon surface and
their relevant phenomena.

In Chap. 2, we have overviewed the photon spheres of the Schwarzschild spacetime
and the Reissner-Nordström spacetime. They are the spheres along which null geodesics
take circular orbits. From the symmetry of the spacetimes, the geodesic equations reduce
to the one-dimensional equations of motion with the effective potentials, and therefore,
their extrema correspond to the photon spheres. We have found the extrema are local
maxima and therefore the corresponding photon spheres are unstable photon spheres
excepting the over-extremal case of the Reissner-Nordström spacetime. After deriving
the radii of the photon spheres, we have clarified that the edges of the black hole shadows
are shaped by the unstable photon spheres. The corresponding smallest incident angles,
from which the photons emitted from a light source distant to the black hole can come,
have also derived with their relations to the critical impact parameters of the photons.

In Chap. 3, after reviewing the definition, the examples, and the basic theorem of
a photon surface, we have defined the stability of null geodesics on a photon surface
by reformulating the stability of a photon sphere in a covariant manner. Since such a
behavior is subject to the geodesic deviation equation, the stability condition of null
geodesics on a photon surface has been given in terms of the Riemann curvature, as in
Proposition 3.2.2, or the Weyl and Ricci curvature, as in Proposition 3.2.3. Another
expression for the stability condition has also been derived in terms of the trace-free
part of the second fundamental form as in Proposition 3.3.1. Several corollaries for the
existence of stable and unstable photon surfaces have been shown in Sec. 3.4. Remark-
ably, it is obvious from Proposition 3.2.3 that the existence of unstable photon surfaces
requires the non-zero contribution of the Weyl curvature if the spacetime satisfies the
null energy condition. From the physical point of view, it implies that unstable photon
surfaces exit only in a strong gravity region, such as the vicinity of a black hole.

In Chap. 4, we have investigated r-photon surfaces in the spacetime given by the
metric ansatz (4.1). The ansatz is a general form of a warped spacetime as shown in

95



Appendix A. The r-photon surfaces indeed exist in the case where the spacetime is the
electrovacuum solution to the Einstein equation with the cosmological constant. Since
the spacetime is a solution as far as the (D− 2)-space γijdx

idxj is an Einstein manifold,
it implies that static photon surfaces exist in less or non-symmetric electrovacuum space-
times. Here we conclude that a static photon surface may exist in spacetimes because
of the warped structure rather than the high degrees of the Killing symmetry.

In Chap. 5, first we have derived the conditions for photon spheres, the radius and the
stability of the corresponding circular orbit of null geodesics in a general D-dimensional
static, spherically symmetric spacetime. Next, we have generalized the analysis of accre-
tion problems given by Chaverra and Sarbach [24] to arbitrary dimensions and discussed
the relation between sonic points and critical points in general. Then, for ideal photon
gas (radiation fluid), it has been shown that radius of a sonic point always coincides
with (one of) photon spheres for physical solutions of the accretion problem. The phe-
nomenon has been named sonic point/photon sphere (SP/PS) correspondence. We can
expect the significance of the phenomenon from the fact that a black hole shadow is
observed by observing light emissions from accreting matter [2]. If radiation fluid are
accreting into a black hole, the bright edge of the black hole shadow, corresponding to
the radius of the photon sphere (recall Chap. 2), is shaped by the light emissions from
the sonic point. We might be able to obtain the characteristic informations of the accret-
ing radiation fluid from the shadow observation or obtain the geometrical informations
concerning the photon sphere from a characteristic spectrum of the light emission from
the radiation flow.

In Chap. 6, we have formulated the rotational accretion problem of the disk lying on
the equatorial plane of the D-dimensional static, spherically symmetric spacetime. We
have adopted the simplest accretion disk model similar to the one given by Abraham
et al. [40]. Then the accretion analysis extended to arbitrary dimensions in Chap. 5
has been further extended to the case of rotational flow. For the disk model, we have
found that the SP/PS correspondence holds as far as the fluid is ideal photon gas, or
radiation fluid. Since almost all the black holes which have been optically observed are
accompanied with accretion disks, the result would be a more realistic extension of the
SP/PS correspondence.

In Chap. 7, we have investigated photon surfaces of constant radius in the spheri-
cally, planar, and hyperbolically symmetric spacetime, Eq. (7.1). We have formulated
the accretion problem of stationary radial fluid flow which is also spatially symmetric
depending on the spatial symmetry of the spacetime (7.2). It has been revealed that the
master equation (7.25) does not depend on the spatial symmetry explicitly. Then we
have applied the dynamical system analysis to the problem and found that the SP/PS
correspondence in Chap. 5 holds by replacing photon sphere (PS) with photon surface
(PS) of constant radius. The fact implies that the circularity of photons along a photon
sphere is not relevant, but rather the umbilicity of the surface is essential for the corre-
spondence. The further investigation of the correspondence in a general setting is given
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in Ref. [44]. In the work, it has been concluded that the correspondence could occur if
the system is highly symmetric.

In Chap. 8, we have considered a joined spacetime (JST), which is constructed by the
thin shell formalism. For a Z2-symmetric pure-tensional joined spacetime (Z2PTJST),
we have proved that its shell must be photon surfaces of the original spacetimes consti-
tuting the JST (Theorem 8.3.4). The result implies that we have solutions of Z2PTJSTs
as many as the photon surfaces found in Λ-vacuum spacetimes. We have also shown the
stability of Z2PTJSTs coincides with the stability of the photon surfaces along which
the original spacetimes are joined. Finally, for asymptotically flat vacuum wormholes of
Z2PTJST, we have proved the uniqueness theorem (Theorem 8.5.2) by using the photon
sphere uniqueness theorem by Cederbaum [11]. The uniqueness theorem states that a
pure-tensional and vacuum thin shell wormhole must be that constructed by joining the
two equal-mass Schwarzschild spacetimes along their photon spheres, r = 3m. Since
such a wormhole has been concluded to be unstable against shell perturbation in this
thesis and Refs. [55, 56], it means that there is no stable pure-tensional vacuum thin
shell wormhole in general.

The phenomena relevant to a photon surface we have investigated in this thesis
appear in quite general situations in the following senses. In Chap. 4, we have shown
that the r-photon surfaces may exist on general spacetimes in a class of static warped
spacetimes regardless of the symmetry. In Chaps. 5–7, the SP/PS correspondence has
been proved, under the symmetry assumed on the fluid and spacetimes, for general
spacetimes which need not be solutions to any theories of gravity. In Chap. 8, thin shells
of general Z2PTJSTs have been found to correspond to photon surfaces regardless of the
symmetry excepting the Z2-symmetry. These results have shown that a photon surface in
a spacetime has more physical significance than its definition. That is, a photon surface
is a spacetime structure that is crucial for not only motions of free photons but also
accreting matter and pure-tensional matter shells. It is also interesting to investigate
the same or similar phenomena for the other generalized notions of a photon sphere
that are being extensively investigated recently: the loosely trapped surface [62]; the
transversely trapping surface [63, 64]; the wandering set [65]; and the partially umbilic
hypersurface [66]. The generalized notions are related to or inspired by the photon
surface, and therefore, new phenomena relevant to them other than motions of free
photons may be discovered.
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Appendix A

Static warped spacetime

The spacetime given by Eq. (4.1),

ds2 = −f(r)dt2 + g(r)dr2 + r2γij (x) dx
idxj,

can be given as a generic static warped product. Consider a warped product of manifolds
of the form,

M =M1 ×FM2, (A.1)

where M1 is a two-dimensional Lorentzian manifold, M2 is a (D − 2)-dimensional Rie-
mannian manifold, and F :M1 → R>0 is a warping function. Letting {yA} and {xi} be
the coordinates on M1 and M2, respectively, we have

ds2 = gAB(y)dy
AdyB + F(y)γij(x

i)dxidxj. (A.2)

Choosing t ∈ {yA} as the static time and R ∈ {yA} as the coordinate orthogonal to t,
we have

ds2 = gtt(R)dt
2 + gRR(R)dR

2 + F(R)γij(x)dx
idxj. (A.3)

If we additionally assume that F ′(R) ̸= 0, we can transform the coordinate R → r by
dr = d(F1/2) = (1/2)F−1/2F ′dR. Then we obtain

ds2 = gtt(R(r))dt
2 + grr(R(r))dr

2 + r2γij(x)dx
idxj. (A.4)

Defining −f(r) := gtt(R(r)) and g(r) := gRR(R(r)), we obtain Eq. (4.1).
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Appendix B

Gaussian normal coordinates on a
Z2-symmetric joined spacetime

We construct a coordinate system of a Z2-symmetric joined spacetime (M, g,Σ) which
respects the Z2-symmetry. With the coordinate system, we can verify Definition 8.2.1
explicitly.

Let (M, g,Σ) be Z2-symmetric joined spacetime of (M±, g±). Consider Gaussian
normal coordinates C± : p± ∈M± 7→ (l±, x±) ∈ Rd+1 with respect to Σ± such that

g± = dl2± + h±ij(±l±, x±)dxi±dx
j
± (B.1)

with the conditions,

Σ± = {l± = 0} , (B.2)

N± = ∂l±. (B.3)

With the isometry ϕ : (M+, g+) → (M−, g−) in Definition 8.2.1, we can impose that
C− ◦ ϕ ◦ C−1

+ : (l+, x+) 7→ (−l−, x−) on the coordinates. It leads to

h+ij(l, x) = h−ij(l, x) (B.4)

for a variable l. Indeed, the assumption on the coordinates satisfies the requirement for
ϕ, Eqs. (8.17) and (8.19):

ϕ|Σ+
: Σ+ = {l+ = 0} → {l− = 0} = Σ−, (B.5)

ϕ∗ : N+ = ∂l+ 7→ −∂l− = −N−. (B.6)

Since C− ◦ ϕ|Σ+
◦ C−1

+ : (0, x+) 7→ (0, x−), Eq. (8.18) implies that M = M̄+ ∪ψ,ψN
M̄− is

obtained by, after the truncation M± → M̄±, identifying the coordinates on Σ± as

C− ◦ ψ ◦ C−1
+ : (0, x+) 7→ (0, x−). (B.7)

From the identification of the normal vectors ψN : N+ 7→ N−, Eq. (8.10), we also have

∂l+|l+=0 = ∂l−|l−=0 . (B.8)
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Then we introduce the coordinate system C : p ∈ M 7→ (l, x) into M by

(l, x) =

{
(l+, x+) (l ≥ 0)
(l−, x−) (l < 0).

(B.9)

This choice satisfies the conditions for the gluing, Eqs. (B.7) and (B.8). Finally, we
obtain the metric distribution on M,

g = dl2 + hij(|l|, x)dxidxj, (B.10)

where hij(l, x) := h+ij(l, x) = h−ij(l, x) for l ≥ 0.
Obviously, the transformation l → −l leaves g and Σ invariant and exchanges the

regions of M as M ex
+ ↔ M ex

− . Definition 8.2.1 gives a Z2-symmetric joined spacetime,
indeed.

The quantities appearing in the junction conditions are given as follows. From
h±(X,Y ) = g±(X,Y ) ∀X,Y ∈ TΣ±, the induced metric is

h+ = hij(0, x)dx
idxj = h−. (B.11)

From χ± = (1/2)LN±h± [21], the second fundamental form is

χ+ =
1

2
hij,l(0, x)dx

idxj = −χ−. (B.12)

We can easily see that Proposition 8.2.2 holds from the expressions.
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Appendix C

Deformation of hypersurfaces

The derivation of the results for surface deformation obtained in Chap. 8 is supported
by the following calculations. In Appendix C.1, we make the corrections to a part of the
surface deformation formalism given in [59]. In Appendix C.2, we explicitly solve the
perturbation equation of a photon surface in specific cases.

C.1 Calculations in deformation of hypersurfaces

We recalculate a part of the calculation in [59] following their procedure. The notations
in [59] are converted to those used in Chap. 8 in the following.

We consider an embedded surface Σ of a spacetime (M, g) and its deformation. The
dimension d := dim(Σ) ≥ 1 is arbitrary here and therefore we have (D− d) unit normal
vectors N i and the deviation scalars Φi where i = 1, ..., D − d. From Eq. (3.9) in [59],
the deformation of the Christoffel symbol Γab

c with respect to the induced metric hab of
the surface Σ is given by

∇δΓab
c =

1

2
hcd

[
∇h
a (∇δhbd) +∇h

b (∇δhad)−∇h
d (∇δhab)

]
= hcd

[
∇h
a

(
χbd

iΦi

)
+∇h

b

(
χad

iΦi

)
−∇h

d

(
χab

iΦi

)]
(C.1)

where δ := ΦiN
i, ∇ is the covariant derivative associated with g, ∇h is the covariant

derivative associated with hab, χab
i is the i-th extrinsic curvature of Σ with respect to

N i, and ∇δ := δµ∇µ. In general, a variation of a metric gµν → gµν + ∆gµν gives the
variations ∆ of the connection coefficients Γαµν and the curvatures Rα

µβν , Rµν , and R
of a spacetime as [25, 67]

∆Rα
µβν = ∇β∆Γαµν −∇ν∆Γαµβ, (C.2)

∆Rµν = ∇α∆Γαµν −∇ν∆Γαµα, (C.3)

∆R = −Rµν∆gµν + gµν (∇α∆Γαµν −∇ν∆Γαµα) , (C.4)

∆
(√

−gR
)

=
1

2
gµν∆gµν

√
−gR +

√
−g∆R. (C.5)
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Applying the equations to our case and replacing ∆ by ∇δ, we have

∇δRa
cbd = ∇h

b (∇δΓcd
a)−∇h

c (∇δΓbd
a) , (C.6)

∇δRcd = ∇h
a (∇δΓcd

a)−∇h
d (∇δΓca

a) (C.7)

∇δR = −Rcd∇δhcd + hcd
(
∇h
a∇δΓcd

a −∇h
d∇δΓca

a
)
, (C.8)

∇δ

(√
−γR

)
=

√
−h

(
1

2
hab∇δhabR+∇δR

)
(C.9)

for the curvatures of (Σ, h). In particular, substituting Eq. (C.1) into the identities and
using Eq. (3.8) in [59], ∇δhab = 2χab

iΦi, we obtain

∇δR = −2Rcdχcd
iΦi + 2∇h

a∇h
c

(
χaciΦi

)
− 2∆h

(
θiΦi

)
, (C.10)

∇δ

(√
−hR

)
= −2

√
−hGabχabiΦi + ∂a

(√
−hJa

)
, (C.11)

where Ja := 2
(
∇h
c (χ

aciΦi)−∇ha (θiΦi)
)
and Gab is the Einstein tensor of (Σ, h). Note

that, modulo a divergence, Eqs. (C.10) and (C.11) coincide with Eqs. (3.11) and (3.12)
of [59], respectively.

C.2 Generic solutions to the photon surface pertur-

bation equation

The perturbation equation Eq.(8.90),

∇h
a∇h

bΦ− 1

d
∆hΦhab =

(
Rab −

R
d
hab

)
Φ,

for constant mean curvature (CMC) photon surfaces was derived in Sec. 8.4. Here we
solve the equation explicitly and derive the general solutions in specific cases.

Consider the case where the induced metric h on the photon surface Σ is given by

h = a2(−dt2 + σ) (C.12)

where a is a constant and σ is the metric of the (d − 1)-dimensional space of constant
curvature α = 0,±1. This corresponds to the static cases of [55, 56] with an appropriate
scaling of time t. We express the space part as

σ = dχ2 + s2(χ)Ωd−2 (C.13)

with s(χ) = χ, sin(χ), sinh(χ) for α = 0,+1,−1, respectively, and the metric of the unit
(d − 2)-sphere Ωd−2. Hereafter we omit the subscript d − 2 of Ωd−2. For simplicity, we
scale h by a constant so that

h = −dt2 + σ (C.14)

and solve the perturbation equation, Eq. (8.90), with this induced metric in the following.
Note that it is sufficient to specify only the intrinsic geometry (Σ, h) to solve the equation.
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C.2.1 α = ±1

Consider α = ±1 cases. The Ricci curvatures of (Σ, h) are given by

Rtt = 0, Rti = 0 Rij = ασij, R = (d− 1)α (C.15)

where i, j = χ, xA and xA (A = 1, ..., d − 2) are the spherical coordinates of Ω. The
double null coordinates {λ± := t±χ, xA} give null geodesics of (Σ, h) with the tangents

k± = ∂λ± . (C.16)

From the fact that Rk±k± = α and the contraction of Eq. (8.90) with k±, we have

∂2λ±Φ(λ+, λ−, x
A) =

1

4
αΦ(λ+, λ−, x

A). (C.17)

The integration of the “plus” one of the equation gives

Φ(λ+, λ−, x
A) = A(λ−, x

A)e
√
αλ+/2 +B(λ−, x

A)e−
√
αλ+/2 (C.18)

for the arbitrary functions A(λ−, x
A) and B(λ−, x

A). Substituting this into the “minus”
one, we have

∂2λ−A(λ−, x
A) =

1

4
αA(λ−, x

A), (C.19)

∂2λ−B(λ−, x
A) =

1

4
αB(λ−, x

A) (C.20)

leading to

A(λ−, x
A) = C(xA)e

√
αλ−/2 +D(xA)e−

√
αλ−/2, (C.21)

B(λ−, x
A) = E(xA)e

√
αλ−/2 + F (xA)e−

√
αλ−/2. (C.22)

Therefore, we obtain

Φ = C(xA)e
√
α(λ++λ−)/2 +D(xA)e

√
α(λ+−λ−)/2

+E(xA)e−
√
α(λ+−λ−)/2 + F (xA)e−

√
α(λ++λ−)/2

= C(xA)e
√
αt +D(xA)e

√
αχ + E(xA)e−

√
αχ + F (xA)e−

√
αt (C.23)

for the arbitrary functions C(xA), D(xA), E(xA), and F (xA).
The Christoffel symbols Γabc with respect to hab are calculated as

Γtab = Γatb = Γχχχ = ΓχχA = 0

ΓχAB = −ss′ΩAB, ΓAχχ = 0, ΓAχB =
s′

s
δAB, ΓABC = ΩΓ

A
BC (C.24)

where ΩΓ
A
BC is the Christoffel symbol with respect to ΩAB. The nondiagonal compo-

nents of Eq. (8.90) reduce to

∂a∂bΦ− Γiab∂iΦ = 0 (a ̸= b). (C.25)
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For (a, b) = (t, χ), Eq. (C.25) gives

∂t∂χΦ = 0 (C.26)

and this is consistent with Eq. (C.23). For (a, b) = (t, A), we have

∂t∂AΦ =
√
α
[
C(xA),Ae

√
αt − F (xA),Ae

−
√
αt
]
= 0 (C.27)

by using Eq. (C.23). This implies C(xA),A = F (xA),A = 0 and thus they are constant,

C(xA) = C, F (xA) = F. (C.28)

For (a, b) = (χ,A), we have

∂χ∂AΦ− s′

s
∂AΦ = D(xA),A

[√
α− s′

s

]
e
√
αχ − E(xA),A

[√
α +

s′

s

]
e−

√
αχ = 0. (C.29)

This implies D(xA),A = E(xA),A = 0 and thus they are constant,

D(xA) = D, E(xA) = E. (C.30)

Now we have
Φ = Ce

√
αt +De

√
αχ + Ee−

√
αχ + Fe−

√
αt (C.31)

from Eqs. (C.23), (C.28), and (C.30).
From Eq. (C.31), we have ∂AΦ = 0 and thus,

∇h
a∇h

bΦ = ∂a∂bΦ− Γχab∂χΦ. (C.32)

Together with Eq. (C.24), we have

∆hΦ = −∂2tΦ + ∂2χΦ + (d− 2)
s′

s
∂χΦ. (C.33)

Then the tt-, χχ-, and AB-component of Eq. (8.90) give

∂2tΦ +
1

d

[
−∂2tΦ + ∂2χΦ + (d− 2)

s′

s
∂χΦ

]
=

d− 1

d
αΦ,

∂2χΦ− 1

d

[
−∂2tΦ + ∂2χΦ + (d− 2)

s′

s
∂χΦ

]
=

1

d
αΦ,

s′

s
∂χΦ− 1

d

[
−∂2tΦ + ∂2χΦ + (d− 2)

s′

s
∂χΦ

]
=

1

d
αΦ, (C.34)

respectively. The sum of the first and second equations gives

∂2tΦ + ∂2χΦ = αΦ (C.35)
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and this is already satisfied by Eq. (C.31). The subtraction of the second equation times
(d− 1) from the first equation gives

D
[√
αs− s′

]
e
√
αχ + E

[√
αs+ s′

]
e−

√
αχ = 0 (C.36)

with the substitution of Eq. (C.31). This requires

D = E = 0 (C.37)

and therefore ∂χΦ = 0. The third equation in Eq. (C.34) then reduces to

∂2tΦ = αΦ (C.38)

and this is already satisfied by Eq. (C.34) with the vanishing of D and E.
As a consequence, the general solution of Eq. (8.90) with the geometry Eq. (C.14)

for α = ±1 is given by
Φ = Ce

√
αt + Fe−

√
αt (C.39)

with the arbitrary constants C and F .

C.2.2 α = 0

Consider the α = 0 case of the geometry of Eq. (C.14). Since the geometry (Σ, h) is the
d-dimensional Minkowski spacetime, we adopt Cartesian coordinates {t, xi} on it and
the curvatures and the Christoffel symbols identically vanish. Then the master equation
Eq. (8.90) for the perturbation Φ reduces to

∂a∂bΦ− 1

d
ηcd∂c∂dΦηab = 0. (C.40)

From the nondiagonal components, Φ must be the sum of one-variable functions of t
and xi. We express it as

Φ = ft(t) +
d−1∑
j=1

fj(x
j) (C.41)

with the arbitrary functions ft(t) and fi(x
i). The tt- and ii-component give

(d− 1)∂2tΦ +
d−1∑
j=1

∂2jΦ = 0, (C.42)

∂2tΦ + d∂2iΦ−
d−1∑
j=1

∂2jΦ = 0, (C.43)

respectively. The equations give

∂2tΦ + ∂2iΦ = 0 (C.44)
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by the summation of them. From Eq. (C.41), this leads to

− ∂2t ft(t) = ∂2i fi(x
i) = 2D (C.45)

with the arbitrary constant D. Integrating the equations, we have the general solution
of Φ for α = 0,

Φ = D

[
−t2 +

d−1∑
j=1

(xj)2

]
+ Ctt+

d−1∑
j=1

Cjx
j + C, (C.46)

with the arbitrary constants D, Ct, Ci, and C. The solution satisfies Eq. (C.40), indeed.
The solution can be rewritten as

Φ = Dηabx
axb +Bax

a + C (C.47)

with xa = (t, xi) and Ba = (Ct, Ci). C represents the perturbation parallel to Σ, or the
shift of Σ. It displaces Σ → Σε by a constant distance Cε at each point p ∈ Σ. Ba

rotates Σ with the fixed axes Aa given by BaA
a = 0. Points satisfying xa ∝ Aa are fixed

by the perturbation and the set of Aa spans (d− 1)-dimensional surface, actually. If the
surface is timelike, the perturbation is a spatial rotation of Σ while if spacelike, it is a
Lorentz boost of Σ. D provides the perturbation which depends only on the length of
xa and fixes the origin xa = 0 and the null rays ηabx

axb = 0 passing the origin. We can
understand D as follows.

To imagine the effect of D, let us consider that Σ is embedded into the (d + 1)-
dimensional Minkowski spacetime Md+1 by the embedding xa ∈ Σ 7→ xµ = (xa, y = 0) ∈
Md+1, for example. Suppose Ba = C = 0 for simplicity. The photon surface Σ is given
by y = 0 with the normal vector Nµ = (0, 1). The perturbed photon surface Σε is given
by

xµε = xµ + ΦNµε =
(
xa, Dεηabx

axb
)

(C.48)

from Eqs. (8.70) and (8.71). In the case of d = 2 and xa = (t, x) for simplicity, it is
xµε = (t, x,Dε(−t2 + x2)), or expressed as the quadratic equation,

− t2 + x2 − 1

Dε
y = 0. (C.49)

This coincides with the expansion about y of the one-sheeted hyperboloid given by

− t2 + x2 + (y − a)2 = a2 (C.50)

in M3 around y = 0 in linear order, where the “radius” a is specified by a = (2Dε)−1.
In fact, timelike planes and one-sheeted hyperboloids are known to be timelike photon
surfaces of the Minkowski spacetime [8]. Furthermore, by the large radius limit, or
equivalently the zero-curvature limit, a → ∞, the local geometry of the hyperboloid
approaches to that of planes. The limit corresponds to ε → 0 in our case. Therefore,
the parameter D gives the perturbation of the plane Σ to a hyperboloid Σε of infinitely
large radius a = (2Dε)−1. Note that although the local geometries coincide with each
other in the limit, their global topologies, which would be subject to the nonlinear order,
in the Minkowski spacetime are different. It is also worth noting that the hyperboloid
in the Minkowski spacetime has the geometry of de Sitter spacetime [8].
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C.2.3 Stability

The scaling of Eq. (C.14) to Eq. (C.12) gives α → a−2α and t → at. As a result, the
most general solutions of the linear perturbation Φ of the photon surface which has the
surface geometry of Eq. (C.12) are

Φ = Ce
√
αt + Fe−

√
αt (α = ±1) (C.51)

with the arbitrary constants C,F and

Φ = Dηabx
axb +Bax

a + C (α = 0) (C.52)

with the arbitrary constants D, Ba, and C. The photon surface is stable, i.e. Φ is
bounded, against all the possible perturbations if and only if the spatial geometry is
hyperbolically symmetric, R = (d − 1)α < 0. The case is where −CkNkN = Rkk < 0
for any null vector k ∈ TpΣ at any point p ∈ Σ, i.e. Σ is a strictly stable photon
surface as we expected. The α = 0 case corresponds to a marginally stable case where
−CkNkN = Rkk = 0. If one perturbs Σ with the initial condition ∂aΦ|t=t0 = 0, it leads
to D = Ba = 0 and the deviation remains constant, Φ = C, and is bounded. It is worth
noting that any perturbation violating the spatial symmetry of the surface is not allowed
for α = ±1. The relatively high degrees of freedom of the perturbation for α = 0 come
from that the geometry (Σ, h) restores the maximal symmetry on it.

If we apply the results to the perturbation of a Z2-symmetric pure-tensional joined
spacetime in Sec. 8.4, it is consistent with the Λ-vacuum case of [55, 56] and implies
that the perturbations the authors investigated for the spherically and hyperbolical
symmetric cases are the most general under the Z2-symmetry of the joined spacetime in
the sense of Eq. (C.51).

Eq. (8.86) or (8.90) can shed light on seeking photon surfaces around a given photon
surface. This is because the existence of the possible linear perturbations of a photon
surface should imply the existence of nearby photon surfaces. The result, Eq. (C.51), in
the example tells us that, in the vicinity of the spherically and hyperbolically symmetric
photon surface of a Λ-vacuum spacetime, there would be no photon surface which does
not have the same spatial symmetry. Eq. (C.52) indicates that there exist photon sur-
faces around a given planar photon surface. They are obtained by the shift, the rotation,
the boost, and the transformation to hyperboloids.
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